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Abstract:  
 
Ambivalence in the regulatory definition of capital adequacy for credit risk has recently 
steered the financial services industry to collateral loan obligations (CLOs) as an important 
balance sheet management tool. CLOs represent a specialised form of Asset-Backed 
Securitisation (ABS), with investors acquiring a structured claim on the interest proceeds 
generated from a portfolio of bank loans in the form of tranches with different seniority. By 
way of modelling Merton-type risk-neutral asset returns of contingent claims on a multi-asset 
portfolio of corporate loans in a CLO transaction, we analyse the optimal design of loan 
securitisation from the perspective of credit risk in potential collateral default. We propose a 
pricing model that draws on a careful simulation of expected loan loss based on parametric 
bootstrapping through extreme value theory (EVT). The analysis illustrates the dichotomous 
effect of loss cascading, as the most junior tranche of CLO transactions exhibits a distinctly 
different default tolerance compared to the remaining tranches. By solving the puzzling 
question of properly pricing the risk premium for expected credit loss, we explain the 
rationale of first loss retention as credit risk cover on the basis of our simulation results for 
pricing purposes under the impact of asymmetric information. 
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1 INTRODUCTION 
 
 
Over the recent past loan securitisation has proven its value as an efficient funding and capital 

management mechanism for financial institutions. As a structure of credit risk transfer (and 

loan sale) it could lead to a mitigation of required minimum capital when regulatory levels are 

proven to be overly conservative. By subjecting bank assets to market scrutiny loan 

securitisation facilitates prudent risk management and diversification as an effective method of 

redistributing credit risks to investors and broader capital markets through issued debt 

securities (MORRIS AND SHIN, 2001). Thus, loan securitisation is an expedient asset funding 

option in comparison with other means available to banks, since issuers are able to achieve a 

more precise matching of the duration of their managed assets and liabilities. However, the 

flexibility of issuers and sponsors to devise a particular transaction structure, i.e. choosing 

from a vast variety of methods to subdivide and redirect cash flows from an illiquid underlying 

reference portfolio, also bears the risk of severe misalignments of information between issuers 

and investors as to the term structure of default probability and loss severity of loan default.1 

 

Ambivalence in the regulatory definition of capital adequacy for credit risk has recently stirred 

the financial services industry to advanced activism in loan securitisation. During the last years 

the securitisation of corporate and sovereign loans has attracted an increased following from 

both banks and financial service companies in order to obtain capital relief and gain liquidity 

or to exploit regulatory capital arbitrage opportunities. In the wake of increasing popularity of 

securitisation for reasons mainly to be found in regulatory and economic arbitrage, collateral 

loan obligations (CLOs) have evolved into an important balance sheet management tool. 

CLOs represent a specialised form of Asset-Backed Securitisation (ABS), with investors 

acquiring a structured claim on the interest proceeds generated from a portfolio of bank loans 

in return for a certain degree of collateral default they are willing to accept. Both interest 

spread and default losses are prioritised on the basis of contractual repartitioning according to 

investor seniority. Due to the inherently diverse and intransparent nature of bank loan 

portfolios the presence of asymmetric information imposes some sort of “lemon’s problem” á 

                                                 
1 SKORA (1998) defines credit risk as the risk of loss on a financial or non-financial contract due to the 
counterparty’s failure to perform on that contract. Credit risk breaks down into default risk and recovery risk. 
Whereas default risk denotes the possibility that a counterparty will fail to meet its obligation, recovery risk is the 
possibility that the recovery value of the defaulted contract may be less than its promised  
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la AKERLOF (1970) on the economic workings of this securitisation process. Despite efficiency 

losses due to adverse selection and moral hazard, issuers of CLO transactions achieve gains 

from bundling assets and then further tranching them before they are sold into the capital 

markets. The dissemination of losses on theory of an agreed prioritisation warrants particular 

attention in determining the state-contingent pay-offs of investors in such a case of 

asymmetric information, since broad risk categories of structured transactions depend on the 

quality distribution of the collateral pool. 

 

The varying willingness of sponsors and issuers to securitise only part of selected loan 

portfolios has drawn increased attention to credit enhancement as a frequently observed 

feature of CLO securitisation. Banks commonly retain an equity claim on a portion of the 

collateral portfolio to provide capital cover for first losses by buying back the most junior 

securities issued by the conduit. Alternatively, such credit enhancement could also take the 

form of a standby letter of credit to the conduit, or by the sponsoring bank. In return for 

providing such credit enhancement, as well as the loan origination and servicing functions, the 

sponsoring bank lays claim to the residual spread between the yields on the underlying loans 

and the interest and non-interest cost of the conduit, net of any losses on pool assets covered 

by the credit enhancement. Capital market investors hold the remaining tranches of the 

securitisation transaction. This typical structure of a CLO transaction is subjected to a 

prioritisation of both default losses and interest income generated from the underlying 

collateral portfolio, which indicates the investment risk investors are willing to tolerate in the 

light of adverse asymmetric information about asset quality of the collateral. Credit 

enhancement represents an attempt of stymieing adverse selection to ensure incentive 

compatibility of issuers with investor expectations in a CLO transaction.2 However, the 

concentration of all first losses in an equity tranche retained by the sponsor does result in a 

default rate different from the investors’ default tolerance exhibited in the expected spreads on 

more senior mezzanine tranches. The security design of CLOs has it, the extent to which 

pricing of CLO transactions and the willingness of the issuer/sponsor to resort to asset 

retention mirrors the economic rationale of loan securitisation under information asymmetry. 

The modelling of the peculiar characteristic of default risk emanating from underlying loan 

collateral is critical in loan securitisation in the light of the high-yield structured finance market 

                                                 
2 See also CALVO (1998) for a detailed discussion of the “lemons problem” in the context of financial contagion. 
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having witnesses distressed performance and inevitable adverse follow-on effects on the 

performing of loans in the underlying asset collateral over the recent past. 

 

The manifestation of persistent downward rating drift have sparked interest in a diligent 

surveillance of asset performance. Especially the term structure of defaults in the underlying 

asset portfolio of securitisations has inadvertently drawn attention to the issue of credit 

enhancement whose assessment of covering first loss severity is coupled with the ability of the 

issuer to avert unexpected levels of substandard asset performance. Banks have identified 

particularly CLOs in curbing fears of rising levels of loan delinquencies jeopardising the rating 

levels of such transactions. In keeping with prudent collateral surveillance, this would 

eventuate a more careful contemplation of defaults (i.e. delinquencies and termination rates) 

of corporate loans as growing numbers of banks seriously considers securitisation as an 

expedient means of balance sheet restructuring through active credit portfolio management to 

the detriment of more agile interest-based bank business.  

 

1.1 Objective 
 

The following paper purports to a comprehensive examination of default risk and its 

ramifications on the security design of CLOs under symmetric information only, as the degree 

of transparency about the collateral pool quality does not have any bearing on the workings of 

the securitisation structure once it has been put in place. The paper aims at modelling the 

valuation of senioritised contingent claims on multi-asset reference portfolios underlying 

collateralised loan obligations (CLOs).  

 

1.2 Method 
 

In the course of proper asset pricing of structured finance transaction with a defined credit 

event, such as loan securitisation, extreme events enter very naturally, and as such, 

understanding the mechanism of loss allocation and the security design provisions governing 

them becomes essential. In absence of historical credit default data, we propose a Merton-

based (1974) credit risk pricing model that draws on a careful simulation of expected loan loss 

based on parametric bootstrapping through extreme value theory (EVT). Given the number 

of stochastic variables and the complexity of the relationships no closed form solution for 

calculating the needed risk measures is available. Thus, the analysis is undertaken with a Monte 
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Carlo simulation model. In this way we simulate and measure credit risk, i.e. collateral default 

losses, of a loan portfolio for the issuing process of securitisation transactions under 

symmetric information.  

 

The loss distribution function stems from portfolio-level statistics derived from deterministic 

assumptions about asset-specific properties as to the contribution of expected/unexpected 

credit loss by individual loans (see Figure 1 below).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Cumulative distribution function of credit portfolio losses. 
 

The allocation of periodic losses in proportion to the various constituent tranches, their 

evolution over time and their bearing on the pricing of the CLO tranches for risk-neutral 

investors and in comparison to zero-coupon bonds will be the focus of this examination. 

Hence, the suggested model serves as a blueprint for the adequate valuation of CLO 

transactions, if we render the value of contingent claims dependent on the totality of expected 

periodic credit loss of a multi-asset portfolio allocated to the tranches issued. The resulting 

tranche spreads are indicative of the default pattern of CLOs, which causes excess investor 

return expectations in view of information asymmetries. By assuming a uniform portfolio and 

a corresponding distributional approximation of stochastic loan losses (without taking into 

consideration prepayments and early amortisation triggers most common to CLOs), the 

analysis illustrates the dichotomous effect of loss cascading as the most junior tranche of CLO 
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transactions exhibits a distinctly different default tolerance compared to the remaining 

tranches. Finally, we explain the rationale of first loss retention as credit risk cover on the 

basis of our simulation results for pricing purposes. As an extension to this paper, we propose 

to test the viability of the model by comparing simulated credit risk to historical probabilities 

of portfolio credit default, aside from the presented comparison of simulated risk-neutral 

returns on tranches and analytical bond prices.3 

 

1.3 Scope of Research 
 

We synthesise three major areas of research. Both professional and academic accounts appear 

with respect to (i) pricing credit risky instruments, credit risk measurement of portfolios, credit 

risk management (see CAOUETTE, ALTMANN AND NARAYANAN (1998) for an overview), (ii) 

contract theory, security design and asset liquidity (CLEMENZ, 1987; BOLTON AND 

SCHARFSTEIN, 1990; RAJAN, 1992; DEMARZO AND DUFFIE, 1997; HOLMSTRÖM AND TIROLE, 

1998; BHASIN AND CAREY, 1999; PARK, 2000; WOLFE, 2000), (iii) financial intermediation and 

underwriting (DIAMOND, 1991; GORTON AND PENNACCHI, 1995; GANDE, PURI, AND 

SAUNDERS, 1999; DIAMOND AND RAJAN, 2000; and (iv) market structure and competition 

(KYLE, 1985; GLOSTE AND MILGROM, 1985; OLDFIELD, 2000) and (v) and loan securitisation 

(RIDDIOUGH, 1997; DUFFIE AND ˆGARLEANU , 2001 and 1999; DUFFIE AND SINGLETON, 

1998 and 1999). We follow the current literature in the combining credit risk and loan 

securitisation at portfolio level, as we model the asset returns of senioritised contingent claims 

on a multi-asset reference pool of loans in a CLO transaction. In order to value such claims 

we develop a variety of portfolio risk models to calculate the probability distribution potential 

credit losses for the guarantor’s reference portfolio over a certain period of time. We consider 

systematic risk impacting on aggregate (uniform) portfolio default at a constant between-asset 

correlation, with individual risk being diversified in a pool of a sufficiently large number of 

independent risks. The parameters of simulated periodic default losses of the reference 

portfolio are translated into an economically meaningful concept, as we estimate the periodic 

loss severity for the CLO reference portfolio, which has a bearing on the pricing of the CLO 

tranches. We calculate the risk-free returns of CLO securities for both fixed and variable 

interest rates, required by investors to be sufficiently compensated for expected credit risk of 

the reference portfolio under the impression of a particular security design, i.e. the allocation 

                                                 
3 See also BARNHILL AND MAXWELL (2002). 
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of default losses and their term structure. Adverse selection and moral hazard certainly are 

cardinal parameters in this regard.  

 

With respect to the security design of CLOs three important factors enter this paper as 

important considerations. First, what are the loss sharing effects of the extent to which banks 

are willing to bear part of the losses stemming from the non-performance of the reference 

portfolio in expedient of partial retention of a part of the portfolio? As issuers pass on 

remaining asset claims to capital market investors, any credit enhancement establishes a 

particular degree of “collateralisation” of the securitisation transaction with corresponding 

changes to the expectation of possible losses to be borne by outstanding debt securities issued 

on the loan portfolio. Second, the assumed structure of these outstanding debt securities has 

to be in compliance with the current security design in the securitisation market of corporate 

loans, i.e. the model assumptions about the specificities of the CLO tranches match the 

empirical observations of standard ranking of asset claims in CLO transactions. Third, the 

market value of the securitised collateral portfolio is subjected to gradual erosion through loan 

default (excluding effects of amortisation through prepayment). Default loss is accounted for 

only at the end of a single period t , such that the reference portfolio is assumed to be 1 at 

time t .  

 

The objective of illustrating the default term structure and pricing of CLO tranches based on a 

loss cascading model breaks down in four distinct sections. First, we project the estimated 

default expectations of holders of tranches in the securitisation transaction by simulating the 

expected and unexpected losses on a loan portfolio with standard assumptions as to the 

portfolio risk parameters. Since we are at a loss of sufficient historic data about loan defaults 

extreme value theory will be employed to determine proxies of default loss on a loan portfolio 

with a constant, increasing and decreasing forward rate of default probability. Subsequently, 

we derive approximate credit ratings for the CLO tranches by means of benchmarking the 

term structure of default rates of expected losses with expedient zero-coupon bonds as upper 

und lower bounds, before the risk-neutral spreads on the various tranches of a CLO 

transaction are calculated from cumulative default loss per tranche. Finally, the obtained 

results are contemplated in a post-simulation assessment of the incentive of both 

issuers/sponsors of the transaction and investors to acquire certain tranches on the theory of 



 

 8 
 

remedying information asymmetries. These findings have important implications for portfolio 

models to explain the implications of credit risk on structured finance. 

 

 

2 LITERATURE REVIEW 
 
 
Our approach follows the present credit risk literature in the valuation of contingent claims 

and the analysis of loan default as to the issuer’s ability and incentive to meet payment 

obligations in terms of credit risk cover for expected losses. This area of asset pricing sits well 

with prominent structural models of credit risk (MERTON, 1974; BLACK AND COX, 1976; 

BRENNAN AND SCHWARZ, 1978; LELAND, 1994 and 1998). We also resort to WALL AND 

FUNG (1987), IBEN AND BROTHERON-RATCLIFFE (1994) and DUFFEE (1996), who discuss 

credit risk as it applies to portfolio risk management. We offer an original contribution to this 

field of research as we focus on extending traditional models of valuing multiple underlying 

assets in the context of security design of loan securitisation and the impact of maturity on 

asset valuation (LELAND AND TOFT, 1996). Despite the abundance of structural models, 

pricing methodologies of the CLO mechanism are still found wanting (FIDLER AND BOLAND, 

2002), leave alone multi-asset approaches to reliably represent the cost and risk associated with 

the partial asset retention as credit enhancement as a vital requisite of CLO transactions. One 

of the main reasons for a lack of appropriate asset pricing techniques is that the valuation of 

multi-asset contingent claims defies a closed-form solution. We address this issue by 

modifying the multi-asset process of credit losses of loan reference portfolios by means of 

extreme value theory (EVT) simulation in order to bootstrap parameters estimates for the 

determination of credit loss as a basis for the valuation of claims. 

 

The reason for EVT as a methodology is straightforward. In the course of proper asset pricing 

of structured finance transaction with a defined credit event, such as loan securitisation, 

extreme events enter very naturally, and as such, understanding the mechanism of loss 

allocation and the security design provisions governing them becomes essential. In absence of 

historical credit default data, the set-up of this CLO pricing model makes an explicit analytic 

formulae in the spirit of a closed form solution to give way to careful simulation, i.e. a 

sufficiently iterative process of deterministic credit default in order to generate extreme events 

of portfolio distress (ASMUSSEN, 1999). In advent of imminent regulatory change (BASEL 



 

 9 
 

COMMITTEE, 1999a) this aspect should prove to be particularly instrumental in resolving the 

puzzling pricing mechanism underpinning CLO spreads. We believe that our novel approach 

of asset-pricing CLO tranches is not limited to robust valuation of CLOs. It also complements 

a variety of valuation models, based on multiple underlying uncertainties stemming from time-

varying contractual contingencies of asset origination and financial intermediation. 

 

One major strand of research explores the interdependence of the asset structure of the firm 

and the organisational form that supports the separation between the firm’s assets as a crucial 

underpinning of securitisation. GREENBAUM AND THAKOR (1987) analysed the adverse 

selection effects of asset structure of financial institutions. According to their study private 

information held about the quality of originated assets would induce financial institutions to 

prefer the securitisation of better quality assets, whilst worse quality assets are retained on the 

books and funded by deposits. Generally such selective bias would lead financial institutions 

to champion securitisation transaction with high-risk reference portfolios in spite of increased 

bankruptcy risk. Hence, GREENBAUM AND THAKOR (1987) demonstrate not only how the 

between perceived quality of the asset structure comes to matter, but also assess the extent to 

which certain credit risk management techniques, such as asset securitisation could prove to 

be a suitable for transforming asset structures. 

 

Moreover, the complexity of securitisation transactions has led researches beyond the confines 

of scrutinising incentive problems in the association with the asset structure of financial 

institutions. There exists distinct set of literature that deals with the valuation of asset-backed 

securities. The common framework of existing models is aligned with the following 

assumptions. For one, a pool of assets is compiled, which underlies a senioritised collection of 

different classes of asset-backed securities. Upon simulation of individual asset performance, 

expected cash flows are aggregated, supporting the coupon and principal payments of the 

issued obligations. In most cases financial securities generating regular income or other 

financial commitments (e.g. loans, credit allowances, etc.) sustain these proceeds from the 

reference portfolio, which serves as collateral for the asset-backed securities. Ultimately, the 

pricing of the various classes (so-called “tranches”) of asset-backed securities is contingent 

upon prepayments and expected asset default of the underlying collateral portfolio, which 

impair the allocation of earmarked asset returns. The following studies are representative of 

the current state of research in the asset pricing asset-backed securities. 
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CHILDS, OTT AND RIDDIOUGH (1996) employ a structural model for pricing commercial 

mortgage-backed securities (CMBS) through Monte Carlo simulation based on the correlation 

structure of individual mortgages in the reference pool. They aggregate the value of each 

mortgage in order to determine the available amount of asset proceeds supporting each class 

of CMBS securities. Their proposed valuation methodology courts an optimal design of asset-

backed securities and forms an integral part of the established security design literature. 

RIDDIOUGH (1997) also theoretically solidifies this claim by modelling asymmetric asset value 

information and non-verifiability of liquidation motives in the context for purposes of optimal 

security design for asset-backed securities. In the bid for justifying issuers’ benefits associated 

with splitting off a completely risk-free security from the proceeds of the reference portfolio, 

he plausibly proves the compelling rationale of the so-called first loss provision as credit risk 

protection (credit enhancement). By retaining the most junior claim on cash flows from the 

reference portfolio, issuers internalise some or the entire agency cost of asymmetric 

information, the most critical impediment to fair asset pricing of securitisation transactions. 

RIDDIOUGH (1997) argues in this context that a junior claim seizes a vital function in the 

security governance of asset-backed securities due to better asset value information and its 

role as first loss position. Empirical implications of junior security holders controlling the debt 

negotiation process with pooled debt structures suggest the validity of this bid for an efficient 

design of asset-backed securities. 

 

DUFFIE AND ˆGARLEANU  (2001) follow this common thread of research in their reduced-

form credit risk model of asset pricing collateralised debt obligations (CDOs). In line with the 

diversity score approach devised by rating agencies they calculate the default intensity 

processes for single debt obligations, which, by definition, are limited to either bonds or loans. 

In extension to this estimation of individual asset exposure, they obtain the aggregate default 

intensity of the entire reference portfolio in a similar analytic form. Consequently, the 

disposable proceeds from the reference portfolio enter an efficient pricing simulation of 

different security classes (tranches) of a CDO transaction under different priority schemes. 

 

In contrast to DUFFIE AND ˆGARLEANU  (2001) our study focuses on the default intensities 

of the entire reference portfolio in order to derive efficient pricing of collateralised loan 
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obligations (CLOs), albeit we consider individual asset correlation of loans underlying the 

translation. In quantifying the default probability and loss severity associated with the cash 

flow stream from the reference pool for a constant interest rate, we draw on JARROW, AND 

TURNBULL (1995), who take as given the term structure of credit spreads, i.e. a sufficient 

number of corporate bond prices, and derive an arbitrage free pseudo-probability of default, 

as well as JARROW, LANDO AND TURNBULL (1997), who introduce a Markov model for the 

term structure of credit risk spreads, where rating agencies’ default rates and bond prices serve 

as input, so that investors’ risk premium can explicitly estimated for static and variable risk-

free interest rates. Additionally, we rely on the breadth of other research in this so-called “yield 

spread approach” by LITTERMAN AND IBEN (1991), DAS AND TUFANO (1996), ARVANTIS, 

GREGORY AND LAUREN (1999), ARTZNER AND DELBAEN (1994), NIELSEN AND RONN 

(1996), and DUFFEE (1996).  

 

We extend the pricing of CLO tranches pursuant to similar considerations suggested by DAS 

AND TUFANO (1996), who price credit-sensitive debt on the basis of stochastic interest rates, 

credit ratings and credit spreads, as well as RAMASWAMY AND SUNDARESAN (1986). Hence, we 

extend JARROW AND TURNBULL (1995) in the spirit of MADAN AND UNAL (1998), who 

augment the JARROW AND TURNBULL approach by modelling equity depending probability of 

default and non-constant recovery rate at default. The so-called “adjusted short rate 

approach” of credit spread modelling proffered by DUFFIE AND SINGLETON (1999), BIELECKI 

AND RUTKOWSKI (2000), PUGACHEVSKY (1999), BALLAND AND HUGHSTON (2000) comes 

into play, when we benchmark estimated tranche spreads with defaultable bond yields. 

 

As a more precise formulation for the credit risk involved in the reference pool is sure to 

produce an improved and more reliable asset pricing technique for asset-backed securities in 

general and CLOs in particular, our model primarily focuses on the valuation of CLOs. It also 

gives testimony of a plausible rationale as to why financial institutions securitise assets by 

providing credit enhancement in the form of first loss coverage. None of the existing models 

has been able to explicate this issue by means of an inductive approach on the basis of 

simulated default intensity processes.  

 

Many models assume asymmetric information akin to the “lemons problem” presented by 

AKERLOF (1970) and explain the gains to be realised by bundling assets and re-packaging them 
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in different tranches prior to issuance in the form of structured finance securities (DEMARZO 

AND DUFFIE, 1997; RIDDIOUGH, 1997). Generally, the separation of loans from capital 

requirements levied on the loan book institutions is achieved by means of actual or synthetic 

asset transfer to non-recourse single-asset entities. Such securitisation conduits, so-called 

special purpose vehicles (SPVs), are best understood as trust-like structures,4 which issues two 

classes of securities upon asset transfer from the sponsor of the securitisation transaction, i.e. 

the loan-originating financial institutions. Whilst the holders of debt-like notes establish prior 

claim to the underlying reference portfolio of loans in order of agreed seniority, the issuer 

retains a residual equity-like class as first loss position. The ratio of debt-like notes and residual 

equity is commonly referred to as “leverage”, whose variation allows the issuing securitisation 

conduit to maximise its value for a given set of parameters. Depending on perceived average 

loan quality in the portfolio, the residual cash flow rights of equity holders act as limited 

liability for trust claimholders against costly bankruptcy (FROST, 1997) as much as they 

guarantee senior claimholders a remote probability of suffering losses on their investment. 

Consequently, the restricted role of equity due to the absence of control rights does, however, 

upholds bankruptcy protection of senior claimholders, as it serves as an early amortisation 

trigger for inexpensive prepayment of liquidation value of a deteriorating reference portfolio. 

 

RIDDIOUGH (1997) explains that subordinated security design dominates whole loan sale, 

since cash flow splitting allows issuers to internalise some or all of the adverse selection risk, 

which would otherwise apply if they were to consider alternative options of “liquidating” a 

given pool of assets. Security design meets this objective, however, only if subordination levels 

increase relative to full information levels in order to limit agency cost for uninformed outside 

investors. Hence, the combination of early amortisation triggers and credit risk coverage, 

contractually anchored in CLO security design, also help to limit a likely predisposition of loan 

securitisation to mispricing due to private information. Packaging strategies, such as pool 

diversification and loan bundling, add to this rationale, as they soften the asymmetric 

information dilemma the subordination effect is meant to guard issuers against, and thus, 

increase “liquidation proceeds” of the reference portfolio (RIDDIOUGH, 1997).  

 

                                                 
4 We assume the securitisation vehicle is registered under the statues governing corporations, and, therefore, pays 
taxes. However, these taxes are offset by tax credits of debt. Since we do not intend to unveil specific tax 
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While the appropriation of economic rents from information advantage about asset quality 

does admittedly come into play as an implicit incentive for the tranching of CLOs in 

association with the level of credit enhancement, our model concentrates on the optimal 

pricing of CLOs. Asset pricing loan securitisation could be approached either from the 

perspective of cash flows generated from the reference portfolio or the expected losses from 

creditor default. Most models in the literature concentrate on the upside of loan securitisation, 

i.e. the amount of distributable interest and principal proceeds to be had from the loan pool. 

We use a slightly different structure in our model.  

 

We analyse the optimal design of loan securitisation transactions from the perspective of 

credit risk and frictions related to potential default by modelling the loss side through extreme 

value simulation. By extending concepts and meanings of accepted principles of asset pricing 

under symmetric information to an asymmetric information context in the risk-neutral 

valuation of CLOs, expected losses translate into investment risk premium, which entails a 

certain term structure of credit spreads for the various tranches of a securitisation transaction. 

In that way, the risk premium commanded by issuers could be compared to empirically 

observed spreads in loan securitisation, such that CLOs could be accurately priced for the 

issuing process in a symmetric information setting. Consequently, the suggested model is also 

a viable alternative asset pricing technique for portfolio credit risk, since its simulation 

framework rules out stochastic shortcomings frequently encountered in loss distributions of 

future credit loss on the basis of observed rating transition. 

 

Although we suggest a general approach of pricing contingent claims in the area of portfolio 

credit risk management, we incorporate considerations, which have emerged in discussions of 

credit risk modelling in COSSIN (1997), MADAN (1998), MADAM AND UNAL (1994), and DAS 

(1998). For further information in context of gauging the impact of credit risk on structured 

finance instruments, we refer readers to HULL AND WHITE (1995) and COOPER AND MARTIN 

(1995), who make several important observations about credit risk and how it affects the price 

                                                                                                                                                    
advantages of loan securitisation (SULLIVAN, 1998), we consider the tax expense to have the same structure as in 
the case of the originating company. 
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of over-the-counter derivatives. Moreover, our analysis makes liberal use of bibliography of 

key texts presented at the end of this paper.5  

 
 
3 LOSS DISTRIBUTION OF A UNIFORM COLLATERAL 

PORTFOLIO 
 
 
Past attempts to simulate credit risk of standard bank loan portfolios has been largely based 

on the notion that the probability of default of a uniform portfolio is consistent with a normal 

inverse distribution as the number of loans grows to infinity. According to VASICEK (1987), 

FINGER (1999) and OVERBECK AND WAGNER (2001) the normal inverse distribution 

( )ρ,NID p  with default probability p>0 as mean and equal pairwise asset correlation ρ<1 for 

a portfolio of h loans with equal exposure 1 h for → +∞h , the cumulative distribution 

function with p  

 

 ( )ρ ρ − −
 

= − −  
 

1 11
( , , ) 1 ( ) ( )NID x p N N x N p

p
 (0.1) 

   

denotes the distribution of portfolio losses ≤ ≤0 1x  by drawing on the assumption on 

normally distributed asset returns. Its density is represented by  

 

 
( ) ( )ρ

φ ρ ρ
ρ ρ

− −
−

 −
= × × − −  

 

1 1
1

1 1 1
( , , ) 1 ( ) ( )

( )
x p n N x N p

n N x
, (0.2) 

 

with standard deviation of the standard normal distribution function N derived from the 

bivariate normal distribution );,(2 ρyxN  with a zero expectation vector,6 such that  

 

 ( )σ ρ− −= −1 1 2
2 ( ), ( );N N p N p p . (0.3) 

 
 

                                                 
5 With respect to credit risk hedging, readers might find it worthwhile to consider SORENSEN AND BOLLIER 
(1994) for a practical explanation of pricing the credit risk in an over-the-counter swap. 
6 The bivariate normal distribution has a symmetric covariance matrix displaying the correlation factor ρ off and 
covariances on the diagonal. 
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4 TIME SLICING  
 
 
Assuming a discrete time grid −< < < < <0 1 1...j n nt t t t t  to be applied in modelling the 

development of portfolio losses, which are only accounted for at the end of each time period 

j, the accumulation of absolute estimated losses %L  over the time horizon n can be quantified 

as  

 

 
−

= =

= − ≡∑∏% %
1

1 0

(1 )
jn

n i j
j i

Y X X L  (0.4) 

 

with ρ~ ( , , )j j jX NID x p  for = 1,...,j n , where Xj  denotes the relative portfolio loss (in 

relation to the remaining exposure) at time period j on the basis of the normal inverse 

distribution defined by the portfolio parameters pj, ρj indexed to the time increment j=1,…, n, 

given uniformity of the collateral portfolio and the residues after losses. The estimates losses 

according to extreme value theory are treated analogously. The collateral balance is assumed to 

be 1 at time j=0. Once the absolute losses are determined based on the random draft of 

uniform losses per period as the interim result, aggregating estimated periodic portfolio 

valuations translates into the generation of absolute losses. This approach is pursuant to the 

determination of the conditional default rate (“CDR”) used by commercial banks in the 

calculation of loss scenarios on reference portfolios. Periodic default loss is derived by means 

of combining a constant default rate with projected loan claims loss severity assumptions, i.e. a 

loss severity percentage that is incurred with respect to aggregate outstanding principal balance 

of the loan claims at the time of default is multiplied with a certain probability of default 

(which is reflected by a certain credit risk loss function in this analysis). 

 

Even though the respective density function φ ρ( , , )x p  could be calculated by product folding, 

OVERBECK AND WAGNER (2001) state that a closed form display of the results does not seem 

to be possible and warrants numerical computation. Thus, in absence of reliable historical data 

pertinent on credit losses, the random variables Xj are generated on the basis of Monte Carlo 

simulation of a normal inverse distribution of credit losses according to the equation 0.1 

above. This approach requires the computation of uniformly distributed random variables 

Z~U(0, 1) and their subsequent transformation to periodic losses for each time step j with 
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 ( )ρ ρ− − −
 
 = = −
 − 

1 1 11
( , , ) ( ) ( )

1 j j
j

x NID z p N N p N z
p

 (0.5) 

 

by choosing the parameters of the loss function such that the first two moments match the 

ones obtained from the normal inverse distribution.  

 

Since the occurrence of extreme events takes a pivotal role in risk management considerations 

as to the accurate approximation of the credit portfolio losses, we need to extend this 

approach to take account of the extreme tail behaviour of credit events. Hence, the same 

methodology of generating random variables Xj in equation 0.5 is analogously applied to a 

Pareto-like distribution of credit losses, which reads in its general form as follows 

 

 
ξ

ξ β
ξ

ξ
β

−−
 

= − + ≠ ≥ 
 

1

, ( ) 1 1 for 0 and 0.
x

G x x  (0.6) 

 

This distribution of collateral losses according to an extreme value distribution as a 

transformed version of equation 0.6 will be presented as an improvement to the normal 

inverse distribution of credit losses based on the transformation of uniformly distributed 

random variables. 

 
 
5 LOSS CASCADING 
 
 

The prioritisation of asset claims in the structure of collateralised loan obligations results in 

portfolio losses %L  being allocated successively to the constituent m tranches according to 

their level of seniority, i.e. all investors in tranche k have to bear the aggregate losses up to 

αk% of the outstanding notational value of the transaction, investors in the more senior 

tranche k+1 hold for the remaining losses but smaller than αk+1%. Thus, if one tranche k has 

been fully exhausted in terms of estimated losses as reflected in default tolerance of the 

structured rating further losses in excess of the scheduled amount for the respective tranche 

(denoted by the interval α α −− 1k k of default losses the tranche k covers) are allocated to the 
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subsequent, more senior tranche. This bottom-up cascading process perpetuates until all 

losses are allotted to the relevant tranches in the order of the scheduled default loss for each 

tranche, i.e. the proportional share α α −− 1k k  in total periodic loss on the collateral portfolio, 

with α α α α−≤ < < <0 1 10 ... m m set as the boundaries of the respective tranches. These 

boundaries are time-invariant and lack the notation j for time period. The mathematical 

notation for this allocative routine7 applies to default losses in the following form 

 

 ( ) ( )α α α
+− −= − ∧ −1 1k k k k

j jL x , (0.7) 

   

where jL   represents the periodic default loss in time step j as the proportional default loss of 

the collateral portfolio is borne by tranche k. The determination of the expected credit loss 

per tranche in time period j and on aggregate over the entire maturity n,  

 

 
( ) ( )α α α

α α

+− −

−
= =

− ∧ −
= =

−∑ ∑∫% %
1 1

1
1 1

( )
k k kn n

jk k
j jk k

j j

x
L L df x  (0.8) 

 

yields a probability measures %k
jL  and %kL of the loss distribution f(xj) and f(x) over one time 

period j or on an aggregate basis respectively. The issuing entity tends to retain the lowest, 

most junior tranche (commonly an equity note) with a credit loss tolerance of α α−0 1 , which 

absorbs the first loss exposure of the transaction, and, thus, is called the “first loss position” 

or “first loss piece”. This form of credit enhancement displays the extent to which banks are 

willing to bear part of the losses stemming from the non-performance of the reference 

portfolio. Such an asset retention establishes the degree of “collateralisation” of the 

securitisation transaction as issuers pass on asset claims to market investors by means of a 

special purpose vehicle. The prioritisation of structured claims reduces the default tolerance of 

the successive tranches, albeit increased interest rate sensitivity, which will be discussed later in 

this paper. The mezzanine tranches with low and medium investment grade rating are usually 

sold to capital market investors as notes and commercial paper (in the case of highly rated 

senior notes). Finally, the most senior tranches are securitised in the form of a credit default 

                                                 
7 See OVERBECK AND WAGNER (2001) for an abridged representation of this method of loss cascading. 
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swap with a equally or lower risk-weighted counterparty by means of a credit default swap or 

some other method of structural provision, such as a bilateral credit guarantee, etc.  

 
 
6 EXTREME VALUE THEORY AS LOSS FUNCTION 
 
 

Alternatively to the normal inverse distribution of random variables on a uniform space, one 

might resort to extreme value theory to model the loss density function of credit portfolios. We 

derive a loss function as a specialised form of a Pareto-like distribution (Fig. A12), which is 

one-dimensional by definition. Neither the generalised Pareto distribution (GPD) nor the 

transformed GDP presented in this model are derived from a multi-dimensional distribution 

with dependent tail events (EMBRECHTS, 2000; EMBRECHTS, MCNEIL AND STRAUMANN, 

1999), even though we value contingent claims on a multi-asset portfolio of securitisable loans 

affected by default losses. This methodology is justified on the grounds of the stochastic 

characteristics of the reference portfolio. Since the loan pool exhibits equal between-asset 

correlation, we can do without multi-dimensional distributions by considering the reference 

portfolio to be one asset, whose credit risk is modelled on aggregate.  

 

Extreme value theory (EVT) propagates a stochastic methodology as part and parcel of a 

comprehensive risk measure to monitor asset exposure to extremes of random phenomena. 

EMBRECHTS (2000) describes it as a “canonical theory for the (limit) distribution of normalised 

maxima of independent, identically distributed random variables”, where solving for the right 

limit results of the equation (0.9) below yields the estimation of the extremal events 

(EMBRECHTS, KLÜPPELBERG AND MIKOSCH, 1997; EMBRECHTS, RESNICK AND 

SAMORODNITSKY, 1999; MCNEIL, 1999), 

 

 ( )= 1max ,...,n nM X X  (0.9) 
 

This is in stark opposition to the theory of averages, where 

 

 1 ...n nS X X= + +  (0.10) 
 
describes the general notion of quantiles as multiples of standard deviations, with the 

Brownian motion as a basic assumption representing what is known to be the most familiar 
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consideration of modelling diffusion processes. Multivariate EVT as an advanced form of 

estimating the extreme events in a random setting (EMBRECHTS, HAAN and HUANG, 1999), 

purports to translating the behaviour of such rare events into stochastic processes, evolving 

dynamically in time and space, by considering issues such as the shape of the distribution 

density function (skewness and kurtosis) and its variability in stress scenarios. However, the 

detachment of EVT from the straightjacket of hitherto distributional assumptions on 

dependent tail behaviour of stochastic processes does come at a certain cost.  The 

methodological elegance of estimating extreme events, be it normalised maxima of i.i.d. events 

or the behaviour thereof in the context of a stochastic process, admit to restrictions to an 

unreserved and unqualified adoption in credit risk management.  For one, EVT features 

substantial intrinsic model risk (EMBRECHTS, 2000), for its requires mathematical assumptions 

about the tail model, whose estimation beyond or at the limit of available data defies reliable 

verification in practice. The absence of an optimal canonical choice of the threshold above 

which data is to be used imposes deliberate exogeneity on EVT modelling, which could 

compound limitations of the model in the presence of non-linearities (RESNIK, 1998). While 

these qualifications could possibly upset some of the virtues of EVT, a common caveat to 

EVT, nonetheless, does not hold for the presented model. High dimensional portfolios will 

not impair the assessment of stochastic properties of extreme events (EMBRECHTS, HAAN 

AND HUANG, 1999), since we model rare events of default risk in a uniform credit portfolio as 

a proxy for the valuation of contingent claims on defaultable multi-asset portfolios. 

 

In a nutshell, the use of EVT as a methodology comes to matter as it best describes the 

stochastic behaviour of extreme events at the cost of strong distributional assumptions, for 

loss of less presumptive models with equal predictive power. In the context of loan 

securitisation the modelling of senioritised payout to investors from an underlying reference 

portfolio of loans over a given period of time, cases of portfolio distress do constitute extreme 

events in the sense of EVT. Given the objective of the proposed model to explain the effects 

of loss allocation and the security design provisions governing contingent claims under 

extreme events, EVT claims methodological attractiveness due to ease of application and 

flexibility in model calibration. Nevertheless, it certainly falls short of representing the ultimate 

panacea of risk management due to a multitude of unresolved theoretical issues, such as 

multiple risk factors and possible computational instability as ML estimated parameters do not 

necessarily converge (EMBRECHTS, 2000).  
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In defiance of the standard assumption of an elliptic distribution  

 

 µ σ( )~ ( , )
j jj x xf x N , (0.11) 

 

since a heavy upper tail of periodic credit losses jx  yields for some positive integer a  

 

 
∞

→ + ∞∫
0

( )a
j j jx f x dx , (0.12) 

 

the generalised Pareto distribution (GPD) with parameters ξ β∈ >R, 0  is defined by 

 

 

ξ

ξ β

ξ
ξ

β

ξ
β

−−   − + ≠   = 
 

− − = 
 

1

,

1 1 0
( )

1 exp 0

x
for

G x
x

for

, (0.13) 

 

where ≥ 0x  for ξ ≥ 0  and β
ξ

≤ ≤ −0 x  for ξ < 0 . ξ  is a shape parameter of the distribution 

responsible for the tail behaviour, where the two cases ξ ≥ 0  and ξ < 0  yield heavy tails and 

light tails respectively. 

 

In order to construct a loss distribution with the same tail behaviour, we improve on the 

generalised Pareto distribution by following the approach introduced by JUNKER AND 

SZIMAYER (2001) in allowing for a peak different from zero. Hence, the following loss 

function L(x) can be derived from expanding the support of GPD to R by an appropriate 

transformation, 
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( ) ( )( )
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ξ
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β
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1

2 2

( ) 1 1

2 1 exp

x x s
L x

x
, (0.14) 

 

for ξ > 0 (heavy tailed), 0>β , 0>s  and ρ ∈R (for the treatment of ξ ≤ 0  see JUNKER AND 

SZIMAYER (2001)). 

 

Mapping of the loss function onto a distribution on the uniform interval of random variables 

in [ ]0,1  is achieved by imposing a upper and lower bound on x such that [ ]ddx ;−∈  and  

 

 − −
=

− −
( ) ( )

( )
( ) ( )d

L x L d
L x

L d L d
. (0.15) 

 

Subsequently, UL  is formed with [ ]∈ 0,1u  such that 

 

 ( )−= 1( ) ( ) ,U d dL u L U u  (0.16) 

 

with dU  being the uniform distribution with d−=min  and =max d . ρ ρ−= 1( )u dU  is gained 

through re-parameterisation, whilst β and s  are scale parameters dependent on the level of d , 

e.g. for ′d  one obtains β β
′

′ = ×
d
d

. The same holds true for s  analogously. The following 

parameters have been chosen for the simulation: ξ β −= = = = =4 40.4, 26, 7.5, 10 , 10us p d . This 

parameterisation results in −− = ⋅ 71 ( ) 6 10L d , which has the desired property of leaving the loss 

tail shape unaffected by the truncation.8  

 

                                                 
8 Since − =( ) 0.05L d  the density of UL  does not revert to zero at point = 0u , which corresponds to the practical 
intuition of portfolio losses (reality check of uniform mapping assumption for the distribution of random 
variables on the uniform interval [0,1]).  
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7 RESULTS – TERM STRUCTURES OF DEFAULT RATES 
 

 

Table 2 exhibits the results of a Monte Carlo simulation with a sequence of one million 

iterations of normal inverse distributed (NID) portfolio losses =for 1,...,jX j n , with the given 

portfolio parameters p=0.0026 and ρ=0.17, whereas Table 1 represents the simulations results 

if we apply extreme value theory (which encompasses the properties of the NID and allows 

for extreme events to be incorporated in the estimation on the basis of the given shape 

parameters). The probability of default (commonly abbreviated as PD) is assumed to be 

constant for each period j at this stage of our analysis, which is in line with the default 

standard of corporate loans proposed by issuers in their “offering circular” as constant or 

conditional default rate (“CDR”).  

 

The CDR represents an assumed rate of default each month, expressed as a per annum 

percentage of the aggregate principal balance of the loan claims that are not in default as of 

such month. It does not purport to be either a historical description of loan default or a 

predictive measure of the expected rate of default of any pool of loan claims, and, thus, does 

not impart compliance with possible fluctuations of portfolio default across time. Since banks 

calculate the CDR for analytical purposes only, it is not an accurate indicator or prediction of 

actual defaults and losses, as these are likely to differ in timing and amount from the assumed 

constant end-of-period loss at a constant rate of default.  For the purpose of the CDR 

calculation the outstanding principal balance of the loan claims that are not assumed to be in 

default is subjected to a periodic default percentage, which complements the monthly decline 

as a result of scheduled and unscheduled principal payments (prepayments) and expected 

amortisation. The assumed rate of prepayment and various other CDR assumptions translate 

into a decline of the outstanding principal balance of loan claims as reference base.  The 

erosion of the aggregate balance is further augmented by any loan claims that have already 

been in default as a consequence of the application of CDR in the preceding months, 

irrespective of whether defaulted loan claims are considered liquidated (DEUTSCHE BANK 

GLOBAL MARKETS, 1998). Thus, a rise in prepayment rates directly affects a change in 

cumulative defaults.  
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Consequently, the CDR approach has found entry in the considerations of model assumptions 

with respect to properties of the reference portfolio of corporate loans. Besides keeping p 

constant, the reduction of the reference portfolio through prepayments and amortisation is 

ignored. Amid this simplification of actual accumulation of proceeds and default losses, it 

recognises the fact that prepayment speed higher than scheduled amortisation might not 

necessarily reduce aggregate losses, since loan claims with a high default probability are least 

likely to be prepaid. Furthermore, the timing of defaults is assumed to take place at the end of 

each period j to ensure consistency in the approximation of relative portfolio losses per period 

against the background of a declining principal balance. Pursuant to the CDR calculation the 

accumulation of periodic losses has been modelled in the previous section of this paper (see 

Eq. 0.4). 

 

The subsequent illustrations (Tabs. 1-4) exhibit the results of applying various distributions to 

the development of the principle balance of a loan collateral over time, with cumulative losses 

allocated to tranches according to seniority. The first column denotes the year, the second the 

respective (forward) default rate p and the third and fourth column list the mean and the 

standard deviation of the accumulated loss, the estimated expected loss %k
jL , and the 

unexpected loss σ %k
jL . Since credit risk is measured by the volatility of losses, called unexpected 

loss, the generated results correspond to the distributional assumptions below (see Fig. 2 

below). 
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Figure 2. Volatility of credit losses as a measure of credit risk. 

 

The remaining columns report on the accumulated expected loss per tranche, whose 

boundaries have been chosen on the historical basis of most common security designs. In the 

various tranches all quantities increase monotonously on a cumulative basis, the intriguing 

insight is depicted in Figures A1-A4 (linear and logarithmic plots). 

 

The term structure of default rates of expected losses has been derived from both the normal 

inverse distribution in adaptation of the suggested model by VASICEK (1987) and an extreme 

value theory approach to Pareto distributed credit losses. Moreover, the analysis has been 

complemented by alternative cumulative distribution functions, a beta distribution and a 

negative binomial distribution (Tabs. 1-4; complete tables with the simulation results of 

estimated and unexpected loss as an absolute share of total portfolio loss are included in the 

appendix as Tabs. 19-26). When all four distribution functions are compared with respect to 

accurate approximation of total portfolio losses, the estimated expected loss %k
jL  and the 

unexpected loss σ %k
jL . However, once we move to a tranche-based examination of the results 

for the various distributions, the expected loss in the distribution tails reflected in the first 

tranche [0-2.4%] %1
jL  showcases material differences across all four approaches. Also in the 

higher tranches as illustrated in Figure A8, the term structure between the normal inverse 

distribution and the beta-/negative-binomial distribution as well as the loss distribution 

according to extreme value theory deviate from each other at an increasing rate, especially in 

the mezzanine tranche [6.5%-9.0%].   

 

Considering the cumulative incidence of credit losses to be skewed towards the extreme end 

of the distribution, the normal inverse distribution seems to reflect the “loss reality” most 

truthfully.9 According to OVERBECK AND WAGNER (2001) the q-q-plot of quantiles for the 

beta distribution versus the negative binomial distribution tends to indicate a high degree of 

similarity on the basis of matched first two moments, with cumulative probabilities reaching 

levels in the tune of 99.995%. This comparison has been completed ex post the adjustment of 
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results obtained from the negative-binomial distribution in dividing the discrete losses n by the 

some large number s.10 Note that the observations tend to fall slightly below the diagonal in 

the q-q-plot, which is clearly rooted in the cut-off value of s. If the same analysis is applied in 

the context of extreme value theory the q-q-plot of quantiles for the Pareto-based loss 

function versus the normal inverse distribution (Fig. A12) bears out a clear deviation of EVT 

quantiles from the normal inverse distribution from 0.05 onwards. Consequently, the extreme 

value theory might be more attuned to illustrating sporadic credit loss whose statistical impact 

in expectation models defies the Gaussian assumptions of the normal inverse distribution. 

Since the degree of coincidence between probability masses is instrumental in predicting of 

how close the accumulated expected loss per tranche match for both distributions of portfolio 

loss, the almost identical results of accumulated expected loss per tranche for both the normal 

inverse distribution and the beta distribution do not come to a great surprise. As the proposed 

specialised form of a Pareto distribution places a premium on extreme events in line with 

extreme value theory, the results from the q-q plot hints to a mitigation of default rates for 

more senior “investor tranches”, whilst the first loss position is almost entirely exhausted by 

estimated default losses. 

 

                                                                                                                                                    
9 See also ALTMAN AND SAUNDERS (1998). 
10 In this case s=1000 generated the following parameter input values: α=0.323278 and β=80.4258 (see 
OVERBECK AND WAGNER (2001)). 
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7.1 Prime Distribution Functions 
 
7.1.1 Term Structure of Default Rates (Extreme Value Theory) 
 
 

   Expected and 
unexpected losses 

%k
jL  per tranche (in % of tranche volume) 

cum./per. Yr p  %k
jL  σ %k

jL  
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 

cumulative 1 0.0026 0.002598 0.004581 0.104285 0.003095 0.000987 0.000375 0.000188 0.000010 
periodic   0.002598 0.004581 0.104285 0.003095 0.000987 0.000375 0.000188 0.000010 
cumulative 2 0.0026 0.005299 0.006512 0.207327 0.007653 0.002229 0.000797 0.000402 0.000023 
periodic   0.002701 0.001931 0.103042 0.004558 0.001242 0.000422 0.000214 0.000013 
cumulative 3 0.0026 0.007799 0.007978 0.308168 0.014546 0.003940 0.001332 0.000648 0.000037 
periodic   0.002500 0.001466 0.100841 0.006893 0.001711 0.000535 0.000246 0.000014 
cumulative 4 0.0026 0.010397 0.009228 0.406098 0.024665 0.006204 0.001994 0.000952 0.000051 
periodic   0.002598 0.001250 0.097930 0.010119 0.002264 0.000662 0.000304 0.000014 
cumulative 5 0.0026 0.012990 0.010317 0.500079 0.039278 0.009131 0.002777 0.001292 0.000067 
periodic   0.002593 0.001089 0.093981 0.014613 0.002927 0.000783 0.000340 0.000016 
cumulative 6 0.0026 0.015581 0.011252 0.589083 0.060005 0.012995 0.003645 0.001649 0.000082 
periodic   0.002591 0.000935 0.089004 0.020727 0.003864 0.000868 0.000357 0.000015 
cumulative 7 0.0026 0.018168 0.012104 0.671323 0.088676 0.018083 0.004711 0.002052 0.000098 
periodic     0.002587 0.000852 0.082240 0.028671 0.005088 0.001066 0.000403 0.000016 

 
   Expected and 

unexpected losses 
σ %k

jL per tranche (in % of tranche volume) 

cum./per. Yr p  %k
jL  σ %k

jL  
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 

cumulative 1 0.0026 0.002598 0.004581 0.130941 0.050337 0.028247 0.018032 0.013013 0.001526 
periodic   0.002598 0.004581 0.130941 0.050337 0.028247 0.018032 0.013013 0.001526 
cumulative 2 0.0026 0.005299 0.006512 0.178268 0.078295 0.041886 0.026340 0.019017 0.002261 
periodic   0.002701 0.001931 0.047327 0.027958 0.013639 0.008308 0.006004 0.000735 
cumulative 3 0.0026 0.007799 0.007978 0.208257 0.106408 0.055182 0.033976 0.024088 0.002737 
periodic   0.002500 0.001466 0.029989 0.028113 0.013296 0.007636 0.005071 0.000476 
cumulative 4 0.0026 0.010397 0.009228 0.226551 0.136470 0.068699 0.041584 0.029081 0.003191 
periodic   0.002598 0.001250 0.018294 0.030062 0.013517 0.007608 0.004993 0.000454 
cumulative 5 0.0026 0.012990 0.010317 0.235359 0.169272 0.082556 0.048863 0.033732 0.003616 
periodic   0.002593 0.001089 0.008808 0.032802 0.013857 0.007279 0.004651 0.000425 
cumulative 6 0.0026 0.015581 0.011252 0.235536 0.205001 0.097288 0.055601 0.038068 0.003977 
periodic   0.002591 0.000935 0.000177 0.035729 0.014732 0.006738 0.004336 0.000361 
cumulative 7 0.0026 0.018168 0.012104 0.227853 0.243130 0.113521 0.062720 0.042430 0.004301 
periodic     0.002587 0.000852 -0.007683 0.038129 0.016233 0.007119 0.004362 0.000324 

 
Table 1. Simulation of constant forward probability rates (EVT distribution of portfolio losses) per tranche 
on a cumulative and periodic basis with results for estimated and unexpected losses as absolute shares of total 
portfolio losses. 
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7.1.2 Term Structure of Default Rates (Normal Inverse Distribution) 
 
 

   Expected and 
unexpected losses 

%k
jL  per tranche (in % of tranche volume) 

cum./per. Yr p  %k
jL  σ %k

jL  
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 

cumulative 1 0.0026 0.002593 0.004588 0.104352 0.004135 0.000830 0.000157 0.000041 0.000001 
periodic   0.002593 0.004588 0.104352 0.004135 0.000830 0.000157 0.000041 0.000001 
cumulative 2 0.0026 0.005186 0.006491 0.206350 0.010987 0.002129 0.000389 0.000110 0.000001 
periodic   0.002593 0.001903 0.101998 0.006852 0.001299 0.000232 0.000069 0.000000 
cumulative 3 0.0026 0.007771 0.007921 0.304995 0.021439 0.004068 0.000683 0.000177 0.000002 
periodic   0.002585 0.001430 0.098645 0.010452 0.001939 0.000294 0.000067 0.000001 
cumulative 4 0.0026 0.010356 0.009126 0.399452 0.036819 0.006922 0.001108 0.000261 0.000003 
periodic   0.002585 0.001205 0.094457 0.015380 0.002854 0.000425 0.000084 0.000001 
cumulative 5 0.0026 0.012934 0.010181 0.488493 0.058068 0.010884 0.001691 0.000392 0.000004 
periodic   0.002578 0.001055 0.089041 0.021249 0.003962 0.000583 0.000131 0.000001 
cumulative 6 0.0026 0.015500 0.011127 0.570866 0.086047 0.016401 0.002502 0.000559 0.000006 
periodic   0.002566 0.000946 0.082373 0.027979 0.005517 0.000811 0.000167 0.000002 
cumulative 7 0.0026 0.018059 0.011991 0.645940 0.121363 0.023847 0.003575 0.000777 0.000008 
periodic     0.002559 0.000864 0.075074 0.035316 0.007446 0.001073 0.000218 0.000002 

 
Table 2. Simulation of constant forward probability rates (normal inverse distribution of portfolio losses) per 
tranche on a cumulative and periodic basis. 
 
 
 
8 VARIABLE PORTFOLIO QUALITY - CALCULATION OF THE 

DEFAULT RATES (EXPECTED/ESTIMATED AND 
UNEXPECTED) FOR ALL THE TRANCHES 

 
 
The time-dependent migration of asset quality of collateral during the term of the 

securitisation transaction is vital in the estimation of the loss cascading mechanism and its 

implications on the term structure of the individual tranches. Thus, the presented model has 

also been applied to both a normal inverse distribution and an extreme value distribution of 

collateral credit loss with varying forward rates of default (constant, increasing and 

decreasing). In the following section two extreme cases are investigated, i.e. a strictly 

deteriorating asset portfolio (back loaded) and a strictly improving portfolio (front loaded) 

with the corresponding effects on the tranching structure at hand in terms of estimated losses. 

Since a variable portfolio quality can be represented by means of an upward and downward 

drift of one-year default probabilities, the change in portfolio quality is replicated on the basis 

of a sequence if increasing and decreasing forward default probabilities p for both prime 

distributions – extreme value theory loss distribution and normal inverse loss distribution 

(Tabs. 5-6 and 7-8).  
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The presented model has been applied for both a normal inverse distribution and an extreme 

value distribution of collateral credit loss with varying forward rates of default (constant, 

increasing and decreasing). The typical structure of a CLO transaction reflected in the 

simulated allocation of losses to the various tranches elicits a peculiar dichotomy of default 

tolerance of the “first loss position” [0-2.4%] as opposed to the “investor tranches” [2.4-

3.9%], [3.9-6.5%], [6.5-9%] and [9-10.5%]. Figs. A5-A7 display the corresponding plots of a 

deteriorating and improving portfolio. With reference to the former, a comparison with Table 

1 and Figure 5 as well as Table 2 and Figure 7 showcases the increase of the first order 

moment of estimated expected loss k
jL%  per tranche (slope of estimated losses) as anticipated, 

whilst merely the first loss piece flattens from the fifth year onwards as this tranche begins to 

fill up to the maximum of losses to be absorbed. While the expected loss for the first tranche 

is a linear function of the time since commencement of the transaction, the expected losses of 

the other tranches increase in an exponential fashion over the years.  

 

Different forward rates of default losses are limited in altering this stark contrast only in the 

first periods of the CLO transaction, when an increase in the forward rate affects a smaller 

first moment of the [2.4-3.9%] tranche than for a decreasing forward rate in the context of a 

extreme value distribution. The reverse applies for a normal inverse distribution of cumulative 

default losses, where a change in the forward rate, be it an increase or decrease, directly 

translates into higher expected losses for investors without the marginal “default baggage” 

being absorbed by the first loss position. With losses accumulating until the first CLO 

tranches has been fully exhausted such that subsequent tranches bear excess losses, periodic 

expected losses for a constant forward rate of an extreme value distribution subside 

asymptotically; this pattern is reflected in a concave shape of the default term structure of 

cumulative collateral losses. 
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   Expected and 

unexpected losses 
%k

jL  per tranche (in % of tranche volume) 

cum./per. Yr ρu  %k
jL  σ %k

jL  
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 

cumulative 1 0.00010 0.002598 0.004581 0.104285 0.003095 0.000987 0.000375 0.000188 0.000010 
periodic   0.002598 0.004581 0.104285 0.003095 0.000987 0.000375 0.000188 0.000010 
cumulative 2 0.00123 0.006191 0.006508 0.248098 0.008190 0.002382 0.000833 0.000413 0.000023 
periodic   0.003593 0.004626 0.145561 0.003188 0.001032 0.000366 0.000197 0.000012 
cumulative 3 0.00195 0.010473 0.007834 0.416846 0.018131 0.004431 0.001373 0.000653 0.000034 
periodic   0.004282 0.004366 0.174498 0.003318 0.000946 0.000311 0.000158 0.000009 
cumulative 4 0.00247 0.015278 0.009016 0.598044 0.039707 0.007968 0.002189 0.000976 0.000049 
periodic   0.004805 0.004461 0.196124 0.003444 0.000979 0.000336 0.000171 0.000010 
cumulative 5 0.00277 0.020389 0.010101 0.770975 0.088717 0.014413 0.003391 0.001416 0.000068 
periodic   0.005111 0.004540 0.208625 0.003570 0.001030 0.000365 0.000192 0.000011 
cumulative 6 0.00295 0.025679 0.011100 0.908023 0.195662 0.026506 0.005249 0.002007 0.000091 
periodic   0.005289 0.004583 0.215965 0.003606 0.001061 0.000374 0.000194 0.000012 
cumulative 7 0.00306 0.031064 0.011904 0.981059 0.389878 0.049962 0.008072 0.002774 0.000114 
periodic    0.005386 0.004303 0.220174 0.003614 0.001051 0.000347 0.000173 0.000008 

 
   Expected and 

unexpected losses 
σ %k

jL per tranche (in % of tranche volume) 

cum./per. Yr ρu  %k
jL  σ %k

jL  
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 

cumulative 1 0.00010 0.002598 0.004581 0.130941 0.050337 0.028247 0.018032 0.013013 0.001526 
periodic   0.002598 0.004581 0.130941 0.050337 0.028247 0.018032 0.013013 0.001526 
cumulative 2 0.00123 0.006191 0.006508 0.174874 0.080581 0.043399 0.026735 0.019296 0.002297 
periodic   0.003593 0.004626 0.128459 0.050898 0.028846 0.017801 0.013353 0.001674 
cumulative 3 0.00195 0.010473 0.007834 0.196178 0.116936 0.058216 0.034156 0.024201 0.002717 
periodic   0.004282 0.004366 0.127236 0.051448 0.027190 0.016506 0.011817 0.001324 
cumulative 4 0.00247 0.015278 0.009016 0.195799 0.166620 0.076333 0.042914 0.029468 0.003226 
periodic   0.004805 0.004461 0.126626 0.052496 0.027589 0.017024 0.012409 0.001539 
cumulative 5 0.00277 0.020389 0.010101 0.168668 0.234645 0.100094 0.052945 0.035368 0.003746 
periodic   0.005111 0.004540 0.126135 0.053353 0.028524 0.017735 0.013319 0.001588 
cumulative 6 0.00295 0.025679 0.011100 0.113185 0.312582 0.131249 0.065124 0.041864 0.004305 
periodic   0.005289 0.004583 0.125604 0.053776 0.028916 0.018047 0.013306 0.001701 
cumulative 7 0.00306 0.031064 0.011904 0.048280 0.358264 0.172091 0.079550 0.048750 0.004631 
periodic    0.005386 0.004303 0.125246 0.053700 0.028669 0.017346 0.012474 0.001050 

 
Table 3. Simulation of a deteriorating portfolio (extreme value theory) with separate illustration of estimated 
and unexpected losses per tranche. 
 
 
In the case of rising annual default probabilities (Tab. 3 and Tab. 5), the cumulative expected 

loss of the first loss position increases less than linear as the upper boundary of the first loss 

piece does not compare favourably with the exposure of this tranche induced by the high 

default rate during the initial years. Thus, the deviation of the tranche retained by the issuer 

and the outstanding, more senior tranches is a reflection of the rapid exhaustion of the loss 

absorption by the first loss tranche before excess losses are passed onto the higher tranche. 
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   Expected and 

unexpected losses 
%k

jL  per tranche (in % of tranche volume) 

cum./per. Yr ρu  %k
jL  σ %k

jL  
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 

cumulative 1 0.00367 0.006005 0.004523 0.245673 0.003844 0.001091 0.000378 0.000182 0.000009 
periodic   0.006005 0.004523 0.245673 0.003844 0.001091 0.000378 0.000182 0.000009 
cumulative 2 0.00267 0.011014 0.006328 0.445650 0.012637 0.003011 0.000892 0.000419 0.000020 
periodic   0.005009 0.004429 0.204375 0.003659 0.001085 0.000360 0.000178 0.000009 
cumulative 3 0.00195 0.015296 0.007696 0.608457 0.030299 0.005900 0.001564 0.000693 0.000032 
periodic   0.004282 0.004366 0.174498 0.003318 0.000946 0.000311 0.000158 0.000009 
cumulative 4 0.00154 0.019189 0.008889 0.742734 0.063996 0.010507 0.002531 0.001046 0.000047 
periodic   0.003894 0.004440 0.158171 0.003325 0.001020 0.000345 0.000169 0.000009 
cumulative 5 0.00123 0.022782 0.010016 0.846424 0.121583 0.017450 0.003799 0.001493 0.000066 
periodic   0.003593 0.004626 0.145561 0.003188 0.001032 0.000366 0.000197 0.000012 
cumulative 6 0.00094 0.026099 0.011032 0.917378 0.206659 0.027686 0.005460 0.002017 0.000086 
periodic   0.003317 0.004623 0.134103 0.003262 0.001042 0.000364 0.000176 0.000010 
cumulative 7 0.00083 0.029309 0.011953 0.961671 0.318082 0.042558 0.007584 0.002645 0.000107 
periodic    0.003209 0.004607 0.129703 0.003157 0.000987 0.000365 0.000195 0.000011 

 
   Expected and 

unexpected losses 
σ %k

jL per tranche (in % of tranche volume) 

cum./per. Yr ρu  %k
jL  σ %k

jL  
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 

cumulative 1 0.00367 0.006005 0.004523 0.124453 0.055172 0.029266 0.018088 0.012631 0.001715 
periodic   0.006005 0.004523 0.124453 0.055172 0.029266 0.018088 0.012631 0.001715 
cumulative 2 0.00267 0.011014 0.006328 0.159532 0.097505 0.047893 0.027566 0.019229 0.002198 
periodic   0.005009 0.004429 0.126442 0.054316 0.029122 0.017752 0.012535 0.001253 
cumulative 3 0.00195 0.015296 0.007696 0.170597 0.145666 0.065797 0.036069 0.024743 0.002656 
periodic   0.004282 0.004366 0.127236 0.051448 0.027190 0.016506 0.011817 0.001324 
cumulative 4 0.00154 0.019189 0.008889 0.162596 0.202429 0.086183 0.045515 0.030438 0.003059 
periodic   0.003894 0.004440 0.128220 0.051941 0.028494 0.017093 0.012322 0.001283 
cumulative 5 0.00123 0.022782 0.010016 0.138867 0.262821 0.108775 0.055492 0.036301 0.003628 
periodic   0.003593 0.004626 0.128459 0.050898 0.028846 0.017801 0.013353 0.001674 
cumulative 6 0.00094 0.026099 0.011032 0.106689 0.317039 0.133944 0.066194 0.041936 0.004178 
periodic   0.003317 0.004623 0.129227 0.051637 0.028862 0.017647 0.012598 0.001760 
cumulative 7 0.00083 0.029309 0.011953 0.072741 0.354321 0.161875 0.077491 0.047751 0.004688 
periodic    0.003209 0.004607 0.128773 0.050739 0.028080 0.017886 0.013405 0.001735 

 
Table 4. Simulation of improving portfolio (extreme value theory) with separate illustration of estimated and 
unexpected losses per tranche. 
 
 

   Expected and 
unexpected losses 

%k
jL  per tranche (in % of tranche volume) 

cum./per. Yr ρu  %k
jL  σ %k

jL  
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 

cumulative 1 0.0026 0.002593 0.004579 0.104369 0.004101 0.000831 0.000147 0.000039 0.000001 
periodic   0.002593 0.004579 0.104369 0.004101 0.000831 0.000147 0.000039 0.000001 
cumulative 2 0.0036 0.006178 0.007552 0.241895 0.016947 0.003589 0.000685 0.000200 0.000004 
periodic   0.003585 0.002973 0.137526 0.012846 0.002758 0.000538 0.000161 0.000003 
cumulative 3 0.0043 0.010451 0.010198 0.393470 0.045190 0.010055 0.001928 0.000516 0.000008 
periodic   0.004273 0.002646 0.151575 0.028243 0.006466 0.001243 0.000316 0.000004 
cumulative 4 0.0048 0.015207 0.012650 0.542116 0.096050 0.023047 0.004522 0.001182 0.000016 
periodic   0.004756 0.002452 0.148646 0.050860 0.012992 0.002594 0.000666 0.000008 
cumulative 5 0.0051 0.020238 0.014826 0.673930 0.172279 0.044946 0.009036 0.002325 0.000030 
periodic   0.005031 0.002176 0.131814 0.076229 0.021899 0.004514 0.001143 0.000014 
cumulative 6 0.0053 0.025426 0.016816 0.780726 0.271508 0.078663 0.016656 0.004250 0.000054 
periodic   0.005188 0.001990 0.106796 0.099229 0.033717 0.007620 0.001925 0.000024 
cumulative 7 0.0054 0.030681 0.018618 0.860469 0.386342 0.125166 0.028539 0.007366 0.000094 
periodic    0.005255 0.001802 0.079743 0.114834 0.046503 0.011883 0.003116 0.000040 

 
Table 5. Simulation of deteriorating portfolio (normal inverse distribution) with separate illustration of 
estimated losses per tranche. 
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   Expected and 

unexpected losses 
%k

jL  per tranche (in % of tranche volume) 

cum./per. Yr ρu  %k
jL  σ %k

jL  
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 

cumulative 1 0.0060 0.005992 0.006269 0.241622 0.010208 0.001379 0.000144 0.000023 0.000000 
periodic   0.005992 0.006269 0.241622 0.010208 0.001379 0.000144 0.000023 0.000000 
cumulative 2 0.0050 0.010961 0.008220 0.431596 0.032250 0.004144 0.000389 0.000061 0.000000 
periodic   0.004969 0.001951 0.189974 0.022042 0.002765 0.000245 0.000037 0.000000 
cumulative 3 0.0043 0.015214 0.009431 0.580569 0.068669 0.008830 0.000719 0.000097 0.000001 
periodic   0.004253 0.001211 0.148973 0.036419 0.004686 0.000330 0.000037 0.000000 
cumulative 4 0.0039 0.019060 0.010333 0.698890 0.121829 0.016286 0.001245 0.000147 0.000001 
periodic   0.003846 0.000902 0.118321 0.053160 0.007456 0.000526 0.000050 0.000000 
cumulative 5 0.0036 0.022595 0.011046 0.790304 0.190679 0.027340 0.002020 0.000225 0.000001 
periodic   0.003535 0.000713 0.091414 0.068850 0.011054 0.000775 0.000078 0.000000 
cumulative 6 0.0033 0.025819 0.011616 0.857477 0.270135 0.042336 0.003105 0.000323 0.000001 
periodic   0.003224 0.000570 0.067173 0.079456 0.014996 0.001085 0.000098 0.000000 
cumulative 7 0.0032 0.028936 0.012125 0.907148 0.359962 0.062859 0.004687 0.000454 0.000002 
periodic    0.003117 0.000509 0.049671 0.089827 0.020523 0.001582 0.000131 0.000000 

 
Table 6. Simulation of improving portfolio (normal inverse distribution) with separate illustration of 
estimated losses per tranche. 
 
 
9 CALCULATION OF THE DEFAULT RATES 

(EXPECTED/ESTIMATED AND UNEXPECTED) FOR ALL 
THE TRANCHES UNDER LOSS RECOVERY 

 
 
The development of portfolio losses can also be considered  in the context of loss recovery, 

which mitigates periodic default loss. We update each tranche k for each time period j, given 

the simulation results in section 7. The random variable X denotes the total amount of loan 

default loss of the underlying reference portfolio during a given year with random default. 

Hence, X can be written as X I B= × , where I is a discriminate random variable indicator, 

which denotes the uniform probability p of default loss to occur in  
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and B represents the amount of bad debt actually written off in the case of default, indicated 

by 1I = , upon loan recovery of m  of the individual loan value. Hence, adjusting for loan 

recovery yields the density function of default loss below: 
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In other words, B is commensurate to the capacity of loan originators to allay loss severity by 

appropriating the maximum residual loan value (i.e. the pledged collateral) included in the 

securitised reference portfolio. The mean and the standard deviation of B is denoted as 

B mµ =  and Bσ , so that ( )~ ( , )B B Bf x N µ σ . The probability p of loan default could either be 

static or variable  (see section 8) if we were to consider dynamic credit performance in a multi-

period setting. 

 

So for each tranche k at any point in time j, we can refine the loss function ( )k
jL X  of total 

default loss k
jX  by adjusting for some loss recovery factor B, which mitigates default loss 

allocated to each “senioritised” tranche by the factor 1 m− . Hence, the new loss function  
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does not betray the acknowledgement – though admittedly simplistic – of recovering bad debt 

in loan servicing as a pivotal consideration in determining the value of the securitised 

reference portfolio as an underlying asset in pricing contingent claims. Successful debtor 

monitoring and workout proceedings ultimately lower the discount investors demand from 

issuers in the form of spreads over some benchmark market interest rate. 

 

Thus, we need to derive the formulae of the expected and unexpected loss (mean and 

standard deviation) of the new loss function ˆ ( )k
jL X , which is a function of the capacity of 

bad debt recovery on the existing loss function ( )=ˆ ( ) ( )k k
j jL X f L X . 
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where 
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so that  
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Hence, 

 ( ) ( )µσ
σ µ σ σ σ = + = × + − = + − 2

2 2 2 2 2 21 1
X IX I

X B Bp m p p p m p  (0.25) 

 

Since we conditioned the mean and variance of X on the case of default (I=1), we need to 

incorporate both the mean value of losses k
jµ  and the volatility of underlying asset loss 2

k
jµ

σ  

for each period and tranche in order to do justice to the definition ( )=ˆ ( ) ( )k k
j jL X f L X . First, 

m itself is a proportion of the nominal expected loss, where k
jp µ=  for an initial portfolio 

value of 1 in period 0j = , such that eq. 24 yields 

 

 µ µ= ×X j m . (0.26) 

 

Second, given ( )2 2cov , 0k
j

B µ
σ σ =  we transpose eqs. 27 and 28 to 
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µ σ σ= × +2

2 2
k
jX I

Bp  (0.27) 

 

and 
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Hence, 
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In keeping with the notation used in this paper, we write  

 

 ( )µ σ 2ˆ ( )~ ,k k
j j

k
j X X

L X f , (0.30) 

 

where  

 

 µ µ= ×k
X j m , (0.31) 

 

 ( )( ) ( )µ
σ σ σ= + − + +2 2 2 21 1k k

j j
BX p m p p , (0.32) 

 

Based on the above formulae we recalculate Tables 9-11 for a mean recovery rate of 45% for 

both the total periodic losses of the entire portfolio ˆ ( )jL X  and each tranche after loss 

cascading ˆ ( )k
jL X  for both constant and variable default rates (analogous to section 8 above). 

By imposing the additional condition of bad debt recovery on our simulation results in section 

7 we privilege equally the pivotal role of both the probability of debtor default and the ability 

of loan servicers of the underlying reference portfolio to affect the loss cascading mechanism 

in pricing loan securitisation. We specify the above expressions (equations 35 and 36) to  

 

 µ = ×k
jX p m  (0.33) 
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and 

 

 ( )( ) ( )µ
σ σ σ= + − + +2 2 2 21 1k k

j j
BX p m p p , (0.34) 

 

where = 0.45m and σ = 0.1B .11 We also obtain new measures for the time-dependent 

relationship between unexpected and expected loss after recovery (see Appendix, Tabs. 31-

34). For matters of conciseness we only provide results for extreme value theory in this regard. 

 

9.1 Term Structure of Default Rates (Extreme Value Theory) – Constant Default 
Rate and Recovery 

 

 
   Expected and 

unexpected losses 
%k

jL  per tranche (in % of tranche volume) 

cum./per. Yr p  %k
jL  σ %k

jL  
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 

cumulative 1 0.0026 0.001169 0.005144 0.046928 0.001393 0.000444 0.000169 0.000085 0.000005 
periodic   0.001169 0.005144 0.046928 0.001393 0.000444 0.000169 0.000085 0.000005 
cumulative 2 0.0026 0.002385 0.007652 0.093297 0.003444 0.001003 0.000359 0.000181 0.000010 
periodic   0.001215 0.002509 0.046369 0.002051 0.000559 0.000190 0.000096 0.000006 
cumulative 3 0.0026 0.003510 0.009652 0.138676 0.006546 0.001773 0.000599 0.000292 0.000017 
periodic   0.001125 0.002000 0.045378 0.003102 0.000770 0.000241 0.000111 0.000006 
cumulative 4 0.0026 0.004679 0.011456 0.182744 0.011099 0.002792 0.000897 0.000428 0.000023 
periodic   0.001169 0.001804 0.044069 0.004554 0.001019 0.000298 0.000137 0.000006 
cumulative 5 0.0026 0.005846 0.013097 0.225036 0.017675 0.004109 0.001250 0.000581 0.000030 
periodic   0.001167 0.001641 0.042291 0.006576 0.001317 0.000352 0.000153 0.000007 
cumulative 6 0.0026 0.007011 0.014584 0.265087 0.027002 0.005848 0.001640 0.000742 0.000037 
periodic   0.001166 0.001487 0.040052 0.009327 0.001739 0.000391 0.000161 0.000007 
cumulative 7 0.0026 0.008176 0.015987 0.302095 0.039904 0.008137 0.002120 0.000923 0.000044 
periodic     0.001164 0.001403 0.037008 0.012902 0.002290 0.000480 0.000181 0.000007 

 
   Expected and 

unexpected losses 
σ %k

jL per tranche (in % of tranche volume) 

cum./per. Yr p  %k
jL  σ %k

jL  
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 

cumulative 1 0.0026 0.001169 0.005144 0.163522 0.051118 0.028475 0.018115 0.013054 0.001528 
periodic   0.001169 0.005144 0.163522 0.051118 0.028475 0.018115 0.013054 0.001528 
cumulative 2 0.0026 0.002385 0.007652 0.234452 0.080123 0.042382 0.026512 0.019102 0.002266 
periodic   0.001215 0.002509 0.070930 0.029005 0.013907 0.008397 0.006049 0.000738 
cumulative 3 0.0026 0.003510 0.009652 0.285836 0.109816 0.056047 0.034260 0.024224 0.002745 
periodic   0.001125 0.002000 0.051384 0.029694 0.013665 0.007748 0.005122 0.000479 
cumulative 4 0.0026 0.004679 0.011456 0.323820 0.142212 0.070052 0.042007 0.029280 0.003201 
periodic   0.001169 0.001804 0.037984 0.032396 0.014005 0.007747 0.005056 0.000457 
cumulative 5 0.0026 0.005846 0.013097 0.350708 0.178411 0.084541 0.049450 0.034002 0.003630 
periodic   0.001167 0.001641 0.026888 0.036199 0.014489 0.007443 0.004721 0.000428 
cumulative 6 0.0026 0.007011 0.014584 0.367329 0.218992 0.100110 0.056370 0.038412 0.003994 
periodic   0.001166 0.001487 0.016621 0.040582 0.015569 0.006920 0.004410 0.000364 
cumulative 7 0.0026 0.008176 0.015987 0.374306 0.263857 0.117451 0.063712 0.042857 0.004321 
periodic     0.001164 0.001403 0.006977 0.044864 0.017341 0.007342 0.004445 0.000327 

 

                                                 
11 We assume the recovery rate to take the value 45 percent in accordance with the industry standard and the 
specifications set forth by the Basle Committee (1999). 
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Table 7. Simulation of constant forward probability rates (EVT distribution of portfolio losses) per tranche 
on a cumulative and periodic basis with results for estimated and unexpected losses as absolute shares of total 
portfolio losses under loss recovery. 
 

 

9.2 Term Structure of Default Rates (Extreme Value Theory) – Variable Default 
Rate and Recovery 

 

 
   Expected and 

unexpected losses 
%k

jL  per tranche (in % of tranche volume) 

cum./per. Yr ρu  %k
jL  σ %k

jL  
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 

cumulative 1 0.00010 0.001169 0.005144 0.046928 0.001393 0.000444 0.000169 0.000085 0.000005 
periodic   0.001169 0.005144 0.046928 0.001393 0.000444 0.000169 0.000085 0.000005 
cumulative 2 0.00123 0.002786 0.010547 0.111644 0.003686 0.001072 0.000375 0.000186 0.000010 
periodic   0.001617 0.005404 0.065502 0.001435 0.000464 0.000165 0.000089 0.000005 
cumulative 3 0.00195 0.004713 0.015838 0.187581 0.008159 0.001994 0.000618 0.000294 0.000015 
periodic   0.001927 0.005291 0.078524 0.001493 0.000426 0.000140 0.000071 0.000004 
cumulative 4 0.00247 0.006875 0.021337 0.269120 0.017868 0.003586 0.000985 0.000439 0.000022 
periodic   0.002162 0.005499 0.088256 0.001550 0.000441 0.000151 0.000077 0.000005 
cumulative 5 0.00277 0.009175 0.026981 0.346939 0.039923 0.006486 0.001526 0.000637 0.000031 
periodic   0.002300 0.005644 0.093881 0.001607 0.000464 0.000164 0.000086 0.000005 
cumulative 6 0.00295 0.011555 0.032706 0.408610 0.088048 0.011928 0.002362 0.000903 0.000041 
periodic   0.002380 0.005725 0.097184 0.001623 0.000477 0.000168 0.000087 0.000005 
cumulative 7 0.00306 0.013979 0.038171 0.441477 0.175445 0.022483 0.003632 0.001248 0.000051 
periodic    0.002424 0.005465 0.099078 0.001626 0.000473 0.000156 0.000078 0.000004 

 
   Expected and 

unexpected losses 
σ %k

jL per tranche (in % of tranche volume) 

cum./per. Yr ρu  %k
jL  σ %k

jL  
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 

cumulative 1 0.00010 0.001169 0.005144 0.163522 0.051118 0.028475 0.018115 0.013054 0.001528 
periodic   0.001169 0.005144 0.163522 0.051118 0.028475 0.018115 0.013054 0.001528 
cumulative 2 0.00123 0.002786 0.010547 0.335880 0.102822 0.057559 0.035996 0.026449 0.003204 
periodic   0.001617 0.005404 0.172358 0.051704 0.029085 0.017882 0.013396 0.001676 
cumulative 3 0.00195 0.004713 0.015838 0.514505 0.155111 0.084966 0.052570 0.038300 0.004530 
periodic   0.001927 0.005291 0.178626 0.052289 0.027407 0.016574 0.011851 0.001326 
cumulative 4 0.00247 0.006875 0.021337 0.697911 0.208483 0.112781 0.069668 0.050746 0.006071 
periodic   0.002162 0.005499 0.183406 0.053372 0.027814 0.017098 0.012446 0.001541 
cumulative 5 0.00277 0.009175 0.026981 0.883815 0.262747 0.141542 0.087484 0.064106 0.007662 
periodic   0.002300 0.005644 0.185904 0.054264 0.028762 0.017815 0.013360 0.001590 
cumulative 6 0.00295 0.011555 0.032706 0.070855 0.317445 0.170704 0.105613 0.077454 0.009365 
periodic   0.002380 0.005725 0.187040 0.054698 0.029161 0.018129 0.013348 0.001703 
cumulative 7 0.00306 0.013979 0.038171 0.258468 0.372068 0.199616 0.123035 0.089965 0.010417 
periodic    0.002424 0.005465 0.187613 0.054624 0.028912 0.017422 0.012511 0.001052 

 
Table 8. Simulation of a deteriorating portfolio (extreme value theory) with separate illustration of estimated 
and unexpected losses per tranche under loss recovery. 
 
 
Under consideration of loss recovery during the life of the transaction for both deteriorating 

and improving quality of the underying portfolio Table 8 above and Table 9 below) the 

cumulative expected loss of the first loss position substantiates similar properties as simulation 

results presented in section 7 for extreme value theory. Again, we detect a sizeable dichotomy 

between the first loss position and the more senior tranches due to the loss absorbing effect 
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of the first loss tranche. At the same time the degree of unexpected loss in relation to 

expected default loss increases in the seniority of issued tranches, with first loss position 

exhibiting a more accurate prediction of its default exposure. 

 
   Expected and 

unexpected losses 
%k

jL  per tranche (in % of tranche volume) 

cum./per. Yr ρu  %k
jL  σ %k

jL  
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 

cumulative 1 0.00367 0.002702 0.005819 0.110553 0.001730 0.000491 0.000170 0.000082 0.000004 
periodic   0.002702 0.005819 0.110553 0.001730 0.000491 0.000170 0.000082 0.000004 
cumulative 2 0.00267 0.004956 0.011329 0.200543 0.005687 0.001355 0.000401 0.000189 0.000009 
periodic   0.002254 0.005511 0.091969 0.001647 0.000488 0.000162 0.000080 0.000004 
cumulative 3 0.00195 0.006883 0.016620 0.273806 0.013635 0.002655 0.000704 0.000312 0.000014 
periodic   0.001927 0.005291 0.078524 0.001493 0.000426 0.000140 0.000071 0.000004 
cumulative 4 0.00154 0.008636 0.021902 0.334230 0.028798 0.004728 0.001139 0.000471 0.000021 
periodic   0.001752 0.005282 0.071177 0.001496 0.000459 0.000155 0.000076 0.000004 
cumulative 5 0.00123 0.010252 0.027306 0.380891 0.054712 0.007853 0.001710 0.000672 0.000030 
periodic   0.001617 0.005404 0.065502 0.001435 0.000464 0.000165 0.000089 0.000005 
cumulative 6 0.00094 0.011745 0.032647 0.412820 0.092997 0.012459 0.002457 0.000908 0.000039 
periodic   0.001493 0.005341 0.060346 0.001468 0.000469 0.000164 0.000079 0.000005 
cumulative 7 0.00083 0.013189 0.037948 0.432752 0.143137 0.019151 0.003413 0.001190 0.000048 
periodic    0.001444 0.005302 0.058366 0.001421 0.000444 0.000164 0.000088 0.000005 

 
   Expected and 

unexpected losses 
σ %k

jL per tranche (in % of tranche volume) 

cum./per. Yr ρu  %k
jL  σ %k

jL  
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 

cumulative 1 0.00367 0.002702 0.005819 0.192579 0.056160 0.029519 0.018171 0.012670 0.001717 
periodic   0.002702 0.005819 0.192579 0.056160 0.029519 0.018171 0.012670 0.001717 
cumulative 2 0.00267 0.004956 0.011329 0.377811 0.111413 0.058892 0.036003 0.025243 0.002972 
periodic   0.002254 0.005511 0.185232 0.055253 0.029373 0.017831 0.012573 0.001255 
cumulative 3 0.00195 0.006883 0.016620 0.556437 0.163702 0.086299 0.052577 0.037094 0.004298 
periodic   0.001927 0.005291 0.178626 0.052289 0.027407 0.016574 0.011851 0.001326 
cumulative 4 0.00154 0.008636 0.021902 0.731917 0.216487 0.115029 0.069746 0.049453 0.005582 
periodic   0.001752 0.005282 0.175480 0.052785 0.028730 0.017169 0.012358 0.001285 
cumulative 5 0.00123 0.010252 0.027306 0.904274 0.268191 0.144113 0.087627 0.062848 0.007259 
periodic   0.001617 0.005404 0.172358 0.051704 0.029085 0.017882 0.013396 0.001676 
cumulative 6 0.00094 0.011745 0.032647 0.074359 0.320655 0.173216 0.105354 0.075484 0.009021 
periodic   0.001493 0.005341 0.170084 0.052464 0.029103 0.017727 0.012636 0.001762 
cumulative 7 0.00083 0.013189 0.037948 0.242705 0.372192 0.201524 0.123321 0.088931 0.010758 
periodic    0.001444 0.005302 0.168346 0.051537 0.028307 0.017966 0.013447 0.001737 

 
Table 9. Simulation of improving portfolio (extreme value theory) with separate illustration of estimated and 
unexpected losses per tranche under loss recovery. 
 
 

10 RISK-NEUTRAL PRICING OF CLO TRANCHES 
 
 
The proportion of collateral losses allocated to each tranche of a CLO transaction according 

to contractual prioritisation constitutes a default rate, which serves as a basis for the 

calculation of its risk-neutral price. In the risk-neutral valuation of CLOs we do is nothing else 

but extend concepts and meanings of accepted principles of asset pricing under symmetric 

information to an asymmetric information context, where expected losses are the risk 

premium, as unexpected losses cannot be determined in a straightforward fashion without 
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incorporating some simplifying assumptions. The proposed risk-neutral pricing of CLO 

tranches heavily draws on risky bond analysis and the analysis of the term structure of credit 

spreads (LELAND AND TOFT, 1996). Hence, the definition of the threshold, which determines 

the accepted credit exposure of noteholders in an ordinary fixed income transaction, is 

adapted to fit the expected term structure of credit losses (loss distribution) of CLO 

transactions for purposes of risk-based profit management of loan portfolios. Further, we 

consider the spreads of investors of each tranche (above the risk-free rate, be it fixed or 

stochastic) equal to the risk premium associated with expected losses. We subsequently 

compare the required risk-neutral rate of return of each tranche to the pricing of bonds of 

amenable quality, matched first moments and maturity. 

 

In absence of arbitrage in efficient markets risk-neutrality corresponds to a “good deal” 

proposition in the security design of CLOs, such that the tranche spreads reflect a certain 

expectation of future losses. Hence, the value of each CLO tranche ought to be driven by the 

valuation of interest proceeds generated from the securitised asset portfolio, subject to a 

certain degree of attrition, such as debtor default and prepayments. Given the estimated 

default rates per tranche of the transaction, we are now in the position to compute the rates of 

return for each individual tranche by calculating the net present value of expected cash flows 

according to  
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where 
=∑ %

1

m k
jj

L  denotes the accumulated expected loss in the tranche k up to year j and fr  

represents the risk-free forward rate during the applicable time period. By solving the equation 

above for kr  over j=7 for each tranche, the following results are obtained for a collateral 

portfolio with a constant, a deteriorating and an improving forward rate of default at a 

constant risk-free rate = = 5.0%
lf fr r  for each time period (Tab. 10).  
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In absence of an appropriate analytical approach to capture the complexity of loan 

securitisation, investors are inclined to deal with such structure finance products in an 

undifferentiated way as especially senior tranches of CLOs are regarded as virtually risk-free 

(BURGHARDT, 2001). Given that this shortcoming results in notorious mispricing as risks are 

underestimated, the presented method of deriving the returns of CLO tranches based on the 

term structure of periodic defaults might provide guidance as to the proper mean-variance 

consistent pricing of CLO transactions. 

 
 
 
 
 
 
 
 
 
 
 
 
Table 10. Investor spreads in the various tranches under two different default distributions of the collateral 
portfolio (extreme value theory (EVT) and normal inverse distribution (NID)) on a cumulative basis for 
constant, increasing and decreasing forward rates of loan default. 
 
 
The above spreads are the risk-neutral returns of the relevant tranches based on a normal 

inverse distribution and an extreme value distribution of collateral default. The first loss 

position [0-2.4%] retained by sponsor of the transaction as credit enhancement absorbs most 

of the periodic losses throughout the lifetime of the transaction (that is, seven years in this 

model), and, thus, the expected spread of risk-neutral investors amounts to a cumulative 

average annual return of 20.35 % and 20.56% for either case of loss distribution, i.e. normal 

inverse distribution (NID) and Pareto-like distribution according to extreme value theory 

(EVT) of credit events in the reference portfolio. Successive tranches claim lower 

spreads/returns as their default tolerance decreases from a maximum accumulated credit loss 

of 6.29% (EVT)) and 6.79% (NID) of notational value for the [2.4-3.9%] tranche to almost 

the risk-free rate of return for the [10.5-100%] senior tranche.  

 

Generally, the prediction of expected investor returns significantly varies with the 

methodology applied in modelling credit risk of the underlying reference portfolio. In all 

tranches but the [3.9-6.5%] mezzanine “investor” tranche default losses under the EVT model 

cum. (EVT/const.) 20.34747% 6.28610% 5.25952% 5.06849% 5.03000% 5.00140%
cum. (NID/const.) 20.56017% 6.79431% 5.33870% 5.05067% 5.01100% 5.00010%
cum. (EVT/deter.) 37.49613% 10.81930% 5.69241% 5.11364% 5.03970% 5.00160%
cum. (NID/deter.) 30.43862% 10.19510% 6.78903% 5.39333% 5.10090% 5.00120%
cum. (EVT/improv.) 49.12123% 9.87893% 5.60218% 5.10820% 5.03820% 5.00150%
cum. (NID/improv.) 42.75610% 10.94410% 6.00440% 5.06577% 5.00640% 5.00000%

Distribution and Collateral Performance Returns per Tranche

Constant 

Deteriorating

Improving

%k
jL

%k
jL

%k
jL

%k
jL

%k
jL

%k
jL
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protrude the projection of credit loss under the NID approach for a constant forward rate of 

default. The pattern of a higher degree of estimated default under the extreme value approach 

is consistent for the first loss position only if we extend the exposition of expected risk-neutral 

returns per tranche to the case of a deteriorating and improving collateral quality. 

 

The change of the periodic forward rate of credit default entails higher returns for all tranches, 

irrespective of whether the first moment of the terms structure is positive or negative. In this 

context an intriguing paradox of expected returns for each tranche emerges. An increasing 

forward rate of default (deteriorating portfolio quality) is actually more favourable for the first 

loss piece compared to a decline in the periodic default rate. For mezzanine and senior 

tranches spreads are lower under an improving rather than a deteriorating rate of default. The 

credit enhancement commands risk-neutral spreads well beyond 30% per period (for a 

deteriorating portfolio) and 40% per period (for an improving portfolio) and reduces the 

chances of collateral default for mezzanine and senior tranches accordingly. These 

diametrically opposite expectations as to risk-neutral returns for the issuer (who generally 

retains the first loss position) and investors (who hold the mezzanine and senior tranches) is 

robust even if the second moment of the forward rate is changed for both deterioration and 

improvement of portfolio quality. Thus, an increase in the default rate of the collateral 

portfolio over time (deteriorating portfolio quality) requires a lower default tolerance and 

correspondingly lower risk-neutral spreads per period from holders of the most junior tranche 

(credit enhancement), as the second moment of expected losses of an improving collateral 

portfolio is smaller than it is for a deteriorating portfolio, provided that first moments are 

matched. Conversely, spreads of the first loss position are less sensitive to a reduction in the 

collateral default rate as long as the first period defaults are set at a level such that the risk 

horizon of seven years is insufficient to offset higher risk-neutral returns (due to portfolio 

deterioration) to the level of a constant forward rate. The application of EVT in the 

determination of total cumulative portfolio default loss pronounces this effect, as the flat tail 

behaviour of this Pareto-style distribution puts more weight on the first tranches as credit 

enhancement.  
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11 REALITY CHECK 
 
11.1 Ratio of estimated and unexpected losses 
 
 

The spreads actually offered to investors (returns minus the assumed risk-free rate), however, 

price significantly wider than the derived risk-neutral returns and defy the above assumption 

of risk-neutral expectations in deriving the term structure of CLO tranches. Since this 

observation is not all too surprising in the light of the complexity of securitisation structures, 

the spread concession solicits complementary inferences drawn from investment choices that 

largely cause generic asset backed structures to be usually cheaper than plain vanilla corporate 

bonds. Investors might just command higher returns for CLO tranches on the theory that not 

only liquidity or other additional risks, but also the degree of unexpected loss matters in the 

mean-variance trade-off of financial investment.12 The relationship between unexpected and 

expected loss (ratio of unexpected and expected loss k
j

k
jL Lσ %

% ) epitomises a margin of error in 

the estimation of a loss function to describe the distribution of credit losses. If applied to the 

entire portfolio in general and all tranches in particular for cumulative as well as periodic 

losses (in the case of both NID and EVT credit risk loss functions) it could substantiate this 

conjecture as a reality check as to the viability of risk neutral spreads.  

 

Whilst all ratios decrease over time at a rate similar to a normal inverse distribution setting 

(Figs. A4 and A5), the EVT loss function suggest a lower starting value during the first year of 

the securitisation transaction especially for the first loss position retained by the issuer and the 

senior piece [10.5-100%]. Most importantly, the application of an EVT in the disclosure of 

unexpected losses σ %k
jL  per tranche complements this observation in a most insightful way, 

since apparently asymptotic development of the variance in portfolio losses allocated to the 

first loss position of the issuer [0-2.4%] augments the favourable property of a linear increase 

of the k
j

k
jL Lσ %

%  ratio for the first loss piece. At the same time the required spread for the first 

                                                 
12 Synthetic bank CLOs feature even higher spreads than traditional CLOs. This pricing disparity is frequently 
attributed to the fact that lower secondary liquidity, a less receptive investor base for credit derivative based 
products and additional risk arising from the increased leverage of the senior tranches in partially funded 
structures are prime characteristics bearing additional exposure for investors in synthetic CLOs (BATCHVAROV 
ET AL. 2000). 
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tranche does not attract additional compensation for excessive variations in unexpected losses 

σ %k
jL . As EVT estimates reduce the margin of error compared to other distributions, a 

verification of risk-neutral spreads on CLO tranches seems to be more realistic. Thus, Tables 

1, 2 and 13 (where extreme value theory is applied to portfolio losses) are a consequence of a 

“canonical theory for the (limit) distribution of normalised maxima of independent, identically 

distributed random variables” (EMBRECHTS, 2000), which effects more weight being attached 

to credit losses of extreme events absorbed by the first loss position and the alleviation of 

default risk imposed on more senior “investor tranches”. 
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   Unexpected 

divided by 
exp. losses 

σ %

%

k
jL

k
jL

 per tranche  

cum./per. Yr p  σ %

%

k
jL

k
jL

 
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 

cumulative 1 0.0026 0.763279 0.255607 16.263974 28.619048 48.085333 69.218085 152.600000 
periodic   0.763279 0.255607 16.263974 28.619048 48.085333 69.218085 152.600000 
cumulative 2 0.0026 0.228911 0.859840 10.230629 18.791386 33.048934 47.305970 98.304348 
periodic   0.714920 0.459298 6.133831 10.981481 19.687204 28.056075 56.538462 
cumulative 3 0.0026 0.022952 0.675790 7.315276 14.005584 25.507508 37.172840 73.972973 
periodic   0.586400 0.297389 4.078485 7.770894 14.272897 20.613821 34.000000 
cumulative 4 0.0026 0.887564 0.557873 5.532941 10.073340 20.854564 30.547269 62.568627 
periodic   0.481139 0.186807 2.970847 5.970406 10.492447 16.424342 32.428571 
cumulative 5 0.0026 0.794226 0.470644 4.309588 9.041288 17.595607 26.108359 53.970149 
periodic   0.419977 0.093721 2.244714 4.734199 9.296296 13.679412 26.562500 
cumulative 6 0.0026 0.722162 0.399835 3.416399 7.486572 15.254047 23.085506 48.500000 
periodic   0.360865 0.001989 0.723790 3.812629 7.762673 12.145658 24.066667 
cumulative 7 0.0026 0.666226 0.339409 2.741779 6.277775 13.313522 20.677388 43.887755 
periodic    0.329339 -0.093422 0.329880 3.190448 6.678236 10.823821 20.250000 

 
Table 11. k

j

k
jL Lσ %

%  ratio for each tranche based on a simulation of constant forward probability rates 

(EVT distribution of portfolio losses). 
 
 

   Unexpect. 
divided by 
exp. losses 

σ %

%

k
jL

k
jL

 per tranche  

cum./per. Yr ρu  σ %

%

k
jL

k
jL

 
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 

cumulative 1 0.000100 0.763279 0.255607 16.263974 28.619048 48.085333 69.218085 152.600000 
periodic   0.763279 0.255607 16.263974 28.619048 48.085333 69.218085 152.600000 
cumulative 2 0.001231 0.051203 0.704859 9.838950 18.219563 32.094838 46.721550 99.869565 
periodic   0.287503 0.882510 15.965496 27.951550 48.636612 67.781726 139.500000 
cumulative 3 0.001945 0.748019 0.470625 6.449506 13.138343 24.876912 37.061256 79.911765 
periodic   0.019617 0.729154 15.505726 28.742072 53.073955 74.791139 147.111111 
cumulative 4 0.002469 0.590130 0.327399 4.196237 9.579945 19.604386 30.192623 65.836735 
periodic   0.928408 0.645643 15.242741 28.180797 50.666667 72.567251 153.900000 
cumulative 5 0.002771 0.495414 0.218772 2.644871 6.944703 15.613388 24.977401 55.088235 
periodic   0.888280 0.604602 14.944818 27.693204 48.589041 69.369792 144.363636 
cumulative 6 0.002954 0.432260 0.124650 0.597561 4.951671 12.406935 20.858994 47.307692 
periodic   0.866515 0.581594 14.912923 27.253534 48.254011 68.587629 140.750000 
cumulative 7 0.003055 0.383209 0.049212 0.918913 3.444438 9.855055 17.573901 40.622807 
periodic    0.798923 0.568850 14.858882 27.277831 49.988473 72.104046 130.250000 

 
Table 12. k

j

k
jL Lσ %

% ratio for each tranche based on a simulation of increasing forward probability rates of a 

deteriorating portfolio (EVT distribution of portfolio losses). 
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   Unexpect. 

divided by 
exp. losses 

σ %

%

k
jL

k
jL

 per tranche  

cum./per. Yr ρu  σ %

%

k
jL

k
jL

 
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 

cumulative 1 0.003673 0.753206 0.506580 14.352758 26.824931 47.851852 69.401099 190.555556 
periodic   0.753206 0.506580 14.352758 26.824931 47.851852 69.401099 190.555556 
cumulative 2 0.002669 0.574541 0.357976 7.715834 15.906011 30.903587 45.892601 109.900000 
periodic   0.884208 0.618676 14.844493 26.840553 49.311111 70.421348 139.222222 
cumulative 3 0.001945 0.503138 0.280376 4.807617 10.152034 23.062020 35.704185 83.000000 
periodic   0.019617 0.729154 15.505726 28.742072 53.073955 74.791139 147.111111 
cumulative 4 0.001538 0.463234 0.218916 3.163151 8.202436 17.983011 29.099426 65.085106 
periodic   0.140216 0.810642 15.621353 27.935294 49.544928 72.911243 142.555556 
cumulative 5 0.001231 0.439645 0.164063 2.161659 6.233524 14.607002 24.314133 54.969697 
periodic   0.287503 0.882510 15.965496 27.951550 48.636612 67.781726 139.500000 
cumulative 6 0.000940 0.422698 0.116298 0.534117 4.837969 12.123443 20.791274 48.581395 
periodic   0.393729 0.963640 15.829859 27.698656 48.480769 70.579545 176.000000 
cumulative 7 0.000834 0.407827 0.075640 0.113930 3.803633 10.217695 18.053308 43.813084 
periodic    0.435650 0.992830 16.071904 28.449848 49.002740 68.743590 157.727273 

 
Table 13. k

j

k
jL Lσ %

%  ratio for each tranche based on a simulation of decreasing forward probability rates of 

an improving portfolio (EVT distribution of portfolio losses). 
 
 

   Unexpected 
divided by 
exp. losses 

cum./per. Yr p  σ %

%

k
jL

k
jL

 

cumulative 1 0.0026 0.769379 
periodic   0.769379 
cumulative 2 0.0026 0.251639 
periodic   0.733899 
cumulative 3 0.0026 0.019303 
periodic   0.553191 
cumulative 4 0.0026 0.881228 
periodic   0.466151 
cumulative 5 0.0026 0.787150 
periodic   0.409232 
cumulative 6 0.0026 0.717871 
periodic   0.368667 
cumulative 7 0.0026 0.663990 
periodic    0.337632 

 
Table 14. k

j

k
jL Lσ %

%  ratio for total amount of tranches based on a simulation of constant forward probability 

rates (normal inverse distribution of portfolio losses). 
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   Unexpected 

divided by 
exp. losses 

cum./per. Yr ρu  σ %

%

k
jL

k
jL

 

cumulative 1 0.0026 0.765908 
periodic   0.765908 
cumulative 2 0.0036 0.222402 
periodic   0.829289 
cumulative 3 0.0043 0.975792 
periodic   0.619237 
cumulative 4 0.0048 0.831854 
periodic   0.515559 
cumulative 5 0.0051 0.732582 
periodic   0.432518 
cumulative 6 0.0053 0.661370 
periodic   0.383577 
cumulative 7 0.0054 0.606825 
periodic    0.342912 

 
Table 15. k

j

k
jL Lσ %

%  ratio for total amount of tranches based on a simulation of increasing forward 

probability rates of a deteriorating portfolio (normal inverse distribution of portfolio losses). 
 
 

   Unexpected 
divided by 
exp. losses 

cum./per. Yr ρu  σ %

%

k
jL

k
jL

 

cumulative 1 0.0060 0.046224 
periodic   0.046224 
cumulative 2 0.0050 0.749932 
periodic   0.392634 
cumulative 3 0.0043 0.619890 
periodic   0.284740 
cumulative 4 0.0039 0.542130 
periodic   0.234529 
cumulative 5 0.0036 0.488869 
periodic   0.201697 
cumulative 6 0.0033 0.449901 
periodic   0.176799 
cumulative 7 0.0032 0.419028 
periodic    0.163298 

 
Table 16. k

j

k
jL Lσ %

%  ratio for total amount of tranches based on a simulation of decreasing forward 

probability rates of an improving portfolio (normal inverse distribution of portfolio losses). 
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   Unexpected 

divided by 
exp. losses 

cum./per. Yr p  σ %

%

k
jL

k
jL

 

cumulative 1 0.0026 0.756325 
periodic   0.756325 
cumulative 2 0.0026 0.246136 
periodic   0.743383 
cumulative 3 0.0026 0.017332 
periodic   0.564103 
cumulative 4 0.0026 0.880955 
periodic   0.472713 
cumulative 5 0.0026 0.786955 
periodic   0.406006 
cumulative 6 0.0026 0.717086 
periodic   0.362818 
cumulative 7 0.0026 0.663182 
periodic    0.337617 

 
Table 17. k

j

k
jL Lσ %

%  ratio for total amount of tranches based on a simulation of constant forward probability 

rates (beta distribution of portfolio losses). 
 
 

   Unexpected 
divided by 
exp. losses 

cum./per. Yr p  σ %

%

k
jL

k
jL

 

cumulative 1 0.0026 0.770777 
periodic   0.770777 
cumulative 2 0.0026 0.246104 
periodic   0.726054 
cumulative 3 0.0026 0.019931 
periodic   0.564341 
cumulative 4 0.0026 0.880166 
periodic   0.458705 
cumulative 5 0.0026 0.787173 
periodic   0.412451 
cumulative 6 0.0026 0.716911 
periodic   0.365571 
cumulative 7 0.0026 0.662943 
periodic    0.337481 

 
Table 18. k

j

k
jL Lσ %

%  ratio for total amount of tranches based on a simulation of constant forward probability 

rates (negative binomial distribution of portfolio losses). 
 
 
As shown in Figures A8 and A9, all ratios decrease in time; but the more interesting result is 

that they differ considerably in orders of magnitude. In contrast to the whole portfolio and the 

first loss position [0-2.4%], which yield a ratio of k
j

k
jL Lσ %

%  in the order of one on the basis of 

cumulative losses, the second tranche [2.4-3.9%] exhibits a k
j

k
jL Lσ %

%  ratio of order 10 and the 

remaining, more senior ratios increase roughly by a factor of two on the basis of this reference 
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level. The relationship of periodic expected and unexpected default rates exhibits the second 

moment of a declining impact of σ %k
jL  as the CLO transaction matures. Consequently, it can 

be concluded that the development of expected losses over time are more favourable in the 

case of the first loss piece, but also the variation of unexpected losses around the expected 

value of the most junior tranche retained by the issuer is much lower than for the investor 

tranches, and thus necessitates additional risk premium. Note that by incorporating a normally 

distributed recovery rate (see Appendix, Tables 31-34) the ratio of ratio of k
j

k
jL Lσ %

%  maintains 

a consistenly higher level than in the previous case without loss recovery. This result indicates 

that close debtor monitoring (proxied by higher loss recovery) could mitigate moral hazards 

effects between the fmost junor tranche and mezzanine and senior tranches. 

 

In general, the obtained results of the term structure of expected and unexpected losses, %k
jL  

and σ %k
jL , for a CLO transaction have critical implications on how the security design of 

securitisation transactions has to be viewed in the light of loan default and its variability over 

time. Our results back out the fact that sponsors of CLO transactions, who usually retain the 

most junior tranche as a first loss position in the transaction, find themselves disposed to a 

constant first moment of expected losses (linear increase), while investors holding mezzanine 

(and senior) claims on the collateral portfolio might be discomforted in anticipation of 

exponentially increasing losses.  

 
 
11.2 Comparison with zero-bonds 
 
 
The development of variance in unexpected losses in relation to scheduled defaults of the 

collateral portfolio ( k
j

k
jL Lσ %

%  (unexpected to expected losses) ratio) per period might be indicative of 

the abnormal spreads on CLO tranches, if one was to take risk-neutral returns as the reference 

base. However, as the difference between the observed spreads in the CLO market and the 

calculated risk-neutral spreads depends on the assumptions entering the loss function of credit 

risk, the default rates per tranche and the corresponding risk-neutral spreads should be 

subjected to empirical examination. Since the calculation of expected spreads on CLO 

tranches rekindles the derivation of the yield-to-maturity of zero-coupon bonds, the term 

structure of periodic default probabilities of selected tranches could be directly benchmarked 
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with comparable zero-bonds, whose internal rate of return is calibrated based on the default 

rates for rating classes published in the rating reports of Moody’s Investor Services. This is 

accomplished by matching the first moments of either the “one-year” default probability 

(“lower boundary”) or the accumulated “seven-year” default probability (“upper boundary”) 

assigned by Moody’s to a suitable corporate bond13 to the expected loss of the respective CLO 

tranche according to the following scaling: 

 

The bond default rate per period (matched to the one-year-default rate) as lower boundary 

 

 ×
%

%
%

1

1
high

k
Bond
jBond

L
L

L
 (0.36) 

 

and the bond default rate per period (matched to the seven-year-default rate) as upper 

boundary 

 

 ×
%

%
%

7

7
low

k
Bond
jBond

L
L

L
, (0.37) 

 

where the exponential growth of default losses allocated to CLO tranches suggest to use the 

high expected loss of a lower rated bond as a matching first moment for the seven-year-

default rate and the low default rate of a higher rated bond as a matching first moment for the 

one-year-default rate. The approximation of default rate patterns of zero-bonds and CLO 

tranches establishes an orientation as to the lower and upper boundaries of the CLO term 

structure if it had the same expected loss properties as zero-bonds. 

 

Thus, the following steps have been completed: 

 

(i) comparison of default rates of varying rating classes of zero-bonds (Moody’s) and 

the estimated expected default based on NID and EVT distributions (and 

consideration of deteriorating and improving collateral quality) 

 

                                                 
13 See also Wilson and Fabozzi (1995). 
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(ii) comparison of calculated spreads (term structure) of zero-bonds and the expected 

return for the different CLO tranches, purely based on risk-neutral returns (and 

consideration of deteriorating and improving collateral quality) 

 

Figures A10 and A11 exhibit matched first moments of the expected losses (default rate term 

structure) of both various rating classes of zero-bonds and the CLO tranches, with Table 19 

illustrating matched first moments of upper and lower boundaries of risk-neutral spreads on 

selected zero-coupon bonds (which have been chosen as close matches in the analysis of the 

default rate term structure in Figures A1-A7). Figures A10 and A11 illustrate the term 

structure of default rates for the first loss position taken by the sponsor [0-2.4%] and the 

“investor tranches” [2.4-3.9%], [3.9-6.5%] and [6.5-9%] for both credit risk loss functions 

(NID and EVT) for a constant forward default rate across seven periods on a cumulative 

basis. The same methodology has been extended for an increasing and decreasing forward 

default rate of an EVT loss function.  

 

Against the background of a particular probability distribution the term structure of a CLO 

tranche is edged by the default term structures of two zero-coupon bonds as upper and lower 

boundary of collateral default. In contrast to zero-bonds, whose periodic default rate increases 

linearly over time, structured default tolerance rises exponentially over time for all tranches 

but the most junior tranche (first loss position) [0-2.4%]. The “investor” tranches display a 

similar degree of convexity for both probability distributions of collateral default, which 

contrasts sharply with the linear (and in some cases concave) increase of cumulative expected 

losses of the first loss provision held by the sponsor of the CLO transaction. 

 

In as far as the previous comparison of default term structures allows for the identification of 

benchmark zero-coupon bonds, the observed difference of risk-neutral returns on CLO 

tranches and suitable zero-coupon bonds (whose spreads have been derived on the basis of 

the same risk-neutral return calculation) reflects the exponential nature of expected losses 

associated with the peculiar loss cascading effect of CLOs as a pars pro toto of structured 

transactions with subordination as credit enhancement. Table 20 shows the risk-neutral 

returns of the CLO tranches, whose matching upper and lower boundaries of selected 

benchmark zero-coupon bonds are consistent across different default probability distributions 

of varying forward rates of default. In the case of a constant forward rate simulated risk-
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neutral returns display the smallest degree of deviation from return expectations for linearly 

increasing cumulative defaults of zero-coupon bonds, where the EVT distribution makes a 

strong bid for attention as it commands higher spreads than the NID default probability 

distribution for the first loss position [0-2.4%] and the most senior “investor tranche” [6.5-

9%]. It has to be noted that the bond spreads do not attract reference as a first moment match 

with the CLO tranches as opposed to the “matched comparison” the term structure of default 

rates between zero-coupon bonds and CLO tranches.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 19. Risk-neutral returns on zero-coupon bonds given their default term structure (Moody’s Investor 
Services), matched with the CLO tranches in first moment in either the first or seventh period. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 20. Comparison of risk-neutral returns of CLO tranches for different distributions of credit loss on a 
cumulative basis with a constant, increasing and decreasing forward rate of default.  

cum. (EVT/const.) 20.34747% 6.28610% 5.25952% 5.06849% 5.03000% 5.00140%
cum. (NID/const.) 20.56017% 6.79431% 5.33870% 5.05067% 5.01100% 5.00010%
cum. (EVT/deter.) 37.49613% 10.81930% 5.69241% 5.11364% 5.03970% 5.00160%
cum. (NID/deter.) 30.43862% 10.19510% 6.78903% 5.39333% 5.10090% 5.00120%
cum. (EVT/improv.) 49.12123% 9.87893% 5.60218% 5.10820% 5.03820% 5.00150%
cum. (NID/improv.) 42.75610% 10.94410% 6.00440% 5.06577% 5.00640% 5.00000%Improving

Deteriorating

Constant 

6.73539% 
(Ba2)

Benchmark Zero Bonds

Returns per TrancheDistribution and Collateral Performance

6.10601% 
(Ba1)

5.05892% 
(A1)upper bound 

lower bound 10.33656% 
(B3)

5.16282% 
(A3)

5.03278% 
(Aa3)

20.15625% 
(Caa)

5.35818% 
(Baa2)

%k
jL

%k
jL

%k
jL

%k
jL

%k
jL

%k
jL

Moody's 
rating

Zero bond returns 
per rating class CLO benchmark

(for a constant risk-free 
interest rate of 5%)

Aaa 5.00074%
Aa1 5.00771%
Aa2 5.01596%
Aa3 5.03278% upper bound Tranche 4
A1 5.05892% upper bound Tranche 4
A2 5.10357%
A3 5.16282% upper bound Tranche 3
Baa1 5.24663%
Baa2 5.35818% lower bound Tranche 3 & Tranche 4
Baa3 5.65911%
Ba3 6.10601% upper bound Tranche 2
B1 6.73539% lower bound Tranche 2
B2 7.47054%
B3 8.41114%
Caa 9.52890%
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12 INTRODUCTION OF STOCHASTIC RISK-FREE INTEREST 

RATES 
 
 
In simulation of the interest rate 

lf
r , we need to distinguish between two cases: (i) a variable 

(stochastic) risk-free interest rate based on the fitted distribution of observed LIBOR rates 

and (ii) a constant risk-free rate, which is the average value of the stochastic interest rate 

across time. In this section we allow for a varying risk-free interest rate per period. Due to the 

egression of the United Kingdom from the European exchange rate system (European 

Monetary System (EMS)) on 16.09.1992 (JORION, 2001),14 we restrict the database of interest 

rates to 12-month LIBOR rates quoted at the daily market’s closing from 04.00.1993 to 

02.10.2001 in order to avoid a “change point” in the time series of observed daily interest 

rates.15 The observed data points do not display significant historical bias (“momentum 

effect”) and heteroscedasticity is low, such that they can be safely regarded independent and 

identically distributed. Since only the first 1,000 observations contain 460 zero returns, the 

simulation of stochastic interest rates for the given investment horizon in the presented model 

requires the transformation of daily LIBOR rates to end-of-the week quotes. This 

methodology does not harm the statistical validity of extrapolating future interest rates, as the 

intra-week rates do not fluctuate, so that a particular end-of-week effect of daily 12-month 

LIBOR rates can be confidently ruled out. After this conversion of daily rates will are still left 

with 447 observations to substantiate the simulation. 

 

12.1 Interest Rate Model 
 
 
Generally speaking, interest rate models focus on extrapolating the development of returns on 

fixed income securities in relation to their maturity. The most common approach would 

assume one or more factors to explain the interest rate term structure. After the time-varying 

dynamics of a single- or multi-factor model have been specified the imposition of certain 

                                                 
14 One could also argue in favour of using observations only after the December 1995 Madrid Summit, mainly 
because it was then that a concrete timetable for the introduction of the euro was agreed upon and much of the 
detailed preparatory work was set in motion. At this point in time, some have argued, the convergence process of 
European monetary policy commences, as the implications of the 1992 ERM crisis gradually began to be offset 
by visible evidence of practical advances in the introducing the euro. 
15 This starting date of the time series was chosen insofar as some time is needed for the event (Great Britain left 
the European Monetary System (EMS) on 16th September 1992) to manifest itself in the new model. 
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expectation hypotheses yields an explicit result for future interest rates. Thus, we employ the 

interest rate model proposed by Hull and White (HULL, 1993): 

 

 [ ]θ σ= − +ln ( ) lnd r t a r dt dz  (0.38) 

 

Since the model considers logarithmic interest rates lnd r  instead of nominal r , we guard 

against negative interest rates that might arise in the course of the analysis. Moreover, mean 

reversion is permitted for > 0a . We substitute the constant µ  for the term structure 

parameter θ ( )t , given that the objective of this exercise is predicated on the simulation of the 

12-month interest rate at a certain point rather than an entire yield curve. The conversion of 

this discretisation yields a AR(1) process with > 0a : 

 

 ( )
θ σε µ σε

µ σε µ σε

µ σε

+

+

+

− = − + = − +

= − + + = + − +

= + +

1

1

1

ln ln ( ) ln ln

ln ln ln 1 ln
ln ln ,

t t t t t t

t t t t t t

t t t

r r t a r a r

r a r r a r
r a r

 (0.39) 

 

where we abstain from imposing normality on the independent, uniformly distributed values 

of tε , because no option prices are determined in the course of this analysis. 

 

 
Figure 3. The time series of logarithmic end-of-week LIBOR interest rates 
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The plot of logarithmic end-of-week LIBOR interest rates exhibits only a weak form of mean 

reversion, since it takes about two years on average until the level of LIBOR rates has 

returned to the original base level. Consequently, the time series of the returns of 12-month 

LIBOR rates  

 

 ( )µ σε−
−

−

−
= = + +1

1
1

ˆ ˆˆin 1t t
t t t

t

z z
R z z

z
 (0.40) 

 

is at the brink of non-stationarity, given the weak mean reversion of the LIBOR time series on 

almost nine years of historic data results in an a  value close to 0. We use maximum likelihood 

estimation to determine the parameters of the probability distribution of AR(1) residuals of 

logarithmic interest rates.  

 

Due to the weak mean reversion of the given LIBOR rates the ML estimation proves to be 

inconclusive even with the YULE WALKER starting estimator. We have left the matter at the 

robust YULE WALKER estimator α̂  for α . The results are illustrated in Table 21 below. 

 

 
 
 
 
 
 
 
Table 21. Yule Walker estimation results for mean reversion. 
 
 
The residuals α −= − 1ˆln lnt t tR r r  are clearly heavy tailed, as the deviation of a line signifying the 

empirical quantiles against standard normal quantiles in the Q-Q plot (Fig. 4) below 

demonstrates.  

parameter
estimator 0.977686 0.022314
std. error 0.027836 0.027836
t-value 35.12 0.80

α̂ â
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Figure 4. Q-Q plot of observed distribution of LIBOR rates and a standard normal distribution. 
 

 

Nonetheless, the tails, i.e. the positive and negative deviation of the observed distribution of 

LIBOR rates from a standard normal distribution, appear to be symmetric, we have fitted a t-

distribution on the mean-adjusted and scaled residuals of the observed data points16, such that  

 

 νµ σε ε= + :for .t t tR t  (0.41) 

 
At this point one could certainly consider more advanced interest rate models, such as the 

Cox-Ingersoll-Ross (CIR) model (1985). In the CIR model17 we would assume tR  to be the 

                                                 
16 See also CAMPELL AND MACKINLAY (1997); SANDMANN (1999). 
17 The CIR model assumes ( )TP t  to be the price of a zero bond with a nominal value set to 1, i.e. a non-dividend 
paying security, which pays exactly 1 at maturity T. The so-called “yield-to-maturity (YTM)” ( )TY t  denotes the 
logarithmic return of the zero bond at continuous compounding of interest, such that the relationship between 
the bond price and its investment return is ( ) ( ){ }τ= −expT TP t Y t  for the remaining maturity τ = −T t . The short 
rate is defined as ( ) ( )

→
= lim T

T t
r t Y t  and is considered the most important estimator value of the interest rate term 

structure. Since ( )r t  represents the sport rate at the limit for →T t , the expected price of the zero bond at time t 

is ( ) ( )
  
  = − Ω

    
∫exp

T
T t

t
P t E r s ds  for a variable but deterministic interest rate and past prices Ωt . Thus, ( )TP t  

represents the present value of a zero bond over its lifetime with a constant return rate of ( )TY t  or repeated 
investment in zero bonds in future periods − 1, ...,t T  at a risky short-term rate. The CIR model includes the short-
term interest rate as a factor (as most one-factor models), whose dynamics is specified as a time-continuous 
stochastic process ( ) ( )( ) ( )σ= − + tdr t a b r t dt r t dW , with a Wiener process tW  and constant parameters a,b and σ . 
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price of a zero bond ( )TP t  with a nominal value set to 1, i.e. a non-dividend paying security, 

which pays exactly 1 at maturity T. We include the short-term interest rate as a factor (as most 

one-factor models), whose dynamics is specified as a time-continuous stochastic process  

 

 ( ) ( )( ) ( )σ= − + ,tdr t a b r t dt r t dW  (0.42) 
 
with a Wiener process tW  and constant parameters a,b and σ . The volatility ( )σ r t increases 

in the interest rate level, and ( )r t  is specified as a Markov process, such that ( )TP t  becomes a 

function of the current short-term rate18,  

 ( ) ( )( )= , .TP t V r t t  (0.43) 
 
Thus, the complete CIR model reads as  
 
 ( ) ( )( ) ( ) ( ) ( ){ }= = − + −, exp ,TP t V r t t A T t B T T r t  (0.44) 
 
where  
 
 ψ σ= +2 22a  (0.45) 
 
and  
 
 ( ) ( ) ( ){ }τ ψ ψ ψτ= + + −2 exp 1 ,g a  (0.46) 
 
such that 
 

 ( )
( ){ }
( )

τψ ψ
τ

τσ

+
= 2

2 exp
2 2ln

a
ab

A
g

 (0.47) 

 
 
and 
 

                                                                                                                                                    
The volatility ( )σ r t increases in the interest rate level, and ( )r t  is specified as a Markov process, such that 

( )TP t  becomes a function of the current short-term rate, ( ) ( )( )= ,TP t V r t t . We consider the Wiener process 
mean reverting as a positive value for a offsets any deviation from the stationary mean value b. By using Itos 

Lemma we obtain the differential equation ( ) ( ) ( ) ( )σ
∂ ∂∂

− + + − =
∂ ∂∂

2
2

2
, ,( , ) 1

, 0
2

V r t V r tV r t
a b r r rV r t

r tr
 with the 

boundary condition ( ) ( )= =, 1TV r T P T . This set of equations yields the above CIR model (eq. 0.37). 
18 See also DUFFIE (1997); KARATZAS AND SHREVE (1991); WILMOTT, HOWISON AND DEWYNNE (1995); 
BENNINGA (1997). 
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.19 (0.48) 

 
 

 
Figure 5. Q-Q plot of observed residuals and t-distribution 
 
 
The estimated parameters for the 12-month LIBOR interest rate are as follows: 
 
 
 
 
 
 
 
 
 
Table 22. Estimation of residuals for a fitted t-distribution on 12-month LIBOR  
 
 
The estimated chi-square statistic χ 2

19  is 24.52, which equates to a p-value of 17.69%. 

                                                 
19 The interest rate term structure, i.e. the yield-to-maturity, converges to 

ψ
=

+lim
2ab

Y
a

 as the remaining maturity 

−T t  becomes larger. If the short-term interest rate ( ) >r t b , the first moment of the interest rate term structure is 
negative, whereas ( ) < limr t Y indicates rising future interest rates. If the short-term interest rate is ( )< < limb r t Y , 
the yield curve could increase before a negative second moment induces declining interest rate in the long-term. 

estimator 0.040622 0.011517 2643781
std. error 0.000674 0.000791 0.419292
t-value 60.26 14.55 3.92

µ̂ σ̂ ν̂



 

 57 
 

 
12.2 Simulation 
 
We simulate one million paths of estimated LIBOR interest rates over seven years, i.e. 350 

time increments, based on the presented model. Figure 6 is an exemplary exposition of a few 

paths. 

 

 
Figure 6. Simulation of LIBOR rates following HULL AND WHITE (1993) 
 
 

Table 23 below shows the estimated spreads per tranche investors ought to demand, if 

stochastic risk-free interest rates (12-month LIBOR) averaged over one million  iterations of 

the suggested interest rate model are applied to the risk-neutral pricing of CLOs (eq. 0.19). 

Analogous to the pervious section, when a constant risk-free rate of 5.0% is used, spreads are 

calculated for both models of credit risk (EVT and NID) and three possibilities of portfolio 

quality (constant, deteriorating, improving). For illustrative purposes investor spreads per 

tranche have also been calculated with the average stochastic interest-rate (Tab. 24) as the 

constant risk-free rate  

 

 µ  = 
 

exp 6.174769%
a

 (0.49) 

 

In the case of a fixed risk-free rate (see Section 8), we have maximised the discount factor 

( )1
1

l

m
fl

r
=

+∏  with the summation of risk-free interest rates 
lf

r  per period held constant, such 
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that 
1l lf fr r

+
= . In this section stochastic interest rates are introduced. Even though the 

summation of stochastic interest rates per period j equates to the summation of constant risk-

free interest rates ( )1
1

l

m
fl

r
=

+∑  due to mean reversion for → ∞t  in general and → ∞m  in our 

model, stochastic interest rates vary over time, such that 
+

≠
1l lf fr r . Thus, if we substitute 

stochastic periodic interest rates for the constant risk-free interest rates 
lf

r , ( )=
+∏ 1

1
l

m
fl

r  is 

generally smaller for stochastic interest rates than for constant interest rates. If we recapitulate 

the term structure of default rates for each tranche of a CLO transaction (eq. 0.19), the risk-

neutral spreads need to be lower for stochastic interest rates to offset a smaller value in the 

denominator. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Table 23. Expected spreads per tranche based on the average variable (stochastic) risk-free rate as constant 
discount rate   
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 24. Expected spreads per tranche based on the periodic stochastic/variable risk-free rate   
 
 
 
However, the effect of variable (stochastic) interest rates is not only confined to a lower level 

of spreads investors will demand in return for periodic defaults in each tranche. The 

cum. (EVT/const.) 22.39463% 7.30974% 6.29268% 6.10283% 6.06451% 6.03589%

cum. (NID/const.) 20.62188% 7.81517% 6.37059% 6.08477% 6.04547% 6.03454%

cum. (EVT/deter.) 38.26656% 10.74418% 6.71721% 6.14718% 6.07401% 6.03609%

cum. (NID/deter.) 30.38123% 12.15254% 7.79993% 6.42232% 6.13398% 6.03570%

cum. (EVT/improv.) 50.15165% 10.84695% 6.63082% 6.14206% 6.07255% 6.03599%

cum. (NID/improv.) 43.89018% 10.92903% 6.92431% 6.09964% 6.04086% 6.03446%

Distribution and Collateral Performance Returns per Tranche (at avg. stochastic risk-free rate)

Constant 

Deteriorating

Improving

%k
jL

%k
jL

%k
jL

%k
jL

%k
jL

%k
jL

cum. (EVT/const.) 22.62031% 7.45478% 6.43406% 6.24347% 6.20499% 6.17623%

cum. (NID/const.) 20.84458% 7.96229% 6.51219% 6.22531% 6.18585% 6.17488%

cum. (EVT/deter.) 38.56835% 10.90002% 6.85962% 6.28793% 6.21451% 6.17644%

cum. (NID/deter.) 30.65209% 12.31435% 7.94590% 6.56384% 6.27462% 6.17605%

cum. (EVT/improv.) 50.54813% 10.00315% 6.77326% 6.28283% 6.21305% 6.17634%

cum. (NID/improv.) 44.25293% 12.09255% 7.06783% 6.24022% 6.18122% 6.17480%

Returns per Tranche (at variable risk-free rate)

Constant 

Deteriorating

Improving

Distribution and Collateral Performance
%k

jL

%k
jL

%k
jL

%k
jL

%k
jL

%k
jL
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implications of a lower periodic discount rate ( )=
+∏ 1

1
l

m
fl

r  will be more pronounced the 

more time has elapsed in a CLO transaction. This has a significant bearing on the different 

term structures of default rates of the first loss position (constant expected losses per period) 

and the “investor tranches” (non-linear increase of expected losses per period). The 

interaction of term structures and stochastic interest rates means that spreads for the first loss 

position will decline to a higher extent than for mezzanine and senior tranches as we permit 

the periodic discount rate ( )=
+∏ 1

1
l

m
fl

r  to vary across time by a introducing stochastic risk-

free interest rate. 

 
 
12.3 Economic explanation 
 
 
Since we benchmark the term structure of default for each tranche of the CLO transaction to 

comparable zero bonds, we might resort to the pricing behaviour of bonds to explain the 

difference of spreads between constant and stochastic risk-free interest rates. As the intrinsic 

value of volatility in time-varying interest rates induce a higher bond price than constant 

interest rates, investment in bonds is safer under a constant discount rate per period. 

Consequently, a constant interest rate leads to a marginal increase of the periodic discount 

rate ( )1
1

l

m
fl

r
=

+∑ , which requires higher investment spreads according to equation 0.19. Thus, 

the calculated spreads of each tranche ought to be lower for stochastic interest rates than 

under constant interest rates.  

 

 

13 CONCLUSION – MODELLING THE LOSS FUNCTION AND 
LOSS CASCADING 

 
 
The presented analysis purposted to a comprehensive illustration of loan securitisation from 

the perspective of the default term structure and the pricing of CLO tranches. We base our 

methodology on divergent loss accumulation of tranches of debt securities issued on loan 

portfolios due to the priorisation of cumulative loan loss most commonly found in 
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subordinated structures of securitisations. This so-called loss cascading mechanism was 

modelled by transforming simulating uniformly distributed periodic (annual) random portfolio 

losses into two prime cumulative distributions, an (i) extreme value theory loss function and a 

(ii) normal inverse distribution function. Furthermore both a beta distribution as well as a 

negative binomial distribution of loan default augment this determination of default term 

structures in comparative terms. The simulation was augmented by also taking into 

consideration normally distributed loss recovery. By virtue of a reality check on the tranche 

pricing for the simulations results of portfolio loss assumed accurate we privilege equally 

concerns about contingencies of estimation risk and state variable uncertainty, on the one 

hand, and the economic virtues of viable and realistic model specification, on the other hand. 

 

We identified a dichotomy of estimated losses per tranche between the first loss position and 

the “investors tranches”. Whereas the term structure of cumulative loan loss increase linearly 

with respect to the first tranche, the remaining tranches are subjected to an exponentially 

increasing loss burden and follow a convex term structure. The latter aspect translates into 

excess spreads for tranches issued to investors, as the pricing of the transaction on the 

grounds of risk-neutral default-probabilities corresponds to a more convex term structure 

compared to corporate bonds with the same average life and similar rating. This observation is 

underpinned by the relevance of the variance of default losses (cf. σ %
%

k
j

k
jL L  ratio), whose 

impact on estimated investor returns increases exponentially for tranches beyond the first loss 

position. Considering the structural features of securitisation transactions this result bears 

critical relevance to any model of securitisation in the context of asymmetric information as 

the issuer is compelled to retain a portion of the low risk loan category for the market to 

remain in equilibrium ex ceteris paribus. Consequently, the retention of the lowest tranche 

eventuates not only enhanced calibration of measures to manage credit risk exposure but also 

the transfer of additional risks and higher variance of loss severity to investors. Given the high 

level of cumulative probability (stochastic weight) associated with extreme events in the case 

of the extreme value theory loss function, its approximation of extreme type behaviour of 

credit losses is superior to the tail behaviour of the normal inverse distribution as well as the 

beta- and negative binomial distribution, which shows almost perfect coincidence of 

probability masses. It warrants noting that extreme value theory improves on the modelling of 

default risk by means of the normal inverse distribution as the variance of unexpected loss in 
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relation to scheduled defaults in the collateral portfolio is significantly reduced, while most 

losses accrue to the first loss credit default cover of the most junior tranche. Nonetheless, 

even if approximating portfolio performance across time depends on the chosen loss 

function, the effect of loss cascading remains to be consistently most pronounced in the first 

loss position across all distributions. As opposed to the beta- and negative-binomial 

distribution, which yield a significantly higher estimated risk exposure of the CLO tranches 

after the respective parameters have been calibrated by matching the first two moments, the 

extreme value theory loss function concentrates an escalation of expected cumulative losses 

on the most junior tranche (especially if the forward rate is flexible as to reflect time-varying 

collateral portfolio quality), whilst marginal periodic losses display asymptotic properties. The 

implications of variable portfolio quality on the cumulative and periodic loss burden per 

tranche reinforce the conclusion that the partial retention of assets of the collateral pool does 

not only reflect adverse effects of information asymmetries in the securitisation market. Bank 

issuers also have the ability to subdivide and redirect cash flows from underlying assets among 

a range of sold and retained interests in order to reduce their total risk exposure in linear 

future default and to enhance tranche spreads allocated to investors. Given this structural 

discretion in security design on part of issuers, the management of unexpected risk represents 

the decisive element in the selection of the securitised loans, i.e. the credit risk of the collateral 

portfolio. 

 

Since 60 to 95 % (depending on the modelled loss function of the loan portfolio) of the 

default loss is concentrated in the first loss position (whose level is subject to the willingness 

of the issuer to provide credit cover), the aforementioned incentives for securitisation persist, 

recent financial innovation in the area of loan securitisation has drawn increased attention to 

the possibility of subparticipation.20 

                                                 
20 The mechanism of interest subparticipation has been devised by issuers to reduce the illiquidity of the first loss 
piece of securitisation transactions in order to ameliorate the marketability of the credit enhancement held by the 
sponsor of the transaction as an equity tranche. Payments out of available interest generated from the overall 
reference portfolio are partially used to offset first losses of noteholders of the first loss position. By doing so, 
the principal amount of the outstanding first loss piece is reduced through the amount of interest 
subparticipation, in an amount equal to the allocated realised losses. Even though the claim of first loss 
noteholders to the interest subparticipation is an unsecured claim against the issuer, the economic rationale 
behind this concept is regulatory capital relief, as no capital has to be held against interest income under the 
current regulatory standards. Since the first loss piece achieves the rating of the issuer, the placement of credit 
enhancement under interest subparticipation is cost efficient. However, the capital efficiency derived from such 
an arrangement is associated with substantial institutional risk in view of potential future changes in the 
regulatory framework, which has hitherto not given clear guidance on the capital treatment of the concept of 
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Despite of regulatory change (“internal ratings-based approach”), which renders obsolete 

efforts of institutional arbitrage between minimum capital requirements and economic capital 

associated with a certain risk category of loans, the continuous presence of exogenous non-

systematic risk warrants limiting the impact of unexpected risk. Once linear expected losses 

allocated to the credit enhancement are accounted for by means of the security design, the 

benefit of the securitisation process derives from the removal of unexpected losses from the 

bank loan book, provided that possible efficiency loss due to adverse selection in the 

securitisation of illiquid loans matches the remedial effect of the credit enhancement. The 

lower the error margin of modelled periodic credit losses the more accurate risk-neutral 

calculation of tranche spreads will be. With the gap between risk-neutral spreads and observed 

prices of CLO tranches gradually narrowing as we estimate a reduction of unexpected loss in 

proportion to unexpected loss of the securitisation transaction, the model predictions militate 

towards CLO pricing in efficient markets. Nonetheless, the significant decline of marginal 

unexpected losses over time in the first loss position held by the issuer/sponsor of the 

transaction allows issuers more predictable investment risk than capital market investors, who 

hold the mezzanine and senior tranches (investor tranches). In view of inherent 

intransparency of actual asset quality in current CLO markets (especially in bank-based 

financial systems), an extension of this approach to unexpected loss is instrumental in 

estimating the term structure of CLOs in a sufficiently liquidity market for bank loans. 

Therefore, a consideration of integrating sophisticated derivative structures and 

comprehensive asset pricing methods in the security design of CLOs will further common 

understanding of the term structure and the pricing of CLO transactions. 

                                                                                                                                                    
interest subparticipation in the provision of credit enhancement. The new proposal for a revision of the Basel 
Accord indicates the possibility that the fist loss position will most likely be subjected to a full deduction from 
capital in this thinly regulated area of structured finance. Given present regulatory uncertainty as to the future 
capital treatment of structural provisions, such credit enhancement and the interest subparticipation, it is 
worthwhile incorporating a regulatory call of the first loss piece, which allows for the possible restructuring and 
subsequent sale of the most junior tranche to capital market investors. 
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15 APPENDIX  

 
   Expected and 

unexpected losses 
%

jL  per tranche (in % of tranche volume) %k
jL  per tranche (abs. share of total exp. losses per period) 

cum./per. Yr p  %k
jL  σ %k

jL  
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 

cumulative 1 0.0026 0.002598 0.004581 0.104285 0.003095 0.000987 0.000375 0.000188 0.000010 0.002503 0.000046 0.000026 0.000009 0.000005 0.000009 
periodic   0.002598 0.004581 0.104285 0.003095 0.000987 0.000375 0.000188 0.000010 0.002503 0.000046 0.000026 0.000009 0.000005 0.000009 
cumulative 2 0.0026 0.005299 0.006512 0.207327 0.007653 0.002229 0.000797 0.000402 0.000023 0.004976 0.000115 0.000058 0.000020 0.000010 0.000020 
periodic   0.002701 0.001931 0.103042 0.004558 0.001242 0.000422 0.000214 0.000013 0.002473 0.000068 0.000032 0.000011 0.000005 0.000012 
cumulative 3 0.0026 0.007799 0.007978 0.308168 0.014546 0.003940 0.001332 0.000648 0.000037 0.007396 0.000218 0.000102 0.000033 0.000016 0.000033 
periodic   0.002500 0.001466 0.100841 0.006893 0.001711 0.000535 0.000246 0.000014 0.002420 0.000103 0.000044 0.000013 0.000006 0.000012 
cumulative 4 0.0026 0.010397 0.009228 0.406098 0.024665 0.006204 0.001994 0.000952 0.000051 0.009746 0.000370 0.000161 0.000050 0.000024 0.000045 
periodic   0.002598 0.001250 0.097930 0.010119 0.002264 0.000662 0.000304 0.000014 0.002350 0.000152 0.000059 0.000017 0.000008 0.000012 
cumulative 5 0.0026 0.012990 0.010317 0.500079 0.039278 0.009131 0.002777 0.001292 0.000067 0.012002 0.000589 0.000237 0.000069 0.000032 0.000059 
periodic   0.002593 0.001089 0.093981 0.014613 0.002927 0.000783 0.000340 0.000016 0.002256 0.000219 0.000076 0.000020 0.000009 0.000014 
cumulative 6 0.0026 0.015581 0.011252 0.589083 0.060005 0.012995 0.003645 0.001649 0.000082 0.014138 0.000900 0.000338 0.000091 0.000041 0.000073 
periodic   0.002591 0.000935 0.089004 0.020727 0.003864 0.000868 0.000357 0.000015 0.002136 0.000311 0.000100 0.000022 0.000009 0.000013 
cumulative 7 0.0026 0.018168 0.012104 0.671323 0.088676 0.018083 0.004711 0.002052 0.000098 0.016112 0.001330 0.000470 0.000118 0.000051 0.000087 
periodic     0.002587 0.000852 0.082240 0.028671 0.005088 0.001066 0.000403 0.000016 0.001974 0.000430 0.000132 0.000027 0.000010 0.000014 

 
   Expected and 

unexpected losses 
σ %k

jL per tranche (in % of tranche volume) σ %k
jL per tranche (abs. share of total exp. losses per period) 

cum./per. Yr p  %k
jL  σ %k

jL  
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 

cumulative 1 0.0026 0.002598 0.004581 0.130941 0.050337 0.028247 0.018032 0.013013 0.001526 0.003143 0.000755 0.000734 0.000451 0.000325 0.001351 
periodic   0.002598 0.004581 0.130941 0.050337 0.028247 0.018032 0.013013 0.001526 0.003143 0.000755 0.000734 0.000451 0.000325 0.001351 
cumulative 2 0.0026 0.005299 0.006512 0.178268 0.078295 0.041886 0.026340 0.019017 0.002261 0.004278 0.001174 0.001089 0.000659 0.000475 0.002001 
periodic   0.002701 0.001931 0.047327 0.027958 0.013639 0.008308 0.006004 0.000735 0.001136 0.000419 0.000355 0.000208 0.000150 0.000650 
cumulative 3 0.0026 0.007799 0.007978 0.208257 0.106408 0.055182 0.033976 0.024088 0.002737 0.004998 0.001596 0.001435 0.000849 0.000602 0.002422 
periodic   0.002500 0.001466 0.029989 0.028113 0.013296 0.007636 0.005071 0.000476 0.000720 0.000422 0.000346 0.000191 0.000127 0.000421 
cumulative 4 0.0026 0.010397 0.009228 0.226551 0.136470 0.068699 0.041584 0.029081 0.003191 0.005437 0.002047 0.001786 0.001040 0.000727 0.002824 
periodic   0.002598 0.001250 0.018294 0.030062 0.013517 0.007608 0.004993 0.000454 0.000439 0.000451 0.000351 0.000190 0.000125 0.000402 
cumulative 5 0.0026 0.012990 0.010317 0.235359 0.169272 0.082556 0.048863 0.033732 0.003616 0.005649 0.002539 0.002146 0.001222 0.000843 0.003200 
periodic   0.002593 0.001089 0.008808 0.032802 0.013857 0.007279 0.004651 0.000425 0.000211 0.000492 0.000360 0.000182 0.000116 0.000376 
cumulative 6 0.0026 0.015581 0.011252 0.235536 0.205001 0.097288 0.055601 0.038068 0.003977 0.005653 0.003075 0.002529 0.001390 0.000952 0.003520 
periodic   0.002591 0.000935 0.000177 0.035729 0.014732 0.006738 0.004336 0.000361 0.000004 0.000536 0.000383 0.000168 0.000108 0.000319 
cumulative 7 0.0026 0.018168 0.012104 0.227853 0.243130 0.113521 0.062720 0.042430 0.004301 0.005468 0.003647 0.002952 0.001568 0.001061 0.003806 
periodic     0.002587 0.000852 -0.007683 0.038129 0.016233 0.007119 0.004362 0.000324 -0.000184 0.000572 0.000422 0.000178 0.000109 0.000287 

 
Table 25. Simulation of constant forward probability rates (extreme value theory loss function as distribution of portfolio losses) of default losses 
on a cumulative and periodic basis – losses per tranche with either the tranche % or the absolute value of losses per period as reference base. 



 

 ii 
 

 
   Expected and 

unexpected losses 
%k

jL  per tranche (in % of tranche volume) %k
jL  per tranche (abs. share of total exp. losses per period) 

cum./per. Yr p  %k
jL  σ %k

jL  
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 

cumulative 1 0.00010 0.002598 0.004581 0.104285 0.003095 0.000987 0.000375 0.000188 0.000010 0.002503 0.000046 0.000026 0.000009 0.000005 0.000009 
periodic   0.002598 0.004581 0.104285 0.003095 0.000987 0.000375 0.000188 0.000010 0.002503 0.000046 0.000026 0.000009 0.000005 0.000009 
cumulative 2 0.00123 0.006191 0.006508 0.248098 0.008190 0.002382 0.000833 0.000413 0.000023 0.005954 0.000123 0.000062 0.000021 0.000010 0.000020 
periodic   0.003593 0.004626 0.145561 0.003188 0.001032 0.000366 0.000197 0.000012 0.003452 0.000076 0.000036 0.000011 0.000006 0.000012 
cumulative 3 0.00195 0.010473 0.007834 0.416846 0.018131 0.004431 0.001373 0.000653 0.000034 0.010004 0.000272 0.000115 0.000034 0.000016 0.000030 
periodic   0.004282 0.004366 0.174498 0.003318 0.000946 0.000311 0.000158 0.000009 0.004050 0.000149 0.000053 0.000014 0.000006 0.000010 
cumulative 4 0.00247 0.015278 0.009016 0.598044 0.039707 0.007968 0.002189 0.000976 0.000049 0.014353 0.000596 0.000207 0.000055 0.000024 0.000043 
periodic   0.004805 0.004461 0.196124 0.003444 0.000979 0.000336 0.000171 0.000010 0.004349 0.000324 0.000092 0.000020 0.000008 0.000013 
cumulative 5 0.00277 0.020389 0.010101 0.770975 0.088717 0.014413 0.003391 0.001416 0.000068 0.018503 0.001331 0.000375 0.000085 0.000035 0.000060 
periodic   0.005111 0.004540 0.208625 0.003570 0.001030 0.000365 0.000192 0.000011 0.004150 0.000735 0.000168 0.000030 0.000011 0.000017 
cumulative 6 0.00295 0.025679 0.011100 0.908023 0.195662 0.026506 0.005249 0.002007 0.000091 0.021793 0.002935 0.000689 0.000131 0.000050 0.000081 
periodic   0.005289 0.004583 0.215965 0.003606 0.001061 0.000374 0.000194 0.000012 0.003289 0.001604 0.000314 0.000046 0.000015 0.000020 
cumulative 7 0.00306 0.031064 0.011904 0.981059 0.389878 0.049962 0.008072 0.002774 0.000114 0.023545 0.005848 0.001299 0.000202 0.000069 0.000101 
periodic     0.005386 0.004303 0.220174 0.003614 0.001051 0.000347 0.000173 0.000008 0.001753 0.002913 0.000610 0.000071 0.000019 0.000020 

 
   Expected and 

unexpected losses 
σ %k

jL per tranche (in % of tranche volume) σ %k
jL per tranche (abs. share of total exp. losses per period) 

cum./per. Yr p  %k
jL  σ %k

jL  
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 

cumulative 1 0.00010 0.002598 0.004581 0.130941 0.050337 0.028247 0.018032 0.013013 0.001526 0.003143 0.000755 0.000734 0.000451 0.000325 0.001351 
periodic   0.002598 0.004581 0.130941 0.050337 0.028247 0.018032 0.013013 0.001526 0.003143 0.000755 0.000734 0.000451 0.000325 0.001351 
cumulative 2 0.00123 0.006191 0.006508 0.174874 0.080581 0.043399 0.026735 0.019296 0.002297 0.004197 0.001209 0.001128 0.000668 0.000482 0.002033 
periodic   0.003593 0.004626 0.128459 0.050898 0.028846 0.017801 0.013353 0.001674 0.001054 0.000454 0.000394 0.000218 0.000157 0.000682 
cumulative 3 0.00195 0.010473 0.007834 0.196178 0.116936 0.058216 0.034156 0.024201 0.002717 0.004708 0.001754 0.001514 0.000854 0.000605 0.002405 
periodic   0.004282 0.004366 0.127236 0.051448 0.027190 0.016506 0.011817 0.001324 0.000511 0.000545 0.000385 0.000186 0.000123 0.000372 
cumulative 4 0.00247 0.015278 0.009016 0.195799 0.166620 0.076333 0.042914 0.029468 0.003226 0.004699 0.002499 0.001985 0.001073 0.000737 0.002855 
periodic   0.004805 0.004461 0.126626 0.052496 0.027589 0.017024 0.012409 0.001539 -0.000009 0.000745 0.000471 0.000219 0.000132 0.000450 
cumulative 5 0.00277 0.020389 0.010101 0.168668 0.234645 0.100094 0.052945 0.035368 0.003746 0.004048 0.003520 0.002602 0.001324 0.000884 0.003315 
periodic   0.005111 0.004540 0.126135 0.053353 0.028524 0.017735 0.013319 0.001588 -0.000651 0.001020 0.000618 0.000251 0.000148 0.000460 
cumulative 6 0.00295 0.025679 0.011100 0.113185 0.312582 0.131249 0.065124 0.041864 0.004305 0.002716 0.004689 0.003412 0.001628 0.001047 0.003810 
periodic   0.005289 0.004583 0.125604 0.053776 0.028916 0.018047 0.013306 0.001701 -0.001332 0.001169 0.000810 0.000304 0.000162 0.000495 
cumulative 7 0.00306 0.031064 0.011904 0.048280 0.358264 0.172091 0.079550 0.048750 0.004631 0.001159 0.005374 0.004474 0.001989 0.001219 0.004098 
periodic     0.005386 0.004303 0.125246 0.053700 0.028669 0.017346 0.012474 0.001050 -0.001558 0.000685 0.001062 0.000361 0.000172 0.000289 

 
Table 26. Simulation of increasing forward probability rates (extreme value theory loss function as distribution of portfolio losses) of default losses 
on a cumulative and periodic basis – losses per tranche with either the tranche % or the absolute value of losses per period as reference base. 
 



 

 iii 
 

 
   Expected and 

unexpected losses 
%k

jL  per tranche (in % of tranche volume) %k
jL  per tranche (abs. share of total exp. losses per period) 

cum./per. Yr p  %k
jL  σ %k

jL  
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 

cumulative 1 0.00367 0.006005 0.004523 0.245673 0.003844 0.001091 0.000378 0.000182 0.000009 0.005896 0.000058 0.000028 0.000009 0.000005 0.000008 
periodic   0.006005 0.004523 0.245673 0.003844 0.001091 0.000378 0.000182 0.000009 0.005896 0.000058 0.000028 0.000009 0.000005 0.000008 
cumulative 2 0.00267 0.011014 0.006328 0.445650 0.012637 0.003011 0.000892 0.000419 0.000020 0.010696 0.000190 0.000078 0.000022 0.000010 0.000018 
periodic   0.005009 0.004429 0.204375 0.003659 0.001085 0.000360 0.000178 0.000009 0.004799 0.000132 0.000050 0.000013 0.000006 0.000010 
cumulative 3 0.00195 0.015296 0.007696 0.608457 0.030299 0.005900 0.001564 0.000693 0.000032 0.014603 0.000454 0.000153 0.000039 0.000017 0.000028 
periodic   0.004282 0.004366 0.174498 0.003318 0.000946 0.000311 0.000158 0.000009 0.003907 0.000265 0.000075 0.000017 0.000007 0.000011 
cumulative 4 0.00154 0.019189 0.008889 0.742734 0.063996 0.010507 0.002531 0.001046 0.000047 0.017826 0.000960 0.000273 0.000063 0.000026 0.000042 
periodic   0.003894 0.004440 0.158171 0.003325 0.001020 0.000345 0.000169 0.000009 0.003223 0.000505 0.000120 0.000024 0.000009 0.000013 
cumulative 5 0.00123 0.022782 0.010016 0.846424 0.121583 0.017450 0.003799 0.001493 0.000066 0.020314 0.001824 0.000454 0.000095 0.000037 0.000058 
periodic   0.003593 0.004626 0.145561 0.003188 0.001032 0.000366 0.000197 0.000012 0.002489 0.000864 0.000181 0.000032 0.000011 0.000017 
cumulative 6 0.00094 0.026099 0.011032 0.917378 0.206659 0.027686 0.005460 0.002017 0.000086 0.022017 0.003100 0.000720 0.000137 0.000050 0.000076 
periodic   0.003317 0.004623 0.134103 0.003262 0.001042 0.000364 0.000176 0.000010 0.001703 0.001276 0.000266 0.000042 0.000013 0.000018 
cumulative 7 0.00083 0.029309 0.011953 0.961671 0.318082 0.042558 0.007584 0.002645 0.000107 0.023080 0.004771 0.001107 0.000190 0.000066 0.000095 
periodic     0.003209 0.004607 0.129703 0.003157 0.000987 0.000365 0.000195 0.000011 0.001063 0.001671 0.000387 0.000053 0.000016 0.000019 

 
   Expected and 

unexpected losses 
σ %k

jL per tranche (in % of tranche volume) σ %k
jL per tranche (abs. share of total exp. losses per period) 

cum./per. Yr p  %k
jL  σ %k

jL  
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 

cumulative 1 0.00367 0.006005 0.004523 0.124453 0.055172 0.029266 0.018088 0.012631 0.001715 0.002987 0.000828 0.000761 0.000452 0.000316 0.001518 
periodic   0.006005 0.004523 0.124453 0.055172 0.029266 0.018088 0.012631 0.001715 0.002987 0.000828 0.000761 0.000452 0.000316 0.001518 
cumulative 2 0.00267 0.011014 0.006328 0.159532 0.097505 0.047893 0.027566 0.019229 0.002198 0.003829 0.001463 0.001245 0.000689 0.000481 0.001945 
periodic   0.005009 0.004429 0.126442 0.054316 0.029122 0.017752 0.012535 0.001253 0.000842 0.000635 0.000484 0.000237 0.000165 0.000427 
cumulative 3 0.00195 0.015296 0.007696 0.170597 0.145666 0.065797 0.036069 0.024743 0.002656 0.004094 0.002185 0.001711 0.000902 0.000619 0.002351 
periodic   0.004282 0.004366 0.127236 0.051448 0.027190 0.016506 0.011817 0.001324 0.000266 0.000722 0.000466 0.000213 0.000138 0.000405 
cumulative 4 0.00154 0.019189 0.008889 0.162596 0.202429 0.086183 0.045515 0.030438 0.003059 0.003902 0.003036 0.002241 0.001138 0.000761 0.002707 
periodic   0.003894 0.004440 0.128220 0.051941 0.028494 0.017093 0.012322 0.001283 -0.000192 0.000851 0.000530 0.000236 0.000142 0.000357 
cumulative 5 0.00123 0.022782 0.010016 0.138867 0.262821 0.108775 0.055492 0.036301 0.003628 0.003333 0.003942 0.002828 0.001387 0.000908 0.003211 
periodic   0.003593 0.004626 0.128459 0.050898 0.028846 0.017801 0.013353 0.001674 -0.000569 0.000906 0.000587 0.000249 0.000147 0.000504 
cumulative 6 0.00094 0.026099 0.011032 0.106689 0.317039 0.133944 0.066194 0.041936 0.004178 0.002561 0.004756 0.003483 0.001655 0.001048 0.003698 
periodic   0.003317 0.004623 0.129227 0.051637 0.028862 0.017647 0.012598 0.001760 -0.000772 0.000813 0.000654 0.000268 0.000141 0.000487 
cumulative 7 0.00083 0.029309 0.011953 0.072741 0.354321 0.161875 0.077491 0.047751 0.004688 0.001746 0.005315 0.004209 0.001937 0.001194 0.004149 
periodic     0.003209 0.004607 0.128773 0.050739 0.028080 0.017886 0.013405 0.001735 -0.000815 0.000559 0.000726 0.000282 0.000145 0.000451 

 
Table 27. Simulation of decreasing forward probability rates (extreme value theory loss function as distribution of portfolio losses) of default losses 
on a cumulative and periodic basis – losses per tranche with either the tranche % or the absolute value of losses per period as reference base. 
 
 



 

 iv 
 

 
   Expected and 

unexpected losses 
%k

jL  per tranche (in % of tranche volume) %k
jL  per tranche (abs. share of total exp. losses per period) 

cum./per. Yr p  %k
jL  σ %k

jL  
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 

cumulative 1 0.0026 0.002593 0.004588 0.104352 0.004135 0.000830 0.000157 0.000041 0.000001 0.002504 0.000062 0.000022 0.000004 0.000001 0.000001 
periodic   0.002593 0.004588 0.104352 0.004135 0.000830 0.000157 0.000041 0.000001 0.002504 0.000062 0.000022 0.000004 0.000001 0.000001 
cumulative 2 0.0026 0.005186 0.006491 0.206350 0.010987 0.002129 0.000389 0.000110 0.000001 0.004952 0.000165 0.000055 0.000010 0.000003 0.000001 
periodic   0.002593 0.001903 0.101998 0.006852 0.001299 0.000232 0.000069 0.000000 0.002448 0.000103 0.000034 0.000006 0.000002 0.000000 
cumulative 3 0.0026 0.007771 0.007921 0.304995 0.021439 0.004068 0.000683 0.000177 0.000002 0.007320 0.000322 0.000106 0.000017 0.000004 0.000002 
periodic   0.002585 0.001430 0.098645 0.010452 0.001939 0.000294 0.000067 0.000001 0.002367 0.000157 0.000050 0.000007 0.000002 0.000001 
cumulative 4 0.0026 0.010356 0.009126 0.399452 0.036819 0.006922 0.001108 0.000261 0.000003 0.009587 0.000552 0.000180 0.000028 0.000007 0.000003 
periodic   0.002585 0.001205 0.094457 0.015380 0.002854 0.000425 0.000084 0.000001 0.002267 0.000231 0.000074 0.000011 0.000002 0.000001 
cumulative 5 0.0026 0.012934 0.010181 0.488493 0.058068 0.010884 0.001691 0.000392 0.000004 0.011724 0.000871 0.000283 0.000042 0.000010 0.000004 
periodic   0.002578 0.001055 0.089041 0.021249 0.003962 0.000583 0.000131 0.000001 0.002137 0.000319 0.000103 0.000015 0.000003 0.000001 
cumulative 6 0.0026 0.015500 0.011127 0.570866 0.086047 0.016401 0.002502 0.000559 0.000006 0.013701 0.001291 0.000426 0.000063 0.000014 0.000005 
periodic   0.002566 0.000946 0.082373 0.027979 0.005517 0.000811 0.000167 0.000002 0.001977 0.000420 0.000143 0.000020 0.000004 0.000002 
cumulative 7 0.0026 0.018059 0.011991 0.645940 0.121363 0.023847 0.003575 0.000777 0.000008 0.015503 0.001820 0.000620 0.000089 0.000019 0.000007 
periodic     0.002559 0.000864 0.075074 0.035316 0.007446 0.001073 0.000218 0.000002 0.001802 0.000530 0.000194 0.000027 0.000005 0.000002 

 
Table 28. Simulation of constant forward probability rates (normal inverse distribution of portfolio losses) of default losses on a cumulative and 
periodic basis – losses per tranche with either the tranche % or the absolute value of losses per period as reference base. 



 

 v 
 

 
   Expected and 

unexpected losses 
%k

jL  per tranche (in % of tranche volume) %k
jL  per tranche (abs. share of total exp. losses per period) 

cum./per. Yr p  %k
jL  σ %k

jL  
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 

cumulative 1 0.0026 0.002593 0.004579 0.104369 0.004101 0.000831 0.000147 0.000039 0.000001 0.002505 0.000062 0.000022 0.000004 0.000001 0.000001 
periodic   0.002593 0.004579 0.104369 0.004101 0.000831 0.000147 0.000039 0.000001 0.002505 0.000062 0.000022 0.000004 0.000001 0.000001 
cumulative 2 0.0026 0.006178 0.007552 0.241895 0.016947 0.003589 0.000685 0.000200 0.000004 0.005805 0.000254 0.000093 0.000017 0.000005 0.000004 
periodic   0.003585 0.002973 0.137526 0.012846 0.002758 0.000538 0.000161 0.000003 0.003301 0.000193 0.000072 0.000013 0.000004 0.000003 
cumulative 3 0.0026 0.010451 0.010198 0.393470 0.045190 0.010055 0.001928 0.000516 0.000008 0.009443 0.000678 0.000261 0.000048 0.000013 0.000007 
periodic   0.004273 0.002646 0.151575 0.028243 0.006466 0.001243 0.000316 0.000004 0.003638 0.000424 0.000168 0.000031 0.000008 0.000004 
cumulative 4 0.0026 0.015207 0.012650 0.542116 0.096050 0.023047 0.004522 0.001182 0.000016 0.013011 0.001441 0.000599 0.000113 0.000030 0.000014 
periodic   0.004756 0.002452 0.148646 0.050860 0.012992 0.002594 0.000666 0.000008 0.003568 0.000763 0.000338 0.000065 0.000017 0.000007 
cumulative 5 0.0026 0.020238 0.014826 0.673930 0.172279 0.044946 0.009036 0.002325 0.000030 0.016174 0.002584 0.001169 0.000226 0.000058 0.000027 
periodic   0.005031 0.002176 0.131814 0.076229 0.021899 0.004514 0.001143 0.000014 0.003164 0.001143 0.000569 0.000113 0.000029 0.000012 
cumulative 6 0.0026 0.025426 0.016816 0.780726 0.271508 0.078663 0.016656 0.004250 0.000054 0.018737 0.004073 0.002045 0.000416 0.000106 0.000048 
periodic   0.005188 0.001990 0.106796 0.099229 0.033717 0.007620 0.001925 0.000024 0.002563 0.001488 0.000877 0.000191 0.000048 0.000021 
cumulative 7 0.0026 0.030681 0.018618 0.860469 0.386342 0.125166 0.028539 0.007366 0.000094 0.020651 0.005795 0.003254 0.000713 0.000184 0.000083 
periodic     0.005255 0.001802 0.079743 0.114834 0.046503 0.011883 0.003116 0.000040 0.001914 0.001723 0.001209 0.000297 0.000078 0.000035 

 
Table 29. Simulation of increasing forward probability rates (normal inverse distribution of portfolio losses) of default losses on a cumulative and 
periodic basis – losses per tranche with either the tranche % or the absolute value of losses per period as reference base. 



 

 vi 
 

 
   Expected and 

unexpected losses 
%k

jL  per tranche (in % of tranche volume) %k
jL  per tranche (abs. share of total exp. losses per period) 

cum./per. Yr p  %k
jL  σ %k

jL  
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 

cumulative 1 0.0026 0.005992 0.006269 0.241622 0.010208 0.001379 0.000144 0.000023 0.000000 0.005799 0.000153 0.000036 0.000004 0.000001 0.000000 
periodic   0.005992 0.006269 0.241622 0.010208 0.001379 0.000144 0.000023 0.000000 0.005799 0.000153 0.000036 0.000004 0.000001 0.000000 
cumulative 2 0.0026 0.010961 0.008220 0.431596 0.032250 0.004144 0.000389 0.000061 0.000000 0.010358 0.000484 0.000108 0.000010 0.000002 0.000000 
periodic   0.004969 0.001951 0.189974 0.022042 0.002765 0.000245 0.000037 0.000000 0.004559 0.000331 0.000072 0.000006 0.000001 0.000000 
cumulative 3 0.0026 0.015214 0.009431 0.580569 0.068669 0.008830 0.000719 0.000097 0.000001 0.013934 0.001030 0.000230 0.000018 0.000002 0.000000 
periodic   0.004253 0.001211 0.148973 0.036419 0.004686 0.000330 0.000037 0.000000 0.003575 0.000546 0.000122 0.000008 0.000001 0.000000 
cumulative 4 0.0026 0.019060 0.010333 0.698890 0.121829 0.016286 0.001245 0.000147 0.000001 0.016773 0.001827 0.000423 0.000031 0.000004 0.000001 
periodic   0.003846 0.000902 0.118321 0.053160 0.007456 0.000526 0.000050 0.000000 0.002840 0.000797 0.000194 0.000013 0.000001 0.000000 
cumulative 5 0.0026 0.022595 0.011046 0.790304 0.190679 0.027340 0.002020 0.000225 0.000001 0.018967 0.002860 0.000711 0.000051 0.000006 0.000001 
periodic   0.003535 0.000713 0.091414 0.068850 0.011054 0.000775 0.000078 0.000000 0.002194 0.001033 0.000287 0.000019 0.000002 0.000000 
cumulative 6 0.0026 0.025819 0.011616 0.857477 0.270135 0.042336 0.003105 0.000323 0.000001 0.020579 0.004052 0.001101 0.000078 0.000008 0.000001 
periodic   0.003224 0.000570 0.067173 0.079456 0.014996 0.001085 0.000098 0.000000 0.001612 0.001192 0.000390 0.000027 0.000002 0.000000 
cumulative 7 0.0026 0.028936 0.012125 0.907148 0.359962 0.062859 0.004687 0.000454 0.000002 0.021772 0.005399 0.001634 0.000117 0.000011 0.000002 
periodic     0.003117 0.000509 0.049671 0.089827 0.020523 0.001582 0.000131 0.000000 0.001192 0.001347 0.000534 0.000040 0.000003 0.000000 

 
Table 30. Simulation of decreasing forward probability rates (normal inverse distribution of portfolio losses) of default losses on a cumulative and 
periodic basis – losses per tranche with either the tranche % or the absolute value of losses per period as reference base. 
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   Expected and 

unexpected losses 
%k

jL  per tranche (in % of tranche volume) %k
jL  per tranche (abs. share of total exp. losses per period) 

cum./per. Yr p  %k
jL  σ %k

jL  
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 

cumulative 1 0.0026 0.002569 0.004512 0.002851 0.000209 0.000004 0.000000 0.000000 0.000000 0.000068 0.000003 0.000000 0.000000 0.000000 0.000000 
periodic   0.002569 0.004512 0.002851 0.000209 0.000004 0.000000 0.000000 0.000000 0.000068 0.000003 0.000000 0.000000 0.000000 0.000000 
cumulative 2 0.0026 0.005176 0.006450 0.009512 0.000850 0.000021 0.000000 0.000000 0.000000 0.000228 0.000013 0.000001 0.000000 0.000000 0.000000 
periodic   0.002607 0.001938 0.006661 0.000641 0.000017 0.000000 0.000000 0.000000 0.000160 0.000010 0.000000 0.000000 0.000000 0.000000 
cumulative 3 0.0026 0.007789 0.007924 0.021589 0.002135 0.000061 0.000000 0.000000 0.000000 0.000518 0.000032 0.000002 0.000000 0.000000 0.000000 
periodic   0.002613 0.001474 0.012077 0.001285 0.000039 0.000000 0.000000 0.000000 0.000290 0.000019 0.000001 0.000000 0.000000 0.000000 
cumulative 4 0.0026 0.010391 0.009154 0.039937 0.004462 0.000185 0.000002 0.000000 0.000000 0.000958 0.000067 0.000005 0.000000 0.000000 0.000000 
periodic   0.002602 0.001230 0.018348 0.002327 0.000124 0.000002 0.000000 0.000000 0.000440 0.000035 0.000003 0.000000 0.000000 0.000000 
cumulative 5 0.0026 0.012955 0.010195 0.065128 0.008176 0.000377 0.000003 0.000000 0.000000 0.001563 0.000123 0.000010 0.000000 0.000000 0.000000 
periodic   0.002564 0.001041 0.025191 0.003714 0.000192 0.000001 0.000000 0.000000 0.000605 0.000056 0.000005 0.000000 0.000000 0.000000 
cumulative 6 0.0026 0.015510 0.011122 0.098164 0.013608 0.000714 0.000009 0.000000 0.000000 0.002356 0.000204 0.000019 0.000000 0.000000 0.000000 
periodic   0.002555 0.000927 0.033036 0.005432 0.000337 0.000006 0.000000 0.000000 0.000793 0.000081 0.000009 0.000000 0.000000 0.000000 
cumulative 7 0.0026 0.018078 0.011989 0.138913 0.021659 0.001298 0.000030 0.000000 0.000000 0.003334 0.000325 0.000034 0.000001 0.000000 0.000000 
periodic     0.002568 0.000867 0.040749 0.008051 0.000584 0.000021 0.000000 0.000000 0.000978 0.000121 0.000015 0.000001 0.000000 0.000000 

 
Table 31. Simulation of constant forward probability rates (beta distribution of portfolio losses) of default losses on a cumulative and periodic 
basis – losses per tranche with either the tranche % or the absolute value of losses per period as reference base. 
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   Expected and 
unexpected losses 

%k
jL  per tranche (in % of tranche volume) %k

jL  per tranche (abs. share of total exp. losses per period) 

cum./per. Yr p  %k
jL  σ %k

jL  
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 

cumulative 1 0.0026 0.002587 0.004581 0.105659 0.003039 0.000205 0.000010 0.000000 0.000000 0.002536 0.000046 0.000005 0.000000 0.000000 0.000000 
periodic   0.002587 0.004581 0.105659 0.003039 0.000205 0.000010 0.000000 0.000000 0.002536 0.000046 0.000005 0.000000 0.000000 0.000000 
cumulative 2 0.0026 0.005197 0.006476 0.209482 0.009744 0.000864 0.000017 0.000000 0.000000 0.005028 0.000146 0.000022 0.000000 0.000000 0.000000 
periodic   0.002610 0.001895 0.103823 0.006705 0.000659 0.000007 0.000000 0.000000 0.002492 0.000101 0.000017 0.000000 0.000000 0.000000 
cumulative 3 0.0026 0.007777 0.007932 0.308187 0.021358 0.002205 0.000091 0.000003 0.000000 0.007396 0.000320 0.000057 0.000002 0.000000 0.000000 
periodic   0.002580 0.001456 0.098705 0.011614 0.001341 0.000074 0.000003 0.000000 0.002369 0.000174 0.000035 0.000002 0.000000 0.000000 
cumulative 4 0.0026 0.010356 0.009115 0.402161 0.038983 0.004387 0.000225 0.000004 0.000000 0.009652 0.000585 0.000114 0.000006 0.000000 0.000000 
periodic   0.002579 0.001183 0.093974 0.017625 0.002182 0.000134 0.000001 0.000000 0.002255 0.000264 0.000057 0.000003 0.000000 0.000000 
cumulative 5 0.0026 0.012926 0.010175 0.489310 0.063951 0.008158 0.000425 0.000028 0.000000 0.011743 0.000959 0.000212 0.000011 0.000001 0.000000 
periodic   0.002570 0.001060 0.087149 0.024968 0.003771 0.000200 0.000023 0.000000 0.002092 0.000375 0.000098 0.000005 0.000001 0.000000 
cumulative 6 0.0026 0.015511 0.011120 0.569918 0.096979 0.013770 0.000770 0.000050 0.000000 0.013678 0.001455 0.000358 0.000019 0.000001 0.000000 
periodic   0.002585 0.000945 0.080608 0.033028 0.005612 0.000345 0.000022 0.000000 0.001935 0.000495 0.000146 0.000009 0.000001 0.000000 
cumulative 7 0.0026 0.018083 0.011988 0.642122 0.138027 0.021825 0.001309 0.000076 0.000000 0.015411 0.002070 0.000567 0.000033 0.000002 0.000000 
periodic     0.002572 0.000868 0.072204 0.041048 0.008055 0.000539 0.000026 0.000000 0.001733 0.000616 0.000209 0.000013 0.000001 0.000000 

 
Table 32. Simulation of constant forward probability rates (negative binomial distribution of portfolio losses) of default losses on a cumulative and 
periodic basis – losses per tranche with either the tranche % or the absolute value of losses per period as reference base. 
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   Unexpected 
divided by 
exp. losses 

σ %

%

k
j

k
jL

 per tranche  

cum./per. Yr p  σ %

%

k
jL

k
jL

 
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 

cumulative 1 0.0026 4.399632 3.484512 36.702854 64.110433 107.346421 154.297022 339.564720 
periodic   4.399632 3.484512 36.702854 64.110433 107.346421 154.297022 339.564720 
cumulative 2 0.0026 3.785829 2.512960 23.265408 42.253033 73.920746 105.595136 218.906721 
periodic   3.342004 0.529687 14.141035 24.883264 44.217836 62.810301 126.092875 
cumulative 3 0.0026 3.360607 2.061186 16.776855 30.611230 57.157314 83.073508 164.836492 
periodic   0.777466 0.132350 9.572895 17.747653 32.184500 46.269872 76.006829 
cumulative 4 0.0026 2.448552 0.771988 12.812742 25.092041 46.815071 68.438096 139.493259 
periodic   0.543029 0.861934 7.114355 13.746811 26.005602 36.959719 72.514717 
cumulative 5 0.0026 2.240594 0.558457 10.093890 20.574793 39.571379 58.482570 120.385362 
periodic   0.406757 0.635773 5.504792 10.000140 20.124482 30.859098 59.478937 
cumulative 6 0.0026 2.080032 0.385690 8.110153 17.119327 34.366668 50.764189 108.229350 
periodic   0.275055 0.414983 4.350938 8.953731 17.715189 27.450049 53.932499 
cumulative 7 0.0026 0.955407 0.239034 6.612258 14.433535 30.053660 46.412161 97.979813 
periodic    0.204816 0.188537 3.477341 7.573891 15.306088 24.512671 45.450935 

 
Table 33. k

j

k
jL Lσ %

%  ratio for each tranche based on a simulation of constant forward probability rates 

(EVT distribution of portfolio losses) under loss recovery. 
 
 

   Unexpect. 
divided by 
exp. losses 

σ %

%

k
jL

k
jL

 per tranche  

cum./per. Yr ρu  σ %

%

k
jL

k
jL

 
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 

cumulative 1 0.000100 4.399632 3.484512 36.702854 64.110433 107.346421 154.297022 339.564720 
periodic   4.399632 3.484512 36.702854 64.110433 107.346421 154.297022 339.564720 
cumulative 2 0.001231 3.785829 3.008487 27.899062 53.698372 96.028673 142.314033 309.612802 
periodic   3.342004 2.631317 36.040773 62.628416 108.570975 150.105864 310.453937 
cumulative 3 0.001945 3.360607 2.742849 19.011110 42.612144 85.086138 130.338390 296.099856 
periodic   2.745313 2.274788 35.020228 64.381490 118.428884 166.678943 327.366741 
cumulative 4 0.002469 3.103498 2.593312 10.667847 30.453772 70.725589 115.541203 275.345540 
periodic   2.543102 2.078119 34.438088 63.135083 113.080495 160.738280 342.453638 
cumulative 5 0.002771 2.940677 2.547467 6.581402 20.823275 57.330605 100.606003 250.379582 
periodic   2.453967 0.980200 33.777884 62.053598 108.465116 154.634826 320.261827 
cumulative 6 0.002954 2.830469 2.620724 3.605366 14.311552 44.712487 85.759867 228.695160 
periodic   2.405616 0.924590 33.707930 60.077412 107.721293 152.896657 315.453997 
cumulative 7 0.003055 2.730647 2.850588 2.120712 8.878558 33.871663 72.070196 203.054503 
periodic    2.254745 0.893580 33.587668 60.130860 110.574107 160.709078 292.119219 

 
Table 34. k

j

k
jL Lσ %

% ratio for each tranche based on a simulation of increasing forward probability rates of a 

deteriorating portfolio (EVT distribution of portfolio losses) under loss recovery. 
 



 

 x 
 

 
   Unexpect. 

divided by 
exp. losses 

σ %

%

k
jL

k
jL

 per tranche  

cum./per. Yr ρu  σ %

%

k
jL

k
jL

 
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 

cumulative 1 0.003673 2.153361 0.741965 32.466114 60.125725 106.827696 154.702873 423.910819 
periodic   2.153361 0.741965 32.466114 60.125725 106.827696 154.702873 423.910819 
cumulative 2 0.002669 2.285866 0.883944 19.592067 43.464264 89.692804 133.882010 330.185942 
periodic   2.444718 2.014072 33.557040 60.160123 110.069756 156.969883 309.835719 
cumulative 3 0.001945 2.414625 2.032232 12.006405 32.504371 74.704197 118.949257 298.438110 
periodic   2.745313 2.274788 35.020228 64.381490 118.428884 166.678943 327.366741 
cumulative 4 0.001538 2.536279 2.189857 7.517381 24.328460 60.236739 105.061912 263.940601 
periodic   3.014149 2.465404 35.278269 62.591515 110.587890 162.502512 217.243193 
cumulative 5 0.001231 2.663346 2.374104 4.901839 18.352531 50.257479 93.544953 244.403871 
periodic   3.342004 2.631317 36.040773 62.628416 108.570975 150.105864 310.453937 
cumulative 6 0.000940 2.779611 2.602486 3.448034 13.903233 42.879270 83.164265 233.096603 
periodic   3.578179 2.818469 35.740968 62.066461 108.224317 159.543795 390.565240 
cumulative 7 0.000834 2.877246 2.871633 2.600252 10.522826 36.134792 74.716369 223.428582 
periodic    3.671349 2.884306 36.276896 63.734063 109.384782 153.243456 350.959123 

 
Table 35. k

j

k
jL Lσ %

%  ratio for each tranche based on a simulation of decreasing forward probability rates of 

an improving portfolio (EVT distribution of portfolio losses) under loss recovery. 
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16 APPENDIX II: FIGURES 
    

 
Figure A1. Term structure of cumulative expected losses in various tranches of a collateral portfolio (extreme 
value simulation), depicted on a linear and a logarithmic scale. In the linear version of the loss cascades the first 
tranche [0-2.4%] scales with the right axis. 
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Figure A2. Term structure of periodic expected losses in various tranches of a collateral portfolio (extreme 
value simulation), depicted on a linear and a logarithmic scale. In the linear version of the loss cascades the first 
tranche [0-2.4%] scales with the right axis. 
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Figure A3. Term structure of cumulative expected losses in various tranches of a collateral portfolio (normal 
inverse distribution), depicted on a linear and a logarithmic scale. In the linear version of the loss cascades the 
first tranche [0-2.4%] scales with the right axis. The most senior tranche has been excluded for the logarithmic 
case due to negative values. 

Estimated Loss
(NID/cumulative/constant forward rate)

0.000000

0.020000

0.040000

0.060000

0.080000

0.100000

0.120000

0.140000

1 2 3 4 5 6 7

Periods

1/
10

0 
%

0.00000

0.10000

0.20000

0.30000

0.40000

0.50000

0.60000

0.70000

Total

2.4-3.9%

3.9-6.5%

6.5-9%

9-11.5%

11.5-100%

0-2.4% (scaled to
right axis)

Estimated Loss (logarithmic)
(NID/cumulative/constant forward rate)

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000
1 2 3 4 5 6 7

Periods

1/
10

0 
%

0.00000

0.10000

0.20000

0.30000

0.40000

0.50000

0.60000

0.70000

Total

2.4-3.9%

3.9-6.5%

6.5-9%

9-11.5%

0-2.4% (scaled to
right axis)



 

 xiv 
 

 
Figure A4. Term structure of periodic expected losses in various tranches of a collateral portfolio (normal 
inverse distribution), depicted on a linear and a logarithmic scale. In the linear version of the loss cascades the 
first tranche [0-2.4%] scales with the right axis. The most senior tranche has been excluded for the logarithmic 
case due to negative values. 
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Figure A5. Expected loss in tranches for a deteriorating (increasing forward rate of default) portfolio given an 
underlying extreme value distribution, where the first loss position [0-2.4%] is scaled to the right axis. 
 

Estimated Loss
(EVT/cumulative/increasing forward rate)

0.000000

0.050000

0.100000

0.150000

0.200000

0.250000

0.300000

0.350000

0.400000

0.450000

1 2 3 4 5 6 7

Periods

1/
10

0 
%

0.00000

0.20000

0.40000

0.60000

0.80000

1.00000

1.20000

Total

2.4-3.9%

3.9-6.5%

6.5-9%

9-11.5%

11.5-100%

0-2.4% (scaled to
right axis)

Estimated Loss
(EVT/periodic/increasing forward rate)

0.000000

0.001000

0.002000

0.003000

0.004000

0.005000

0.006000

1 2 3 4 5 6 7

Periods

1/
10

0 
%

0.000000

0.050000

0.100000

0.150000

0.200000

0.250000

Total

2.4-3.9%

3.9-6.5%

6.5-9%

9-11.5%

11.5-100%

0-2.4% (scaled to
right axis)



 

 xvi 
 

 
Figure A6. Expected loss in tranches for an improving (decreasing forward rate of default) portfolio given an 
underlying extreme value distribution, where the first loss position [0-2.4%] is scaled to the right axis. 
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Figure A7. Expected loss in tranches for a deteriorating (increasing forward rate of default) portfolio given an 
underlying normal inverse distribution, where the first loss position [0-2.4%] is scaled to the right axis. 
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Figure A8. Term structure of the σ %

%
k
j

k
jL L  ratio for all tranches of the collateral portfolio on the basis of 

uniform default characteristics of tranches (EVT) for a decreasing forward rate of default (cumulative and 
periodic loss). 
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Figure A9. Term structure of the σ %

%
k
j

k
jL L  ratio for the entire collateral portfolio on the basis of uniform 

default characteristics of tranches (on the basis of EVT and NID loss functions) for a constant, increasing and 
decreasing forward rate of default (cumulative and periodic loss). 
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Figure A10. Term structure of expected losses in the senior “investor tranches” [3.9-6.5%] and [6.5-9%] at 
a constant forward rate of default of p=0.0026 on the basis of an extreme value theory loss function compared 
with corporate zero-coupon bonds. 
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Figure A11. Term structure of expected losses in the most junior “investor tranche” [2.4-3.9%] and the first 
loss position ([0-2.4%] tranche) at a constant forward rate of default of p=0.0026 on the basis of an extreme 
value theory loss function compared with corporate zero-coupon bonds. 
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Figure A12. Comparison of the term structures of expected losses on the basis of the q-q-plot for the 
simulation of portfolio losses and subsequent loss cascading on the basis of a normal inverse distribution and an 
extreme value theory loss function. 
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Figure A13. Relationship between estimated and unexpected losses (per period) on an EVT loss function of 
credit default  
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