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Abstract

This paper investigates how the sector-specific source or the changing sectoral composition
of labor productivity has contributed to β-convergence, using a newly constructed eight-
sector database. The main findings are twofold. First, both within and sectoral reallocation
have become important drivers of β-convergence in labor productivity. Second, agricultural
productivity growth has been a significant contributor to β-convergence, whereas catch-up in
other sectors has only contributed a small amount to convergence. The strong growth of the
agriculture sector has been the most important driver of aggregate productivity convergence
even though agricultural productivity itself in low-income countries is not converging to that
in advanced economies.
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1 Introduction

There has been a re-emergence of catch-up in productivity by emerging market and developing
economies (EMDEs) to advanced economies (World Bank (2020)). Understanding how the sector-
specific source or the changing sectoral composition (i.e., structural change) has contributed to
the aggregate beta convergence in productivity is an area that has so far been under-explored.

In low-income countries (hereafter “LICs”), a high share of employment and low labor produc-
tivity in agriculture are mainly responsible for low aggregate productivity.1 The average share
of employment in the agriculture sector in LICs is high, at over 65 percent in 2018, compared
to just 3 percent in advanced economies. The level of agricultural productivity in LICs is only
4 percent of advanced-economy productivity (Figures 1 and 2).2 However, even if agricultural
labor productivity does not converge to the frontier, the labor reallocation to other sectors with
higher productivity levels could be an important engine of aggregate convergence. For example,
the East Asia and Pacific (EAP) region has experienced a rapid ‘de-agriculturalization’ over 40
years. Within countries, the productivity gaps across sectors in LICs have remained larger than
advanced economies over the last 20 years.3

There is a large body of literature on the determinants of structural change using the multi-
sector general equilibrium model. Two traditional explanations for structural change are the
representative household with non-homothetic preference (Kongsamut et al. (2001)) and the
firms with differential productivity growth rates (Ngai and Pissarides (2007)). Their basic mech-
anism is that the relative price related to the differential productivity allocates total expenditures
across any goods and services. Given these demands, relatively higher productivity growth sheds
labor and due to gross complementarity, labor shifts to slower-productivity growth. For exam-
ple, Alvarez-Cuadrado and Poschke (2011), Duarte and Restuccia (2010), and Herrendorf et al.
(2013) with non-homothetic preference consider “Engel’s law” which refers to low income elastic-
ity for food produced by the agriculture sector. They show that the productivity improvement
in the agriculture sector combined with Engel’s law explains most of the declines in agricultural
employment share. Also, Üngör (2013) finds that productivity growth in agriculture, combined
with the subsistence level of consumption, is able to explain most of the declines in agricultural
employment share in several countries. Also, an improvement in agricultural productivity in-
creases incomes and the demand for other goods, encouraging a shift of labor into other sectors
(Eberhardt and Vollrath (2018), Gollin et al. (2007), and Diao et al. (2018)). However, the theo-
retical ambiguity on the role of agricultural productivity growth in structural change is captured
by the formulation of Matsuyama (1992), which shows opposite effects in closed economies and
small open economies. Increased agricultural productivity in open economies lead to comparative
advantage and result in specialization in agriculture, thus pulling labor into agricultural sector.
McArthur and McCord (2017) show that if countries are serial exporters, increased yields lead
to increases in the labor share in agriculture by regression analysis.

1Unless otherwise indicated, productivity is defined in this paper as value added per worker because it is
impossible to get sectoral hours data for a lot of countries. The classification by income follows World Bank
(2021). Low-income countries are part of emerging markets and developing economies (EMDEs).

2This partially reflects that slow technology adoption in the agriculture sector in LICs is due to the high
proportion of smallholder ownership and family farms (Lowder et al., 2016). Although mechanization increases
agricultural labor productivity due to both capital deepening and TFP, mechanization in poor countries is hin-
dered by frictions such as untitled land, which is a prevalent feature of poor countries(Chen, 2020). Furthermore,
Restuccia et al. (2008) show that agricultural labor productivity is positively associated with the use of interme-
diate inputs (e.g., modern fertilizers and high-yield seeds) and argue that certain distortions in factor markets
such may severely dampen the incentives for their use (see Dennis and Işcan (2011), for example).

3As agricultural workers often do not work full time in agriculture, the sectoral gap is diminished if productivity
is measured per hours instead of per worker (Gollin et al., 2014). However, even after taking hours and human
capital per worker by sector, a large sectoral gap remains for a large number of countries Hamory et al. (2021).
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Given the ongoing structural change in Africa and low-income countries (as shown by Diao
et al. (2017) and Rodrik (2018)), understanding the role of structural change in aggregate conver-
gence is the focus of this paper. In assessing the contribution of structural change to convergence,
it is important to recognize that industry and service sectors are made up of a highly hetero-
geneous set of activities that vary widely in their skill- and capital-intensity as well as their
productivity. Understanding these differences is essential to help the policies that can foster
sustained productivity growth. This paper investigates how the sector-specific source or the
changing sectoral composition (i.e., structural change) has contributed to the β-convergence.
This paper extends the literature in two dimensions:

1. It constructs a new sectoral dataset for 8 sectors and 91 countries over 1995-2018 (and for
60 countries over 1975-2018). This is the first comprehensive database covering a broad
range of both advanced economies and emerging and developing economies (EMDEs) over
a long time period. This more detailed dataset and a more recent sectoral decomposi-
tion improves the scope to assess the contribution of structural change in productivity
convergence, particularly as the estimates are sensitive to the level of aggregation (Üngör
(2017)).

2. This paper is the first to decompose the β-convergence into contributions from within-sector
productivity growth and from between-sector productivity growth, for a large number of
countries ranging from advanced economies to low-income countries, whereas Wong (2006)
have only focused on advanced economies.

The paper starts by describing the new dataset. Then this data is used to decompose aggregate
productivity growth into within- and between-sector contributions. The main section examines
convergence across countries and examines the extent within and between sectoral reallocation
are contributing to convergence. Two robustness exercises are undertaken which support the main
findings. The final section concludes with a summary of major findings, policy implications and
a discussion of future research directions.

2 Data and empirical strategy

2.1 Data

The database consists of sectoral and aggregate labor productivity statistics for 91 countries,
and 8 sectors covering the period up to 2018.4 Compared with the literature using sectoral
datasets, it employs a large and diverse sample of countries.5 The database combines data from
the APO Productivity Database, the OECD STAN database, the OECD National Accounts, and
the GGDC/UNU-WIDER Economic Transformation Database (ETD, de Vries et al. (2021)) for
value-added data and employment. In addition, this database is extrapolated backwards using
annual growth rates from KLEMS, the GGDC 10-Sector database (GGDC, de Vries et al. (2015))
or the Expanded Africa Sector Database (EASD, Mensah and Szirmai (2018)) to construct a long
time series dataset. Also, if there is no available employment data, ILO modelled estimates are
supplementary employed. See the Appendix for more details.6

4The eight sectors distinguished in the dataset are agriculture, mining, manufacturing, utilities, construction,
trade services, transport and financial services, and government and personal services. According to Economic
Transformation Database, Business services include “Information and communication” whereas those in other
databases are included in transport service.” Hence, we combined transport and financial services to construct a
long time series database.

5McMillan et al. (2014) and Diao et al. (2017) employ 38 and 39 countries; IMF (2018) use 10 sectors and 62
countries.

6Database available for download here: datacatalog.worldbank.org
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2.2 Within sector and between sector effects

Following de Vries et al. (2012), McMillan et al. (2014) and Diao et al. (2017), we start by
employing a shift-share-analysis which decomposes aggregate labor productivity into the within
sector and between sector effects:

(1)
∆y

y︸︷︷︸
AggregateLabor Productivity

=

k∑
j=1

Yj
Y

[
∆yj
yj

]
︸ ︷︷ ︸
Within−j

+

k∑
j=1

[
yj
y

]
∆sj︸ ︷︷ ︸

Static

+

k∑
j=1

[
yj
y

] [
∆yj
yj

]
∆sj︸ ︷︷ ︸

Dynamic︸ ︷︷ ︸
Between

where ∆ denotes change, y is aggregate labor productivity, yj is labor productivity of sector j,
Yj is initial value-added of sector j, sj is the employment share of sector j. Between sector effects
are driven by the change in employment share. They are further decomposed into those which
are due to the reallocation of sources to sectors with higher productivity levels (static sectoral
effect), and those due to reallocation toward sectors with higher productivity growth (dynamic
sectoral effect). Within-sector productivity growth may reflect the effects of improvements in
human capital, investments in physical capital, technological advantages, or the reallocation of
resources from the least to the most productive firms within each sector.

2.3 Decomposition of β-convergence

The unconditional (beta) convergence hypothesis suggests that productivity catch-up growth
may occur fastest where productivity differentials are the largest across countries. Following
Wong (2002) and Wong (2006), this β-convergence can be decomposed into the contribution of
the within-sector growth and that of sectoral reallocation.7 The decomposition consists of two
steps: First, regressing aggregate labor productivity growth (∆y/y) on the logarithm of initial
aggregate labor productivity (y) gives the β-convergence.8

(2)
∆y

y
= α+ βln(y) + ε

Second, as the OLS estimater (α, β)′ = (X ′X)−1X ′∆y
y , substituting equation (1) into this

gives

(3)
(α, β)′ = (X ′X)−1X ′

{∑k
j=1

Yj

Y

[
∆yj
yj

]
+
∑k

j=1

[
yj
y

]
∆sj +

∑k
j=1

[
yj
y

] [
∆yj
yj

]
∆sj

}
= (X ′X)−1X ′

k∑
j=1

Yj
Y

[
∆yj
yj

]
︸ ︷︷ ︸

(αwithin,βwithin)′

+(X ′X)−1X ′
k∑

j=1

[
yj
y

]
∆sj︸ ︷︷ ︸

(αstatic,βstatic)′

+(X ′X)−1X ′
k∑

j=1

[
yj
y

] [
∆yj
yj

]
∆sj︸ ︷︷ ︸

(αdynamic,βdynamic)′︸ ︷︷ ︸
(αBetween,βBetween)′

7Other studies decomposing convergence employ an accounting approach. They calculate the difference of each
component (1) between the frontier and all sample countries. (e.g., Bernard and Jones (1996) and Harchaoui and
Üngör (2016) use the United States as the frontier and Caselli and Tenreyro (2005) use France. In contrast, Wong
(2006) employs an econometric approach. Its advantage is to understand that the components are statistically
significant or not.

8Following McMillan et al. (2014) , local currency value-added is converted to U.S. dollars using the nominal
PPP exchange rate obtained from the Penn World Table for initial labor aggregate productivity (y).
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Hence, the beta β coefficients obtained in the first step can be decomposed into a sum of
coefficients of the within sector effect, the static and dynamic sector effects.

We also examine the regressions for sector-specific convergence;

(4)
∆yj
yj

= αj + βj ln(yj) + εj

Even if sector labor productivity itself has not converged to the corresponding frontier across sec-
tors, the labor reallocation to other sectors with higher productivity levels could be an important
engine of aggregate convergence.9

3 Results

3.1 Within sector and between sector effects

Figure 3 shows the decomposition of the aggregate productivity into within-sector productivity
growth and between-sector productivity growth. Productivity growth in advanced economies
had been almost entirely driven by within-sector productivity growth mainly in the manufactur-
ing, transport and finance sectors. However, since the 2000s both within-sector and between-
sector productivity growth have slowed. In contrast, in EMDEs, productivity growth has been
supported by both within-sector and between-sector changes over 40 years. The within sector
growth has been broad-based-including in agriculture as well as manufacturing, trade, transport
and finance services, while the between-sector productivity gains mainly reflected a move out of
agriculture into services. In particular, the share of workers employed in agriculture fell from
about 70 percent in 1975 to about 30 percent in 2018. In LICs, between-sector productivity
gains in LICs reflected a broad-based shift out of agriculture into services such as trade, trans-
port and finance. During the 2010s, the contribution of between-sector slowed down due to small
movement to higher productivity sectors such as manufacturing and trade.

Figure 4 shows that contributions of the between-sector effect have been non-negligible in
the East Asia and Pacific (EAP), European and Central Asia (ECA), South Asia (SAR) and
Sub-Saharan Africa (SSA) regions whereas those in Latin America and Caribbean (LAC) and
Middle East and North Africa (MENA) were small.10

3.2 Baseline regression

3.2.1 β-convergence

Table 1 and Figure 5 show the results with three different balanced panel datasets: 60 countries
in 1975-2018, 60 countries in 1975-1995, and 91 countries in 1995-2018. At the aggregate level,
regression (2) shows there has been weak unconditional convergence prior to 1995. However,
since the late 1990s aggregate convergence emerges (Table 1 and Figure 5). Over this period,

9While the methodology developed by Wong (2002) can avoid the sectoral PPP-conversion factor problem
because it compares only sectoral growth rates and shares -not levels- across countries, this problem remains issue
in the sector-specific convergence. Van Biesebroeck (2009) builds an expenditure-based sector-specific PPP in
OECD countries, using detailed price data and Inklaar and Timmer (2009) constucts the sector-specific value-
added PPPs in twenty advanced OECD countries, using industry-specific relative output and intermediate inputs.

10de Vries et al. (2012) distinguish unregistered activities by sector in Brazil and show that it matters for the
relative role of structural change. They show that without making the formal/informal split structural change
appeared to contribute only a little to aggregate productivity growth. After allowing for employment reallocation
towards formal activities, the positive effects of structural change are much higher. Hence, formalization of
economic activities in Brazil were related to positive structural change post 2000. McArthur and McCord (2017)
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countries with lower initial levels of productivity have begun to catch up to high-productivity
economies. Nonetheless, at the estimated rate of convergence it would take about 140 years for
countries at the bottom 10 percent of the productivity distribution to reach the level of the top
10 percent.11

3.2.2 Decomposing within and between sector convergence

Even though many sectors are not converging to the frontier, the reallocation of labor to other
sectors with higher productivity levels could be an important engine of aggregate convergence.
Estimating the decomposition of aggregate convergence from regression (3) suggests that since
1995 both within and between sector effects have become important drivers of aggregate conver-
gence in labor productivity (Table 1 and Figure 5). This reflects larger productivity improvements
in many sectors in EMDEs (especially the LICs) compared to advanced economies as well the
fact that many EMDEs experienced rapid sectoral shifts from agricultural sectors over the last
few decades.

Looking across the sectors, agricultural productivity growth has been a significant contrib-
utor to aggregate convergence, whereas catch-up in other sectors has only contributed a small
amount to convergence. Given the share of value-added in the agriculture sector in LICs is large
(Figure 1), the strong growth of the agriculture sector has been the most important driver of
the aggregate productivity convergence. Our result is in line with Ivanic and Martin (2018) and
Ligon and Sadoulet (2018) which illustrate that the increase in agricultural productivity has a
larger poverty-reduction effect than increases in other sectors.

3.2.3 Sectoral convergence

The same exercise is undertaken to examine convergence across sectors (Table 2). Examining
this using this study’s extensive data suggests the following:

• Agriculture sector: Over the entire sample, there is no evidence for unconditional con-
vergence in the agriculture sector. This is line with Kinfemichael and Morshed (2019).
Hence, agricultural productivity itself in LICs is not converging to advanced economies.
However, this does not mean that the growth of the agriculture sector is not important
driver of aggregate productivity convergence because the result of decomposing within and
between sector convergence in previous section shows that the agricultural productivity
growth has been a significant contributor to aggregate convergence.

• Industry sectors (Mining, Manufacturing, Utilities and Construction): There is
evidence of unconditional convergence in many of the industry sectors. Over the second
half of the sample (1995-2018) there is clear evidence of convergence in the mining sector
because this seems to some degree to be due to the commodity price boom during the 2000s.
The finding of unconditional convergence in the manufacturing sector is line with Rodrik
(2013) using UNIDO data.12 However, the estimated convergence rate is low. Diao et al.
(2021) reveal a dichotomy between larger firms in the manufacturing sector that exhibit
superior productivity performance but do not expand employment much in countries such
as Tanzania and Ethiopia.

11137 years ≒(ln(0.9)/ln(0.1)-1)/0.695/100, using Table 1.
12However, Rodrik (2013) acknowledges that the “convergence results that follow should be read as applying to

the more formal, organized parts of manufacturing and not to micro-enterprises or informal firms. In developing
countries, enterprises with fewer than 5 or 10 employees are often not included.” UNIDO reported that there is
a significant difference between UNIDO and the national account.
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• Service sectors (Trade, Transport and Finance and others): There is evidence
of unconditional convergence across many service sectors (IMF (2018); Kinfemichael and
Morshed (2019)). The transport and financial services sectors show convergence across
three different balanced panel datasets. Although there has been evidence of convergence
in trade services (wholesale, retail trade, accommodation, and food services), their coeffi-
cients are smaller than those of the transport and financial services sectors. Lagakos (2016)
argued that in the retail trade sector, developing countries rationally choose “traditional
technologies” with low measured labor productivity instead of “modern technologies” with
high productivity across two dimensions. First, low car ownership rates among house-
holds in poor countries cause modern stores to locate further than traditional stores from
residential centers less attractive. This situation is related with “appropriate technology”
suggested by Basu and Weil (1998) and Acemoglu and Zilibotti (2001). Second, traditional
retail technologies offer an opportunity for entrepreneurs to operate informally, thus earn-
ing a price advantage over modern retail technologies, which are larger in scale and cannot
evade taxes as easily as smaller, traditional stores.

3.3 Robustness analysis

3.3.1 Robustness 1: Time-varying regression

The baseline results were based on three sample periods (1970-2018, 1970-1995, and 1995-2018).
For robustness and to provide further insights, a rolling window methodology is employed in
which regressions (2) and (3) are estimated with OLS over the 10-year rolling window. This
results in 34 regressions. Figure 6 shows the time-varying contributions of within and between
sector effects on aggregate convergence. The result is line with the baseline regressions. The
between sector effects have contributed to aggregate convergence largely and continuously since
1990s. In addition, the within sector growth has played an important role in aggregate conver-
gence since 2000. Furthermore, agricultural productivity growth has been a significant contribu-
tor to aggregate convergence since the late 1980s (Figure 6). Finally, due to the commodity price
boom during the 2000s, the productivity in the mining sector had also contributed although its
contribution subsequently declined.

3.3.2 Robustness 2: Catch-up to the United States

Following Bernard and Jones (1996), another robustness check examines the accounting decom-
position for each country relative to the United States. A measure of within and between-sector
catch-up is computed by subtracting the productivity growth in the other countries for each
sector as follows:

(5)
∆yother
yother

− ∆yus
yus

=
k∑

j=1

(Withinother,j −WithinUS,j) +

k∑
j=1

(Betweenother,j −BetweenUS,j)

where the notations are the same as in equation (1).
Figure 7 shows the between sector effects in EMDEs and LICs have contributed to convergence

largely since 1995 while that was not the case between 1975 to 1995. This finding is line with
the baseline. Figure 8 shows that both East Asia and Pacific (EAP) and South Asia (SAR)
experienced both within- and between-sector catch-up whereas there has been divergence of the
within sector effect in the Latin America and Caribbean (LAC), Middle East and North Africa
(MENA) and Sub-Saharan Africa (SSA) regions before 2010. In those countries, the within
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sector effects in the manufacturing sector have not been converging to the U.S. (Kinfemichael
and Morshed (2019) and Diao et al. (2021)).

4 Conclusion

This paper investigates how the sector-specific source or the changing sectoral composition has
contributed to aggregate productivity and convergence, constructing a new 8-sector database.
The main findings are twofold. First, both within and sectoral reallocation have become im-
portant drivers of aggregate convergence in labor productivity. This reflects larger productivity
improvements in many sectors in EMDEs (especially the LICs) compared to advanced economies
as well the fact that many EMDEs experienced rapid sectoral shifts from agricultural sectors over
the last few decades. Second, agricultural productivity growth has been a significant contributor
to aggregate convergence. The strong growth of the agriculture sector has been the most impor-
tant driver of aggregate productivity convergence even though agricultural productivity itself in
LICs is weakly converging to advanced economies. Our result is in line with the literature that
illustrates that the increase in agricultural productivity has a larger poverty-reduction effect than
increases in other sectors. Although the potential productivity gains from sectoral reallocation
have become more challenging to achieve, there would still be important payoffs from policies
including developing human capital; promoting good governance; reducing distortions such as
uncompetitive regulations and subsidies and promoting exports. 13 In addition, removing barri-
ers to migration can also help to facilitate structural transformation. 14 Given the low level of
productivity in EMDE agricultural sectors and its role as the primary employer in LICs, policies
to raise agricultural productivity would pay significant dividends. 15 These polices would include
improving infrastructure and land property rights.

13Some studies investigate determinants of structural change. Martins (2019) shows that the physical and
human capital play an important role in boosting structural change by regression analysis with panel data.
Świȩcki (2017) studies the quantitative contribution of four channels: (i) sector-biased technological progress, (ii)
nonhomothetic tastes, (iii) international trade and (iv) changing wedges between factor costs across sectors. They
construct a three-sector model (agriculture-manufacture-services), calibrating it for 45 diverse countries. He finds
that international trade and changes in relative factor costs across sectors are important for individual countries
but their impact on the relocation of labor is less systematic whereas sector-biased technological change is the
most important and nonhomothetic preferences are key to accounting for movement of labor out of agriculture.

14Artuc et al. (2015) show the estimated labor mobility costs caused by labor market frictions in EMDEs are
a larger burden than those in advanced economies, using the data with eight major sectors. Bryan and Morten
(2019), using Indonesia data show that reducing migration costs to the US level, a high-mobility benchmark, leads
to a 7 percentage point increase in productivity growth. Empirically, regress the structural-term on employment
rigidity index and raw materials’ share in exports and so on and find that there is a statistically significant impact
of the employment rigidity.

15McArthur and McCord (2017) and Bustos et al. (2016) show that the improvement of agricultural productivity
through fertilizer or agricultural technical change is a driver of structural change .
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Figure 1: Employment share

A. Composition of employment by sector B. Composition of employment by sector (EMDEs Regions)

C. Composition of value-added by sector D. Composition of value-added by sector (EMDEs Regions)

Notes: “Trans. and Fin.” illustrate transport and finance services; "Other industry" includes utilities and construction; "Others" include government and personal
services.
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Figure 2: Sectoral gap across countries and within countries

A. Sectoral productivity gap between advanced economies and LICs

B. Agricultural productivity gap

C. Agricultural productivity gap (EMDEs Regions)

Notes: A. Sectoral gap is defined as the ratio of median of sectoral productivity in LICs to that in advanced
economies. B.C Agricultural productivity gap is defined as the ratio of non-agricultural productivity to

agricultural productivity. "Others" include government and personal services.
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Figure 3: Within sector and between sector effects

A. Within and between-sector contributions

B. Contributions of within-sector growth

C. Contributions of between-sector growth

Notes: A.B.C. The decomposition is based on the equation(1). Median contribution to productivity growth.
“Trans. and Fin.” illustrate transport and finance services; "Other industry" includes utilities and construction;

"Others" include government and personal services.15
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Figure 4: Within sector and between sector effects (EMDEs Regions)

A. Within and between-sector contributions

B. Contributions of within-sector growth (EMDEs Regions)

C. Contributions of between-sector growth (EMDEs Regions)

Notes: A.B.C. The decomposition is based on the equation (1). Median contribution to productivity growth.
“Trans. and Fin.” illustrate transport and finance services;"Other industry" includes utilities, and construction;

"Others" include government and personal services.16
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Table 1: Decomposition of aggregate convergence

1975-2018 1975-1995 1995-2018
Sector β R2 β R2 β R2

Aggregate -0.976** 0.238 -0.289* 0.088 -0.695*** 0.266
(0.484) (0.155) (0.234)

1. Agriculture -0.255*** 0.308 -0.0874*** 0.113 -0.181*** 0.331
(0.0493) (0.0316) (0.0270)

2. Mining -0.0264 0.025 -0.00213 0.000 -0.0388 0.025
(0.0212) (0.0304) (0.0254)

3. Manufacturing -0.122*** 0.105 -0.0231 0.018 -0.0628* 0.032
(0.0460) (0.0223) (0.0361)

4. Utilities -0.0138 0.033 0.00134 0.002 -0.0162** 0.043
(0.00967) (0.00418) (0.00798)

5. Construction -0.000995 0.001 0.00263 0.002 -0.00448 0.004
(0.00534) (0.00802) (0.00722)

6. Trade services -0.0300** 0.097 -0.0174 0.022 -0.0251 0.028
(0.0118) (0.0149) (0.0155)

7. Transport and Finance services -0.0633*** 0.137 -0.0142 0.008 -0.0520** 0.054
(0.0206) (0.0203) (0.0229)

8. Other services -0.0399* 0.046 -0.00798 0.004 -0.0507** 0.044
(0.000236) (0.0156) (0.0247)

Total within sectoral effect -0.551*** 0.207 -0.148 0.039 -0.431*** 0.171
(1+2+3+4+5+6+7+8) (0.139) (0.0953) (0.0995)

Static sectoral effect -0.148 0.014 -0.0516 0.001 -0.277** 0.043
(0.162) (0.207) (0.138)

Dynamic sectoral effect -0.276* 0.050 -0.0890 0.004 0.0134 0.000
(0.155) (0.179) (0.115)

Observations 60 60 91
Notes: Regressions (2) and (3) are estimated. The standard errors are reported in parentheses. The constant

terms are not reported.∗∗∗p<0.01, ∗p<0.05, ∗p<0.1

Table 2: Sector-specific convergence

1975-2018 1975-1995 1995-2018
Sector β R2 β R2 β R2

Agriculture -0.169 0.014 0.151 0.013 -0.212 0.006
(0.235) (0.162) (0.152)

Mining -4.800* 0.053 -0.0909 0.001 -3.575** 0.077
(2.692) (0.335) (1.716)

Manufacturing -1.126* 0.124 -0.304 0.036 -0.520** 0.062
(0.616) (0.228) (0.253)

Utilities -2.024* 0.039 -0.559 0.039 -1.937* 0.033
(1.169) (0.405) (1.097)

Construction -0.301* 0.018 -0.223* 0.038 -0.0881 0.003
(0.174) (0.115) (0.212)

Trade services -0.448** 0.193 -0.252** 0.069 -0.317* 0.047
(0.181) (0.106) (0.191)

Finance and business services -0.847*** 0.335 -0.385** 0.127 -0.516*** 0.196
(0.286) (0.146) (0.176)

Other services -0.406* 0.125 -0.0583 0.005 -0.605** 0.111
(0.210) (0.0931) (0.00275)

Observations 60 60 91
Notes: Regression (4) is estimated. The standard errors are reported in parentheses. The constant terms are not

reported.∗∗∗p<0.01, ∗p<0.05, ∗p<0.1
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Figure 5: Decomposition of β-convergence

A. β-convergence

B. Decomposition of aggregate convergence

C. Contributions of sector-specific within effects on aggregate convergence

Notes: A. Cross-section regressions (2) are estimated with OLS. The sample size is reported in parentheses.
Vertical lines denote 90 percent confidence intervals. B.C. The decomposition is based on the Cross-section

regressions (3). “Trans. and Fin.” illustrate transport and finance services;"Other industry" includes utilities,
and construction; "Other service" include government and personal services. Residual is the difference between

the β and the sum of estimated between and within effects.
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Figure 6: Robustness check 1: Time-varing contributions

A. Decomposition of β-convergence

B. Contributions of sector-specific within effects on aggregate convergence

Notes: A. B. Cross-section regressions (2) and (3) are estimated over the 10-year rolling window. The sample
size varys through overlapping windows. Residual is the difference between the β and the sum of estimated
between and within effects. B. “Trans. and Fin.” illustrate transport and finance services;"Other industry"
includes utilities and construction; "Others" include government and personal services.
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Figure 7: Robustness check 2: Catch-up to the United States

A. Contributions of between-sector growth

B. Contributions of within-sector growth

C. Contributions of between-sector growth

Notes: A.B.C. The decomposition is based on the equation (5). Median contribution to productivity growth.
“Trans. and Fin.” illustrate transport and finance services; "Other industry" includes utilities and construction;

"Others" include government and personal services.
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Figure 8: Robustness check 2: Catch-up to the United States (EMDEs Regions)

A. Contributions of between-sector growth

B. Contributions of within-sector growth

C. Contributions of between-sector growth

Notes: A.B.C. The decomposition is based on the equation (5). Median contribution to productivity growth.
“Trans. and Fin.” illustrate transport and finance services; "Other industry" includes utilities and construction;

"Others" include government and personal services.
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Table A.1: Comparison with other studies decomposing convergence

Appendix

Period Country coverage Group coverage
Dieppe and Matsuoka (2022) 1995-2018 91 31 AEs 60 EMDEs

1975-2018 60 17 AEs 43 EMDEs
Wong (2006) 1970-1990 13 13AEs

Bernard and Jones (1996) 1970-1987 14 14 AEs
Harchaoui and Üngör (2016) 1970-2010 11 11 EMDEs
Caselli and Tenreyro (2005) 1960-2000 27 22 AEs 5 EMDEs

Notes:AEs=advanced economies, EMDEs=emerging markets and developing economies. LICs: low-income
countries.

Table A.2: 8-sector categories

Sector name Description
1.Agriculture Agriculture, forestry and fishing
2.Mining Mining and quarrying
3.Manufacturing Manufacturing
4.Utilities Electricity, gas, steam and air conditioning supply
5.Construction Construction
6.Trade services Wholesale and retail trade; repair of motor vehicles and motorcycles;

Accommodation and food service activities
7.Transport and Transportation and storage; Information and communication;
Financial services Financial and insurance activities;Real estate activities;

Professional, scientific and technical activities;
Administrative and support service activities

8.Other services Public administration and defense; compulsory social security;
Education;Human health and social work activities;
Arts, entertainment and recreation;Other service activities;
Activities of households as employers;
undifferentiated goods- and services-producing activities of households for own use;
Activities of extraterritorial organizations and bodies

Sources: APO; EASD; ETD; GGDC; KLEMS; OECD.
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Table A.3: Sectoral database
Country Group1 Group2 Period Source
Australia AEs AEs 1975-2018 APO
Austria AEs AEs 1970-2018 OECD STAN/KLEMS
Belgium AEs AEs 1970-2018 OECD STAN/KLEMS

Czech Republic AEs AEs 1993-2018 OECD National Accounts
Cyprus AEs AEs 1995-2019 OECD National Accounts/ILO

Denmark AEs AEs 1970-2018 OECD STAN
Estonia AEs AEs 1995-2018 OECD STAN
Finland AEs AEs 1975-2018 OECD STAN
France AEs AEs 1970-2018 OECD STAN/OECD National Accounts

Germany AEs AEs 1970-2018 OECD STAN/KLEMS
Greece AEs AEs 1995-2019 OECD National Accounts
Ireland AEs AEs 1995-2019 OECD National Accounts
Israel AEs AEs 1990-2018 ETD
Italy AEs AEs 1970-2018 OECD STAN/KLEMS
Japan AEs AEs 1970-2018 APO
Latvia AEs AEs 1995-2018 OECD STAN

Lithuania AEs AEs 1995-2018 OECD STAN
Luxembourg AEs AEs 1970-2018 OECD STAN/KLEMS
Netherlands AEs AEs 1970-2018 OECD STAN/KLEMS
New Zealand AEs AEs 1989-2018 OECD STAN

Norway AEs AEs 1970-2018 OECD STAN
Portugal AEs AEs 1995-2018 OECD STAN

Korea, Rep. AEs AEs 1970-2018 APO
Slovak Republic AEs AEs 1995-2018 OECD STAN

Slovenia AEs AEs 1995-2018 OECD STAN
Spain AEs AEs 1970-2018 OECD STAN/KLEMS

Sweden AEs AEs 1970-2019 OECD National Accounts
Switzerland AEs AEs 1995-2018 OECD STAN

Taiwan, China AEs AEs 1970-2018 APO
United Kingdom AEs AEs 1970-2018 OECD STAN/KLEMS
United States AEs AEs 1970-2018 OECD STAN/KLEMS

Cambodia EMDEs EAP 1970-2018 APO
China EMDEs EAP 1970-2018 APO
Fiji EMDEs EAP 1970-2018 APO

Indonesia EMDEs EAP 1970-2018 APO
Lao PDR EMDEs EAP 1970-2018 APO
Malaysia EMDEs EAP 1970-2018 APO
Mongolia EMDEs EAP 1970-2018 APO

Philippines EMDEs EAP 1970-2018 APO
Myanmar EMDEs EAP 1970-2018 APO
Thailand EMDEs EAP 1970-2018 APO
Vietnam EMDEs EAP 1970-2018 APO
Bulgaria EMDEs ECA 1995-2019 OECD National Accounts/ILO
Croatia EMDEs ECA 1995-2019 OECD National Accounts/ILO
Hungary EMDEs ECA 1995-2018 OECD STAN
Poland EMDEs ECA 1995-2019 OECD National Accounts

Romania EMDEs ECA 1995-2018 OECD National Accounts
Russian Federation EMDEs ECA 1995-2018 OECD National Accounts/KLEMS/ILO

Serbia EMDEs ECA 1995-2018 OECD National Accounts/ILO
Turkey EMDEs ECA 1970-2018 APO
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Table A.4: Sectoral database (continued)

Country Group1 Group2 period Source
Argentina EMDEs LAC 1990-2018 ETD
Bolivia EMDEs LAC 1990-2018 ETD
Brazil EMDEs LAC 1990-2018 ETD
Chile EMDEs LAC 1951-2018 GGDC/ETD

Colombia EMDEs LAC 1950-2018 GGDC/ETD
Costa Rica EMDEs LAC 1950-2018 GGDC/ETD
Ecuador EMDEs LAC 1990-2018 ETD
Mexico EMDEs LAC 1950-2018 GGDC/ETD
Peru EMDEs LAC 1990-2018 ETD

Bahrain EMDEs MNA 1970-2018 APO
Egypt, Arab Rep. EMDEs MNA 1960-2018 GGDC/ETD
Iran, Islamic Rep. EMDEs MNA 1970-2018 APO

Morocco EMDEs MNA 1970-2018 GGDC/ETD
Oman EMDEs MNA 1991-2018 APO
Qatar EMDEs MNA 1986-2018 APO

Saudi Arabia EMDEs MNA 1991-2018 APO
United Arab Emirates EMDEs MNA 1970-2018 APO

Tunisia EMDEs MNA 1990-2018 ETD
Bangladesh EMDEs SAR 1970-2018 APO

Bhutan EMDEs SAR 1970-2018 APO
India EMDEs SAR 1970-2018 APO
Nepal EMDEs SAR 1970-2018 APO

Pakistan EMDEs SAR 1970-2018 APO
Sri Lanka EMDEs SAR 1970-2018 APO
Cameroon EMDEs SSA 1965-2018 EASD/ETD

Ghana EMDEs SSA 1960-2018 EASD/ETD
Kenya EMDEs SSA 1969-2018 EASD/ETD
Lesotho EMDEs SSA 1970-2018 EASD/ETD

Mauritius EMDEs SSA 1970-2018 EASD/ETD
Namibia EMDEs SSA 1965-2018 EASD/ETD
Nigeria EMDEs SSA 1960-2018 EASD/ETD
Senegal EMDEs SSA 1970-2018 EASD/ETD

South Africa EMDEs SSA 1960-2018 EASD/ETD
Tanzania EMDEs SSA 1960-2018 EASD/ETD
Zambia EMDEs SSA 1965-2018 EASD/ETD

Burkina Faso EMDEs (LICs) SSA 1970-2018 EASD/ETD
Ethiopia EMDEs (LICs) SSA 1961-2018 EASD/ETD
Malawi EMDEs (LICs) SSA 1966-2018 EASD/ETD

Mozambique EMDEs (LICs) SSA 1970-2018 EASD/ETD
Rwanda EMDEs (LICs) SSA 1970-2018 EASD/ETD
Uganda EMDEs (LICs) SSA 1990-2018 ETD

Notes:AEs:advanced economies. EMDEs:emerging markets and developing economies. LICs: low-income
countries. EAP: East Asia and Pacific, ECA:European and Central Asia, LAC:Latin America and Caribbean,

SAR:South Asia, MNA:Middle East and North Africa, SSA: Sub-Saharan Africa
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Table A.5: Data construction from multiple sources

Country Description
1 Austria, Belgium, Germany, Italy, Luxembourg, OECD STAN or National Accounts data is backwards extrapolated

Netherlands, Spain, United Kingdom, United States using annual growth rates from EU KLEMS.
2 Chile, Colombia, Costa Rica Mexico, Arab Republic of Egypt, ETD data is backwards extrapolated

Morocco, Burkina Faso, Cameroon, Ghana, Ethiopia, using annual growth rates from GGDC or EASD.
Kenya, Lesotho, Malawi, Mauritius, Mozambique, Namibia,
Nigeria, Rwanda, Senegal, South Africa, Tanzania, Zambia

3 Cyprus, Bulgaria, Croatia, Serbia As OECD Employment data is not available,
ILO modelled estimates are supplementarily employed.

4 France OECD STAN data in 2018 is forwards extrapolated
using annual growth rates from OECD national Accounts data.

5 Russian Federation OECD National Accounts data is backwards extrapolated
using annual growth rates from KLEMS and ILO modelled estimates.

Database available from: datacatalog.worldbank.org
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Table A.6: Data sources

Database URL
APO Productivity Database https://www.apo-tokyo.org/wedo/productivity-measurement/

OECD STAN database and National Accounts https://stats.oecd.org/
WORLD KLEMS Data http://www.worldklems.net/data.htm (Russia, March 2017 Release)

EU KLEMS Growth and Productivity Accounts http://www.euklems.net/ (November 2009 Release)
GGDC/UNU-WIDER Economic Transformation Database (ETD) https://www.rug.nl/ggdc/structuralchange/etd/

GGDC 10-Sector database (GGDC) https://www.rug.nl/ggdc/structuralchange/previous-sector-database/10-sector-2014
Expanded Africa Sector Database (EASD) https://www.merit.unu.edu/docs/EASD.xlsx

ILOSTAT databases https://ilostat.ilo.org/data/bulk/ (ILO modelled estimates, Nov. 2020)
Penn World Table version 10.0 https://www.rug.nl/ggdc/productivity/pwt/?lang=en
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