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Abstract

Embedding consumer experimentation with a product or service into a market
environment, we find that unregulated contracts induce too few returns or cancella-
tions, as they do not internalize a pecuniary externality on other firms in the market.
Forcing firms to let consumers learn longer by imposing a commonly observed statu-
tory minimum cancellation or refund period is socially efficient only when firms
appropriate much of the market surplus, while it backfires otherwise. Interestingly,
cancellation rights are a poor predictor of competition, as in the unregulated out-
come firms grant particularly generous rights when competition is neither too low
nor too high.
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1 Introduction

Consumers’ rights of contract cancellation and product return are often regulated. We

study such regulation in a model where perfectly rational consumers experiment and,

within the permitted time, can return the product or cancel the contract for a refund, so

as to then return to the market. We identify a market failure that is always present unless

there is perfect competition and that leads to too few cancellations. Forcing firms to offer

more generous cancellation rights is always beneficial when this targets the refund, but it

risks backfiring when it targets the cancellation and return period.

Though in our model unregulated contracts are bilaterally efficient, they induce too few

returns or cancellations as they do not internalize a pecuniary externality on other firms

in the market. Whether a mandatory longer cancellation period and thus more consumer

experimentation is socially beneficial depends however on whether this indeed increases

the likelihood of cancellation. By appealing to commonly used learning technologies, we

can provide a tight characterization on when such ”bad news learning”, leading to more

cancellation, arises and on when the opposite case, that of ”good news learning”, arises.

In particular, a mandatory longer cancellation period backfires when consumers already

obtain a high share of total surplus, while it is beneficial if much of this goes to firms.

Our results also point to an at first possibly counterintuitive difference between imposing

a longer cancellation period and granting consumers the right to a higher refund in case

of cancellation or return. While the former intervention may backfire, depending on how

much of total surplus consumers already appropriate, the latter is always beneficial as it

unambiguously increases the probability of a return or cancellation.

Our application to consumer protection and the regulation of cancellation and return

policies is timely, given the recent interest in this topic among scholars, business practition-

ers, and policymakers.1 Even absent statutory rights, firms frequently grant consumers the

right to return a product or to cancel a contract prematurely.2 These rights do not extend

infinitely, such that there is typically a contractually stipulated maximum period for re-

1In the European Union, since 13th June 2014 consumers are given harmonized rights to withdraw from
purchases, albeit in many member states similar rights have existed before. The mandatory revocation
period applies to purchases made through different channels of distance selling, such as online shops, by
phone, or mail order.

2Firms may, however, deduct a restocking fee or ask for compensation of any associated costs, which
our model also allows for through the choice of the refund level.
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turning the product or revoking the contract. Interestingly, while the level of a refund (or,

alternatively, that of a restocking fee) has received considerable scholarly interest, this does

not hold with respect to the refund or cancellation period. One set of our results therefore

explores also the positive economics of cancellation periods, notably showing that, in a

market equilibrium, cancellation rights are particularly attractive only when consumers

obtain an intermediate share of total surplus. Firms grant consumers less generous rights

either when consumers’ share of surplus is rather low or when it is rather high.

We obtain our clear-cut positive and normative implications by appealing to several

commonly used learning technologies. In particular, when consumers fully exploit the

available learning opportunities, e.g., because the prevailing refund period is rather short,

which we call ”learning until the end,” our tight characterization holds whenever allowing

for more time to learn results in a single-crossing mean-preserving spread (”rotation”)

of the ex-ante distribution of a consumer’s posterior valuation. Such a rotation property

arises naturally with common learning processes, such as Gaussian learning (where the true

valuation is drawn from a normal or a binary distribution) and ”all-or-nothing” learning

(where a perfectly revealing signal arrives stochastically over time). The latter specification

also allows for a tractable analysis of situations in which consumers prefer to return or

cancel prior to the end of the refund period, as becomes relevant, e.g., with sufficiently

high discount rates.

Related Literature. We next place our various contributions into the respective litera-

ture. Our paper ties into the burgeoning literature on sellers’ incentives to provide buyers

with match-specific information. Notably, contributions by Johnson and Myatt (2006),

Bar-Isaac et al. (2010), and Ganuza and Penalva (2010) all assume that more (precise)

information leads to a more dispersed distribution of a buyer’s expected valuation, often

modelled as a rotation of the respective distributions. In our model, with the particu-

lar application to ”learning until the end,” such a rotation arises endogenously from the

contractual instrument of providing buyers with a longer time to learn match-specific in-

formation.3 Another key difference to these papers, which arises naturally in our setting,

is that a seller can flexibly charge a consumer for a more generous cancellation and re-

turn policy, notably through the simultaneous choice of the initial product price and the

3This also distinguishes our paper from the literature on information design à la Kamenica and
Gentzkow (2011) where a sender commits to an information structure in an unconstrained fashion.
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refund.4 This also implies that the refund period, as well as the refund level and thus

the return decision, will all be bilaterally efficient, albeit an externality on the market is

neglected.

Generous money-back guarantees have also long been recognized as ways for sellers to

either signal high quality of their products or to mitigate moral-hazard in quality provi-

sion (Grossman, 1981; Mann and Wissink, 1990). In Che (1996) consumer risk aversion

generates refunds above the salvage value. As noted previously, our main innovations are

the consideration of the return or contract revocation period, rather than only the refund

level, as well as the consideration of a consumer’s option to reenter the market and try

another product or service.

In terms of its implications for regulation, our paper is more closely related to Loewen-

stein et al. (2003) and Inderst and Ottaviani (2013). In a rare exception, as they consider

also explicitly the role of time, Loewenstein et al. (2003) argue that a mandatory ”cooling-

off” period benefits buyers who are unaware that they suffer from a projection bias at the

time of purchase. In Inderst and Ottaviani (2013) a minimum refund level is likewise only

beneficial when consumers have a behavioral bias: Credulous consumers rely too much on

advice and naively overestimate the value of a good or service and thus underestimate the

likelihood with which they will return or cancel.5 In our model with rational consumers

and efficient bilateral contracting, scope for regulation arises only when considering the

full market equilibrium (rather than in a partial equilibrium analysis).

Lastly, the possibility to return to the market and then experiment with a new prod-

uct or service relates our paper to the vast literature on search and matching markets, as

notably applied in the labour literature. The externality that we isolate in our model is

clearly different from congestion and composition externalities typically found in decentral-

ized markets with frictions, e.g., Hosios (1990). Labor market models also consider learning

about match-quality when there is uncertainty about the value of a particular worker-firm

match (Jovanovic, 1979; Felli and Harris, 1996), albeit there the focus is typically on wage

4Hoffmann and Inderst (2011) allow sellers to charge for costly information provision, albeit theirs is
a model of pre-purchase screening (see also Esö and Szentes, 2007). Refunds or restocking fees have been
considered in the literature on sequential screening as ways to screen between buyers with different ex-ante
valuation (Courty and Li, 2000; Matthews and Persico, 2007; Shulman et al., 2011; Krähmer and Strausz,
2015).

5Interestingly, much of the existing regulation is targeted to distance selling, away from sellers’ premises,
so that the consumer has initially no direct contact with either the product itself or with a salesperson.
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dynamics and in particular not on the determination of the contractual parameters that

we are interested in.6 Contributions that consider variations in (regulated) contractual

choices, such as temporary and permanent employment contracts and firing taxes, focus

more on search and equilibrium unemployment (see, for instance, Alvarez and Veracierto

(2012) and the literature discussed there).7 We further discuss the potential applicability

of our modelling and results to other areas, such as labour markets, in our conclusion.

Organization. The rest of this paper is organized as follows. The next Section in-

troduces the baseline model of consumer experimentation and embeds this in a market

environment. We identify the positive externality that consumer cancellation or product

return have on other firms in the market in Section 3. Sections 4 and 5 contain the main

policy results on the regulation of consumers’ cancellation and refund period. Section 6

shows the difference to the regulation of the refund level. We consider several alternative

market models in Section 7. Section 8 concludes. All proofs are contained in Appendix A.

Appendix B provides some additional material.

2 The Model

We start with a (bilateral) contracting problem between a consumer and a firm which will

then be embedded in a market environment. The firm can produce a product (or initiate

a contract) at cost c > 0. The consumer has an unknown time-invariant valuation u which

is drawn from a distribution G(u) with finite expectation E[u] > c. He can learn about

his valuation u in continuous time t ≥ 0 by experimenting with the product which causes

flow costs z(t) > 0 to the firm.8 Further, both the firm and the consumer discount future

payoffs at a common rate r ≥ 0.

Consumer learning is modeled as follows: The consumer learns about his valuation by

observing informative signals st, defined on a probability space (S,F ,P), which generate a

filtration {F st } such that all information collected by observing the signals until time t is

6Mortensen and Pissarides (1994) as well as Moscarini (2005) also consider evolving idiosyncratic
uncertainty in match productivity as the main driver of turnover.

7The positive externality that we identify is also related to the negative ”business stealing” externality
in the labour literature that is identified in Gautier et al. (2010), as there firms posting a vacancy do not
take into account the output loss they impose on other firms when they hire an employed worker.

8These costs may be interpreted differently depending, in particular, on whether we consider the
purchase of a (physical) product or the conclusion of a service contract.
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contained in the σ-algebra F st . We denote the posterior valuation given time t information

by Ut := E[u|F st ] and assume throughout that this conditional expectation exists. The

consumer can stop experimenting at any time. Once he has stopped, he has to decide

whether to terminate the contract or return the product - or whether to consume it. In

the baseline analysis, we specify that the consumer only derives utility in the latter case.

In case of cancellation or return, the firm recoups a salvage value or saves further costs

of k < c, while the consumer realizes the continuation value V̂ . This is endogenized

subsequently when embedding the bilateral problem into a market environment, where,

upon cancellation, a consumer can turn to another firm and experiment with a new product

or service.

The bilateral contract between the firm and the consumer specifies, next to the price

p, the following two variables: A maximum time T until which the consumer is allowed

to experiment and, in case he then decides to cancel or return, a refund q. Note that

time independence of the refund q is necessary so as to meaningfully incorporate a refund

period T into the analysis (and consider the respective regulation). We return to this

discussion later. In what follows, it is convenient to simplify the exposition by supposing

that the consumer purchases and possibly returns a (physical) product, albeit the analysis

also extends to the termination of a (service) contract.

2.1 Bilateral Contracting Problem with Consumer Learning and
Contract Cancellation

Once the consumer has accepted the firm’s contract and paid the price p, he needs to

decide whether to start and when to stop experimenting, as well as, subsequently, whether

to return or consume the product given the information at the stopping time τ ∈ [0, T ].9

As he realizes a continuation value V̂ when he returns the product, the consumer (weakly)

prefers to do so when, at time τ , the expected value Uτ = E [u|F sτ ] lies below the sum

of V̂ and the refund q: Uτ ≤ q + V̂ . Denoting the given contract by γ = (p, q, T ), the

consumer’s initial expected payoff from participation for a given stopping time τ , hence,

is given by

V = v(τ, γ, V̂ ) = E
[
e−rτ max{q + V̂ , Uτ}

]
− p, (1)

such that the optimal stopping rule τ ∗ solves sup0≤τ≤T v(τ, γ, V̂ ).

9Formally, τ is a {Fst } measurable stopping time.
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Next, the expected profit of a firm for a given contract γ and stopping time τ equals

Π = π(γ, τ, V̂ ) = p− c− (q − k)β(q, T, τ, V̂ )− E
[∫ τ

0

e−rtz(t)dt

]
(2)

where β(q, T, τ, V̂ ) denotes the discounted likelihood of cancellation defined as the present

value of a security that pays one when the consumer returns the product:

β(q, T, τ, V̂ ) := E
[
e−rτ1{Uτ≤q+V̂ }

]
.

Here 1{Uτ≤q+V̂ } is an indicator that is equal to one when a return takes place and zero

otherwise.10

The sum of the two payoffs V +Π, as defined in (1) and (2), captures the total bilateral

surplus and is denoted by ω(q, T, τ, V̂ ). Denote by ω∗(V̂ ) = ω(q∗, T ∗, τ ∗, V̂ ) the bilateral

surplus that results from the firm choosing q∗and T ∗ to maximize profits, while taking into

account the consumer’s dynamic optimization of his own surplus, V , as captured by τ ∗, for

given continuation value V̂ , refund payment q∗, and refund period T ∗. As utility is fully

transferable, namely through adjusting the price p, the choices of q∗, T ∗, and then also τ ∗

are independent of how the joint surplus is shared. In particular, we have the following

property:

Bilateral Surplus Maximization (BSM) The optimal choices q∗ and T ∗ maximize

ω(q, T, τ ∗, V̂ ).

For ease of exposition, we assume throughout that the solution to the bilateral problem

exists and is unique (Sections 4 and 5 provide examples where this holds).

2.2 Market Environment and Equilibrium

We now embed the bilateral contracting problem in a market environment. This serves the

following objectives. First, we endogenize consumers’ continuation value V̂ and thereby

fully close the model. The second, related purpose is to analyze subsequently the full

implications of regulation. Regulation should have repercussions on the whole market and

thus also on consumers’ continuation value. In particular, we ask later how the effect

10The discounted likelihood of cancellation is conceptually related to a state price in the Arrow-Debreu
model which is the value of a security that generates a cash flow of one in a specific state and time.
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of regulation depends on the primitives of the market, such as the prevailing degree of

competition.

Our insights are general and applicable to a variety of different market models where

consumers have the option to reenter the market and try another product after returning

the current one. For these insights to hold a market equilibrium must have the follow-

ing properties. First, the continuation value V̂ ∗ that captures the consumer’s value of

reentering the market after returning a firm’s product must be constant across time and

firms.

Constant Continuation Value (CCV) The equilibrium continuation value V̂ ∗ is time-

invariant and constant for all consumers across all firms.

Second, we require that equilibrium contracts maximize bilateral surplus, i.e., property

(BSM) holds also in market equilibrium. As long as these conditions hold, our results do

not depend on a particular sharing rule. In Section 7 we present three different market

models that satisfy these conditions. First, we consider a market with posted prices and

advertising; second, we discuss a model with Nash bargaining where bargaining power

determines surplus sharing; and lastly, we present a setting where consumers engage in

noisy search. However, in order to make the analysis transparent we focus in the main

part on a reduced form market equilibrium. In particular, we take the profits that a single

firm can make when matched with a consumer as a primitive and denote this by π ≥ 0.

A lower value of π may capture more intense competition and a higher value less intense

competition. We streamline the exposition of our baseline setting further by abstracting

from any frictions that may result from finding a new match, so that the continuation value

equals the expected consumer surplus generated in a match: V̂ ∗ = V ∗ = v(τ ∗, γ∗, V ∗). As

we discuss below the market definition extends directly to the case where there are frictions,

e.g., hassle costs from returning the product or search costs from finding another firm, so

that V̂ ∗ 6= V ∗. Still, for the baseline analysis we have:

Surplus Sharing Rule (SSR) In equilibrium, the bilateral surplus ω∗(V ∗) is shared

according to

ω∗(V ∗)− V ∗ = π (3)

and p∗ is such that V ∗ = v(τ ∗, γ∗, V ∗) ≥ 0.
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To summarize, in the main part of our analysis we work with the following (reduced

form) definition of a market equilibrium:

Definition 1 (Market Equilibrium) A market equilibrium is a tuple (π, V ∗, γ∗, τ ∗) that

satisfies conditions (BSM), (CCV), and (SSR).

We close by establishing existence. Define by π := ω∗(0) the maximum feasible profit,

where π > 0 as E[u] > c. When π = π, all surplus is extracted by firms, while when π = 0,

consumers extract all surplus. We then have the following result:

Lemma 1 Suppose that for any value of the consumer continuation value V̂ a unique

bilaterally optimal contract exists. Then, for any learning technology, there is a π > 0 such

that for all 0 ≤ π ≤ π there exists a unique (unregulated) market equilibrium. Equilibrium

consumer surplus V ∗ is strictly decreasing in firm profits π.

Market with Frictions. It may be argued that realistically the process of returning

a product, as well as that of searching for and contracting with a new firm, should in-

volve frictions. Suppose for instance that when a product is returned and a new firm is

contacted, this involves disutility h > 0 for the respective consumer. To be specific, sup-

pose further that these are hassle costs from returning the product (see also Appendix B).

Then, consumers’ continuation value is V̂ ∗ = V ∗ − h and requirement (3) must then read

ω∗(V̂ ∗)− V ∗ = π, so that the size of h affects consumers’ continuation value and thereby

the equilibrium contract. The subtraction of h > 0 however does not affect the subsequent

results qualitatively.

3 Market Failure and Regulation

Market Externality. In the market equilibrium of Definition 1, the equilibrium contract

γ∗ is chosen to maximize the joint surplus of any given consumer-firm pair. Recall also

that, after returning the product, the consumer will conclude a contract with another firm.

While the consumer’s option to take up his continuation value is taken into consideration,

the bilaterally efficient contractual choice does not internalize the positive externality that

a return exerts on other firms in case π > 0. We ask whether, in light of this positive

externality, more generous return rights can improve social welfare. In particular, we focus
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on the effects of a statutory minimum refund period, which we, subsequently, compare to

the strikingly different implications when regulation imposes a minimum refund payment.11

To formalize the preceding discussion, we make use of the equilibrium requirement

to compactly express the expected social surplus that is realized with each consumer in

market equilibrium as

Ω∗ = ω∗(V ∗) +
β∗

1− β∗
π, (4)

where β∗ := β(q∗, T ∗, τ ∗, V̂ ∗) is the equilibrium discounted likelihood of cancellation. Ex-

pressing the social surplus in this way reveals immediately the aforementioned externality,

as captured by the last term in (4), which is only absent when π = 0. When π > 0 then, ir-

respective of the learning technology, the equilibrium likelihood of cancellation and return

β∗ in each individual consumer-firm match is too low from the perspective of maximizing

total welfare.

Regulating Cancellation Rights. From the preceeding discussion, scope for regulation

arises as, under the bilaterally optimal contract, the equilibrium likelihood of a return will

always be too low whenever π > 0. Regulatory intervention in equilibrium contracts could

then target either the refund period or the refund level. We defer discussion of the effects

of refund level regulation to Section 6 and for now focus on regulation that prescribes a

statutory minimum refund period T . For this we denote by ΓR the set of all contracts

with T ≥ T and index variables that are affected by regulation with a subscript R. The

definition of a regulated market equilibrium is then completely analogous to that without

regulation, with the additional restriction that bilaterally optimal contracts have to satisfy

the regulatory constraint γR ∈ ΓR.

To see the basic mechanics of how such regulation affects social welfare, suppose that

the unregulated refund period is interior, T ∗ > 0. Now, in order to isolate the effect of a

changing refund period, we initially consider comparative statics in T holding the refund

level q fixed at the unregulated level. We note that while this assumption is taken for

illustrative purpose, it does not impose a restriction in any of the concrete specifications

11We note that there further may be scope for competition policy, which in our (reduced form) inter-
pretation of π would lead to a reduction of firm profits. In particular, competition policy affects total
welfare through the identified market externality, as there is no deadweight loss in bilateral contracting.
This externality is lower when firm profits are lower, so that then the wedge between what is bilaterally
efficient and what is socially efficient becomes smaller. A complete analysis of competition policy, however,
requires a fully specified market model (see Section 7).
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of the learning technology analyzed below, where q∗R = q∗ arises endogenously.

When regulation constrains contracts only marginally compared to the unregulated

equilibrium outcome, the first-order effect on bilateral surplus and, thus, also on consumers’

equilibrium surplus is zero.12 Hence, the effect on social efficiency is then solely determined

by the impact of regulation on the discounted likelihood of cancellation β∗R. In Section

4 we consider a specific learning technology (”all-or-nothing learning”) where a perfectly

revealing signal arrives stochastically over time, allowing for an explicit analysis of the

discounted likelihood of cancellation under consumer-optimal timing of return. In Section

5 we abstract from discounting and consider settings in which consumers fully exploit the

refund period (”learning until the end”), as is natural in many relevant applications noting

that refund periods usually are rather short.

4 All-or-Nothing Learning

Suppose a perfectly revealing signal arrives stochastically over time. In this setting, at any

time t, there either is an event where the consumer learns his true valuation u perfectly or,

absent such a fully revealing signal, he retains his prior valuation E[u]. The distribution

of arrival times is given by a cdf H(t) that is endowed with a density h(t) > 0 for t ≥ 0.13

Besides being analytically tractable, this learning technology appears to be particularly

suitable in certain cases. For instance, the consumer may or may not find the time to try

out a piece of clothing or to test a service before he has to make his final decision.

We proceed as follows. In Section 4.1 we derive the consumer optimal stopping behavior

and use this result to solve for the optimal bilateral contract in Section 4.2, where we also

discuss the basic properties of the market equilibrium. Section 4.3 then contains the main

policy results on the regulation of consumers’ cancellation and refund period.

12For illustration, we assume that both the bilateral surplus ω as well as the discounted likelihood of
return β are partially differentiable in T and V̂ .

13A common example is the Poisson process with a constant arrival rate λ > 0 and exponential arrival
time distribution H(t) = 1− e−λt. In a previous version of this paper we also considered state dependent
arrival time distributions H(t, u). As these do not add substantial new economic insights, to streamline
exposition, we chose to omit a formal analysis in this version (see however the discussion of how our results
extend to more general learning technologies in the Conclusion).
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4.1 Preliminary Results

Consumer Optimal Stopping. The all-or-nothing learning technology results in a

particularly tractable consumer optimal stopping rule. A consumer will stop either because

he has learned his valuation u (and therefore there is nothing left to learn), the refund

period T is over, or because he has arrived at a point T ′ ≤ T at which waiting for a

signal until T is no longer worthwhile. In order to streamline the subsequent analysis we

stipulate that if an uninformed consumer starts experimenting at t = 0, he continues to

do so until he either learns his valuation u or the refund period is over, that is t = T . The

next Lemma provides a sufficient condition for the (uninformed) consumer to exhaust the

available refund period T .

Lemma 2 When learning is all-or-nothing and when, for a given contract γ and contin-

uation value V̂ , for all 0 ≤ t ≤ T it holds that

h(t)

1−H(t)

E[max{q + V̂ , u}]−max{q + V̂ , E[u]}
max{q + V̂ , E[u]}

> r, (5)

then the uninformed consumer starts learning and continues to wait for a perfectly revealing

signal until either such a signal arrives or the refund period T is exhausted.

The intuition for condition (5) is straightforward. If the arrival of information, as

captured by the hazard rate h(t)/(1−H(t)), and the information’s rate of return are both

sufficiently high compared to the discount rate r at each point in time 0 ≤ t ≤ T , the

uninformed consumer prefers to continue learning. Note, however, that the condition in

Lemma 2 will not impose a relevant restriction in the subsequent equilibrium analysis,

as clearly two contracts with T ′′ > T ′, where the consumer stops at T ′ if he has learnt

nothing so far are equivalent under the considered learning technology.

Discounted Likelihood of Cancellation, ”Good News Learning”, and ”Bad

News Learning”. With all-or-nothing learning we can provide an explicit character-

ization of the discounted likelihood of cancellation since the distribution of the stopping

time τ is now simply a censored version of the signal’s arrival time distribution H(t). Note

that β(q, T, τ, V̂ ) is defined for a given contract γ, a continuation value V̂ , and under the

assumption that the (uninformed) consumer starts and continues experimenting. If the

12



consumer has a strict preference over keeping or returning when uninformed in T , the

discounted likelihood of cancellation is given by

β(q, T, τ, V̂ ) =

{∫ T
0
e−rth(t)G(q + V̂ )dt if q + V̂ < E[u]∫ T

0
e−rth(t)G(q + V̂ )dt+ e−rT (1−H(T )) if q + V̂ > E[u]

.

For the knife-edge case where the consumer is still uninformed in T and indifferent between

consuming or returning the product, q + V̂ = E[u], we allow him to mix, with α ∈ [0, 1]

denoting the probability of a return at T such that β(q, T, τ, V̂ ) =
∫ T

0
e−rth(t)G(q+ V̂ )dt+

αe−rT (1−H(T )). Note that while the mixing probability α has no effect on the bilateral

surplus in the unregulated case, it has an impact on total social welfare and will be

relevant for the existence of a regulated equilibrium. We conclude this subsection with

some comparative results:

Lemma 3 When learning is all-or-nothing, ceteris paribus, the discounted likelihood of

cancellation β(q, T, τ, V̂ ) strictly increases in T for q+ V̂ < E[u] and strictly decreases for

q + V̂ > E[u].

Consider an extension of the refund period from T to T ′. This increase will have no

effect on the rate of cancellations between time 0 and T as an uninformed consumer is

prepared to wait until T to obtain a signal. When q+ V̂ < E[u], an uninformed consumer

at time T prefers to keep the product. Extending the refund period to T ′ gives him a

chance to learn his true valuation u and, if u < q + V̂ , to reverse his uninformed decision.

This increases the discounted likelihood of cancellation. Therefore, under all-or-nothing

learning we can identify the case with q+ V̂ < E[u] as bad news learning and the converse

case, q + V̂ > E[u], as good news learning. In the latter case, the uninformed consumer

at time T prefers to return the product and additional opportunities to learn can only

increase the likelihood that he keeps the product.

4.2 Optimal Contracting and Market Equilibrium

Given the optimal stopping rule with all-or-nothing learning, the consumer’s expected

surplus reads

V =

∫ T

0

e−rth(t)E[max{q + V̂ , u}]dt+ e−rT (1−H(T )) max{q + V̂ , E[u]} − p

13



when he starts experimenting as ensured by the conditions in Lemma 2. Otherwise, he

obtains V = E[u]− p.14 Accordingly, firm profits are given by

Π = p− c− (q − k)β(q, T, τ, V̂ )−
∫ T

0

h(s)

∫ s

0

e−rtz(t)dtds− (1−H(T ))

∫ T

0

e−rtz(t)dt

when the consumer experiments and by Π = p − c otherwise. From property (BSM) the

optimal choices of q∗ and T ∗ maximize joint surplus and it is again convenient to assume in

what follows that these maximizers are unique, albeit our results are independent of this.

For completeness, the following Lemma presents an example where the firm’s problem

indeed has a unique solution.

Lemma 4 Consider all-or-nothing learning. Bilateral surplus ω is maximized by choosing

the refund payment q∗ = k, uniquely so when T ∗ > 0. Further, when the arrival time

is distributed exponentially, H(t) = 1 − e−λt, with constant arrival rate λ > 0, and flow

costs are z(t) = ye(λ+r)t, there exists a unique finite refund period T ∗, where T ∗ > 0 when

u < k+ V̂ < u, 0 < y < ŷ, and 0 < r < r̂ with some uniquely determined thresholds ŷ > 0

and r̂ > 0. Otherwise, T ∗ = 0.

Setting the refund level equal to the salvage value, q∗ = k, is generally optimal as this

makes the consumer internalize also the firm’s opportunity cost.15 In contrast, the optimal

refund period T ∗ depends, inter alia, on the continuation value V̂ , which will be crucial

below when considering the overall market equilibrium.

Lemma 5 With all-or-nothing learning the optimal refund period T ∗ is increasing in V̂

for V̂ < Ṽ := E[u]− k and decreasing for V̂ > Ṽ , both strictly so at points where T ∗ > 0.

The hump-shaped comparative statics of T ∗ in Lemma 5 has the following intuition.

Recall that, when making his decision whether to return the product, the consumer com-

pares q∗+V̂ = k+V̂ with his current valuation, which equals, depending on whether he has

obtained a signal, either E[u] or his true valuation u. The value of information, and thus

the magnitude of T ∗, depends on how likely it is that information affects the consumer’s

decision. When k+ V̂ is rather low or rather high, relative to E[u], it is relatively unlikely

14The case V = max{q + V̂ , E[u]} − p = q + V̂ − p is irrelevant in equilibrium as then either the firm
would make negative profits or the consumer would not accept the contract in the first place.

15We treat the regulation of the refund level in Section 6.
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that the consumer changes his (uninformed) decision after learning his true valuation, and,

accordingly, information has a rather low value. Instead, when the consumer is ex ante

indifferent, V̂ = Ṽ = E[u] − k, the value of information and thus also T ∗ are highest. In

market equilibrium, which exists and is unique from Lemma 1, we then have the following

result:

Proposition 1 Consider the market equilibrium when learning is all-or-nothing. Then as

firm profits π increase the equilibrium return period T ∗ changes as follows: There exists

a threshold 0 ≤ π̃ < π such that T ∗ is increasing in π for π < π̃ and decreasing in π for

π > π̃.

The hump-shaped form of T ∗, as we vary π, arises when T ∗ > 0 at V = Ṽ and when

cost c and the discounted value of flow costs z(t) are not too large, as then π̃ lies strictly

between zero and π.16 This is indeed the more interesting case on which we want to focus

the subsequent analysis. Then, starting from low values of π, where most of the surplus

goes to consumers, the equilibrium refund period first increases with π. As the share

going to firms becomes sufficiently large, however, a further increase in π leads to a less

generous refund period. Thus, the refund period is relatively short both when competition

is weak and when it is strong (where, as noted before, we presently express variations in

competition through variations in π). The generosity of the refund period would therefore

not provide a good proxy for consumer surplus.

The intuition for this comparative result derives directly from the preceding discussion

of the value of information. As noted after Lemma 5, this value is lowest when it is a

priori relatively likely or relatively unlikely that (additional) information will affect the

uninformed consumers’ decision, which in turn is the case when consumers’ continuation

value is relatively high or low. While the refund period thus looks unattractive to con-

sumers when competition is intense, but also when it is weak, we show later that it is only

in the latter case that a statutory higher refund period will improve social welfare.

16We note that when the market features frictions h > 0, then as these become too high this may
constrain the feasible surplus sufficiently so that the case with 0 < π < π̃ in Proposition 1 is no longer
obtained.
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4.3 Regulation of the Refund Period

We now consider the imposition of a statutory minimum refund period T ≥ T . Recall

that we denote by ΓR the set of all contracts satisfying the regulatory constraint. Next,

for a given consumer (continuation) value V denote the maximum feasible bilateral joint

surplus by ω∗R(V ), once the restriction is imposed that γ ∈ ΓR. While the bilateral surplus

maximizing choice of the refund level is generally given by q∗R = k, it is again convenient

to stipulate that also the respective optimal choice of the refund period T ∗R is unique,

albeit all our results again hold independently of this. The following Lemma provides an

Example:

Lemma 6 Suppose learning is all-or-nothing and consider the imposition of minimum re-

fund period T . Then, q∗R = k. When, in addition, the arrival time is distributed exponen-

tially, H(t) = 1− e−λt, with constant arrival rate λ > 0 and flow costs are z(t) = ye(λ+r)t,

we have T ∗R = max{T , T ∗} where T ∗ denotes the unregulated optimum.

Recall that the definition of a market equilibrium is completely analogous to that

without regulation, with the additional restriction that bilaterally optimal contracts satisfy

γ∗R ∈ ΓR. The following Lemma shows that as long as regulation is not too stringent, we

continue to have a unique (regulated) market equilibrium.

Lemma 7 Consider all-or-nothing learning. For given but not too high minimum refund

period T , so that still 0 < πR := ω∗R(0), a unique regulated market equilibrium exists for

any 0 ≤ π ≤ πR.

We next consider the welfare maximizing choice of the minimum refund period. For this

it is instructive to recall the decomposition of the expected social surplus in (4) which, with

binding regulatory constraint, reads Ω∗R = ω∗R(V ∗R) +
β∗R

1−β∗R
π. Then, in order to characterize

the choice of T that maximizes Ω∗R it is transparent to proceed in two steps. We first

consider a marginal increase in T above the unregulated market outcome T ∗. In a second

step we then look at the additional implications when T is further increased.

Lemma 8 Suppose learning is all-or-nothing and consider a regulation requiring for the

refund period T ≥ T . When T is only marginally higher than the refund period T ∗ > 0 that

would prevail in the unregulated equilibrium, this increases social welfare Ω∗R when π > π̃,

as defined in Proposition 1, while it reduces social welfare when π < π̃.
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The above Lemma follows from a combination of the following arguments. When we

constrain contracts only marginally, compared to the unregulated equilibrium outcome, the

first-order effect on bilateral surplus and thus also on consumers’ equilibrium surplus V ∗R is

zero. The effect on social efficiency is then solely determined by the impact of regulation

on the discounted likelihood of of a return β∗R, for which we can make use of Lemma 3.

In particular, when from π > π̃ competition is weak, the imposition of a more generous

refund period induces bad news learning and, thus, a higher (discounted) likelihood of

returning the product. Thereby, the positive externality on other firms in the market is

greater. But the opposite holds if 0 < π < π̃. Then, a more generous refund period leads

to more good news learning, which decreases the (discounted) likelihood of returning the

product.

When T increases further, so that the minimum requirement is more than marginally

above the unregulated outcome, this has, by definition of T ∗, a negative first-order effect

on the (maximized) bilateral surplus. As then V ∗R decreases, this has a negative knock-on

effect on the likelihood of return. We can thus summarize results as follows: First, when

marginal regulation above the unregulated equilibrium outcome is not beneficial, as is the

case with π < π̃, this holds a fortiori for a more-than-marginal increase. Second, when

such a marginal regulation enhances welfare, as is the case when π > π̃, then the described

countervailing effects that arise for a further increase in T imply the existence of an interior

optimum for T .

Proposition 2 Imposing a minimum refund period T that is strictly higher than the out-

come that would prevail in the unregulated equilibrium, T > T ∗ > 0, strictly decreases

social efficiency under all-or-nothing learning when from π < π̃ firms only obtain a rel-

atively small share of the surplus. Instead, when π > π̃, the socially optimal minimum

refund period that a regulator would like to impose is bounded but always satisfies T > T ∗.

In the case where the imposition of a binding minimum refund period increases welfare,

this leads to more cancellations and returns and thus to more consumer experimentation

in the market.

Contractual Restrictions. As we already noted, so as to consider a refund period (and

its regulation) in a meaningful way, we have to restrict the set of feasible contracts. Pre-

cisely, apart from the up-front transfer p, contracts can specify a refund level q (optimally

17



set equal to the salvage value k) and a refund period T . We acknowledge that the two

parties could increase bilateral efficiency with more general contracts, for instance by still

stipulating a refund level q = k but making the buyer pay a time-dependent rent that

is equal to the flow costs z(t). One reason why these contracts may not be feasible is

that such time-dependent ”penalties” would contradict common regulation. Even absent

regulation, these contracts may be difficult to communicate to consumers and to subse-

quently administer. We note however that even with such more complex contracts, the

identified externality and thus also the scope for beneficial regulation would persist, albeit

a simple minimum return period T would clearly lose its bite when the firm could specify

an arbitrarily high rental price at points t < T .

5 Learning Until the End

We now turn to learning technologies where the consumer prefers to always exhaust the

available learning opportunities as captured by the refund period T . This is a fitting

approximation when the refund period is rather short, which we endogenize by setting

the discount rate r to zero. In this setting, what matters for the consumer’s decision is

his expected valuation at the end of the refund period, UT = E[u|F sT ], and we denote

the respective (ex-ante) cdf by FT (U). In general, an increase in the learning period T ,

which is equivalent to an increase in information, results in a mean-preserving spread

in the distribution of conditional expectations FT (U). Now, in order to obtain clear-cut

comparative statics results, we put more structure on the respective family of distributions.

5.1 The Rotation Property

Definition 2 (Rotation Property) For all T ′ > T ≥ 0 it holds in the interior of the

respective supports that

FT ′(U) > FT (U) for U < Ũ and FT ′(U) < FT (U) for U > Ũ, (6)

where Ũ := E[u] denotes the rotation point.

We next show that various commonly used learning technologies satisfy this property

and defer a discussion of how our key results extend when the mean-preserving spread is

not single-crossing to the Conclusion.
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First, consider the prominent case of Gaussian learning where the signal process st

observed by the consumer while experimenting is a Brownian motion with drift given by

his true valuation u:

dst = udt+ σdzt. (7)

Here zt is a standard Brownian motion and σ > 0 denotes the signal’s time-invariant

instantaneous variance. With this signal structure the consumer’s filtering problem has

the following solution:

Lemma 9 Suppose that the signal st evolves according to (7). Then, the consumer’s

expected valuation conditional on F sT is given by

UT = E [u|F sT ] =

∫
ǔ exp

(
σ−2ǔsT − 1

2
σ−2ǔ2T

)
dG(ǔ)∫

exp
(
σ−2ǔsT − 1

2
σ−2ǔ2T

)
dG(ǔ)

. (8)

Note that from (8) the consumer’s expected valuation at any point in time T depends

only on sT and, in particular, not on the path that led to this realization. It is this feature

that allows for an explicit characterization of the distribution of UT for two commonly

used specifications of the prior distribution G(u). Take first the case where u is drawn

from a normal distribution. Then, it is well known that also UT is normally distributed.

The following Lemma restates this result and the immediate implication that then FT (U)

indeed rotates around the prior mean.

Lemma 10 Suppose a consumer’s true valuation u is normally distributed with mean µ

and variance ξ2 and that the observable signal st evolves according to (7). Then, the

expected valuation UT , as given by (8), is also normally distributed:

UT ∼ N

(
µ, ξ2 ξ2

ξ2 + σ2

T

)
,

so that the respective cdf FT (U) satisfies the rotation property (6) in T with Ũ = µ.

A second commonly used specification for the prior distribution in the Gaussian learn-

ing setting is the following:
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Lemma 11 Suppose a consumer’s valuation is symmetrically Bernoulli distributed, so

that u ∈ {ul, uh} with Pr(u = uh) = 1
2
.17 Then, the expected valuation UT , as given by (8),

is distributed as follows:

FT (U) =
1

2
Φ

(
A(U)− T

2
(uh − ul)

σ
√
T

)
+

1

2
Φ

(
A(U) + T

2
(uh − ul)

σ
√
T

)
with

A(U) =
σ2

uh − ul
log

(
U − ul
uh − U

)
,

where Φ(·) denotes the standard normal cdf. FT (U) satisfies the rotation property (6) in

T with Ũ = (ul + uh)/2.

Next, consider the second commonly used learning technology in continuous time, the

already introduced ”all-or-nothing” learning (now without discounting) where we assume,

for convenience, an exponential arrival time distribution.18 It is easy to show that also

this learning technology satisfies the rotation property:

Lemma 12 Suppose a signal that perfectly reveals a consumer’s valuation arrives at rate

λ > 0. Then, the distribution of the expected valuation UT is given by

FT (U) =

{
(1− e−λT )G(U) for U < Ũ

(1− e−λT )G(U) + e−λT for U ≥ Ũ
,

which satisfies the rotation property (6) in T .

5.2 Analysis

We next show that the results obtained for the case of all-or-nothing learning in Section

4 extend to settings with learning until the end. To see how we can also follow the same

steps as before, note first that, with learning until the end, the (discounted) likelihood of

cancellation is equal to the probability of a return at T , that is β(q, T, τ, V̂ ) = FT (q+ V̂ ),19

whenever the consumer has a strict preference over keeping or returning the product at

the end of the refund period. We again stipulate that, when indifferent, the consumer

17The extension to non-symmetric Bernoulli priors is straightforward. While the rotation point then
shifts with T , all our subsequent results continue to hold qualitatively.

18This is also the most common specification found in the literature (cf. Keller et al., 2005). Still it is
straightforward to extend our analysis also to cases where the arrival rate is allowed to be time or state
dependent.

19Note that, for convenience, we set r = 0.
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chooses to return or cancel with probability α, so that in this case we have β(q, T, τ, V̂ ) =

F−T (q+ V̂ ) +α
[
FT (q + V̂ )− F−T (q + V̂ )

]
.20 While our results do not qualitatively depend

on this, to make the analysis more transparent we suppose that FT (U) is non-degenerate

with convex support [u, u] for T > 0 and everywhere continuously differentiable in T > 0.

We can now follow the same steps as in the analysis of all-or-nothing learning in Section

4 and it is not surprising that the previously obtained results extend to the case of learning

until the end. Hence, in order to avoid repetition, we defer parts of the formal analysis to

Appendix B, where we show existence and uniqueness of bilaterally optimal contracts for

all common specifications of FT (U) considered above, which feature q∗ = k and a unique

refund period T ∗ that is increasing in the consumer’s outside option for V̂ < E[u]− k and

decreasing for V̂ > E[u]−k. For completeness there we also show the existence of a unique

(regulated) market equilibrium under the assumption that the regulatory constraint T ≥ T

is not too stringent. Building on these results, the following Proposition confirms that the

main regulatory implications obtained in Section 4 fully extend to the case of learning

until the end.

Proposition 3 Suppose consumers always exhaust their learning opportunities and the

distribution of expected valuations conditional on the information provided until T satisfy

the rotation property. Then there is a cutoff 0 ≤ π̃ < π for firms’ equilibrium profits

such that imposing a minimum refund period T that is strictly higher than the unregulated

outcome T ∗ strictly decreases social welfare when π < π̃, whereas the socially optimal level

of T is strictly larger than T ∗ but bounded when π > π̃.

The robust intuition underlying the results in Proposition 3 for the case with learn-

ing until the end is the same as with all-or-nothing learning (see Proposition 2 and the

subsequent discussion): The effect of binding regulation on the likelihood of a return and,

thus, on the positive externality that a return generates for other firms, depends crucially

on consumers’ outside option which is endogenous in a market environment. If consumers

have a relatively valuable outside option upon returning the current product, an increase

in the refund period leads to more good news learning, thus lowering the probability of

cancellation which follows directly from the rotation property. Instead, if the outside op-

tion’s value is relatively low, a more generous cancellation period induces more bad news

learning, thus, increasing the probability of a return.

20Note that, analogous to the case of all-or-nothing learning, α has no impact on bilateral surplus.
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6 Regulation of the Refund Level

As shown above, without regulation the privately optimal refund level will always be equal

to the salvage value, q∗ = k, as this maximizes the bilateral surplus of any firm-consumer

pair.21 The regulation that we now consider is the imposition of a mandatory refund

level q ≥ q. To make this relevant, we restrict consideration to the case where without

regulation returns occur with positive probability. Next, we note that the definition of a

regulated market equilibrium fully extends, with the only modification that the respective

restriction, γ ∈ ΓR, is now imposed on q. We can thus also make use of the same notation

for equilibrium contracts and payoffs as before. Finally, as in the case where the refund

period was regulated, we stipulate for simplicity that optimal contracts are unique and

that q is not too large such that the market does indeed open up. A sufficient condition is

again that πR = ω∗R(0) > 0 and that 0 ≤ π ≤ πR. We then have the following implications

of a minimum refund level.

Lemma 13 Consider the cases of all-or-nothing learning or learning until the end (with

rotation of conditional expectations). Suppose now that contracts are restricted by regu-

lation requiring q ≥ q. In a (regulated) market equilibrium, where π ≤ πR and πR > 0,

the equilibrium refund level satisfies q∗R = max{k, q} while there is a unique equilibrium

consumer payoff V ∗R.

As the unregulated outcome q∗ = k maximizes bilateral surplus, a marginally higher

requirement q > k has no first-order effect on bilateral surplus and thus also not on the

equilibrium payoff of consumers, V ∗R. When π > 0 holds, however, given that a higher

refund level will, ceteris paribus, always lead to a higher (discounted) likelihood of return,

there will be a strictly positive effect on welfare. This holds irrespective of π > 0. As we

increase q further, in analogy to the discussion of a non-marginal increase in T , this has

two negative effects on overall efficiency: First, bilateral surplus is strictly lower; second,

the fact that then also V ∗R decreases has a negative effect on the (discounted) likelihood of

a return. The following Proposition summarizes our findings.

Proposition 4 As long as π > 0 holds, the socially optimal minimum refund level is

bounded but satisfies q > k under both all-or-nothing learning and learning until the end.

21See Lemma 4 for all-or-nothing learning and Lemma 14 in Appendix B for the learning until the end
case.
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The imposition of the socially optimal refund level leads to more cancellations and returns

and thus to more consumer experimentation in the market.

A comparison of Propositions 2 and 3 with Proposition 4 reveals thus a stark difference

between regulation that targets the refund period and regulation that targets the refund

level. While in our model the latter always enhances welfare, provided that it is not

excessive, a minimum statutory refund period is socially beneficial only when consumers’

outside option is low.

7 Market Model Foundations

In this section we discuss three possible foundations for our reduced form approach to com-

petition and contract design, as expressed - without regulation - by the market equilibrium

in Definition 1: Posted contracts, noisy consumer search, and bargaining.

Posted Contracts. Here, we suppose that in a first stage, τ = 1, homogeneous firms

(of some mass |I| > 0, indexed by i ∈ I) simultaneously choose contracts γi. A firm can

contract with an arbitrary number of consumers. Firms observe each others’ offers. In

τ = 2, each firm can decide whether to spend costs a > 0 of direct advertising so as to

inform any chosen consumer about γi, i.e., the firm decides on the respective subset of

consumers that it wishes to inform and incurs costs a per consumer. Then, in τ = 3 each

consumer chooses to visit one firm.22 Once contracts have been concluded and products

possibly returned, a new round starts. This is again composed of the same three stages

τ = 1, 2, and 3, and so on. We show in Appendix B how this model supports an equilibrium

outcome in pure strategies where firms do not advertise on-equilibrium (but only off-

equilibrium) and π = a.

Noisy Search. We next discuss a model with noisy consumer search. A consumer

searches for offers at cost h > 0 and obtains an uncertain number of offers. In particular,

he observes i different offers with probability ηi, where
∑∞

i=1 ηi = 1 and 0 < η1 < 1. Then,

22Note that this is not a search model as consumers know the identity of each firm and thus can choose
to turn to a firm that did not advertise to them. They have rational expectations about the prevailing
contract of all firms, but they can only observe contracts for any given firm if this was advertised directly
to them.
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he can purchase one of the offers or engage in the search process again. If he chooses the

latter, we assume that the offers he obtained become obsolete (”no recall”).23 If he chooses

the former, the game follows the description in Section 2. If the consumer decides to return

a product as it does not match his preferences, he again engages in noisy search. In this

setting, while any firm will prefer to choose q∗ and T ∗ such that the bilateral surplus is

maximized, it will randomize over prices since it never knows whether it is the only firm in

the consumer’s consideration set.24 We show in Appendix B that this market has a unique

equilibrium. A shift in the distribution of the number of observed firms that increases η1

and (weakly) decreases any other ηi (so that still
∑∞

i=1 ηi = 1) leads to a decrease of the

equilibrium consumer surplus V ∗, and is thus equivalent to an increase in firm profits π in

our original set-up.

Bargaining. Consider next bilateral negotiations between a consumer and a firm. While

still restricting ourselves to applications in the field of Industrial Organization, this may

be applicable to high-value contracts, e.g., when the buyer is a business. We employ an

asymmetric Nash bargaining solution with weight b for the consumer and weight 1−b for the

firm. Together with transferable utility, this implies that in equilibrium a consumer’s payoff

is the sum of his reservation value V̂ ∗ and b times the difference between the maximum

feasible surplus, ω∗(V̂ ∗), and the reservation value.25 So as to obtain a non-trivial solution,

where not all of the surplus goes to the consumer, we need to invoke frictions, h > 0 (cf.

on frictions the discussion at the end of Section 2.2).

Now, with V̂ ∗ = V ∗−h and when h is not too high and b not too low, in an unregulated

market equilibrium it must hold that26

ω∗(V̂ ∗)− V̂ ∗ =
h

b
. (9)

Condition (9) is analogous to condition (3) (where in the latter we also used V ∗ = V̂ ∗

as h = 0). Changes in bargaining power affect the equilibrium bilateral surplus only

indirectly through the consumer reservation value and the market equilibrium condition

23In industries like apparel or e-commerce offers may be short-lived so that a product that can be
purchased right now will not be available even in the near future.

24When η1 = 0, firms price at marginal costs, while when η1 = 1 the monopoly price prevails.
25Note that as a firm has infinite contracting possibilities, its reservation value is zero.
26This is obtained from combining the requirements V ∗ − V̂ ∗ = b

[
ω∗(V̂ ∗)− V̂ ∗

]
and V̂ ∗ = V ∗ − h.

Note that the requirement that h is not too high and b not too low avoids corner solutions. Otherwise,
we would have to replace V̂ ∗ = V ∗ − h by V̂ ∗ = max{0, V ∗ − h}.
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(9). Instead of π, now the parameter b is the model’s primitive. It is straightforward to

show that consequently our previous results map one-to-one into a comparative analysis

in b (with an increase in b corresponding to a decrease in π).

8 Conclusion

We identify a positive externality that consumer cancellation or product return have on

other firms. From this follows immediately scope for regulatory interference. As we then

point out, which is our second contribution, two commonly used interventions, a minimum

refund level and a minimum refund period, perform, however, quite differently, as notably

the latter may backfire. Our third contribution is consequently to identify when a manda-

tory extension of consumers’ right to experiment and learn increases or decreases social

efficiency, which is tightly linked to whether it leads to what we call ”good news learning”

or ”bad news learning.” We can finally link this to the size of consumers’ continuation

or reservation value in the market, as potentially shaped by factors such as the degree of

competition.

When consumers fully exploit the available time to experiment, which we termed

”learning until the end,” we showed a tight connection between the rotation property

of the distribution of consumers’ updated valuations and the hump-shaped relationship

between surplus sharing in the market and the prevailing cancellation terms: These are

particularly attractive only when consumers obtain an intermediate share of total sur-

plus. Firms grant consumers less generous rights either when consumers’ share of surplus

is low or when it is firms that make very little profits in the market. However, forcing

firms to let consumers learn longer by imposing a commonly observed statutory minimum

cancellation or refund period is socially efficient only when firms appropriate much of the

market surplus, while it backfires otherwise. We established that the rotation property

holds for commonly used learning technologies and showed that our results are robust

when allowing for discounting and, thus, consumer-optimal returns prior to the end of the

refund period within the tractable setting of ”all-or-nothing learning.” We note that some

of our results also extend beyond these standard learning technologies. As is immediate,

even when there is no longer a common rotation point, one can still identify a lower and

an upper bound on consumers’ continuation value (and thus the distribution of surplus

in the market), beyond which a mandatory extension of consumers’ cancellation period is
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beneficial or backfires.

As noted in the Introduction, while we do not apply our results outside Industrial

Organization, such a future avenue may be fruitful. In other contexts, such as labour

markets, it may however be reasonable to suppose that both firms and workers have a

positive reservation value, as a firm has only a limited number of vacancies to fill. Both

parties may then learn their share of a match-specific value and may then exercise a

possible option of early contract termination.
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Appendix A: Proofs

Proof of Lemma 1. We first show that ω∗(V ) is continuous in V . For this observe that

ω∗(V ) is increasing in V . Consider Vl < Vh and denote by ql, qh, Tl, Th, τl, and τh the

optimal choices of refunds, refund periods, as well the resulting optimal stopping times,

respectively. Then

ω∗(Vh)− ω∗(Vl)

=ω(qh, Th, τh, Vh)− ω(ql, Tl, τl, Vl)

≥ω(ql + Vl − Vh, Tl, τl, Vh)− ω(ql, Tl, τl, Vl)

=β(ql, Tl, τl, Vl) (Vh − Vl) ≥ 0.

The first inequality results from the optimality of qh, Th, and consequently τh, when the

continuation value is Vh and the fact that the consumer’s optimal stopping depends on

the sum q + V rather than the magnitude of the individual components q and V . The

second inequality follows from 0 ≤ β(·) ≤ 1 as 0 ≤ e−rt1{Ut≤q+V̂ } ≤ 1 for t ≥ 0. As ω∗(V )

is increasing we obtain the following lower and upper bounds for ω∗(Vh)− ω∗(Vl):

0 ≤ω∗(Vh)− ω∗(Vl)

=ω(qh, Th, τh, Vh)− ω(ql, Tl, τl, Vl)

≤ω(qh, Th, τh, Vh)− ω(qh + Vh − Vl, Th, τh, Vl)

=β(qh, Th, τh, Vh)(Vh − Vl).

As Vl approaches Vh the last term approaches 0 and this proves the claim.

Next, we show that ω∗(V )− V is strictly decreasing in V . For this consider

ω∗(Vh)− Vh − (ω∗(Vl)− Vl)

=ω(qh, Th, τh, Vh)− Vh − (ω(ql, Tl, τl, Vl)− Vl)

≤ω(qh, Th, τh, Vh)− Vh − (ω(qh + Vh − Vl, Th, τh, Vl)− Vl)

=− (1− β(qh, Th, τh, Vh)) (Vh − Vl) .

The last expression is strictly negative as β(qh, Th, τh, Vh) = 1 cannot be an equilibrium

outcome and the claim follows. Further, note that ω∗(V )− V < 0 for sufficiently large V .

Thus, together with ω∗(0) > 0 and the continuity of ω∗(V ) − V , we have a value V > 0
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so that ω∗(V ) − V = 0. Taken together, (3) defines a one-to-one mapping from [0, V ] to

[0, π], such that for any 0 ≤ π ≤ π a unique consumer payoff exists. The comparative

statics of V ∗ in π is implied by the observation that as π increases, V ∗ must decrease so

as to preserve the equality in (3). Q.E.D.

Proof of Lemma 2. A consumer, facing a contract γ and a continuation value V̂ , who

does not know his valuation in t ≤ T obtains from waiting until t′ with t ≤ t′ ≤ T the

expected payoff∫ t′

t

e−r(s−t)
h(s)

1−H(t)
E[max{q + V̂ , u}]ds+ e−r(t

′−t) 1−H(t′)

1−H(t)
max{q + V̂ , E[u]}.

Differentiating this payoff with respect to t′ yields

e−r(t
′−t)

1−H(t)

[
h(t′)E[max{q + V̂ , u}]− [r(1−H(t′)) + h(t′)] max{q + V̂ , E[u]}

]
which is positive when condition (5) holds. Moreover, when t′ = t, the payoff equals

max{q+ V̂ , E[u]}. Taken together, waiting until T results in a higher payoff than making

immediately an uniformed decision at any point 0 ≤ t ≤ T . Q.E.D.

Proof of Lemma 3. Partially differentiating β(q, T, τ, V̂ ) with respect to T yields

∂β

∂T
=

{
e−rTh(T )G(q + V̂ ) > 0 if q + V̂ < E[u]

e−rTh(T )(G(q + V̂ )− 1)− re−rT (1−H(T )) < 0 if q + V̂ > E[u]

from which the claim follows. Q.E.D.

Proof of Lemma 4. When T ∗ > 0 is optimally chosen we must have from optimality

that u < q∗ + V̂ < u. That q∗ = k must hold uniquely follows from the fact that q affects

only whether the consumer starts learning but not his optimal stopping, and as only then

the consumer’s optimal cutoff rule, q∗+ V̂ , is also the bilaterally optimal cutoff rule, k+ V̂ .

When T ∗ = 0 all consumers value the product with E[u] when they have to decide whether

to keep it. Thus, q∗ = k remains optimal, albeit not uniquely as there are other choices of

q∗ that induce the same decision as q∗ = k.

When u < k + V̂ < u and the signal arrives at a constant rate λ > 0, the bilateral

surplus ω is given by∫ T

0

λe−(λ+r)tE[max{k + V̂ , u}]dt+ e−(λ+r)T max{k + V̂ , E[u]} − zd(T )− c,
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with

zd(T ) =

∫ T

0

λe−λs
[∫ s

0

e−rtz(t)dt

]
ds+ e−λT

∫ T

0

e−rtz(t)dt

being the discounted present value of flow costs z(t). Note also that when these costs

are given by z(t) = ye(λ+r)t, the discounted costs are zd(T ) = yT . This allows to solve

analytically:

T ∗ =
1

λ+ r
log

[
λ

y
E
[
max{k + V̂ , u}

]
− λ+ r

y
max{k + V̂ , E[u]}

]
,

which is strictly positive when r < r̂ and y < ŷ with

r̂ = λ
E
[
max{k + V̂ , u}

]
−max{k + V̂ , E[u]}

E
[
max{k + V̂ , u}

] and

ŷ = λE
[
max{k + V̂ , u}

]
− (λ+ r) max{k + V̂ , E[u]}.

Note that condition (5) holds strictly for all t > 0 when r < r̂. The uniqueness of T ∗ > 0

follows from the strict concavity of ω in T > 0 as we have

∂2ω

∂T 2
= −(λ+ r)e−(λ+r)T (λE[max{k + V̂ , u}]− (λ+ r) max{k + V̂ , E[u]})

which is strictly negative when r < r̂. When k + V̂ ≤ u or k + V̂ ≥ u, the consumer will

not start learning as information about his valuation u has no impact on his decision. In

this case, it is optimal to set T ∗ = 0, albeit not uniquely. Q.E.D.

Proof of Lemma 5. We show that when optimally q∗ = k the bilateral surplus,

ω = V + Π, has strictly increasing differences in T and V̂ for V̂ < Ṽ = E[u] − k and

strictly decreasing differences for V̂ > Ṽ . The claim follows then from standard monotone

comparative statics results, cf. Theorem 2.3 in Vives (2000). To streamline the exposition

we denote with ω(T, V̂ ) the bilateral surplus with refund period T and continuation value

V̂ . Suppose that u− k < V̂l < V̂h < u− k and 0 ≤ Tl < Th. Then it holds that

ω(Th, V̂h)− ω(Tl, V̂h)−
[
ω(Th, V̂l)− ω(Tl, V̂l)

]
=

∫ Th

Tl

e−rth(t)dt

∫ k+V̂h

k+V̂l

G(U)dU +
[
e−rTh(1−H(Th))− e−rTl(1−H(Tl))

]
×
[
max{k + V̂h, E[u]} −max{k + V̂l, E[u]}

]
(10)
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where we apply integration by parts and E[max{k+V̂ , u}] = G(k+V̂ )(k+V̂ )+
∫ u
q+V̂

UdG(U).

This expression is clearly positive if u − k < V̂l < V̂h < Ṽ as then max{k + V̂l, E[u]} =

max{k+ V̂h, E[u]} = E[u]. When Ṽ < V̂l < V̂h < u− k, it holds that max{k+ V̂h, E[u]}−
max{k + V̂l, E[u]} = V̂h − V̂l and expression (10) reads∫ Th

Tl

e−rth(t)dt

∫ k+V̂h

k+V̂l

G(U)dU +
[
e−rTh(1−H(Th))− e−rTl(1−H(Tl))

]
×
[
V̂h − V̂l

]
=

∫ Th

Tl

h(t)

[
e−rt

∫ k+V̂h

k+V̂l

G(U)dU − e−rTl
(
V̂h − V̂l

)]
dt+ (e−rTh − e−rTl)

× (1−H(Th))
[
V̂h − V̂l

]
which is negative as e−rTl ≥ e−rt for Tl ≤ t ≤ Th and since G(U) is a cdf. Q.E.D.

Proof of Proposition 1. It follows from Lemma 1 that a unique market equilibrium

exists and that V ∗ is strictly decreasing in π. The comparative statics for T ∗ > 0 in π then

follow from Lemma 5 together with the observation that V ∗ is then strictly decreasing in

π. The existence of the cutoff π̃ follows from the one-to-one correspondence between V ∗

and π. Q.E.D.

Proof of Lemma 6. The optimality of q∗R = k follows the same argument as in the

unregulated case. The optimal choice of T ∗R follows immediately from the observation that

under this specification the bilateral surplus ω(k, T, τ, V̂ ) is strictly decreasing in T > T ∗,

cf. the proof of Lemma 4. Q.E.D.

Proof of Lemma 7. That a regulated market equilibrium exists when T is imposed

follows by the same arguments as in the proof of Lemma 1 and from the fact that this

regulation has no impact on the choice set of the refund level. Q.E.D.

Proof of Lemma 8. Given that T ∗ > 0 is interior, it holds that ∂ω∗R/∂T |T=T ∗ = 0.

Together with equation (3), this implies ∂V ∗R/∂T |T=T ∗ = 0. Moreover, Lemma 6 implies

∂q∗R/∂T |T=T ∗ = 0. Therefore we have

dΩ∗R
dT

∣∣∣∣
T=T ∗

=
π

(1− β∗T )2

∂β∗

∂T

∣∣∣∣
T=T ∗

(11)
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The term (11) is positive if π > π̃ and negative if π < π̃, cf. Lemma 3 with Proposition 1.

This holds strictly when π > 0. Q.E.D.

Proof of Proposition 2. A regulation T > T ∗ must reduce the bilateral surplus. Thus,

in order to preserve condition (3) it must hold that V ∗ > V ∗R. With Lemma 6, we still have

q∗R = k. When T > T ∗ and π < π̃, we have with Lemma 3 that β∗R < β∗ which, together

with the social surplus definition in (4), proves the claim. The claim for when T > T ∗ and

π > π̃ follows directly from Lemma 8. Q.E.D.

Proof of Lemma 9. Let (S,F , {Ft}, P ) be a filtered probability space. The consumer’s

true valuation u is drawn from the distribution G(u) at time zero, such that it is a F0-

measurable random variable, and zt is a Ft-adapted standard Brownian motion. F sT is

the σ-algebra generated by the sample paths {st}t≤T of (7) and represents the information

available at time T . Then, denoting by EP [·] the expectation with respect to the probability

measure P , we have by Bayes rule that

EP [u|F sT ] =
EQT [uMT |F sT ]

EQT [MT |F sT ]
, (12)

for any probability measure QT which is absolutely continuous with respect to P , and

where MT is the Radon-Nikodym derivative of P with respect to QT . Now take

M−1
T = exp

(
−
∫ T

0

u

σ
dzt −

1

2

∫ T

0

u2

σ2
dt

)
= exp

(
−u
σ
zT −

1

2

u2

σ2
T

)
=
dQT

dP
,

such that, by Girsanov’s theorem, {σ−1sT} is an FT -adapted Brownian motion under QT

and, thus, independent of the consumer’s true valuation. Next, note that for any function

f(·) we have

EQT [f(u)MT |F sT ] = EQT

[
f(u) exp

(
σ−2usT −

1

2
σ−2u2T

)]
︸ ︷︷ ︸

=:g(sT )

.

This follows from EQT [f(u)MT1A] = EQT [g(sT )1A] for all A ∈ F sT , which holds as u and

{σ−1sT} are independent under QT and thus the joint distribution of u and (sT ,1A) can

be described by the product measure QT (dǔ)×QT (ds, da). Then

EQT [f(u)MT1A] =

∫
f(ǔ)MTaQT (dǔ)×QT (ds, da)

= EQT [g(sT )1A].
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Since the law of u is the same under P and QT , we can then write

EQT [f(u)MT |F sT ] =

∫
f(ǔ) exp

(
σ−2ǔsT −

1

2
σ−2ǔ2T

)
dG(ǔ). (13)

The result then follows from substituting (13) with f(u) = u and f(u) = 1 in (12). Q.E.D.

Proof of Lemma 11. From Lemma 9 we have UT = ul + ζT (uh − ul), with

ζT =

(
1 + exp

(
−sT

uh − ul
σ2

+
T

2

u2
h − u2

l

σ2

))−1

,

such that

FT (U) = Pr

(
sT ≤ A(U) +

T

2
(uh + ul)

)
where

A(U) =
σ2

uh − ul
log

(
U − ul
uh − U

)
.

Note that from an ex-ante perspective, sT is drawn from an equally weighted mixture

of two normal distributions with means Tuh and Tul and a common variance σ2T . This

establishes the functional form of FT (U) in Lemma 11.

Next, we show that this FT (U) is ordered by a sequence of mean-preserving rotations

in T . To see this note that we have

∂FT (U)

∂T
=
T−1.5

4σ

[
φ

(
A(U)− T

2
(uh − ul)

σ
√
T

)
·
(
−T

2
(uh − ul)− A(U)

)

+φ

(
A(U) + T

2
(uh − ul)

σ
√
T

)
·
(
T

2
(uh − ul)− A(U)

)]
, (14)

where φ(·) denotes the standard normal density. Now, note that A(U) is strictly increasing

in U and let A−1(·) denote the inverse of A(·). Then, from inspection of (14), it clearly

holds that ∂FT (U)/∂T > 0 for U ≤ A−1(−T
2
(uh − ul)), while for U ≥ A−1(T

2
(uh − ul)),

we have ∂FT (U)/∂T < 0. Further, it holds for all T that ∂FT (U)/∂T |U=Ũ = 0 with

Ũ = E[u] = 1
2
(uh + ul), where we have used symmetry of the normal density and A(Ũ) =

0. Finally, the unimodality of the normal density implies that ∂FT (U)/∂T is strictly

decreasing in U over the interval [A−1(−T
2
(uh − ul)), A−1(T

2
(uh − ul))], for any given T,

and the result follows. Q.E.D.

Proof of Proposition 3. The existence of a market equilibrium follows from Lemma 15

in Appendix B. Given that T ∗ > 0 is interior, it holds that ∂ω∗R/∂T |T=T ∗ = 0. Together
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with equation (3), this implies ∂V ∗R/∂T |T=T ∗ = 0. Moreover, we have ∂q∗R/∂T |T=T ∗ = 0

by the same arguments as in Lemma 6. Therefore we have

dΩ∗R
dT

∣∣∣∣
T=T ∗

=
π

(1− β∗)2

∂β∗

∂T

∣∣∣∣
T=T ∗

.

Due to the definition of β∗ and as FT is ordered by rotation this expression is positive if

k + V ∗R < Ũ and negative if k + V ∗R > Ũ . This holds strictly when π > 0. Then, the claim

follows by the same arguments as in the proofs of Propositions 1 and 2. Q.E.D.

Proof of Lemma 13. For the determination of q∗R we distinguish two cases. When q ≤ k,

it follows that q∗R = k from Lemma 4 with all-or-nothing learning and from Lemma 14

with learning until the end. Next, when q > k, we show that for any given V̂ the bilateral

surplus ω is strictly decreasing in q > k, from which the claim follows. Take ω as a function

of q and T . Let qh > ql > k and denote with Th > 0 and Tl > 0 the respective optimal

refund periods. We obtain under all-or-nothing learning

ω(qh, Th)− ω(ql, Tl)

≤ω(qh, Th)− ω(ql, Th)

≤
∫ T

0

e−rth(t)dt

[∫ qh+V̂

ql+V̂

[
G(U)−G(qh + V̂ )

]
dU − (ql − k)(G(qh + V̂ )−G(ql + V̂ ))

]
< 0

and under learning until the end

ω(qh, Th)− ω(ql, Th)

≤
∫

(ql+V̂ ,qh+V̂ ]

FTh(U)dU − F−Th(qh + V̂ )(qh − ql)− (ql − k)(F−Th(qh + V̂ )− FTh(ql + V̂ )) < 0.

Thus, for either learning technology, the bilateral surplus is decreasing in q ≥ k, such that

when q > k it is optimal to set q∗R = q.

Now we turn to the existence of a regulated market equilibrium. When regulation is

non-binding, q ≤ k, the uniqueness of the consumer payoff V ∗R follows immediately from

Propositions 1 and 3. Now consider a binding regulation q > k such that q∗R = q. It is

obvious that ω∗R(V )− V , the left side of (3), is negative for sufficiently large V .

We show next that this expression is strictly decreasing in V . It holds for Vh > Vl, with

Th, Tl, τh and τl denoting the respective optimal choices of refund periods and stopping
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times under regulation, that with all-or-nothing learning

ω(q, Th, τh, Vh)− Vh −
(
ω(q, Tl, τl, Vl)− Vl

)
≤(Vh − Vl)

[∫ Th

0

e−rth(t)dt+ e−rTh(1−H(Th))− 1

]
− (q − k)

(
β(q, Th, τh, Vh)− β(q, Th, τh, Vl)

)
.

Since h(t) is a density and β(q, T, τ, V ) is, ceteris paribus, increasing in V , it follows that

ω∗R(V )−V is strictly decreasing with all-or-nothing learning. Under learning until the end

we obtain

ω(q, Th, τh, Vh)− Vh −
(
ω(q, Tl, τl, Vl)− Vl

)
≤
∫

(k+Vl,k+Vh]

FTh(U)dU − (Vh − Vl)− (q − k)[F−Th(k + Vh)− FTh(k + Vl)].

Since −(q−k)[F−Th(k+Vh)−FTh(k+Vl)] is strictly negative, the claim follows here as well.

By the theorem of the maximum ω∗R(V )− V is continuous in those points where β∗R is

continuous. At a point V0 where β∗R has a discontinuity all values π with limV→V +
0

[ω∗R(V )−
V ] ≤ π ≤ limV→V −0

[ω∗R(V ) − V ] are still attainable in equilibrium through uniquely de-

termined α∗R. By the theorem of the maximum, ω∗R is continuous in 0 ≤ α ≤ 1 at V0.

Furthermore, it is strictly decreasing in α: Suppose αl < αh and denote with Th, Tl, τh

and τl the respective optimal choices of refund periods and stopping times. Then, we

obtain for both learning technologies

ω∗R(V0)|αh − ω∗R(V0)|αl ≤ −(q − k)
(
β(q, Th, τh, V0)

∣∣
αh
− β(q, Th, τh, V0)

∣∣
αl

)
which is strictly negative as β is, ceteris paribus, strictly increasing in α at points of

discontinuity, cf. the functional form of β in Sections 4.1 and 5 for all-or-nothing learning

and learning until the end, respectively. Therefore, for any π for which the corresponding

consumer payoff is given by a point of discontinuity V0, a unique α∗R is determined. Q.E.D.

Proof of Proposition 4. Consider an unregulated equilibrium, under either all-or-

nothing learning or learning until the end, where β∗R is continuous in q∗R = k. Then, it

holds that ∂ω∗R/∂q|q=k = 0 and by the implicit function theorem we have ∂V ∗R/∂q|q=k = 0

and ∂T ∗/∂q|q=k = 0 as T ∗ > 0 is interior. Thus, we have

dΩ∗R
dq

∣∣∣∣
q=k

=
π

(1− β∗)2

∂β∗

∂q

∣∣∣∣
q=k

≥ 0
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which holds strictly when π > 0. We next turn to the case when β∗R is discontinuous at

q∗R = k. There are still no first-order effects such that any change in social welfare is due

to changes in β∗R. Recall that α∗R has no effect on the bilateral surplus, cf. Sections 4.1

and 5, and therefore we need to distinguish the following two cases. When α∗R = 1 the

right derivative of β∗R in q exists and is strictly positive. When α∗R < 1, β∗R has a positive

jump discontinuity in q and the claim follows.

Increasing q > k will decrease bilateral surplus ω∗R(VR) for any fixed VR. Therefore,

together with the (regulated) equilibrium requirement in (3), this implies that V ∗R is de-

creasing as well. Finally, it is immediate that in both cases the socially optimal level of q

must be bounded. Q.E.D.
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Appendix B: Additional Material

Learning until the End. The following Lemma shows existence of a unique optimal

bilateral contract for all common specifications of FT (U) considered in Section 5.

Lemma 14 Consider learning until the end when the cdf of conditional expectations is

ordered by rotation in T . Bilateral surplus ω is maximized by setting the refund payment

q∗ = k, uniquely so when T ∗ > 0. Moreover, for all common specifications of FT (U)

considered in Section 5 (Gaussian and all-or-nothing learning without discounting), when

z(t) = y > 0 and U < k + V̂ < U , there exists a unique finite refund period T ∗ that

maximizes bilateral surplus ω, where T ∗ > 0 for all 0 < y < ŷ and T ∗ = 0 for y > ŷ, with

some uniquely determined (possibly infinite) threshold ŷ > 0. The optimal refund period,

T ∗, is increasing in V̂ for V̂ < Ṽ := Ũ − k and decreasing for V̂ > Ṽ , both strictly so at

points where T ∗ > 0.

Proof. Setting q∗ = k is optimal as only then the consumer’s optimal cutoff rule, q∗+ V̂ ,

is also the bilaterally efficient cutoff rule, k + V̂ , cf. also the proof of Lemma 4. We now

turn to the optimal refund period and prove the claim for Gaussian learning by inspecting

the term

B(γ, V̂ ) =

∫
(k+V̂ ,∞)

[
U −

(
k + V̂

)]
dFT (U),

so that we have ω(q, T, τ, V̂ ) = B(γ, V̂ )− yT − c+
(
k + V̂

)
where yT =

∫ T
0
z(t)dt. When

k + V̂ 6= Ũ , there exists T ′ > 0 such that B(T ) is convex for 0 < T ≤ T ′ and concave for

T ≥ T ′. Further, limT↓0B
′(T ) = limT→∞B

′(T ) = 0 and B′(T ′) < ∞ (cf. Theorem 3 and

Corollary 1 in Keppo et al., 2008, as well as Proposition 1 and Theorem 1 in Powell and

Frazier, 2010). Therefore, with z(T ) = y, the solution T ∗ is unique and a threshold ŷ exists,

such that T ∗ > 0 for 0 < y < ŷ and T ∗ = 0 for ŷ ≤ y. It remains to consider the case where

k + V̂ = Ũ . There, B(T ) is increasing and concave for T ≥ 0 with 0 < limT↓0B
′(T ) ≤ ∞

(cf. Theorem 2 in Keppo et al., 2008, as well as Proposition 1 and Corollary 1 in Powell

and Frazier, 2010). Therefore, with flow costs z(t) = y a unique maximum exists and the

threshold ŷ is given by ŷ = limT↓0B
′(T ).

With all-or-nothing learning without discounting we can solve analytically the first

order condition ∂ω/∂T |T=T ∗ = 0 for T ∗:

T ∗ = ln

[
λ

y

(
G(k + V̂ )(k + V̂ ) +

∫
(k+V̂ ,∞)

UdG(U)−max{k + V̂ , E[u]}
)] 1

λ

.
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T ∗ is the unique maximum since it holds for all T ≥ 0 that

∂2ω

∂T 2
= −λ2e−λT

[
G(k + V̂ )(k + V̂ ) +

∫
(k+V̂ ,∞)

UdG(U)−max{k + V̂ , E[u]}
]
< 0.

Lastly, the functional form of T ∗ implies that the threshold ŷ is given by

ŷ = λ

[
G(k + V̂ )(k + V̂ ) +

∫
(k+V̂ ,∞)

UdG(U)−max{k + V̂ , E[u]}
]−1

.

The comparative statics of the optimal refund period T ∗ can be shown by applying

exactly the same steps as in the proof of Lemma 5. Q.E.D.

Next we show existence of a unique (regulated) market equilibrium. For this we maintain

the assumption that for any V̂ a unique bilaterally optimal refund level q∗ and refund

period T ∗ exists as is the case under the conditions in Lemma 14 above.

Lemma 15 Suppose the consumer always exhausts the available refund period and FT (U)

satisfies the rotation property. Then, for given but not too high minimum refund period T

(so that still πR = ω∗R(0) > 0), a unique (regulated) market equilibrium exists.

Proof. The existence of an unregulated market equilibrium follows immediately from

Lemma 1. The existence of a market equilibrium when T ≥ T is imposed follows by the

same arguments as in the proof of Lemma 1 and from the fact that the regulation under

consideration has no impact on the choice set of the refund level q. Q.E.D.

Market with Frictions. We consider now a market in which returning a product and

contacting a new firm generates a disutility h > 0 for the respective consumer. Then, the

consumer’s continuation value is V̂ ∗ = V ∗ − h and the market equilibrium condition (3)

reads now ω∗(V̂ ∗) − V ∗ = π. Now, we redefine π := ω∗(−h) and assume that π > 0. A

sufficient condition for this is E[u]− c > 0.

Proposition 5 Suppose learning is either all-or-nothing or until the end with rotation.

Consider a market where returning a product and contacting a new firm involves a disutility

h > 0. Then, a unique market equilibrium exists. Further, if costs h and c are not too

high and T ∗ > 0 for some V ∗, a cutoff π̃ exists such that T ∗ is increasing in π when π < π̃

and decreasing when π > π̃. Otherwise, when h or c is too high, T ∗ is increasing in π.
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Proof. The expression ω∗(V̂ ) − V = ω∗(V − h) − V is clearly continuous and strictly

decreasing in V . It holds further that limV→U−k+h(ω
∗(V − h)− V ) < 0 such that V exists

with ω∗(V − h) − V = 0. Thus, ω∗(V − h) − V continues to be a one-to-one mapping

between [0, π] and [0, V ].

Next, we show that if c and h are not too high and given that T ∗ > 0 for some V ∗, the

respective (interior) cutoff π̃ exists. For this we evaluate ω∗(V −h)−V at V = E[u]−k+h:

FT ∗(Ũ)Ũ +

∫
(Ũ ,∞)

UdFT ∗(U)− z(T ∗)− Ũ − (c+ h) + k.

Observe that if T ∗ > 0 for some V̂ , it must hold in particular that T ∗ > 0 when V̂ +h = Ṽ ,

cf. Lemma 5 and Lemma 14. Then, by optimality of T ∗, for sufficiently small c and h

the expression must be strictly positive. Since ω∗(V − h) − V is strictly decreasing, we

have V > E[u] − k + h. Therefore, together with the one-to-one relationship between π

and V ∗, the respective cutoff π̃ exists. Otherwise, if c or h are sufficiently high, we have

V < E[u]− k + h, such that for all π it holds that V̂ < E[u]− k. Q.E.D.

Posted Contracts. We show the following result for the game with posted contracts.

Proposition 6 Consider the model of posted contracts. A (subgame perfect) equilibrium

in pure strategies exists and such a sequence of equilibria leads, for h → 0, to the same

contracts and payoffs as characterized in Proposition 5, with π = a.

Proof. We first characterize an equilibrium. There, each firm offers the equilibrium

contract γ∗. There is no advertising on equilibrium. Each consumers picks a given firm

and, for the chosen equilibrium, we specify that each firm is visited by a fraction M/|I| of

consumers, where M is the mass of all consumers. For those consumers who then return

the product, the game repeats in the next round, where again firms deterministically split

the remaining market.

As we noted in the main text, by optimality γ∗ must maximize the bilateral surplus. To

establish existence of the (candidate) equilibrium, suppose now first a firm deviates at any

particular round of the market game and chooses a higher price. This is observed by all

other firms, which makes it feasible to advertise their own contracts to the deviating firm’s

customers. To support the candidate equilibrium, we break the non-deviating firms’s
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indifference (given π = a). Suppose next that a firm deviates at any particular round

and chooses a better contract for consumers. The new offer can only attract (additional)

consumers when it is advertised to those particular consumers. As this requires to pay a

per consumer, by construction of γ∗ (with π = a) this can not be optimal (i.e., it would

be loss making). Q.E.D.

Noisy Search. We show that an equilibrium exists where the refund level and refund

period are bilaterally efficient, firms follow a unique mixed price strategy, and the con-

sumer surplus is uniquely determined. Additionally, we present a comparative result that

relates the distribution of the number of observed firms during a search to the equilibrium

consumer surplus.

When the consumer has formed his consideration set, he will always choose the offer

that gives him the highest expected surplus. Suppose a firm offers a refund level q′ and a

refund period T ′ that are not bilaterally optimal and a price that results in profits π′ and

a consumer surplus V ′. If the firm offers instead the bilaterally optimal choices q∗ and

T ∗, the resulting bilateral surplus is higher and the firm can obtain a higher profit π > π′

while keeping the expected consumer surplus - and thus the probability of being chosen -

constant. This implies that all firms offer in equilibrium contracts where the refund level

q∗ and the refund period T ∗ are bilaterally optimal.

As in this model a firm does not know whether it is the sole firm in a consumer’s con-

sideration set it will randomize over prices, see Burdett and Judd (1983). The consumer’s

optimal strategy is to employ a reservation price rule, that is to stop searching for offers

if he observes a price that is below a cutoff p̂ that is defined by

h =

∫ p̂

0

(p̂− p)dJ(p)

where J(·) is the distribution of the lowest price observed in a single noisy search

J(p) =
∞∑
i=1

ηi
(
1− (1−K(p))i

)
(15)

with K(·) being the distribution of prices. The effective reservation price pC that is

eventually used by consumers reads

pC = min{p̂, ω∗(V̂ ∗) + c+ zd(T ∗)} (16)
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where ω∗(V̂ ∗) + c + zd(T ∗) with zd(T ∗) = E
[∫ τ∗

0
e−rtz(t)dt

]
equals the gross surplus

generated in a single search. Clearly, a consumer would never accept an offer that prices

above p∗C .

Next, we turn to firm pricing. Denote with pF the reservation price that the firms

believe is applied by consumers and with K(p|pF ) the resulting mixed price strategy of

firms for any p in the support of K(·|pF ) that is given by

η1(pF − c− zd(T ∗)) = (p− c− zd(T ∗))
∞∑
i=1

iηi(1−K(p|pF ))i−1 (17)

In equilibrium it must hold that p∗ ≡ p∗F = p∗C . Burdett and Judd (1983) show that, for a

given continuation value V̂ , a unique market equilibrium in dispersed prices exists. Lastly,

the equilibrium consumer surplus V ∗ satisfies

ω∗(V̂ ∗)− V ∗ =

∫ p∗

0

pdJ(p|p∗)− zd(T ∗)− c (18)

where zd(T ∗) = E
[∫ τ∗

0
e−rtz(t)dt

]
. The right side of (18) can be interpreted as the ex-

pected profit of the firm that is matched with the consumer and thus resembles π from

equation (3). It remains to show that a unique consumer surplus V ∗, as characterized by

(18), exists.

Lemma 16 With noisy search and any learning technology a unique consumer payoff V ∗,

as defined by (18), exists.

Proof. We first show that the right side of (18) is increasing in V . For this we denote by

p the effective reservation price for a given V and rewrite the right side of (18) as follows∫ p

0

pdJ(p|p)− c− zd(T ∗) =

∫ ∆

0

∆dJ∆(∆|∆)

where ∆ = p− c− zd(T ∗) and J∆(∆|∆) is given by

J∆(∆|∆) =
∞∑
i=1

ηi
(
1− (1−K∆(∆|∆))i

)
with K∆(∆|∆) being defined by

η1∆ = ∆
∞∑
i=1

iηi(1−K∆(∆|∆))i−1 (19)
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when ∆ < ∆ < ∆ with ∆ ≡ η1∆/
∑∞

i=1 iηi, K
∆(∆|∆) = 0 when ∆ ≤ ∆, and K∆(∆|∆) =

1 when ∆ ≥ ∆. From the definition of J∆ and K∆ it is immediate that ∂J∆/∂∆ < 0

which implies that the right side of (18) is increasing in ∆. From (16) we distinguish two

cases. First, when ω∗(V̂ ) + c+ zd(T ∗) < p̂ we have ∆ = ω∗(V̂ ) which is clearly increasing

in V . Next, consider the case when p̂ ≤ ω∗(V̂ ) + c+ zd(T ∗). Recall that p̂ solves∫ p̂

0

(p̂− p)dJ(p|p̂) = h,

that is, p̂ is the reservation price that is applied by consumers and firms believe that

consumers use p̂ as their reservation price. Observe that as V varies this has an impact

on zd(T ∗) and thus, due to the definition of K(p|p) in (17), also on p̂. We show that,

nonetheless, the resulting ∆ = ∆̂ ≡ p̂− c− zd(T ∗) is constant in V . For this we show that

∆̂ solves ∫ ∆̂

0

(∆̂−∆)dJ∆(∆|∆̂) = h. (20)

Consider the following transformations∫ ∆̂

0

(∆̂−∆)dJ∆(∆|∆̂) =

∫ p̂−c−zd(T ∗)

0

(p̂− c− zd(T ∗)−∆)dJ∆(∆|∆̂)

=

∫ p̂

0

(p̂− p) dJ∆(p− c− zd(T ∗)|p̂− c− zd(T ∗)).

We have from the definitions of J and J∆ that J∆(p−c−zd(T ∗)|p̂−c−zd(T ∗)) = J(p|p̂) so

that the expression in (??) equals h. Note that from Claim 4 in Burdett and Judd (1983)

and the accompanying discussion therein the solution ∆̂ to (20) exists and is unique. The

functional forms of J∆ and K∆ imply that ∆̂ is independent of V . Thus, the claim follows.

When V = 0, firms will mix prices over an interval that is a subset of [c+zd(T ∗), ω∗(0)+

c + zd(T ∗)] so that the right side of (18) is strictly smaller than ω∗(0). Moreover, the

functional forms of J∆ and K∆ and the continuity of ∆ in V imply that the right side of

(18) is continuous in V . This, together with the arguments from the proof of Lemma 1,

proves the claim of the Lemma. Q.E.D.

We close by providing a comparative result that relates the equilibrium consumer sur-

plus V ∗ and expected profits of the matched firm to the probability that the consumer

observes only a single firm in a noisy search.
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Lemma 17 With noisy search and any learning technology the consumer payoff V ∗ de-

creases and the expected profits of the matched firm increase when η1 increases while ηi

with i = 2, ... either decreases or stays constant so that still
∑∞

i=0 ηi = 1.

Proof. It is sufficient to show that increasing η1 marginally while decreasing some ηj

by the same amount results in an increase of the right side of (18) for any V . Rewrite

ηj = 1 − η1 −
∑∞

i=2,i 6=j and recall that the right side of (18) equals
∫ ∆

0
∆dJ∆(∆|∆).

First, consider the case when ω∗(V ) < ∆̂. Then, clearly ∂∆/∂η1 = ∂ω∗(V )/∂η1 = 0.

Differentiating (19) with respect to η1 gives

∂K∆(∆|∆)

∂η1

= − ∆−∆ + ∆j(1−K∆(∆|∆))j−1∑∞
i=2 ηii(i− 1)(1−K∆(∆|∆))i−2

which is clearly negative for ∆ in the support of K∆(·|∆). This implies that ∂J∆/∂η1 ≤ 0

so that
∫ ∆

0
∆dJ(∆|∆) is increasing in η1.

Next we consider the case when ∆̂ ≤ ω∗(V ) so that ∆ = ∆̂. Consider a distribution

J∆(∆|∆F ) and denote by ∆̃(∆F ) the solution to∫ ∆̃

0

∆̃−∆dJ∆(∆|∆F ) = h.

Then, it holds that ∆̃(∆̂) = ∆̂. Burdett and Judd (1983) show that this solution is unique

and that ∆̃(0) = h > 0. Moreover, it holds that ∆̃(ω∗(V )) ≤ ω∗(V ). Since it holds that

∂J∆/∂η1 < 0 we have ∂∆̃(∆F )/∂η1 ≥ 0. This, in turn, implies that ∂∆̂/∂η1 ≥ 0. When

ω∗(V ) = ∆̂, this implies that ∆ is constant in η1 and thus it follows that
∫ ∆

0
∆dJ∆(∆|∆)

increases in η1 by the same arguments as in the first case. When ∆̂ < ω∗(V ) it follows

that J∆ decreases first due to an increase in η1 and second due to an increase in ∆ = ∆̂,

cf. the proof of Lemma 16, which results in an increase
∫ ∆

0
∆dJ∆(∆|∆).

This implies that for all V the right side of (18) increases in η1. This, taken together

with the arguments in the proof of Lemma 16 proves the claim. Q.E.D.
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