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Abstract

We analyze firms’ competition to steer an advisor’s recommendations through
potentially non-linear incentives. Even when firms are symmetric, so that the over-
all size of compensation would not distort advice when incentives were linear, ad-
vice is biased when firms are allowed to make compensation non-linear, which they
optimally do. Policies that target an advisor’s liability are largely ineffective, as
firms react to such increased liability by making incentives even steeper, increasing
bonus payments while reducing the linear (commission) part at the same time. This
observation may justify policymakers’ direct interference with firms’ compensation
practice, as frequently observed notably in consumer finance.
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1 Introduction

Commissions have been a key focus of policy intervention over the last decade.1 This con-

cerns, in particular, commissions paid to financial intermediaries, such as mortgage brokers

or investment advisors.2 As the financial crisis unfolded, policymakers have been quick

to point to distorted incentives and a lack of consumer financial protection as two main

culprits.3 Health care, where medical advice can be compromised by gifts or other induce-

ments that physicians receive from pharmaceutical companies, as well as the residential

rental market, are further examples where size, structure, or transparency of commissions

is often regulated.

An immediate way to rectify possible problems of biased advice could be to ramp up

liability or liability standards, rather than interfering directly with incentives. In fact, one

may argue that this should represent the preferred type of intervention, as it does not

interfere with parties’ contractual freedom, which could risk distorting the efficient design

of institutional and contractual solutions. In this paper, we identify however a case where

direct interference with advisors’ incentive contracts may be warranted. Precisely, we show

that the unregulated equilibrium design of non-linear incentives may lead to biased advice.

This bias is, at least within bounds, immune to variations in the advisor’s liability. In fact,

we show that in the unregulated equilibrium, as the advisor’s liability increases, the effect

of this is fully counteracted by product providers’ adjustment of compensation, as they

increase the bonus and reduce the linear (commission) part of their compensation.4

In our model, two product providers compete for the recommendations offered to con-

1This interest even precedes the recent financial crisis, as witnessed, for instance, by the high-profile
lawsuit against the largest insurance brokerage firm in the US, Marsh & McLennan Companies, where com-
pensation allegedly steered businesses towards insurers with which the company had lucrative “contingent
commission” (or “placement service”) agreements. The case ended with a settlement under which Marsh
agreed to pay $850 million. Cummins and Doherty (2006) provide a detailed discussion and empirical
analysis of brokerage intermediation in the US insurance market.

2In this paper, given its theoretical focus, we do not distinguish between different types of (financial)
advisors or brokers, as defined by law in different jurisdictions. Clearly, the fiduciary duties and legal
requirements imposed on particular financial intermediaries differ substantially, so that, for instance,
broker-dealers may be excluded from regulations when their offer of advice is “solely incidental”. See, for
instance, Hung et al. (2008) for a discussion of legal definitions, at least in the context of the US, as well
as on how consumers perceive the different roles.

3Cf. Financial Stability Board (2011). The key legislative measure in Europe was the Markets in Fi-
nancial Instruments Directive (MiFID), which is currently overhauled, notably to ban various commissons
as of January 2018 (MiFID II).

4There may of course be other reasons for why an increase in liability alone may not be sufficient or
may even have negative consequences by itself. To the extent that this requires a larger capital base
(or, say, the posting of a “surety bond” to cover liability), this may, for instance, lead to exit, thereby
strenghtening the market power of the remaining firms.
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sumers by a single intermediary, the advisor. When giving recommendations, the advisor

faces a trade-off between the monetary incentives provided by product providers and his

concern for the suitability of advice. This setting follows closely Inderst and Ottaviani

(2009, 2012a), albeit there, as otherwise in the literature, attention is restricted to serv-

ing a single customer, so that the issue of non-linear incentives across sales to different

customers does not arise.

Though the advisor may also be concerned about his reputation or may have intrinsic

preferences for providing suitable advice, we take this as given and, for the purpose of our

analysis, we focus on his concern for liability, as captured by a single parameter w that

represents a penalty imposed on the advisor when the recommended product ultimately

turns out to be unsuitable for the particular customer.

The literature has considered the case where a product provider n competes for a

single customer by offering the advisor a commission (or fee) fn that is paid only if the

respective customer ends up buying the firm’s product. An interesting benchmark case is

that where firms are symmetric in all respects, in which case also the equilibrium outcome

will be symmetric, with fn = f . While commissions could end up being substantial, in

equilibrium the advisor’s recommendation will remain unbiased.5 We show that even with

such symmetry, advice is biased when the advisor serves multiple customers, arriving either

sequentially or simultaneously, and when firms’ incentives (optimally) become non-linear.

To describe our results, when there are two customers who purchase at most one unit

each, a firm’s compensation is now fully captured by two variables: A commission fn that is

paid for each individual sale and a bonus bn that is paid, in addition, when both customers

purchase product n. When bn > 0, the advisor’s recommendations become distorted, even

when firms’ compensation is perfectly symmetric. Intuitively, taking the case of a sequen-

tial arrival of customers, with bn > 0 the recommendation to the second customer will

be biased towards the product that the advisor already recommended to the first visiting

customer. We show that such a bias exists as well when recommendations are made si-

multaneously. In both cases, the presence of a bonus makes the advisor more willing to

recommend the same product to both customers, even when such a linkage in recommen-

dations is not warranted. Bonuses are always part of an unregulated equilibrium,6 and

5The key insight of Inderst and Ottaviani (2012a) is that when there is asymmetry, a cap on commissions
or any other measure that restricts the use of commissions, such as greater transparency with respect to
customers, risks having a larger effect on a more efficient firm, as this firm would typically pay a larger
commission. Sales then shift inefficiently to the less efficient firm.

6As we argue below in more detail, this represents a novel result in the theory of incentives, as it is
notably different from the well-known use of bonus contracts with moral hazard (Innes 1990).
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we are able to provide a simple characterization of the prevailing pattern of advice. We

find that this pattern of advice and the thereby implied inefficiency are independent of

the agent’s liability. Notably, when w increases, firms optimally adjust their incentives to

fully counteract the advisor’s increased liability. This implies in particular that when the

advisor’s liability increases, this has no effect on the suitability of his recommendations:

Recommendations remain biased to the same extent as when liability was lower.

When determining the optimal size of their respective commission and bonus, firms face

a trade-off between the two instruments, in terms of their cost-effectiveness, which does not

depend on w. The agent’s liability only affects the overall sensitivity to compensation. It is

only when w is sufficiently large that liability starts having an impact on recommendations,

as then firms no longer pay commissions and the remaining positive bonus bn = b > 0

decreases as liability increases.

From the preceding observation we know that increasing the agent’s liability alone, at

least when this remains within bounds, does not affect the pattern of advice and thus does

not reduce the advisor’s bias. Instead, advice becomes unbiased when regulation prohibits

the use of bonuses and forces firms to employ only linear compensation schemes. Our

theory thus supports direct interference with firms’ compensation practice.

In the financial industry, we indeed observe regulators attempting to influence firms’

incentive schemes in the way analyzed in this paper. Even when this does not lead to

an outright prohibition of non-linear incentives, financial authorities may impose strict

standards to curb misselling and unsuitable advice. For instance, regulators conduct on-

site assessments of incentive arrangements, focusing in particular on bonuses and how

these are earned.7 Also, bonuses and other compensation arrangements that are made

contingent on a particular target or quota should frequently fall foul of increasingly strict

standards.8 Our analysis supports such policies and shows that imposing stricter liability

on brokers and advisors is not an adequate substitute. We should note however that in this

paper, we do not moel potential drawbacks of the envisaged restriction on incentives. Such

potential drawbacks clearly need to be considered when implementing such policies, and

we turn to them briefly in our concluding remarks (where we also point to the respective

analysis in the Online Appendix).9

7See, for instance, the thematic review of the UK’s Financial Conduct Authority in 2014 and
the guidance given to financial firms with respect to (still) permissible incentive arrangements:
https://www.fca.org.uk/publication/thematic-reviews/tr14-04.pdf.

8In the US, in September 2010 an amendment of Regulation Z (Loan Originator Compensation and
Steering 12 CFR 226) was published that prohibits various compensation practices.

9The Online Appedix is available at https://ssrn.com/abstract=3085198.
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There exists a small empirical literature that shows, mostly outside the financial in-

dustry, how bonuses affect agents’ behavior, notably by leading to a surge of sales at the

end of the respective quarter or year.10 Theoretically, Steenburgh (2008) and Chung et al.

(2013) provide a simulated quantification exercise of the trade-off between such “timing

games” of agents and the potential of lump-sum bonuses to motivate harder work so as to

attain incremental orders, in the spirit of the well-known result by Innes (1990).11 These

papers do not address an agent’s role of advising customers and consequently the potential

of biased advice.

In fact, also in the theoretical literature the primary role of bonuses is to motivate

effort at lowest cost to the principal in the presence of limited liability. Essentially, the

aim is then to reward an agent only for the highest sales performance while punishing

him for any other (lower) performance, so as to minimize his agency rent. Economists

have appealed to this potentially efficiency enhancing role of “discontinuous” incentive

schemes in a variety of contexts, such as in antitrust, and we return to our relationship

to this literature below. In this respect, we both add a new policy perspective, focusin

on biased advice, and provide a new theoretical motivation for why bonuses are optimal.

In our model, a bonus does not act as an optimal instrument to increase effort at lower

cost to the principal. In fact, if this was the case, firms would only pay a bonus, that is

compensation only in the “highest state”, which is typically not the case in our model.12

What we do not analyze in this paper is the outright prohibition of any incentives paid

by product providers. For instance, as of January 1st 2013, the new rules of the UK’s

financial regulator do not allow financial advisors to receive commissions.13 This is meant

10Misra and Nair (2011) observe such behavior for the salesfoce of a seller of contact lenses, while Larkin
(2014) shows this for enterprise software sales. Using data from the pharmaceutical industry, Kishore et al.
(2013) show that an early fulfillment of a sales target dampens further sales. Tzioumis and Gee (2013) have
recently studied the remuneration of mortgage officers, showing a spike in sales and a notable reduction
in processing time at the end of the month. On the respective “gaming” see theoretically Holmstrom and
Milgrom (1987).

11Chung et al. (2013) also put their model to data, testing a combination of different bonuses. See also
Basu et al. (1985) for an early model of salesforce compensation plans in the marketing literature.

12This difference is particularly evident in our model variant where customers arrive simultaneously.
Instead, in models where an agent is asked to exert effort on multiple projects simultaneously, the optimal
compensation is indeed to pay the agent if and only if all projects are successful (Laux 2001), as this is
the most informative state.

13More precisely, this restriction applies to the sale of investment products such as pensions, annuities,
and unit trusts. Notably credit products, such as mortgages, but also insurance policies are not affected.
When consumers naively fail to perceive the possibility of potentially biased advice, Inderst and Otta-
viani (2012b) have shown that a general cap on commissions could be warranted. In fact, without such
interference, they show that only commissions but not lump-sum fees will arise in equilibrium.
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to steer the market towards consumers paying directly for advice.14 Also, in this paper

we do not consider policies aimed at mandatory disclosure. For instance, in the European

Union, since January 2008 the disclosure of commissions on retail financial products has

become mandatory.15 Still another dimension of contract design and policy is the potential

(mandatory) deferral of compensation, as analyzed in Hoffman et al. (2016).16,17

Relation to the antitrust debate on loyalty rebates and the Industrial Orga-

nization literature on (mixed) bundling. In our model, an advisor does not take

ownership of firms’ products but only makes recommendations. For this he is remunerated

through the respective commissions and bonuses. Suppose now instead that the advisor

would take ownership of the respective products and accordingly acts as an intermediary.

In this case, the respective commissions of our model would be akin to a per-unit margin

whereas bonuses would be akin to a lump-sum wholesale price reduction that is triggered

when a certain sales target is met. These are the characteristics of so-called retroactive

loyalty rebates, which have been intensively scrutinized in the antitrust literature. A no-

table example is the European Commission’s case against the bonus system of British

Airways with respect to travel agencies.18 Other well-known cases include that of the tyre

manufacturer Michelin. Against the claim of antitrust authorities that such incentives

have the object or at least the effect of foreclosing the market to notably smaller rivals

or newcomers, economists have been quick to point out possible efficiencies in providing

incentives, akin to the analysis in Innes (1990). Interestingly, both of these well-known

14Gravelle (1994) examines two different schemes, a fee-for-advice and a commission, separately, in a
market with advice where firms are in perfect competition and only advisors can exploit a fraction of
customers. He demonstrates that it is not necessarily true that welfare is higher under the fee-for-advice
scheme than under the commission. In Stoughton et al (2011), they allow for both the fee-for-advice and
the commission (“rebate”) in a different market for financial advice where advisors are now in perfect
competition while firms (portfolio managers) are instead able to exploit customers (investors), and their
result supports regulation to ban rebates in the presence of the fee-for-advice.

15Markets in Financial Instruments Directive (MiFID). In the US, already in November 2008 the US
Department of Housing and Urban Development imposed stricter disclosure requirements for third-party
brokers in the mortgage market.

16Inderst (2015) provides a short survey of literature dealing with such policies. It also contains a first
analysis on non-linear incentives, albeit the exercise there restricts the advisor to apply one and the same
advice (”threshold”) strategy to all consumers. This does not allow to analyze the key question posed in
this paper, namely how non-linear incentives make advice given to one customer contingent on the advice
given to another customer.

17In this paper, we restrict attention to firms’ indirect marketing through an advisor. For this, Shen
and Wright (2017) consider the case where, depending on their switching costs, consumers may first turn
to advisors and then purchase directly from product providers.

18This case was decided in 1999 and the decision was finally upheld in 2007 by the European Court of
Justice.
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cases, involving travel agencies and garages, relate to products where final consumers typ-

ically rely on advice. Our analysis may thus strengthen the case of authorities against

such nonlinear incentives, as even when these are provided by firms that are equally well

positioned to capture market share, they risk biasing advice.

To push this further, our model with simultaneous arrival of customers turns out to be

isomorphic to models used in the Industrial Organization literature on (mixed) bundling.

There, multi-product firms face a consumer who may want to purchase one or more of

a firms’ different products, and firms may charge both individual prices as well as prices

for bundles. The discount that is offered with a bundle is akin to the bonus that the

advisor obtains in our model.19 In this literature, our main case with a sequential arrival

of customers has not yet been analyzed.20

2 The Model

We consider a model of firms’ competition in providing incentives for advisors. Our key

departure from the existing literature is that we analyze the role and possible regulation

of nonlinear incentives for an advisor, and our focus is consequently on the analysis of the

incentive scheme and its interaction with the suitability of advice. For this purpose, we

consider two firms or product providers n = A,B, that wish to sell their products through

a single advisor. We stipulate that firms sell only indirectly through the advisor, though

we provide conditions for when non-advised sales would not arise in equilibrium.Firms’

per-unit production costs are equal to cn and the respective prices are pn.21 Normalizing

the utility of customers from not purchasing to zero, the utility of a given customer j from

purchasing either product depends on a binary state variable θj ∈ {A,B} which captures

the product’s suitability, as follows: The customer derives utility vh > 0 if the product

matches the state and utility vl otherwise, with vl < vh (where vl may be negative). This

set-up follows Inderst and Ottaviani (2009).

Advisor. A key feature of our model is that the advisor has private information about the

suitability of either product for a given customer. As in Inderst and Ottaviani (2012a,b),

we directly work with the advisor’s posterior beliefs. Based on his private information, the

19From this perspective, the analyses in McAfee et al. (1988) and Armstrong and Vickers (2010) are
closest to ours.

20This analogy between the models is decribed in detail in the Online Appendix.
21Given our interest in situations in which private contracting through warranties fails, we rule out

payments from or to customers that are contingent on the realized utility.
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advisor’s posterior belief is given by qj = Pr(θj = A) ∈ [0, 1], which captures the likelihood

that product A is more suitable. A priori, qj is i.i.d. with CDF G(qj) and density g(qj) > 0

on [0, 1].22 From this, the prior beliefs of all parties are thus Pr(θj = A) =
∫ 1

0
qg(q)dq and

Pr(θj = B) =
∫ 1

0
(1− q)g(q)dq.

The advisor is motivated both by the (yet to be specified) incentive payments and by a

preference for the suitability of his advice. He derives utility wh if the purchased product

is suitable and wl (< wh) otherwise. When a customer does not purchase any of the two

products, we denote the advisor’s utility (gross of any payments) by w0. Assuming that

w0 < wl, the advisor always recommends one of the two considered products, and thereby

firms are always in competition through compensation.23 When making recommendations,

the difference w = wh −wl captures the advisor’s concern for the suitability of his recom-

mendation. Despite his concern for the suitability of his advice, the advisor might make

biased recommendations so as to receive higher remuneration from the firms, as described

next. We assume that w is not too high and the advisor is sufficiently responsive to pay

schemes to make incentives worthwhile for firms. Below we will define a threshold for

which this assumption holds.

Compensation. Firms observe the advisor’s total sales of their products and can thus

make their incentive schemes contingent on that number sn. Incentives schemes are thus

given by a discrete function, Fn : N0 → R, which must satisfy Fn(sn) ≥ 0 for any given

sn ∈ N0 = {0, 1, 2, . . . } due to limited liability.24 We assume that the advisor has an

outside option of value zero. It then follows that firms have no incentives to pay a base

salary, so that Fn(0) = 0.

To study the implications and regulation of nonlinear incentives in what follows, it

is sufficient to restrict attention to the case with at most two customers, so that i =

1, 2. Then, we can conveniently express compensation as follows. Define fn as a per-

unit “commission” and bn as a lump-sum “bonus”, albeit we do not restrict it to be

non-negative, so that Fn(1) = fn and Fn(2) = 2fn + bn.

Timing. To close the model, we next specify the timing for our baseline analysis.

22Hence, for convenience only we thus suppress the respective signal-generating technology.
23This corresponds to the “full coverage” assumption in the terminology of Hotelling competition.

Without the full-coverage assumption, the analyzed problem boils down to either two separate monopoly
problems or the same problem as we analyze here.

24Note that Fn(sn) ≥ 0 implies that firm n can not force the advisor to hand over any compensation
received from the other firm.
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t = 1: Firms simultaneously offer incentives (fn, bn), which the advisor can accept or reject.

t = 2: Firms simultaneously set product prices pn.

t = 3: The advisor provides advice to the first customer, who then decides whether or not

to purchase a single product (and if so, which one). Subsequently, upon arrival of

the second customer, this is repeated. The order of arrival is randomly assigned and

denoted by i = 1, 2, and customers do not know whether they are first or second

in line. The advisor privately observes product suitability qi for the i-th arriving

customer, and advice is provided by sending a message mi ∈ {A,B}.

All payoffs are realized after t = 3. We abstract from discounting and assume that all

parties are risk-neutral. We next fill some remaining gaps in the specification of the model

and then comment on subsequent variations.

In our baseline analysis, we suppose that customers can not observe the incentive

schemes, so that they have to form rational expectations. For this we assume that they

hold passive beliefs out of equilibrium. For stage t = 3, we focus on pure strategy equilibria

in which advice is informative at t = 3. Ignoring the payoff-equivalent outcome in which

messages are swapped, we will show that in equilibrium the i-th arriving customer follows

the advisor’s respective “recommendation” through message mi = A or B. Figure 1

illustrates the model.

Advisor

Customer 1 Customer 2

(q2, 1− q2)(q1, 1− q1)
Advice

pA

private information private information

either A or B

compensation
(fB, bB)

compensation

(fA, bA)

Firm A

pB

Firm B

Figure 1: Illustration of the model.

We now impose restrictions that ensure that (i) the market opens up, (ii) advice is

necessary, and (iii) firms are in competition. We also invoke assumptions that subsequently
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ensure uniqueness. To do so and to streamline the exposition, we focus in what follows on

the case where product providers are symmetric, with cn = c and with G being symmetric

around the (common) prior belief q = 1/2, G(q) = 1−G(1−q). Note from the Introduction

that in models with only a single customer, such symmetry ensures that advice is unbiased,

regardless of the size of (in equilibrium symmetric) incentives. Focusing on the case with

symmetry makes thus transparent where implications differ when advisors face several

customers and product providers can offer non-linear incentives. To ensure uniqueness

we make the standard assumption that the hazard rate, g(q)/(1 − G(q)), is increasing

in q ∈ [0, 1]. Together with symmetry of G, this implies that the reverse hazard rate,

g(q)/G(q), is decreasing in q, so that

d

dq

g(q)

1−G(q)
> 0 and

d

dq

g(q)

G(q)
< 0. (1)

Denote now vA(q) = qvh + (1− q)vl and vB(q) = (1− q)vh + qvl. Requiring∫ 1

0

vA(q)g(q)dq =

∫ 1

0

vB(q)g(q)dq =
vl + vh

2
< c (2)

ensures that advice is essential for selling either product. We subsequently invoke a second

assumption that ensure that the market with advice opens up.

Plan of the Analysis. In the following sections we decompose the analysis as follows.

Section 3 derives the optimal compensation, holding thereby fixed prices pn and assuming

that customers indeed follow the advisor’s recommendation. In Section 4 we endogenize

prices and fully characterize the unregulated equilibrium. Section 5 compares this to

the regulated equilibrium outcome when firms can only use linear incentive schemes and

thus bn = b = 0. Section 6 extends all our insights to the case of simultaneous arrivals

of customers. Section 7 concludes. The Online Appendix contains various alternative

extensions of the analysis, on which we comment whenever this is appropriate.

3 Optimal Nonlinear Compensation

3.1 Preliminary Results

In this section, we first consider stage t = 3, where the advisor makes recommendations to

customers. For now we postulate that these recommendations are followed. Subsequently

we show that this must indeed hold in an equilibrium of the full game (intuitively, as the

respective prices pn will be chosen accordingly in t = 2).

10
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Advice. We first consider the pattern of advice for the customer who arrives second.

When he has sold product A to the first customer, the advisor anticipates that he receives

an expected payoff equal to fA + bA + q2w + wl from recommending product A (through

sending message m2 = A) to the second customer, whose observed product suitability

is q2 ∈ [0, 1], and fB + (1 − q2)w + wl from recommending product B (through sending

message m2 = B). Comparing payoffs yields the threshold

q̄A2 =
1

2
− 1

2w
(fA − fB + bA),

such that the advisor prefers m2 = A if q2 ≥ q̄A2 and m2 = B otherwise. The subscript 2 in

q̄A2 stands for the advice cutoff applied to the second arriving customer, and the superscript

A indicates that the advisor has already sold product A to the first customer.

Similarly, having sold product B to the first customer, the advisor anticipates that he

receives an expected payoff equal to fA + q2w + wl from recommending product A to the

second customer, and fB + bB +(1−q2)w+wl from recommending product B. Comparing

those two payoffs yields the threshold

q̄B2 =
1

2
− 1

2w
(fA − fB − bB),

such that the advisor prefers m2 = A if q2 ≥ q̄B2 and m2 = B otherwise. Here the

superscript B in q̄B2 indicates that the advisor has sold product B to the first customer.

Note that we restrict the exposition to interior thresholds. To deal with corner solutions,

we set q̄A2 = 0 if w ≤ fA − fB + bA and q̄A2 = 1 if w ≤ −(fA − fB + bA). Similarly, we set

q̄B2 = 0 if w ≤ fA − fB − bB and q̄B2 = 1 if w ≤ −(fA − fB − bB).

Next we consider the pattern of advice for the first arriving customer. Let

Z(q̄A2 ) =

∫ q̄A2

0

(fB + (1− q)w + wl)g(q)dq +

∫ 1

q̄A2

(fA + bA + qw + wl)g(q)dq

and

Z(q̄B2 ) =

∫ q̄B2

0

(fB + bB + (1− q)w + wl)g(q)dq +

∫ 1

q̄B2

(fA + qw + wl)g(q)dq.

When recommending product A (through sending message m1 = A) to the first customer,

whose observed product suitability is q1 ∈ [0, 1], the advisor realizes

fA + q1w + wl + Z(q̄A2 ),

and by recommending product B (through sending m1 = B)

fB + (1− q1)w + wl + Z(q̄B2 ).
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Comparing payoffs yields the threshold

q̄1 =
1

2
− 1

2w

(
fA − fB + Z(q̄A2 )− Z(q̄B2 )

)
,

such that the advisor prefers m1 = A if q1 ≥ q̄1 and m1 = B otherwise. The subscript 1 in

q̄1 stands for the advice cutoff applied to the first customer. To deal with corner solutions,

we set q̄1 = 0 if w ≤ fA−fB+Z(q̄A2 )−Z(q̄B2 ) and q̄A2 = 1 if w ≤ −(fA−fB+Z(q̄A2 )−Z(q̄B2 )).

We can now characterize the pattern of advice for any given compensation (fn, bn).

Lemma 1 When customers follow his recommendation, the advisor’s optimal recommen-

dation is characterized as follows:

(m1,m2) =


(A,A) if q1 ∈ [q̄1, 1] and q2 ∈ [q̄A2 , 1],

(A,B) if q1 ∈ [q̄1, 1] and q2 ∈ [0, q̄A2 ],

(B,A) if q1 ∈ [0, q̄1] and q2 ∈ [q̄B2 , 1],

(B,B) if q1 ∈ [0, q̄1] and q2 ∈ [0, q̄B2 ].

In what follows, it will be inconsequential how we resolve cases of indifference as these

are zero-probability events. To illustrate Lemma 1, consider first a symmetric compensa-

tion scheme (f, b). In the case of no bonus (b = 0), as then q̄A2 = q̄B2 = 1/2 holds and

so also q̄1 = 1/2, the advisor recommends product A to the i-th arriving customer (sends

message mi = A) if qi ≥ 1/2 and B otherwise, irrespective of the order of their arrival.

Figure 2 illustrates this pattern of advice. In contrast, with b > 0 advice cutoffs are given

by q̄A2 = 1/2− b/(2w) = 1− q̄B2 ∈ (0, 1/2) and by q̄1 = 1/2 given symmetry.

q1

q2

q̄1 = 1
20 1

1

m1 = B

m2 = A

m1 = A

m2 = A

m1 = B

m2 = B

m1 = A

m2 = B

q̄A2 = q̄B2 = 1
2

Figure 2: Pattern of advice without bonus.
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q1

q2

0 1

1
m1 = B

m2 = A

m1 = A

m2 = A

m1 = B

m2 = B

m1 = A

m2 = B

q̄1 = 1/2

q̄A2

q̄B2

1/2

Figure 3: Pattern of advice with bonus.

This pattern of advice with a strictly positive bonus is illustrated in Figure 3. There,

the gray-colored regions represent the effect of the bonus on advice, compared to Figure 2,

as the advisor’s recommendation to the second customer depends on his recommendation

to the first customer.

With symmetry, we have that q̄1 = 1/2, so that the first recommendation is not biased

in either direction. This would be different under asymmetry, and it is useful for our

subsequent derivation of an equilibrium to express q̄1 more generally. Equation (3) captures

how the advisor’s anticipation of his subsequently chosen cutoffs, q̄A2 and q̄B2 , also affects

his first advice.

Lemma 2 If (q̄A2 , q̄
B
2 ) ∈ (0, 1)2,

q̄1 = q̄A2 +

∫ q̄B2

q̄A2

G(q)dq. (3)

Proof. See the Appendix.

Firm profits. For any given advice cutoffs (q̄1, q̄
A
2 , q̄

B
2 ) ∈ [0, 1]3, define by

Pr(1) = G(q̄1)(1−G(q̄B2 )) + (1−G(q̄1))G(q̄A2 )

the probability that the advisor makes recommendations for different products. Note that

this is always common to both firms, so that Pr(1) is independent of n = A,B. Similarly,

define by

PrA(2) = (1−G(q̄1))(1−G(q̄A2 ))
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the probability that the advisor recommends product A to both customers, and by

PrB(2) = G(q̄1)G(q̄B2 )

the probability that the advisor recommends product B to both customers. We denote by

Sn = Pr(1) + 2Prn(2)

expected total sales for firm n. For given compensation (fn, bn) and product price pn, for

n = A,B, expected profits are written as

πn = Sn(pn − cn − fn)− Prn(2)bn. (4)

In light of the subsequent analysis, it is now helpful to briefly analyze how compensation

affects firm profits. There are two first-order effects of the marginal increase in firm n’s

incentive component x ∈ {fn, bn}: a profit gain by the increase in sales and a profit loss

by the increase in expected compensation. Differentiating firm n’s profit (4) with respect

to fn and bn yields the respective marginal profits

∂πn
∂fn

= Sfn(pn − cn − fn)− Prfn(2)bn − Sn (5)

and
∂πn
∂bn

= Sbn(pn − cn − fn)− Prbn(2)bn − Prn(2), (6)

where we denote by Prx(1) and Prxn(2) the respective partial derivatives of the single-

unit sale Pr(1) and of the two-unit sales Prn(2) with respect to xn ∈ {fn, bn}, and by

Sxn = Prx(1) + 2Prxn(2) the partial derivatives of total sales Sn.

Welfare. Before continuing the analysis, we define welfare. We suppose that w arises

from a penalty imposed on the sale of an unsuitable product, and the advisor is concerned

only about this penalty. If such penalties are monetary transfers, given that parties are

risk neutral they do not enter social welfare. For any given advice cutoff q̄ ∈ {q̄1, q̄
A
2 , q̄

B
2 },

we denote by

E[v | q̄] =

∫ q̄

0

vB(q)g(q)dq +

∫ 1

q̄

vA(q)g(q)dq

a given customer’s expected gross utility from following advice when she anticipates that

the advisor applies the cutoff rule based on q̄. Taking account of the random order of

customer arrivals, the expected gross utility (“suitability of advice”) from following advice

is

U = (1/2)
(
E[v | q̄1] +G(q̄1)E[v | q̄B2 ] + (1−G(q̄1))E[v | q̄A2 ]

)
, (7)
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which will be useful also subsequently when determining the equilibrium price. As the

expected product cost per customer is always c, expected welfare per customer is W =

U − c. This is clearly maximized when the advisor sets the threshold qFB = 1/2 with each

customer, advising A if and only if qi ≥ qFB. Put differently, welfare is maximized when

the advisor treats all customers equally with q̄1 = q̄A2 = q̄B2 = qFB. In what follows we

refer to any other (equilibrium) outcome as biased.

3.2 The Impossibility of Unbiased Advice without Regulation

Our objective is to show that linear incentive schemes for both firms are never part of any

equilibrium without regulation. We argue to a contradiction and thus sppose that firms

set bn = b = 0. In this case, advice cutoffs (q̄1, q̄
A
2 , q̄

B
2 ) should all be equal, which we denote

by q̄ ∈ (0, 1).25 Consider now firm n’s marginal profits with respect to the commission and

the bonus xn ∈ {fn, bn}. We first examine the effects of the marginal increases in fn and

bn on the advice cutoffs (q̄1, q̄
A
2 , q̄

B
2 ) ∈ (0, 1)3.

Lemma 3 At q̄ = q̄1 = q̄A2 = q̄B2 ∈ (0, 1), which holds when bn = 0 for both firms,

∂q̄A2
∂fn

=
∂q̄B2
∂fn

=
∂q̄1

∂fn
=

{
− 1

2w
, if n = A,

1
2w
, if n = B,

(8)

and (
∂q̄A2
∂bn

,
∂q̄B2
∂bn

,
∂q̄1

∂bn

)
=


(
− 1

2w
, 0,− (1−G(q̄))

2w

)
, if n = A,(

0, 1
2w
, G(q̄)

2w

)
, if n = B.

(9)

Proof. See the Appendix.

We comment on the respective derivatives (8) and (9). The marginal shifts of advice

cutoffs are inversely related to the advisor’s liability w: The advisor is less responsive to

incentives as w increases. Intuitively, in (9) a bonus only affects the cutoff in the second

period if the respective firm’s product has been recommended in the first period (while

otherwise
∂q̄B2
∂bn

= 0 for n = A and
∂q̄A2
∂bn

= 0 for n = B). Note also that the effect that

the bonus has on the first period cutoff q̄1 depends on the anticipated likelihood with

which the advisor expects to recommend the same product in the second period (that is,
∂q̄1
∂bn

= − (1−G(q̄))
2w

for n = A and ∂q̄1
∂bn

= G(q̄)
2w

for n = B). Using (8) and (9), we can evaluate

the effect of the marginal increase in the incentive component x ∈ {fn, bn} on expected

25The advice cutoff q̄ should lie in the open interval (0, 1), as otherwise the advisor would always
recommend a particular firm’s product to customers, which contradicts assumption (2).
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sales, Sxn = Prx(1) + 2Prxn(2). The following Lemma compares the effect of a higher bonus

(at bn = 0) wth that of a higher commission:

Lemma 4 At q̄ = q̄1 = q̄A2 = q̄B2 ∈ (0, 1), which holds when bn = 0, we have that

Sbn =

{
(1−G(q))SfA, if n = A,

G(q)SfB, if n = B.
(10)

Proof. See the Appendix.

We next illustrate expression (10). Figure 4 illustrates this relationship for n = A.

The left panel of the figure shows the resulting change in the pattern of advice when

firm A marginally increases its commission fA by ε > 0, whereas the right panel shows

the respective marginal change when increasing its bonus bA by the same amount. At

bn = b = 0, the two pictures illustrate why the marginal impact of starting to pay a bonus

is exactly equal to the marginal impact of further increasing the commission multiplied

with the likelihood with which the advisor will recommend the respective product (that

is, 1−G(q) for n = A and G(q) for n = B, as given by (10)).

q1

q2

0 1

1

m1 = B

m2 = A

m1 = A

m2 = A

m1 = B

m2 = B

m1 = A

m2 = B

q̄ ε
2w

ε
2w

q̄
q1

q2

0 1

1

m1 = B

m2 = A

m1 = A

m2 = A

m1 = B

m2 = B

m1 = A

m2 = B

1 −G(q̄)

ε
2w(1 −G(q̄))

ε
2w

q̄

q̄

G(q̄)

Figure 4: Effect of a marginal increase in commmission (left panel) and bonus (right panel),
both at bn = 0.

We now make use of the derived expressions to conduct the following argument. Start-

ing from the considered situation with bn = b = 0, we show that any of the two firms

would then however strictly benefit from paying a strictly positive bonus (while possibly

reducing its commission). We first show this formally and then provide an intuition. To

show this formally, we consider for a given firm n a marginal increase in its bonus and, at
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the same time, a marginal decrease in its commission, so that total expected sales remain

unchanged. We then show that along this gradient the firm’s profit strictly increases,

contradicting the optimality of bn = 0.

Consider thus marginal adjustments (dfn, dbn) ∈ R2 such that total expected sales

remain unchanged, that is,

Sfndfn + Sbndbn = 0. (11)

Applying (10) to (11), we can derive a relationship between these marginal adjustments

(dfn, dbn) in the absence of bonuses (bn = b = 0).

Lemma 5 For any given n = A,B, consider marginal adjustments (dfn, dbn) ∈ R2 defined

by (11). If bA = bB = 0, (dfn, dbn) must satisfy

dfn =

{
−(1−G(q))dbA, if n = A,

−G(q)dbB, if n = B.
(12)

This result is an immediate implication of Lemma 4. Geometrically, it can be easily

seen as follows. Take the right-hand panel of Figure 4. Consider now the light-gray-colored

area (of length (1 − G(q)) and thickness ε
2w

). If we were to stretch this area along the

whole horizontal line, its thickness would be exactly ε
2w

. Comparing this rearranged figure

now to the left-hand side of Figure 4, we immediately see that, at bn = b = 0, the impact

of a marginal increase in the bonus is, for firm A, exactly 1−G(q) times that of increasing

the commission (and for firm B, G(q) that of increasing the commission).

Starting from the respective expressions (5) and (6), consider next the total derivative

of firm profits

dπn = −Sndfn − Prn(2)dbn, (13)

where, at bn = 0, we omitted the term −(Prfn(2)dfn + Prbn(2)dbn)bn, which then clearly

equals zero. Since all advice cutoffs are equal to q̄, we have Pr(1) = 2G(q̄)(1 − G(q̄)),

PrA(2) = (1 − G(q̄))2, and PrB(2) = G(q̄)2, so that SA = 2(1 − G(q̄)) and SB = 2G(q̄).

Evaluating the term when (dfn, dbn) satisfies (12), expression (13) finally becomes

dπn = dbnPrn(2).

In other words, when firm n starts paying a bonus and reduces its commission so that total

expected sales remain unchanged, this strictly increases profits with derivative dπn
dbn

=Prn(2),

which is the likelihood with which the advisor will recommend two times firm n’s product.

We have thus arrived at the following result:
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Proposition 1 Nonlinear incentives are part of any unregulated equilibrium when com-

pensation is positive, i.e., there is no equilibrium in which compensation is positive but

bn = b = 0.

Though we have not yet fully characterized an unregulated equilbrium, including equi-

librium prices pn, Proposition 1 already implies that the unregulated outcome must be

inefficient: The presence of a bonus distorts the second-period recommendation, as it

wrongly makes the advisor’s recommendation to the second customer contingent on his

first recommendation.

Discussion. Recall that at bn = b = 0 the impact of a marginally higher bonus on sales

is, for firm A, exactly 1−G(q) of that of increasing the commission. The positive impact

on increasing sales must be traded off with the respective costs of higher compensation,

notably the higher “inframarginal” rent for the advisor, which is the higher compensation

in cases where this did not sway the advisor’s recommendation. If the higher bonus was

only paid with likelihood 1−G(q) times that of the higher commission, the two changes in

compensation would be equally profitable. However, the higher bonus is effectively paid

relatively less often.26

We now provide an additional intuition by appealing to a slightly changed model set-

up. Suppose that a firm would indeed only use commissions, but make these contingent on

when the respective sale took place. That is, firm A would pay f 1
A when a product is sold to

the first customer and f 2
A when a product is sold to the second customer (and f 1

A+f 2
A when

both customers bought product A). We do not find this realistic, but this more flexible

way to use commissions helps us to make the following argument more transparent. In

fact, we show that despite this greater flexibility in using commissions, commissons are

never used exclusively.

When both commissions are chosen optimally, then also the choice of f 2
A satisfies the

respective first-order condition: The costs of paying one Euro more commission whenever

the advisor recommends A to customer 2 just balances the incremental benefits from

increasing the likelihood of selling to customer 2. Instead of marginally raising f 2
A, consider

now the introduction of a marginal bonus bA (say, equal to one Euro as well). Take its

impact on recommendations when the advisor has already recommended A to the first

customer. Note that the suitability of a given product is distributed independently across

26Precisely, as the higher commission is paid with likelihood 2(1−G(q))G(q)+2(1−G(q))2 = 2(1−G(q))
and the higher bonus with likelihood (1−G(q))2, the respective ratio is 1

2 (1−G(q)) < 1−G(q).
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customers, so that the distribution of q2 conditional on a recommendation of A to customer

1 is the same as the unconditional distribution. This implies that with respect to the

advisor’s recommendation to customer 2, the effects of a marginal bonus trade off in

exactly the same way as those of a marginal increase in f 2
A. From this perspective alone,

introducing a bonus would not dominate an increase in f 2
A, as considered beforehand.

However, the analysis so far neglects the impact that a bonus has on the recommendation

to customer 1: The bonus tilts the advisor’s recommendation towards product A in those

cases where the advisor was previously (just) indifferent, as he now expects to earn in

this case bA > 0 from the second customer, at least with some probability. This leads to

additional sales without any additional costs when a bonus is introduced, so, starting from

bn = 0, the bonus is more cost-effective than the commission.27

3.3 Characterization of the Optimal Non-linear Compensation

We now derive the optimal nonlinear incentive scheme for a symmetric equilibrium, with

f > 0 and b > 0. As we show later, such an equilibrium is unique and exists whenever

w is not too large. Below we characterize the equilibrium compensation as well when w

is larger, and we derive the respective thresholds for w that separate the different cases.

Note also that for now we take pn = p as given, which is derived below, as part of the full

equilibrium characterization.

Under symmetric compensation (f, b), advice cutoffs (q̄1, q̄
A
2 , q̄

B
2 ) satisfy q̄1 = 1/2 and

q̄A2 = 1 − q̄B2 ∈ (0, 1/2).28 Note that the advice cutoffs are no longer all equal, unlike in

the case of no bonus (b = 0). From symmetry, we have that PrA(2) = (1/2)(1−G(q̄A2 )) =

(1/2)G(q̄B2 ) = PrB(2), which we simply denote by Pr(2). Albeit advice cutoffs are no

longer all equal, as when b = 0, with symmetric market shares the following result perfectly

mirrors that in Lemma 5:

Lemma 6 For any given symmetric compensation (fn, bn) = (f, b) with 0 < b < w,

consider marginal adjustments (dfn, dbn) ∈ R2 defined by (11), so that total sales remain

constant. Then, (dfn, dbn) must satisfy

dfn = −1

2
dbn. (14)

27As bA = 0 to start with, there are no additional costs to be considered. If instead bA > 0, though,
the positive bonus needs to be paid with a higher likelihood also when the first recommendation threshold
shifts. This is why the argument for why bn > 0 does not generally imply that only bn > 0 while fn = 0
(though, as we subsequently show, this is the case when w is sufficiently high).

28When (fn, bn) = (f, b) with f > 0 and b > 0, advice cutoffs q̄A2 and q̄B2 simplify to 1/2− b/(2w) and
1/2 + b/(2w), respectively. Using (3), this leads to q̄1 = (1/2)(q̄A2 + q̄B2 ) = 1/2 due to q̄A2 = 1− q̄B2 .
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Proof. See the Appendix.

The way we now characterize the optimal compensation is by invoking the first-order

condition along the gradient of the profit function where (11) is satisfied. To do so, note

first the total derivative

dπ = −
(
Prf (2)df + Prb(2)db

)
b− Sdf − Pr(2)db,

where we have again dropped the subscript due to symmetry. Noting now that29

Pr(1) = G(q̄A2 ), Pr(2) = (1/2)(1−G(q̄A2 )) and S = Pr(1) + 2Pr(2) = 1,

while requiring that df = −1
2
db with constant sales, we have the total derivative

dπ =
1

2

[(
Prf (2)− 2Prb(2)

)
b+ Pr(1)

]
db.

Along the considered gradient, where (14) is satisfied, this must be zero at an optimal

compensation choice. Rearranging yields the requirement(
2Prb(2)− Prf (2)

)
b = Pr(1). (15)

Equation (15) has a straightforward intuition. For this recall that we presently derive a

necessary condition along the gradient where, as we marginally adjust compensation, total

expected sales for the considered firm n remain unchanged. We know that this requires

dfn = −1
2
dbn, so that the left-hand side of (15) is exactly equal to the marginal increase

in the probability with which a bonus will be paid multiplied by the prevailing bonus,

i.e., it represents the increase in the advisor’s rent. At an optimum, along the considered

gradient, this must be equal to the rent that is saved when, as the bonus is increased, the

commission is reduced and the respective reduction is no longer paid for single-unit sales

(the right-hand side). Working with (15), we now substitute for the respective derviatives,

where we obtain (cf. the subsequent proof) that

2Prb(2)− Prf (2) =

(
1

2w

)
g(q̄A2 ) (1−G(q̄1)) =

g(q̄A2 )

4w
, (16)

where the last step uses, in a symmetric equilibrium, that 1−G(q̄1) = 1/2. Note also that

Pr(1) = G(q̄A2 ), so that we obtain from (15):

29More precisely, Pr(1) = (1−G(q̄1))G(q̄A2 ) +G(q̄1)(1−G(q̄B2 )) = G(q̄A2 ) due to q̄1 = 1/2, q̄A2 = 1− q̄B2 ,
and symmetry of G around 1/2, and where Pr(2) = PrA(2) = (1−G(q̄1))(1−G(q̄A2 )) = (1/2)(1−G(q̄A2 )) =
G(q̄1)G(q̄B2 ) = PrB(2), so that Sn = S = 1.
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Lemma 7 In a symmetric equilibrium with fn = f > 0 and bn = b > 0, the optimal choice

of the bonus must satisfy

b = 4
G(q̄A2 )

g(q̄A2 )
w. (17)

Proof. See the Appendix.

Combining condition (17) with q̄A2 = 1/2− b/(2w), which again uses that fn = f and

bn = b, we can now pin down the equilibrium advice cutoff q̄A2 as follows:

Lemma 8 In a symmetric equilibrium with fn = f > 0 and bn = b > 0, the advice cutoff

for the second customer, conditoinal on that A was recommended to the first customer, is

uniquely determined by

q̄A2 =
1

2
− 2

G(q̄A2 )

g(q̄A2 )
. (18)

The respective advice cutoff when B was recommended to the first customer, is symmetric

and given by q̄B2 = 1− q̄A2 .

Proof. See the Appendix.

Equation (18) has two main implications. First, we have that q̄A2 < 1/2 and q̄B2 > 1/2,

so that advice is always biased in an unregulated equilibrium. Second, the two cutoffs are

independent of the agent’s liability w. Before we return to a closer discussion of the second

observation, we first complete the characterization of the optimal compensation. We do

so by considering the first-order condition for the commission fn: dπn
dfn

= 0. Letting

H(q̄A2 ) =
G(q̄A2 )

g(q̄A2 )
+

1

4g(1/2)(1−G(q̄A2 ))2 + g(q̄A2 )
, (19)

we can derive the following:

Lemma 9 In a symmetric equilibrium with fn = f > 0 and bn = b > 0, given q̄A2 from

(18), the optimal commission satisfies

f = p− c− 2wH(q̄A2 ), (20)

where H(q̄A2 ) is defined by (19).

Proof. See the Appendix.

We know from (17) that the ratio b/w is constant in w, so are all advice cutoffs

(q̄1, q̄
A
2 , q̄

B
2 ) and consequently also H(q̄A2 ), and therefore the commission f in (20) decreases
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with the size of w, while the bonus b in (17) increases. A firm thus adjusts its commission

and bonus to the size of w, seeking to balance out the cost-effectiveness between them,

which induces a unique pattern of advice (through a unique advice cutoff q̄A2 = 1 − q̄B2

with q̄1 = 1/2), irrespective of the advisor’s liability w, as long as both the commission

and the bonus are positive. We now turn to this condition. The optimal commission in

(20) is indeed positive as long as w is below a certain level, otherwise it equals zero. We

denote by w∗f the respective threshold, which is given by

w∗f =
p− c

2H(q̄A2 )
, (21)

where q̄A2 is uniquely determined by (18) while we turn to a characterization of the equi-

librium price p below. We can now characterize the optimal nonlinear incentive scheme

when fn > 0 and bn > 0.

Proposition 2 Suppose that the advisor’s liability w is below the threshold w∗f defined by

(21). Then, there is a unique symmetric equilibrium compensation scheme, giving rise

to unique advice cutoffs (q̄1, q̄
A
2 , q̄

B
2 ), which are all independent of w. The commission f

decreases with the size of w while the bonus b increases. Precisely, q̄1 = 1/2, q̄A2 = 1− q̄B2
is determined by (18), and (f, b) solve (20) and (17), respectively.

The result that the pattern of advice and thereby also the size of the bias are indepen-

dent of the advisor’s liability may at first seem counterintuitive, given that this implies a

strictly higher expected liability payment. In fact, if we were to hold the compensation

fixed, this bias would be reduced as w increases. However, at least as long as w < w∗f firms

react to the increased liability by increasing the bonus. They reduce the commmission at

the same time, reacting to the fact that the advisor becomes less responsive to monetary

incentives. The intuition for the firms’ overall response follows directly from the way how

we derived the optimal compensation, that is from firms’ optimal trade-off between the

two instruments. For this trade-off, w only plays a role in affecting the sensitivity of the

respective cutoffs. But as long as both incentive components are still used, i.e., both fn > 0

and bn > 0, the sensitivity of the respective cutoffs effectively cancels out when trading off

dbn with dfn. The implications for policy are immediate: At least as long as w < w∗f , the

advisor’s bias is not affected by the size of the advisor’s liability. Product providers just

step up their bonuses!

Before we close the model by also deriving equilibrium prices, we note that this stark

implication however ceases to hold when w is sufficiently large. Once w reaches the thresh-

old w∗f > 0, setting a positive commission is no longer profitable and firms will react to
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a change in w by reducing their still positive bonus, which then has an immediate impli-

cation for the respective advice cutoffs. More explicitly, with f = 0 and symmetry, the

first-order-condition with respect to the bonus is then

Sb(p− c)− Prb(2)b = Pr(2).

From this we can derive, after substition, an implicit expression for b, which we however

relegate to the proof of the subsequent proposition. With this at hand, we can derive the

size of w at which the bonus too becomes zero, which, for the respective price p, is at

w∗b = 2g(1/2)(p− c). (22)

Lemma 10 Let w∗f and w∗b be the thresholds of w defined by (21) and (22), respectively.

If w ∈ (w∗f , w
∗
b ), the optimal commission is zero and the optimal bonus is given by (A.5).

For w ≥ w∗b compensation is zero.

Proof. See the Appendix.

Lemma 10 will next be employed to finally derive the characterization of the unregu-

lated equilibrium outcome.

4 Unregulated Equilibrium

So far we have taken prices as given to determine the optimal incentive scheme. In this

section, we derive the full equilibrium of the game. To this aim, we first provide a definition

of the equilibrium. We then prove existence of a unique equilibrium, and finally return to

a comparative analysis.

To derive customers’ conditional valuations, we define their beliefs about the (non-

observed) compensation by (f̂n, b̂n) and the corresponding rationally anticipated advice

cutoffs by q̂ = (q̂1, q̂
A
2 , q̂

B
2 ). For some arbitrary advice cutoff q̂ ∈ {q̂1, q̂

A
2 , q̂

B
2 }, let

E[vA | q̂] ≡
1

1−G(q̂)

∫ 1

q̂

vA(q)g(q)dq and E[vB | q̂] ≡
1

G(q̂)

∫ q̂

0

vB(q)g(q)dq

be the customer’s conditional expected valuation for products A and B, respectively.

Taking account of sequential arrivals in a random order, each customer anticipates that

the expected valuation conditional on being recommended product n(= A,B) would be

E[vn | q̂] ≡ 1

2

[
E[vn | q̂1] +G(q̂1)E[vn | q̂B2 ] + (1−G(q̂1))E[vn | q̂A2 ]

]
. (23)
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Given passive beliefs, in equilibrium each firm optimally extracts the full conditional val-

uation, so that pn = E[vn | q̂].

An unregulated equilibrium is characterized by a tuple of firm strategies (fn, bn, pn),

the advisor’s cutoff strategy q = (q̄1, q̄
A
2 , q̄

B
2 ), and customer beliefs about compensation

(f̂n, b̂n), which give rise to the expected cutoffs q̂ = (q̂1, q̂
A
2 , q̂

B
2 ), so that:

i) Incentive schemes must be optimal, given prices pn, i.e., (fn, bn).

ii) Prices must be optimal and so satisfy pn = E[vn | q̂].

iii) The advisor makes optimal recommendations, implying that q = (q̄1, q̄
A
2 , q̄

B
2 ) are given

by Lemma 1.

iv) Beliefs are rational as (f̂n, b̂n) = (fn, bn) and thereby also q̂ = q.

We now impose an assumption that ensures that the market for advice opens up.

Specifically, we make this assumption slightly stronger to ensure that we are in the in-

teresting case where both f > 0 and b > 0 can indeed arise (for sufficiently small w).

Taking the advice cutoffs as uniquely characterized in Lemma 8, that is q = (q̄1, q̄
A
2 , q̄

B
2 ),

we stipulate that

E[vn | q] > c. (24)

Given this choice of q = (q̄1, q̄
A
2 , q̄

B
2 ), we now substitute this into w∗f = (p − c)/(2H(q̄A2 ))

from (21). Likewise, taking w∗b = 2g(1/2)(p − c) from (22), we substitute the respective

conditional valuations evaluated at the unbiased cutoffs q = (1/2, 1/2, 1/2), that is

p = E[vn | q = (1/2, 1/2, 1/2)] = 2

∫ 1

1/2

vA(q)g(q)dq = 2

∫ 1/2

0

vB(q)g(q)dq.

Using these thresholds, we have the following result:

Proposition 3 When w < w∗f , there exists a unique unregulated equilibrium where firms

pay both positive commissions and bonuses fn = f > 0 and bn = b > 0, as characterized

in Proposition 2. Advice is biased and the bias is also not mitigated when liability w

(marginally) increases. When liability is instead high with w ≥ w∗b , firms do not provide

incentives to the advisor. In the intermediate case, where w∗f ≤ w < w∗b , we have fn =

f = 0 and bn = b > 0, as in Lemma 10. Then, as w increases, advice becomes less biased

(as always q̄1 = 1/2, while 1/2− q̄A2 > 0 and q̄B2 − 1/2 > 0 strictly decrease).

Proof. See the Appendix.
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As w changes, this does not affect the suitability of advice and consequently also not

the maximum price that firms can charge as long as w < w∗f . In our concluding remarks

we argue why setting an arbitrarily high liability may not be a realistic solution, also as

it risks having various unwanted consequences.

Example 1: Uniform Distribution. Suppose that G is the uniform distribution and

that the exogenous parameters are given as (vh, vl, c) = (1, 0, 0.6). Figure 5 illustrates

the optimal nonlinear incentive scheme (f, b). As seen in the left panel, the commission

f decreases with the size of w while the bonus b increases if w is below the threshold

w∗f (≈ 0.17). When w is higher, the bonus b decreases as w further increases, up to the

threshold w∗b (= 0.3), from which on all compensation is zero. Accordingly, the advice

cutoff q̄A2 = 1− q̄B2 shifts as described in the right panel of the figure.30
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b
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q2
A

Figure 5: Uniform example.

Example 2: Truncated Normal Distribution. We have shown that the pattern of

advice is invariant to w when w < w∗f . The second key characteristic of the advisor, next to

w, is the degree to which he is better informed than customers. Holding all else constant,

as the advisor becomes better informed, this should increase welfare. But this ignores a

potential adjustment of compensation, which may have a countervailing effect.

To analyze this, we take another standard example for the functional specification of

G(q). We consider a normal distribution with mean 1/2 and variance σ > 0 and we let

G(q), which captures the advisor’s (better) information, be its truncated distribution, re-

stricted to q ∈ [0, 1]. Then as σ increases, resulting in a mean-preserving spread for the

posterior distribution, the advisor unambiguously becomes better informed about prod-

ucts’ suitability.31

30See the Appendix for all derivations.
31Put differently, supposing that some original distribution G1(q) was captured by the respective obser-
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Proposition 4 Suppose G(q) is a truncated normal distribution with mean 1/2. Then as

the advisor becomes better informed, as reflected in a higher variance of the distribution of

posterior beliefs, product providers increase their bonus and the advice cutoff for the second

customer becomes more biased away from the first-best, that is 1/2 − qA2 = qB2 − 1/2 > 0

increases. The equilibrium adjustment of non-linear compensation thus reduces the benefits

of the advisor’s better information.

Proof. See the Appendix.

Discussion. Before we move on and introduce regulation, we offer some additional re-

marks on the derivation of the unregulated equilibrium outcome. When w ≤ w∗f each

product provider makes profits of

π = 2w

[
Pr(1)H(q̄A2 ) + 2Pr(2)

(
1

4g(1/2)(1−G(q̄A2 ))2 + g(q̄A2 )

)]
,

where all terms in the bracket are positive for any given q̄A2 ∈ (0, 1/2) and independent of

w. Therefore, πn = π is an increasing function of w (and, in fact, proportional). Firms

are better off when the agent’s liability increases as this effectively reduces competition.

In fact, an increase in w is akin to greater differentiation in a standard (Hotelling) game

of price competition, albeit in our game firms compete with (non-linear) incentives.32 As

customers’ utility is not affected by w when w < w∗f , the advisor’s payoff must be strictly

decreasing in w. While the advisor does not change his recommendations when his liability

increases, he is thus worse off in two ways. First, he incurs higher (expected) liability

costs for given recommendations. Second, while firms adjust their compensation so as

to ensure that his recommendation remains unchanged, firms’ overall incentives to steer

advice decrease as advice becomes less responsive to monetary incentives. Note at this

point that we implicitly assume throughout the analysis that the advisor’s participation

constraint is satisfied. Clearly, when a very high w drives out all compensation, this is

only the case when the advisor earns some additional payoff, e.g., from other business with

the respective customer. If not, then high liability may drive out advice.33

vation of some signal s1 (of arbitrary dimensionality), when the advisor can observe, in addition, another
signal s2, then the transformation from G1(q) to G2(q) can always be expressed as a mean-preserving
spread.

32In a standard Hotelling game, firms’ profits would be proportional to customers’ (constant) “trans-
portation costs”, which corresponds to parameter w in our framework.

33To keep the advisor otherwise in business, product providers may have to pay him a fixed compensa-
tion, and as the advisor is not the employee of a single product provider in our model, firms will clearly try
to free-ride (as now their fixed compensation become complements in inducing the advisor to participate).
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5 Regulated Market Equilibrium

As discussed in the Introduction, regulatory authorities may intervene by imposing re-

strictions on the contingencies of incentive pay. In what follows, we suppose that such

regulation restricts the considered compensation schemes (fn, bn) to be proportional to

sales, thus banning bonus payments (bn = 0). Under such incentives, the advisor adopts a

common threshold q̄ ∈ [0, 1] for all customers, recommending product B if product suit-

ability qi for customer i(= 1, 2) is below q̄ and product A otherwise. Receiving a payoff

fA + qiw + wl from recommending product A (through sending message mi = A) and

fB + (1 − qi)w + wl from recommending product B (through sending message mi = B),

the respective cutoff satisfies

q̄ =
1

2
− 1

2w
(fA − fB). (25)

To deal with corner solutions, we set q̄ = 0 when w ≤ fA − fB and q̄ = 1 when w ≤
−(fA − fB).

Lemma 11 When customers follow his recommendation, with regulated linear incentives

the advisor’s optimal recommendation simplifies as follows:

mi =

{
A, if qi ∈ [q̄, 1],

B, if qi ∈ [0, q̄].

In the absence of bonuses, profits of firm n are Sn(pn − cn − fn), which simplifies to

πn =

{
2(1−G(q̄))(pA − cA − fA), if n = A,

2G(q̄)(pB − cB − fB), if n = B,

where q̄ is given by (25). Solving the profit maximization problem, firm A sets

fRA = pA − cA − 2w
1−G(q̄)

g(q̄)
,

provided that this is strictly positive (otherwise fRA = 0) and not above fRB +w (otherwise

fRA = fRB + w), and similarly firm B sets

fRB = pB − cB − 2w
G(q̄)

g(q̄)
,

provided that this is strictly positive (otherwise fRB = 0) and not above fRA +w (otherwise

fRB = fRA + w). Under symmetry, for given pn = p, we have

fR = p− c− w

g(1/2)
. (26)
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In equilibrium, p is set equal to a customer’s conditional valuation E[vn | q] evaluated at

q = (q̄, q̄, q̄) with q̄ = 1/2; cf. more formally Proposition 5 below. We define

w∗ = g(1/2)(p− c), (27)

noting that w∗ is below w∗b defined by (22).

Proposition 5 There exists a unique regulated equilibrium in which the optimal com-

mission fn = fR is given by (26) if w is below the threshold defined by (27), and zero

otherwise. Advice is always unbiased, so that suitability of advice is always strictly higher

than in the unregulated case, as long as firms make use of incentive pay there (as w is

below the threshold defined by (22)).

Proof. See the Appendix.

Directly interfering with firms’ (admissible) compensation thus leads to the efficient

outcome. Before we point to potential drawbacks of such interference, we show how all

our results extend to the case where customers arrive simultaneously.

6 Extension to Simultaneous Advice

6.1 Modifying the Model

So far, we have supposed that customers will arrive in a sequential order. We now con-

sider the case of simultaneous arrival. The key difference is that the advisor now observes

product suitability for customers at the same time and can likewise make both recommen-

dations simultaneously. The subsequent analysis of the unregulated outcome is kept short

as results mirror those under sequential arrival.

Advice. When recommending different products through message (m1,m2) = (A,B),

the advisor’s expected payoff equals

fA + fB + q1w + (1− q2)w + 2wl,

and when recommending the same product to both customers through message (m1,m2) =

(A,A), the payoff equals

2fA + bA + q1w + q2w + 2wl.
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Comparing these two payoffs yields the threshold

q∗ =
1

2
− 1

2w
(fA − fB + bA),

such that the advisor prefers (A,A) if q2 ≥ q∗ and (A,B) otherwise. Note that the

subscripts in m1 and m2 now correspond to the customers’ identity j = 1, 2 (unlike in

the case of sequential advice, where this is related to the order of arrival). Similarly, by

considering the two payoffs

fA + fB + (1− q1)w + q2w + 2wl

from sending (m1,m2) = (B,A) and

2fB + bB + (1− q1)w + (1− q2)w + 2wl

from (m1,m2) = (B,B), we have

q∗∗ =
1

2
− 1

2w
(fA − fB − bB),

such that the advisor prefers (B,A) if q2 ≥ q∗∗ and (B,B) otherwise. Also, the advisor

prefers (A,A) over (B,A) if q1 ≥ q∗ and (B,A) otherwise, and (A,B) over (B,B) if q1 ≥ q∗∗

and (B,B) otherwise. Considering finally the payoffs from sending (m1,m2) = (A,A) and

(m1,m2) = (B,B), we have the threshold

q2(q1) = 1− q1 −
1

2w
(2(fA − fB) + bA − bB),

such that the advisor prefers message (A,A) if q2 ≥ q2(q1) and (B,B) otherwise. The

thereby obtained thresholds (q∗, q∗∗, q2(q1)) fully characterize the advisor’s optimal recom-

mendation for any incentive scheme (fn, bn).34

Lemma 12 When customers follow his recommendation, the advisor’s optimal recommen-

dation with simultaneous arrivals is characterized as follows:

(m1,m2) =


(A,A) if (∀i = 1, 2) qi ∈ [q∗, 1] and q2 ≥ q2(q1),

(B,B) if (∀i = 1, 2) qi ∈ [0, q∗∗] and q2 ≤ q2(q1),

(A,B) if q1 ∈ [q∗∗, 1], q2 ∈ [0, q∗], and q1 ≥ q2,

(B,A) if q1 ∈ [0, q∗], q2 ∈ [q∗∗, 1], and q1 ≤ q2.
34To deal with corner solutions, define for ease of exposition the following: q∗ = 0 if w ≤ fA − fB + bA

and q∗ = 1 if w ≤ −(fA − fB + bA); q∗∗ = 0 if w ≤ fA − fB − bB and q∗∗ = 1 if w ≤ −(fA − fB − bB);
and q2(q1) = 0 if 2w(1− q1) ≤ 2(fA − fB) + bA − bB and q2(q1) = 1 if 2wq1 ≤ −(2(fA − fB) + bA − bB).
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To illustrate Lemma 12, consider again a symmetric compensation scheme (f, b). In

the case of no bonus (b = 0) and consequently q∗ = q∗∗ = 1/2, the advisor recommends

product A to customer j = 1, 2 (sends message mj = A) if qj ≥ 1/2 and B otherwise,

irrespective of the other customer’s product suitability. Figure 6 illustrates this (unbiased)

pattern of advice.

q1

q2

q∗ = q∗∗ = 1
20 1

1

m1 = B

m2 = A

m1 = A

m2 = A

m1 = B

m2 = B

m1 = A

m2 = B

q∗ = q∗∗ = 1
2

Figure 6: Pattern of advice without bonus (simultaneous arrival).

Figure 7 illustrates the case of (biased) advice with a strictly positive bonus. The

difference to the case without a bonus is represented by the shaded areas: In these cases,

the bonus again creates a wedge between the efficent outcome and the advisor’s actual

recommendations.

q1

q2

0 q∗∗ = 1
2 +

b
2wq∗ = 1

2 − b
2w

q∗ = 1
2 − b

2w

q∗∗ = 1
2 +

b
2w

1

1

m1 = B

m2 = A
m1 = A

m2 = A

m1 = A

m2 = B

m1 = B

m2 = B

1
2

1
2

Figure 7: Pattern of advice with bonus (simultaneous arrival).

30

Electronic copy available at: https://ssrn.com/abstract=3088484



Firm profits. Define by

Pr(1) = 2G(q∗) (1−G(q∗∗))

the probability that the advisor makes recommendations for different products, which is

common to both firms. Similarly, define by

PrA(2) = (1−G(q∗)) (1−G(q∗∗)) +

∫ q∗∗

q∗
(1−G(q2(q1))) g(q1)dq1

the probability that the advisor recommends product A to both customers, and by

PrB(2) = G(q∗)G(q∗∗) +

∫ q∗∗

q∗
G(q2(q1))g(q1)dq1

the probability that the advisor recommends product B to both customers. For given

compensation (fn, bn) and product price pn, for n = A,B, expected profits are written in

the same way as in the case of sequential advice, replacing probabilities Pr(1) and Prn(2)

with the ones defined above.

6.2 Analysis

For any given q∗ ∈ (0, 1/2), define now

H(q∗) =
G(q∗)

g(q∗)
+

1

2(G(q∗)g(q∗) +
∫ 1−q∗
q∗

g2(q)dq)
. (28)

We first state our result and then comment on its derivation. For brevity’s sake we omit

the specification of equilibrium prices pn = p = E[vn | q].

Proposition 6 Consider the case with simultaneously arriving customers. Generally,

bn = b = 0 is again not an equilibrium when there is positive compensation. If there

exists an equilibrium where both the commission and the bonus are strictly positive, f > 0

and b > 0, then it is again unique and characterized as follows. The advice cutoff

q∗ = 1− q∗∗ ∈ (0, 1/2) is uniquely determined by

q∗ =
1

2
− G(q∗)

g(q∗)
, (29)

the optimal bonus by

b = 2
G(q∗)

g(q∗)
w
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and the optimal commission by

f = p− c− wH(q∗).

There, as the advisor cares more about the suitability of his recommendations (higher w),

incentives become steeper, as b increases and f decreases, while the pattern of advice and

thus suitability of advice remain unchanged.

Proof. See the Appendix.

This extends the two main results from the unregulated equilibrium with sequential

arrival: (i) the optimality of non-linear incentives (Proposition 1) and (ii) the characteri-

zation of the optimal nonlinear incentive scheme (Proposition 2).

7 Concluding Remarks

To conclude, we stress two insights from our analysis, which both apply with sequential

and simultaneous arrival of customers. First, when firms want to steer advisors’ recom-

mendations, they use (volume-contingent) bonuses, which lead to biased advice: Such

incentives make the recommendation given to any given customer implicitly contingent on

other recommendations, which should not be the case from a welfare perspective. Second,

at least when the agent’s liability is not too high, imposing stricter liability does not af-

fect this bias: Product providers fully counteract the agent’s higher liability by sufficiently

stepping up the bonus. Directly interfering with firms’ incentives, namely by requiring

that these are proportional to sales rather than contingent on certain sales targets, leads

to unbiased advice, while higher liability alone may have zero impact.

A first caveat to this conclusion may be that imposing high liability would also lead

to unbiased advice, at least when this fully drives out product providers’ compensation:

When the agent becomes sufficiently unresponsive to incentives, these no longer arise in

equilibrium. While in our setting there is indeed no reason for why imposing such strict

liability may be counterproductive, in practice this should be different. For instance, a

higher liability may lead to the exit of advisors, increasing the remaining advisors’ market

power. Advisors may also face obstacles in generating revenues directly from customers.

In fact, there may be reasons for why in many markets the outcome has not converged to

one where (only) customers directly pay for advice and where inducements from product

providers are absent, albeit we must leave such extensions to future work.
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But imposing linear incentives may, in some circumstances, also be counterproductive,

and policymakers should at least be aware of such a possibility. We show in the Online

Appendix that when products differ in costs, so that efficiency requires asymmetric market

shares, prescribing linear incentives that do not allow for a bonus may backfire as the

market share of the more efficient product is inefficiently reduced. Also, the imposition

of linear incentives can reduce welfare when it lowers the advisor’s overall compensation

(per-customer), as this could stifle incentives to acquire customers in the first place. This

may be harmful particularly for products where customers typically exhibit considerable

inertia (such as pensions and savings plans). Extending the analysis to this would combine

our model of advice with one of effort provision as in Innes (1990). Stifling effort provision

would have a first-order effect as even without regulation, effort provision would not likely

be first best for various reasons, notably as with common agency there is a public good

problem in the provision of incentives. A full analysis of such an extended model is also

left to future research. Finally, note that in this paper we do not discuss the imposition

of liability on product providers. The imposition of such a derived liability is also left to

future work.
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A Appendix

Proof of Lemma 2. We derive equation (3) for any given (fn, bn) and (q̄A2 , q̄
B
2 ) ∈ (0, 1)2.

For this we can write Z(q̄A2 )−Z(q̄B2 ) as bA− 2w
∫ q̄B2
q̄A2
G(q)dq, by which the right-hand side

becomes q̄A2 +
∫ q̄B2
q̄A2
G(q)dq, thus (3). Q.E.D.

Proof of Lemma 3. We derive both (8) and (9) when q̄ = q̄1 = q̄A2 = q̄B2 ∈ (0, 1). In

doing so, we focus on firm A and first examine the effects of the marginal increases in fA

and bA on the advice cutoffs (q̄1, q̄
A
2 , q̄

B
2 ) ∈ (0, 1)3, which leads to (8) and (9) in case of

n = A. The same argument applies to the case of n = B, leading to the remaining part of

(8) and (9).

Consider a marginal increase in fA. This leads to a downward shift of the advice cutoffs

q̄A2 and q̄B2 by
∂q̄A2
∂fA

=
∂q̄B2
∂fA

= − 1

2w
,

which follows from differentiating both q̄A2 and q̄B2 with respect to fA. This further leads

to the downward shift of the advice cutoff q̄1 by

∂q̄1

∂fA
= G(q̄B2 )

∂q̄B2
∂fA

+
(
1−G(q̄A2 )

) ∂q̄A2
∂fA

=
∂q̄B2
∂fA

=
∂q̄A2
∂fA

= − 1

2w
,

where q̄1 is described by (3) due to Lemma 2 and we have used G(q̄A2 ) = G(q̄B2 ) at q̄A2 =

q̄B2 = q̄.

Next consider a marginal increase in bA. This leads to a downward shift of the advice

cutoff q̄A2 alone, while q̄B2 remains unchanged, precisely

∂q̄B2
∂bA

= 0 and
∂q̄A2
∂bA

= − 1

2w
=
∂q̄A2
∂fA

.

This further leads to a downward shift of the advice cutoff q̄1 by

∂q̄1

∂bA
= G(q̄B2 )

∂q̄B2
∂bA

+
(
1−G(q̄A2 )

) ∂q̄A2
∂bA

= (1−G(q̄))
∂q̄A2
∂fA

,

where the last equality follows from ∂q̄B2 /∂bA = 0, ∂q̄A2 /∂bA = −1/(2w), and q̄A2 = q̄.

Q.E.D.

Proof of Lemma 4. We derive (10) using the marginal shifts of advice cutoffs (q̄1, q̄
A
2 , q̄

B
2 )

given by (8) and (9) in Lemma 3. We now focus on firm A. Recall that

SA = Pr(1) + 2PrA(2)

= G(q̄1)(1−G(q̄B2 )) + (1−G(q̄1))G(q̄A2 ) + 2(1−G(q̄1))(1−G(q̄A2 )). (A.1)
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Differentiating (A.1) with respect to x ∈ {fA, bA} yields SxA = Prx(1)+2PrxA(2), which can

be written as

SxA = −
(
G(q̄B2 ) + 1−G(q̄A2 )

)
g(q̄1)

∂q̄1

∂x
−G(q̄1)g(q̄B2 )

∂q̄B2
∂x
− (1−G(q̄1)) g(q̄A2 )

∂q̄A2
∂x

= −g(q̄)

(
∂q̄1

∂x
+G(q̄)

∂q̄B2
∂x

+ (1−G(q̄))
∂q̄A2
∂x

)
=

{
−2g(q̄)

∂q̄A2
∂x
, if x = fA,

−2 (1−G(q̄)) g(q̄)
∂q̄A2
∂x
, if x = bA,

where the first equality follows from q̄1 = q̄A2 = q̄B2 = q̄ and the second from (8) and (9).

This leads to SbA = (1−G(q̄))SfA and thus corresponds to (10) in case of n = A. The same

argument applies to n = B, yielding the remaining part of (10). Q.E.D.

Proof of Lemma 6. We show first that

∂q̄1

∂fn
= 2

∂q̄1

∂bn
= 2G(q̄B2 )

∂q̄B2
∂fn

= 2
(
1−G(q̄A2 )

) ∂q̄A2
∂fn

.

We know from Lemma 3 that (∂q̄B2 /∂x, ∂q̄
A
2 /∂x) for x ∈ {fn, bn} are given by (8) and (9),

independent of (q̄1, q̄
A
2 , q̄

B
2 ) ∈ (0, 1)3.

As in the proof of Lemma 3, we focus on firm A and consider a marginal shift of the

advice cutoff q̄1. Differentiating q̄1, defined by (3), with respect to fA and evaluating it at

q̄A2 = 1− q̄B2 yields

∂q̄1

∂fA
= G(q̄B2 )

∂q̄B2
∂fA

+
(
1−G(q̄A2 )

) ∂q̄A2
∂fA

= 2G(q̄B2 )
∂q̄B2
∂fA

= 2
(
1−G(q̄A2 )

) ∂q̄A2
∂fA

,

where the second and third equalities follow from both G(q̄A2 ) = 1 − G(q̄B2 ) by symmetry

of G and ∂q̄A2 /∂fA = ∂q̄B2 /∂fA by (8). Similarly,

∂q̄1

∂bA
= G(q̄B2 )

∂q̄B2
∂bA

+
(
1−G(q̄A2 )

) ∂q̄A2
∂bA

=
(
1−G(q̄A2 )

) ∂q̄A2
∂fA

= G(q̄B2 )
∂q̄B2
∂fA

,

where the second equality follows from both ∂q̄B2 /∂bA = 0 and ∂q̄A2 /∂bA = ∂q̄A2 /∂fA

by (9) and the third from both G(q̄B2 ) = 1 − G(q̄A2 ) and ∂q̄A2 /∂fA = ∂q̄B2 /∂fA by (8).

Taken together, at q̄A2 = 1 − q̄B2 we have ∂q̄1/∂fA = 2(∂q̄1/∂bA) = 2G(q̄B2 )(∂q̄B2 /∂fA) =

2(1 − G(q̄A2 ))(∂q̄A2 /∂fA), which completes the argument for n = A. The same argument

applies to n = B.

Next, we derive the derivatives of sales. Considering again first firm A, SxA = Prx(1) +
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2PrxA(2) for x ∈ {fA, bA} can be written as

SxA = −
(
G(q̄B2 ) + 1−G(q̄A2 )

)
g(q̄1)

∂q̄1

∂x
−G(q̄1)g(q̄B2 )

∂q̄B2
∂x
− (1−G(q̄1)) g(q̄A2 )

∂q̄A2
∂x

= −2
(
1−G(q̄A2 )

)
g(1/2)

∂q̄1

∂x
− 1

2
g(q̄A2 )

(
∂q̄B2
∂x

+
∂q̄A2
∂x

)

=

−
(

4
(
1−G(q̄A2 )

)2
g(1/2) + g(q̄A2 )

)
∂q̄A2
∂fA

, if x = fA,

−1
2

(
4
(
1−G(q̄A2 )

)2
g(1/2) + g(q̄A2 )

)
∂q̄A2
∂fA

, if x = bA,

where the first equality follows from q̄1 = 1/2, q̄A2 = 1 − q̄B2 , and symmetry of G around

1/2 with g(q) = g(1− q) for any given q ∈ [0, 1] and the second from (8) and (9), by which

∂q̄B2
∂fA

=
∂q̄A2
∂fA

=
∂q̄A2
∂bA

,
∂q̄B2
∂bA

= 0, and
∂q̄1

∂fA
= 2

∂q̄1

∂bA
= 2(1−G(q̄A2 ))

∂q̄A2
∂fA

. (A.2)

This leads to SfA = 2SbA. Similarly, we can consider firm B and derive SfB = 2SbB. Taken

together, we have thus shown that, using symmetry,

Sf = 2Sb. (A.3)

The final step is now to consider again marginal adjustments (dfn, dbn) satisfying (11),

so that total sales Sn remain unchanged, i.e., with symmetry Sfdf+Sbdb = 0. The assertion

follows then immediately from substitution. Q.E.D.

Proof of Lemma 7. Consider firm A. Using (A.2) at q̄1 = 1/2 and q̄A2 = 1− q̄B2 , we can

derive Prx(1) and PrxA(2) = Prx(2) for x ∈ {fA, bA} and s = 1, 2 as follows:

Prx(1) =
∂q̄1

∂x
g(q̄1)

(
1−G(q̄B2 )−G(q̄A2 )

)
− ∂q̄B2

∂x
g(q̄B2 )G(q̄1) +

∂q̄A2
∂x

g(q̄A2 )(1−G(q̄1))

=

{
0, if x = fA,

−g(q̄A2 )

4w
, if x = bA,

where the second equality follows from (i) 1 − G(q̄B2 ) = G(q̄A2 ) and g(q̄B2 ) = g(q̄A2 ) as

q̄A2 = 1− q̄B2 and G is symmetric around 1/2 and (ii) ∂q̄A2 /∂fA = ∂q̄B2 /∂fA = ∂q̄A2 /∂bA and

∂q̄B2 /∂bA = 0 by (8) and (9) with G(q̄1) = G(1/2) = 1/2;

PrxA(2) = −∂q̄1

∂x
g(q̄1)

(
1−G(q̄A2 )

)
− ∂q̄A2

∂x
g(q̄A2 )(1−G(q̄1))

=


1

4w

(
4g(1/2)

(
1−G(q̄A2 )

)2
+ g(q̄A2 )

)
, if x = fA,

1
4w

(
2g(1/2)

(
1−G(q̄A2 )

)2
+ g(q̄A2 )

)
, if x = bA,
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where the second equality follows from (i) ∂q̄A2 /∂fA = ∂q̄A2 /∂bA = −1/(2w) and ∂q̄1/∂fA =

2(∂q̄1/∂bA) = 2(1−G(q̄A2 ))(∂q̄A2 /∂fA) by (8) and (9) and (ii) G(q̄1) = G(1/2) = 1/2.

Similarly, we can derive the derivatives for firm B with respect to fB and bB, and then

show that PrxA(s) = PrxB(s) = Prx(s) holds for x ∈ {f, b} and s = 1, 2. Thus, we have

Prf (1) = 0 > Prb(1) = −g(q̄A2 )

4w
= −g(q̄B2 )

4w

and

Prf (1) + 2Prf (2) = 2(Prb(1) + 2Prb(2))

= − 1

2w

(
4g(1/2)

(
1−G(q̄A2 )

)2
+ g(q̄A2 )

)
= − 1

2w

(
4g(1/2)

(
G(q̄B2 )

)2
+ g(q̄B2 )

)
,

by which we can obtain

Prf (2)− 2Prb(2) = Prb(1),

leading to (16). Q.E.D.

Proof of Lemma 8. We show the uniqueness of the advice cutoff q̄A2 = 1/2− b/(2w) ∈
(0, 1/2) determined by (18). The left-hand-side of the equation (18) is a bijective (or

one-to-one) function of q̄A2 ∈ (0, 1/2) and converges to 1/2 in the limit as q̄A2 approaches

1/2 from below, while the right-hand-side of (18) is decreasing in q̄A2 due to the hazard

rate condition (1) and converges to 1/2 in the limit as q̄A2 goes to zero from above. Taken

together, there must be a fixed point q̄A2 ∈ (0, 1/2) such that the left-hand- and right-hand

sides intersect only once, thus equation (18) holds for a unique value q̄A2 ∈ (0, 1/2). Q.E.D.

Proof of Lemma 9. We derive the optimal commission given by (20). Recall that, as

shown in the proof of Lemma 7, Prf (1) = 0 and

Prf (2) =
1

4w

(
4g(1/2)

(
1−G(q̄A2 )

)2
+ g(q̄A2 )

)
. (A.4)

With Pr(1) + 2Pr(2) = 1, the first-order condition with respect to fA, evaluated at a

symmetric equilibrium, can now be transformed stepwise as follows:

f = p− c− 1

2

(
b+

1

Prf (2)

)
= p− c− 1

2

(
4w

G(q̄A2 )

g(q̄A2 )
+

4w

4g(1/2) (1−G(q̄A2 ))
2

+ g(q̄A2 )

)

= p− c− 2w

(
G(q̄A2 )

g(q̄A2 )
+

1

4g(1/2) (1−G(q̄A2 ))
2

+ g(q̄A2 )

)
= p− c− 2wH(q̄A2 ).
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Q.E.D.

Proof of Lemma 10. We can derive Prb(1) = −g(q̄A2 )/(4w) and Prb(2) = (1/(4w))(2g(1/2)(1−
G(q̄A2 ))2 + g(q̄A2 )), so that Sb = Prb(1) + 2Prb(2) = (1/(4w))(4g(1/2)(1−G(q̄A2 ))2 + g(q̄A2 )).

Here, Pr(2) = (1/2)(1−G(q̄A2 )). With this we can then substitute to obtain

b =

(
4g(1/2)

(
1−G(q̄A2 )

)2
+ g(q̄A2 )

)
(p− c)− 2w

(
1−G(q̄A2 )

)
2g(1/2) (1−G(q̄A2 ))

2
+ g(q̄A2 )

, (A.5)

where q̄A2 = 1/2 − b/(2w) = 1 − q̄B2 ∈ (0, 1/2]. Suppose now that w ∈ (w∗f , w
∗
b ) and that

the optimal bonus satisfies (A.5). Firm A’s marginal profit with respect to fA, evaluated

at fA = 0, is written as

Sf (p− c)− Prf (2)b− Pr(1)− 2Pr(2)

= 2Sb(p− c)−
(
Prb(1) + 2Prb(2)

)
b− Pr(1)− 2Pr(2)

= 2
(
Sb(p− c)− Prb(2)b

)
− Prb(1)b− Pr(1)− 2Pr(2)

= 2Pr(2)− Prb(1)b− Pr(1)− 2Pr(2) = −Prb(1)b− Pr(1) < 0,

where the first equality follows from Sf = Prf (1) + 2Prf (2) = 2Sb with Prf (1) = 0, and

the third one the first-order-condition with respect to bA. Similarly, if w ≥ w∗b , we can

show that the marginal profit with respect to fA, evaluated at (fn, bn) = (0, 0) for both

n = A,B, is negative as

Sf (p− c)− Pr(1)− 2Pr(2)

= 2Sb(p− c)− Pr(1)− 2Pr(2) = 2
(
Sb(p− c)− Pr(2)

)
− Pr(1)

< −Pr(1) < 0,

where the first inequality follows from the fact that the marginal profit with respect to

bA is negative too. At both cutoffs w∗f and w∗b the assertion follows as we assume strict

quasiconcavity of firm profits in the two instruments. Q.E.D.

Proof of Proposition 3. Take first the case with w < w∗f . If there exists a symmetric

equilibrium with f > 0 and b > 0, we know from Lemma 9 that the equilbrium must

be unique: Advice cutoffs are uniquely determined and do not depend on p, the price

is in turn uniquely determined by these cutoffs, and finally the level of commissions are

determined by p. By construction of w∗f , there is also no equilibrium where f = 0; cf. the

proof of Lemma 10. From Lemma 10 follows also the unique characterzation when w ≥ w∗b
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and that in the intermediate range, we must have f = 0 and b > 0. As noted in the main

text, what complicates the characterization in this case is that as b changes with w, so

do the advice cutoffs and thus the price (that is, customers’ conditional valuation). Still,

that the bias must strictly decrease as w increases, follows from the following argument

to a contradiction. For this we first rearrange the respective first-order condition for b to

obtain, at a symmetric equilibrium,(
Prb(1) + Prb(2)

)
(p− c) + Prb(2)(p− c− b)− Pr(2) = 0. (A.6)

We now evaluate this at a given (second-customer) cutoff q̄A2 , which, independently of w,

also fixes q̄B2 and p, as well as obviously Pr(2). Now suppose that (A.6) holds for given

w and corresponding equilibrium b. We now consider a strictly lower w′. Evaluating this

at the same q̄A2 , note that, first, this requires b′ < b and that, second, both Prb(1)+Prb(2)

and Prb(2) increase.35 Invoking strict quasiconcavity of the profit function, this implies

that at w′, (A.6) is striclty positive when evaluated at b′ so that the bias would remain

unchanged. The claim follows then by invoking again strict quasiconcavity of the profit

function (together with the first-order condition). Q.E.D.

Derivations in the Case of a Uniform Distribution. We derive the optimal incentive

scheme (f, b) and its associated thresholds (w∗f , w
∗
b ) when G is the uniform distribution.

By Proposition 2, we can derive a unique advice cutoff q̄A2 = 1− q̄B2 ∈ (0, 1/2) from (18),

which yields

q̄A2 =
1

2
− 2q̄A2 ,

that is, q̄A2 = 1/6 and q̄B2 = 1− q̄A2 = 5/6. Applying q̄A2 = 1/6 to (17) leads to the optimal

bonus given by

b =
2

3
w.

To pin down the optimal commission, we derive the function H(q̄A2 ) defined by (19). With

q̄A2 = 1/6, this reduces to

H(q̄A2 ) = q̄A2 +
1

4(1− q̄A2 )2 + 1
=

22

51
,

by which the optimal commission defined by (20) simplifies to

f = p− c− 44

51
w.

35Note that Pr(1)+Pr(2) is the likelihood that a given firm sells at least one product. The respective
derivative is evaluated at a symmetric choice bn = b, but it holds constant the competitor’s choice b (as
otherwise it would remain unchanged).
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As q = (q̄1, q̄
A
2 , q̄

B
2 ) = (1/2, 1/6, 5/6), we have

E[vA | q] =
1

2

[
E[vA | q̄1] +G(q̄1)E[vA | q̄B2 ] + (1−G(q̄1))E[vA | q̄A2 ]

]
=

1

2

[
2

(
3vh + vl

8

)
+

1

2

(
3vh + vl

2

)]
=

3vh + vl
4

.

Thus, in the case of the uniform distribution the equilibrium price is constant and given

by

p =
3vh + vl

4
.

The optimal commission is positive if w is below the threshold defined by (21), which is

simplified to

w∗f =
p− c

2H(q̄A2 )
=

51

44
(p− c) =

51

176
(3vh + vl − 4c).

Next, we consider the corner solution in which w is both above w∗f and below w∗b where

now

w∗b = 2(p− c) =
1

2
(3vh + vl − 4c).

In this case, the optimal bonus is given by (A.5), which can be written as

b =

(
4(1− q̄A2 )2 + 1

)
(p− c)− 2w(1− q̄A2 )

2(1− q̄A2 )2 + 1
.

We have b = w(1− 2q̄A2 ). Applying this to the optimal bonus, when f = 0 but still b > 0,

we can derive an equilibrium advice cutoff as the solution to the equation

w
(
2(1− q̄A2 )2 + 1

)
(1− 2q̄A2 ) =

(
4(1− q̄A2 )2 + 1

)
(p− c)− 2w(1− q̄A2 ).

Q.E.D.

Proof of Proposition 4. Consider a normal distribution with mean µ and variance

σ > 0. Define the standard normal distribution and its density function by

Φ(x) =
1√
2π

∫ x

−∞
e−

1
2
t2dt

and

φ(x) =
1√
2π
e−

1
2
x2 ,

respectively. With these functions, we write a truncated normal distribution function G

with support [0, 1] by

G(q) =
Φ( q−µ

σ
)− Φ(−µ

σ
)

Φ(1−µ
σ

)− Φ(−µ
σ

)
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and its density function g by

g(q) =
φ( q−µ

σ
)

σ
(
Φ(1−µ

σ
)− Φ(−µ

σ
)
) ,

where the mean of G(q) is unchanged at µ = 1/2 and and the variance is given by

σ2

1− µφ(−µ
σ

) + (1− µ)φ(1−µ
σ

)

σ
(
Φ(1−µ

σ
)− Φ(−µ

σ
)
) −

(
φ(−µ

σ
)− φ(1−µ

σ
)

Φ(1−µ
σ

)− Φ( −µ
σ

)

)2
 .

We first show that the inverse of the reverse hazard rate G(q)/g(q) is increasing in σ.

We can write G(q)/g(q) as

G(q)

g(q)
= σ

Φ( q−µ
σ

)− Φ(−µ
σ

)

φ( q−µ
σ

)

= σ

(∫ q−µ
σ

−µ
σ

e−
1
2
x2dx

)(
e

1
2( q−µσ )

2)
= σ

(∫ q−µ
σ

−µ
σ

e
− 1

2

(
x2−( q−µσ )

2
)
dx

)

= σ

(∫ − 1/2−q
σ

− 1/2
σ

e−
1

2σ2
(xσ+ 1

2
−q)(xσ− 1

2
+q)dx

)

= σ

(∫ 1
2
−q

1
2

e−
1

2σ2
(y− 1

2
+q)(y+ 1

2
−q)
(
− 1

σ

)
dy

)

=

∫ 1
2

1
2
−q
e−

1
2σ2

(y− 1
2

+q)(y+ 1
2
−q)dy,

where the fourth equation is evaluated at µ = 1/2, the fifth one follows from changing

variable x to y = −σx, and the integrand in the last equation

h(y | σ) ≡ e−
1

2σ2
(y− 1

2
+q)(y+ 1

2
−q)

is increasing in σ for any given y ∈ (1
2
−q, 1/2] if q ∈ (0, 1/2) as (y−1/2+q)(y+1/2−q) > 0.

Note that h(y | σ) converges to zero in the limit as σ goes to zero from above. Thus, we

have
G(q)

g(q)
=

∫ 1
2

1
2
−q
h(y | σ)dy,

which is increasing in σ for any given q ∈ (0, 1/2). Using the fact that G(q)/g(q) increases

with the size of σ, we now show that in equilibrium as σ increases, the advice cutoff
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q̄A2 = 1− q̄B2 decreases while the optimal bonus increases. Since q̄A2 ∈ (0, 1/2) is determined

in equilibrium by equation (18), it decreases as G(q̄A2 )/g(q̄A2 ) increases proportional to σ.

Since the optimal bonus can be written as b/(2w) = 1/2 − q̄A2 with (fn, bn) = (f, b) and

thus decreases with q̄A2 , b is increasing in σ. Q.E.D.

Proof of Proposition 5. It remains to show uniqueness of the regulated equilibrium and

its existence. Consider first the case where w is below the threshold of w∗ defined by (27).

Note that w∗b = 2w∗, where p = E[vn | 1/2], and w∗ is below w∗b . In equilibrium, customers

must hold rational beliefs with f̂n = fR. Together with the pattern of advice defined

by (25), this determines the equilibrium advice cutoffs q̂ = q = (q̄, q̄, q̄) with q̄ = 1/2,

irrespective of the size of w, as well as the price pn = E[vn | q̂] = E[vn | q], which is

common for both n = A,B due to q̄ = 1/2 and symmetry of vA(q) = vB(1 − q) for any

given q ∈ [0, 1], and which we denote by p. Firms set their optimal commissions fn = fR

by (26). These tuple of (fR,q, p) with customers’ rational beliefs of f̂n = fR and q̂ = q

constitutes a unique regulated equilibrium as long as w < w∗, otherwise (0,q, p) would be

a unique equilibrium as a corner solution.

The existence of the equilibrium for any given w > 0 follows from assumption (24), by

which the equilibrium price evaluated at q = (1/2, 1/2, 1/2) exceeds marginal cost c and

therefore selling the product is profitable for the firm with equilibrium price p = E[vn | 1/2]

as

E[vn | 1/2] =

∫ 1

1/2

vA(q)
g(q)

1−G(1/2)
dq =

∫ 1/2

0

vB(q)
g(q)

G(1/2)
dq > c.

Q.E.D.

Proof of Proposition 6. We will provide a series of lemmas to extend both the optimality

of nonlinear incentives and the characterization of the optimal nonlinear incentive scheme

to the case with simultaneous advice. Suppose that firms set bA = bB = 0. In this case,

advice cutoffs (q∗, q∗∗) should be equal, which we denote by q̄ ∈ (0, 1).36 Also, advice cutoff

q̄2(q1) reduces to

q̄2(q1) = 1− q1 −
1

w
(fA − fB).

Consider now firm n’s marginal profits with respect to the commission and the bonus

xn ∈ {fn, bn}. We focus on firm A and first examine the effects of the marginal increases

in fA and bA on the advice cutoffs (q∗, q∗∗, q̄2(q1)) ∈ (0, 1)2.

36The advice cutoff q̄ should lie in the open interval (0, 1), as otherwise the advisor would always
recommend a particular firm’s product to customers, which contradicts assumption (2).
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Lemma 13 For any given (q∗, q∗∗, q̄2(q1)) ∈ (0, 1)2,

∂q∗

∂fn
=
∂q∗∗

∂fn
=

1

2

∂q̄2(q1)

∂fn
=

{
− 1

2w
, if n = A,

1
2w
, if n = B,

(A.7)

and (
∂q∗

∂bn
,
∂q∗∗

∂bn
,
∂q̄2(q1)

∂bn

)
=

{(
− 1

2w
, 0,− 1

2w

)
, if n = A,(

0, 1
2w
, 1

2w

)
, if n = B.

(A.8)

With (A.7) and (A.8), consider now a marginal increase in sales, Sxn = Prx(1)+2Prxn(2),

with x ∈ {fn, bn}.

Lemma 14 At q̄ = q∗ = q∗∗ ∈ (0, 1), equation (10) holds true.

Proof. We derive (10) using (A.7) and (A.8) in the case of bn = b = 0. For now we

restrict attention to firm A. By (A.7) and (A.8), SxA = Prx(1) + 2PrxA(2) for x ∈ {fA, bA}
can be written as

SxA = 2

[
− (1−G(q̄2(q∗))) g(q∗)∂q

∗

∂x
−G(q̄2(q∗∗))g(q∗∗)∂q

∗∗

∂x

−
∫ q∗∗
q∗

g(q̄2(q1))g(q1)dq1
∂q̄2(q1)
∂x

]

= −2g(q̄)

(
(1−G(q̄2(q̄)))

∂q∗

∂x
+G(q̄2(q̄))

∂q∗∗

∂x

)
=

{
−2g(q̄) ∂q

∗

∂fA
, if x = fA,

−2 (1−G(q̄)) g(q̄) ∂q
∗

∂fA
, if x = bA,

where the first equality follows from q̄ = q∗ = q∗∗ and the second from (i) ∂q∗/∂fA =

∂q∗∗/∂fA due to (A.7), (ii) ∂q∗/∂bA = ∂q∗/∂fA and ∂q∗∗/∂bA = 0 due to (A.8), and (iii)

q̄2(q̄) = q̄. Thus, we obtain equation (10) in case of n = A. The same argument applies to

n = B, leading to the remaining part of (10). Q.E.D.

Consider now marginal adjustments (dfn, dbn) ∈ R2 such that total sales remain un-

changed, as in (11). Applying (10) to (11), we have:

Lemma 15 For n = A,B, consider marginal adjustments (dfn, dbn) ∈ R2 as defined by

(11). If bn = b = 0, (dfn, dbn) must satisfy equation (12).

We next examine the total derivative of πn with respect to the marginal adjustments

(dfn, dbn) such that total sales remain unchanged as (12) holds. Taking bn = b = 0 as

given, the total derivative can be written as (13), which gives rise to:
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Proposition 7 Nonlinear incentives are part of any equilibrium, i.e., there is no equilib-

rium in which bn = b = 0.

Suppose that firms set their compensation (fn, bn) = (f, b) with 0 < b < w. Under

symmetric compensation (f, b), the advice cutoffs (q∗, q∗∗) satisfy q∗ = 1 − q∗∗ ∈ (0, 1/2),

and so

PrA(2) = (1−G(q∗))(1−G(q∗∗)) +

∫ q∗∗

q∗
(1−G(q̄2(q1)))g(q1)dq1

= G(q∗∗)G(q∗) +

∫ q∗∗

q∗
G(q1)g(q1)dq1

= G(q∗∗)G(q∗)− G(q1) (1−G(q1))|q∗∗q∗ +

∫ q∗∗

q∗
(1−G(q1)) g(q1)dq1

= G(q∗∗)G(q∗) +

∫ q∗∗

q∗
G(q̄2(q1))g(q1)dq1 = PrB(2)

where the first equality follows from the definition of PrA(2), the second from q̄2(q1) = 1−q1

at (f, b) and G(q̄2(q1)) = 1 − G(q1) with symmetry of G, the third from integration by

parts, the fourth from G(q1) (1−G(q1)) |q∗∗q∗ = 0 and G(q̄2(q1)) = 1 − G(q1), and the last

from the definition of PrB(2). Since PrA(2) = PrB(2), we simply denote them by Pr(2).

Furthermore, using ∫ q∗∗

q∗
G(q1)g(q1)dq1 =

1

2

(
(G(q∗∗))2 − (G(q∗))2

)
,

we can rewrite

Pr(2) =
1

2

(
1− 2(G(q∗))2

)
.

Lemma 16 At q∗ = 1− q∗∗ ∈ (0, 1/2), equation (A.3) holds true.

Proof. We derive (A.3) using the derivatives of (q∗, q∗∗) given by (A.7) and (A.8) when

(fn, bn) = (f, b). For now we restrict attention to firm A. With q∗ = 1 − q∗∗, SxA =

Prx(1) + 2PrxA(2) for x ∈ {fA, bA} can be written as

2

[
− (1−G(q̄2(q∗))) g(q∗)∂q

∗

∂x
−G(q̄2(q∗∗))g(q∗∗)∂q

∗∗

∂x

−
∫ q∗∗
q∗

g(q̄2(q1))g(q1)dq1
∂q̄2(q1)
∂x

]

= −2

(
g(q∗)G(q∗)

(
∂q∗

∂x
+
∂q∗∗

∂x

)
+

∫ q∗∗

q∗
(g(q1))2dq1

∂q̄2(q1)

∂x

)

=

−4 ∂q∗

∂fA

(
g(q∗)G(q∗) +

∫ q∗∗
q∗

(g(q1))2dq1

)
, if x = fA,

−2 ∂q∗

∂fA

(
g(q∗)G(q∗) +

∫ q∗∗
q∗

(g(q1))2dq1

)
, if x = bA,
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where the first equality follows from q∗ = 1 − q∗∗, q̄2(q1) = 1 − q1, and symmetry of G

around 1/2 with g(q) = g(1 − q) for any given q ∈ [0, 1] and the second from both (i)

∂q∗/∂fA = ∂q∗∗/∂fA = (1/2)(∂q̄2(q1)/∂fA) and (ii) ∂q∗/∂bA = ∂q∗/∂fA, ∂q∗∗/∂bA = 0,

and ∂q̄2(q1)/∂bA = ∂q∗/∂fA. This leads to SfA = 2SbA. By symmetry, SfB = 2SbB holds true.

Thus, we have derived (A.3). Q.E.D.

Consider now marginal adjustments (dfn, dbn) defined by (11) such that total sales

remain unchanged. As we have symemtric incentive schemes (f, b) with 0 < b < w,

we omit subscript n = A,B. As in Lemma 6 we then have df = −(1/2)db. We use

next that Pr(1) = 2G(q∗)(1 − G(q∗∗)) = 2(G(q∗))2, Pr(2) = (1/2)(1 − Pr(1)), and S =

Pr(1) + 2Pr(2) = 1 by symmetry, and

Prf (2)− 2Prb(2) = −G(q∗)
g(q∗)

w
.

Applying this, next to df = −(1/2)db, to the total derivative of π, we finally have that

dπ =
G(q∗)

2

(
−g(q∗)

w
b+ 2G(q∗)

)
db.

Lemma 17 For any given q∗ ∈ (0, 1/2), the optimal bonus is uniquely determined by

b = 2
G(q∗)

g(q∗)
w. (A.9)

Proof. We focus on firm A. Using (A.7) and (A.8) with q∗ = 1 − q∗∗, we derive Prx(1)

and Prxn(2) = Prx(2) for x ∈ {fA, bA} as follows:

Prx(1) = 2

(
g(q∗) (1−G(q∗∗))

∂q∗

∂x
− g(q∗∗)G(q∗)

∂q∗∗

∂x

)
=

{
2g(q∗)G(q∗)

(
∂q∗

∂fA
− ∂q∗∗

∂fA

)
= 0, if x = fA,

2g(q∗)G(q∗) ∂q
∗

∂bA
= −G(q∗)g(q

∗)
w
, if x = bA,

where the second equality follows from (i) 1−G(q∗∗) = G(q∗), (ii) g(q∗) = g(q∗∗), and (iii)
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∂q∗/∂fA = ∂q∗∗/∂fA = ∂q∗/∂bA = −1/(2w) and ∂q∗∗/∂bA = 0 due to (A.7) and (A.8);

PrxA(2) = − [(1−G(q∗∗)) + (1−G(q̄2(q∗)))] g(q∗)
∂q∗

∂x

− [(1−G(q∗∗)) + (1−G(q̄2(q∗∗))] g(q∗∗)
∂q∗∗

∂x

−
∫ q∗∗

q∗
g(q̄2(q1))g(q1)dq1

∂q̄2(q1)

∂x

= −
(

2G(q∗)g(q∗)
∂q∗

∂x
+

∫ q∗∗

q∗
(g(q1))2dq1

∂q̄2(q1)

∂x

)

=

−2 ∂q∗

∂fA

(
G(q∗)g(q∗) +

∫ q∗∗
q∗

(g(q1))2dq1

)
, if x = fA,

− ∂q∗

∂fA

(
2G(q∗)g(q∗) +

∫ q∗∗
q∗

(g(q1))2dq1

)
, if x = bA,

where the second equality follows from q∗ = 1 − q∗∗, q̄2(q1) = 1 − q1, and symmetry of

G with g(q) = g(1 − q) for any given q ∈ [0, 1] and the third from both (i) ∂q∗/∂fA =

∂q∗∗/∂fA = (1/2)(∂q̄2(q1)/∂fA) due to (A.7) and (ii) ∂q∗/∂bA = ∂q∗/∂fA, ∂q∗∗/∂bA = 0,

and ∂q̄2(q1)/∂bA = ∂q∗/∂fA due to (A.8).

Similarly, we can derive the same derivatives for firm B with respect to fB and bB, and

then PrxA(s) = PrxB(s) = Prx(s) for any given x ∈ {f, g} and s = 1, 2. Thus, we have

Prf (1) = 0 > Prb(1) = −G(q∗)
g(q∗)

w

and

Prf (1) + 2Prf (2) = 2(Prb(1) + 2Prb(2)) =
2

w

(
G(q∗)g(q∗) +

∫ q∗∗

q∗
(g(q1))2dq1

)
,

by which Prf (2)− 2Prb(2) = Prb(1), leading to (A.9). Q.E.D.

Combining condition (A.9) with q∗ = 1/2 − b/(2w) under symmetric compensation

(f, b), as in the proof of Lemma 8, we can pin down q∗ as follows:

Lemma 18 The advice cutoff q∗ = 1− q∗∗ ∈ (0, 1/2) is uniquely determined by

q∗ =
1

2
− G(q∗)

g(q∗)
.

Since Prf (1) = 0 as shown in the proof of Lemma 17 and Pr(1) + 2Pr(2) = 1 at a

symmetric equilibrium, we use also that b is given by (A.9) and that

Prf (2) =
1

w

(
G(q∗)g(q∗) +

∫ q∗∗

q∗
(g(q1))2dq1

)
.

Define H(q∗) by (28). Applying both (A.9) and Prf (2), together with H(q∗), determines

the optimal commission.
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Lemma 19 At a symmetric equilibrium with q∗ = 1 − q∗∗ ∈ (0, 1/2) determined by q∗ =

1/2−G(q∗)/g(q∗), the optimal commission is given by

f = p− c− wH(q∗), (A.10)

where H(q∗) is defined by (28).

Proof. We derive the optimal commission given by (20). From the proof of Lemma 7,

we know that Prf (2) = (1/w)(G(q∗)g(q∗) +
∫ q∗∗
q∗

(g(q1))2dq1). Applying (A.9) and Prf (2),

together with H(q∗) defined by (28), yields

f = p− c− 1

2

(
2w

G(q∗)

g(q∗)
+

w

G(q∗)g(q∗) +
∫ q∗∗
q∗

(g(q1))2dq1

)

= p− c− w
(
G(q∗)

g(q∗)
+

1

2(G(q∗)g(q∗) +
∫ q∗∗
q∗

(g(q1))2dq1)

)
= p− c− wH(q∗),

which leads to (A.10). Q.E.D.

One can easily observe that the optimal commission (A.10) is positive as long as w is

below a certain level, otherwise equals zero. Denote by w∗f the respective threshold, which

is given by

w∗f =
p− c
H(q∗)

(A.11)

where q∗ is uniquely determined by (29). We can now characterize the optimal nonlinear

incentive scheme in an interior solution.

Proposition 8 Suppose that prices are symmetric and the advisor’s concern level w is

below the threshold w∗f defined by (A.11). Then, there are unique advice cutoffs (q∗, q∗∗)

that are independent of w. Precisely, q∗ = 1 − q∗∗ is determined by (29), and (f, b) solve

(A.10) and (A.9), respectively. The commission f decreases with the size of w while the

bonus b increases.
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