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In panel experiments, we randomly assign units to different interventions, mea-
suring their outcomes, and repeating the procedure in several periods. Using the
potential outcomes framework, we define finite population dynamic causal ef-
fects that capture the relative effectiveness of alternative treatment paths. For a
rich class of dynamic causal effects, we provide a nonparametric estimator that
is unbiased over the randomization distribution and derive its finite population
limiting distribution as either the sample size or the duration of the experiment
increases. We develop two methods for inference: a conservative test for weak
null hypotheses and an exact randomization test for sharp null hypotheses. We
further analyze the finite population probability limit of linear fixed effects esti-
mators. These commonly-used estimators do not recover a causally interpretable
estimand if there are dynamic causal effects and serial correlation in the assign-
ments, highlighting the value of our proposed estimator.

Keywords. Panel data, dynamic causal effects, potential outcomes, finite popu-
lation, nonparametric.

JEL classification. C14, C21, C23.

1. Introduction

Panel experiments, where we randomly assign units to different interventions, measur-
ing their response, and repeating the procedure in several periods, form the basis of
causal inference in many areas of biostatistics (e.g., Murphy et al. (2001)), epidemiol-
ogy (e.g., Robins (1986)), and psychology (e.g., Lillie et al. (2011)). In experimental eco-

Iavor Bojinov: ibojinov@hbs.edu
Ashesh Rambachan: asheshr@g.harvard.edu
Neil Shephard: shephard@fas.harvard.edu
We thank Isaiah Andrews, Robert Minton, Karthik Rajkumar, and Jonathan Roth for helpful discussions.
We thank two anonymous referees for valuable and constructive comments. We especially thank James An-
dreoni and Larry Samuelson for kindly sharing their data. Finally, we are grateful to Gary Chamberlain for
early conversations about this project. Any remaining errors are our own. Rambachan gratefully acknowl-
edges financial support from the NSF Graduate Research Fellowship under Grant DGE1745303.

© 2021 The Authors. Licensed under the Creative Commons Attribution-NonCommercial License 4.0.
Available at http://qeconomics.org. https://doi.org/10.3982/QE1744

http://qeconomics.org/
mailto:ibojinov@hbs.edu
mailto:asheshr@g.harvard.edu
mailto:shephard@fas.harvard.edu
https://creativecommons.org/licenses/by-nc/4.0/legalcode
http://qeconomics.org
https://doi.org/10.3982/QE1744
http://crossmark.crossref.org/dialog/?doi=10.3982%2FQE1744&domain=pdf&date_stamp=2021-11-11


1172 Bojinov, Rambachan, and Shephard Quantitative Economics 12 (2021)

nomics, many authors recognize the benefits of panel-based experiments, for instance,
Bellemare, Bissonnette, and Kroger (2014, 2016) highlighted the potentially large gains
in power and Czibor, Jimenez-Gomez, and List (2019) emphasized that panel-based ex-
periments may help uncover heterogeneity across units. Despite these benefits, panel
experiments are used infrequently in part due to the lack of a formal statistical frame-
work and concerns about how the impact of past treatments on subsequent outcomes
may induce biases in conventional estimators (Charness, Gneezy, and Kuhn (2012)). In
practice, authors typically assume away this complication by requiring that the out-
comes only depend on contemporaneous treatment, what is often called the “no car-
ryover assumption” (e.g., Abadie et al. (2017), Athey and Imbens (2018), Athey et al.
(2018), Imai and Kim (2019), Arkhangelsky and Imbens (2019), Imai and Kim (2020), de
Chaisemartin and D’Haultfoeuille (2020)). Even when researchers allow for carryover ef-
fects, they commonly focus on incorporating the uncertainty due to sampling units from
some superpopulation as opposed to the design-based uncertainty, which arises due to
the random assignment.1

In this paper, we tackle these challenges by defining a variety of new panel-based dy-
namic causal estimands without evoking restrictions on the extent to which treatments
can impact subsequent outcomes. Our approach builds on the potential outcomes for-
mulation of causal inference and takes a purely design-based perspective on uncer-
tainty, allowing us to be agnostic to the outcomes model (Neyman (1923), Kempthorne
(1955), Cox (1958), Rubin (1974)). Our main estimands are various averages of lag-p dy-
namic causal effects, which capture how changes in the assignments affect outcomes af-
ter p periods. We provide nonparametric estimators that are unbiased over the random-
ization distribution induced by the random design. By exploiting the underlying Mar-
tingale property of our unbiased estimators, we derive their finite population asymp-
totic distribution as either the number of sample periods, experimental units, or both
increases. This is a new technique for proving finite population central limit theorems,
which may be broadly useful and of independent interest to researchers.

We develop two methods for conducting nonparametric inference on these dynamic
causal effects. The first uses the limiting distribution to perform conservative tests on
weak null hypotheses of no average dynamic causal effects. The second provides exact
randomization tests for sharp null hypotheses of no dynamic causal effects. We then
highlight the usefulness of our framework by deriving the finite population probability
limit of commonly used linear estimation strategies, such as the unit fixed effects esti-
mator and the two-way fixed effects estimator. Such estimators are biased for a contem-
poraneous causal effect whenever there exists carryover effects and serial correlation
in the assignment mechanism, underscoring the value of our proposed nonparametric
estimator.

Finally, we illustrate our theoretical results in a simulation study and apply our
framework to reanalyze a panel-based experiment. The simulation study illustrates our
finite population central limit theorems under a variety of assumptions about the un-
derlying potential outcomes and assignment mechanism. We confirm that conservative

1See Abadie et al. (2020) for a discussion of the difference between sampling-based and design-based
uncertainty in the cross-sectional setting.
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tests based on the limiting distribution of our nonparametric estimator control size well
and have good rejection rates against a variety of alternatives. We finish by reanalyzing a
panel experiment conducted in Andreoni and Samuelson (2006), which studies cooper-
ative behavior in game theory and is a natural application of our methods. Participants
in the experiment played a twice-repeated prisoners’ dilemma many times, and payoff
structure of the game was randomly varied across plays. The sequential nature of the
experiment raises the possibility that past assignments may impact future actions as
participants learn about the structure of the game over time. For example, the random
variation in the payoff structure may induce participants to explore possible strategies.
This motivates us to analyze the experiment using our methods that are robust to possi-
ble dynamic causal effects. We confirm the authors’ original hypothesis that the payoff
structure of the twice repeated prisoners’ dilemma has significant contemporaneous
effects on cooperative behavior. Moreover, we provide suggestive evidence of dynamic
causal effects in this experiment—the payoff structure of previously played games may
affect cooperative behavior in the current game, which may be indicative of such learn-
ing.

Our design-based framework provides a unified generalization of the finite popu-
lation literature in cross-sectional causal inference (as reviewed in Imbens and Rubin
(2015)) and time series experiments (Bojinov and Shephard (2019)) to panel experi-
ments. Three crucial contributions differentiate our work from the existing literature.
First, we focus on a much richer class of dynamic causal estimands, which answer a
broader set of causal questions by summarizing heterogeneity across both units and
time periods. Second, we derive two new finite population central limit theorems as the
size of the population grows, and as both the duration and population size increase.
Third, we compute the bias present in standard linear estimators in the presence of dy-
namic causal effects and serial correlation in the treatment assignment probabilities.

Our framework is also importantly distinct from foundational work by Robins (1986)
and co-authors that uses treatment paths for causal panel data analysis and focuses
on providing superpopulation (or sampling-based) inference methods. In contrast, we
avoid superpopulation arguments entirely. Our estimands and inference procedures
are conditioned on the potential outcomes and all uncertainty arises solely from the
randomness in assignments. Avoiding superpopulation arguments is often attractive in
panel data applications. For example, a company only operates in a finite number of
markets (e.g., states or cities within the United States) and can only conduct advertising
or promotional experiments across markets. Such panel experiments are increasingly
common in industry (e.g., Bojinov, Sait-Jacques, and Tingley (2020), Bojinov, Simchi-
Levi, and Zhao (2020)).2 In econometrics, Abadie et al. (2017) highlighted the appeal
of this design-based perspective in panel data applications. However, the panel-based
potential outcome model developed in that work contains no dynamics as the authors
primarily focus on cross-sectional data with an underlying cluster structure. Similarly,

2Of course, in other applications, superpopulation arguments may be entirely natural. For example, in
the mental healthcare digital experiments of Boruvka et al. (2018), it is compelling to use sampling-based
arguments as the experimental units are drawn from a larger group of patients for whom we wish to make
inference on as, if successful, the technology will be broadly rolled out.
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Athey and Imbens (2018), Athey et al. (2018), and Arkhangelsky and Imbens (2019) also
introduced a potential outcome model for panel data, but assume away carryover ef-
fects. Heckman, Humphries, and Veramendi (2016), Hull (2018), and Han (2019) con-
sidered a potential outcome model similar to ours but again rely on superpopulation
arguments to perform inference. Additionally, an influential literature in econometrics
focuses on estimating dynamic causal effects in panel data under rich models that allow
heterogeneity across units, but does not introduce potential outcomes to define coun-
terfactuals and also relies on super-population arguments for inference (e.g., see Arel-
lano and Bonhomme (2016), Arellano, Blundell, and Bonhomme (2017), and the review
in Arellano and Bonhomme (2012)).

Notation

For an integer t ≥ 1 and a variable At , we write A1:t := (A1� � � � �At). We compactly write
index sets as [N] := {1� � � � �N} and [T ] := {1� � � � �T }. Finally, for a variable Ai�t observed
over i ∈ [N] and t ∈ [T ], define its average over t as Āi· := 1

T

∑T
t=1 Ai�t , its average over i

as Ā·t := 1
N

∑N
i=1 Ai�t and its average over both i and t as Ā := 1

NT

∑T
t=1

∑N
i=1 Ai�t .

2. Potential outcome panel and dynamic causal effects

2.1 Assignment panels and potential outcomes

Consider a panel in which N units (e.g., individuals or firms) are observed over T time
periods. For each unit i ∈ [N] and period t ∈ [T ], we allocate an assignment Wi�t ∈ W .
The assignment is a random variable and we assume |W| < ∞. For a binary assignment
W = {0�1}, we refer to “1” as treatment and “0” as control.

The assignment path for unit i is the sequence of assignments allocated to unit i,
denoted Wi�1:T := (Wi�1� � � � �Wi�T )

′ ∈ WT . The cross-sectional assignment at time-t de-
scribes all assignments allocated at period t, denoted W1:N�t := (W1�t � � � � �WN�t)

′ ∈ WN .
The assignment panel is the N ×T matrix W1:N�1:T ∈ WN×T that summarizes the assign-
ments given to all units over the sample period, where W1:N�1:T := (W1:N�1� � � � �W1:N�T ) =
(W ′

1�1:T � � � � �W
′
N�1:T )

′.
A potential outcome describes what would be observed for a particular unit at a fixed

point in time along any assignment path.

Definition 1. The potential outcome for unit-i at time-t along assignment path wi�1:T ∈
WT is written as Yi�t(wi�1:T ).

In principle, the potential outcome can depend upon the entire assignment path
allowing for arbitrary spillovers across time periods. Definition 1 imposes that there are
no treatment spillovers across units (Cox (1958)).3

3The idea of defining potential outcomes as a function of assignment paths first appears in Robins (1986)
and has been further developed in subsequent work such as Robins (1994), Robins, Greenland, and Hu
(1999), Murphy et al. (2001), Boruvka et al. (2018), and Blackwell and Glynn (2018).
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2.2 The potential outcome panel model

We now define the potential outcomes panel model by restricting the potential out-
comes for a unit in a given period not to be affected by future assignments.

Assumption 1. The potential outcomes are nonanticipating if, for all i ∈ [N], t ∈ [T ],
and wi�1:T � w̃i�1:T ∈ WT , Yi�t(wi�1:T )= Yi�t(w̃i�1:T ) whenever wi�1:t = w̃i�1:t .

Nonanticipation still allows an arbitrary dependence on past and contemporane-
ous assignments, and arbitrary heterogeneity across units and time periods.4 Under As-
sumption 1, the potential outcome for unit i at time t only depends on the assignment
path for unit i up to time t, allowing us to write the potential outcomes as Yi�t(wi�1:t ).
As notation, let Yi�t = {Yi�t(wi�1:t ) : wi�1:t ∈ W t} denote the collection of potential out-
comes for unit i at time t and Y1:N�1:T = {Yi�t : i ∈ [N]� t ∈ [T ]} denote the collection
of potential outcomes for all units across all time periods. Along an assignment panel
w1:N�1:t ∈ WN×t up to time t, let Y1:N�1:t (w1:N�1:t ) denote the associated N × t matrix of
outcomes for all units up to time t.

To connect the observed outcomes with the potential outcomes, we assume every
unit complies with the assignment.5 For all i ∈ [N], t ∈ [T ], the observed outcomes for
unit i are yobs

i�1:T = Yi�1:T (wobs
i�1:T ), where wobs

i�1:T is the observed assignment path for unit i.
A panel of units, assignments and outcomes in which the units are noninterfering

and compliant with the assignments and the outcomes obey Assumption 1 is a potential
outcome panel. For N = 1, the potential outcome panel reduces to the potential outcome
time series model in Bojinov and Shephard (2019). For T = 1, the potential outcome
panel reduces to the cross-sectional potential outcome model (e.g., Holland (1986) and
Imbens and Rubin (2015)).

2.3 Assignment mechanism assumptions

We focus on randomized experiments in which the assignment mechanisms for each
period only depend on past assignments and observed outcomes, but not on future po-
tential outcomes nor unobserved past potential outcomes.

Definition 2. The assignments are sequentially randomized if, for all t ∈ [T ] and any
w1:N�1:t−1 ∈ WN×(t−1),

Pr(W1:N�t |W1:N�1:t−1 = w1:N�1:t−1�Y1:N�1:T )

= Pr
(
W1:N�t |W1:N�1:t−1 =w1:N�1:t−1�Y1:N�1:t−1(w1:N�1:t−1)

)
�

4Allowing for rich heterogeneity in panel data models is often useful in many economic applications. For
example, there is extensive heterogeneity across units in income processes (Browning, Ejrnaes, and Alvarez
(2010)) and the dynamic response of consumption to earnings (Arellano, Blundell, and Bonhomme (2017)).
Time-varying heterogeneity is also an important feature. For example, it is a classic point of emphasis in
studying human capital formation; see Ben-Porath (1967), Griliches (1977), and more recently, Cunha et al.
(2006) and Cunha, Heckman, and Schennach (2010).

5In some applications, this assumption may be unrealistic. For example, in a panel-based clinical trial,
we may worry that patients do not properly adhere to the assignment. In such cases, our analysis can be
reinterpreted as focusing on dynamic intention-to-treat (ITT) effects.
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It is common to focus on sequentially randomized assignments in biostatistics and
epidemiology (Robins (1986), Murphy (2003)). This is the panel data analogue of an “un-
confounded” or “ignorable” assignment mechanism in the literature on cross-sectional
causal inference (as reviewed in Chapter 3 of Imbens and Rubin (2015)).6 Since future
potential outcomes and counterfactual past potential outcomes are unobservable, any
feasible assignment mechanism must be sequentially randomized.

An important special case imposes further conditional independence structure
across assignments. Let W−i�t := (W1�t � � � � �Wi−1�t �Wi+1�t � � � � �WN�t) and F1:N�t�T be the
filtration generated by W1:N�1:t and Y1:N�1:T .

Definition 3. The assignments are individualistic for unit i if, for all t ∈ [T ] and any
w1:N�1:t−1 ∈ WN×(t−1),

Pr(Wi�t |W−i�t �F1:N�t−1�T ) = Pr
(
Wi�t |Wi�1:t−1 =wi�1:t−1�Yi�1:t−1(wi�1:t−1)

)
�

An individualistic assignment mechanism further imposes that conditional on its
own past assignments and outcomes, the assignment for unit i at time t is indepen-
dent of the past assignments and outcomes of all other units as well as all other con-
temporaneous assignments. For example, the Bernoulli assignment mechanism, where
Pr(Wi�t |W−i�t �F1:N�t−1�T )= Pr(Wi�t) for all i ∈ [N] and t ∈ [T ], is individualistic.

Example 1. Consider a food delivery firm that is testing the effectiveness of a new pric-
ing policy across ten major U.S. cities (Kastelman and Ramesh (2018), Sneider and Tang
(2018)). Each city is an experimental unit, and the intervention administers the appro-
priate pricing policy for a duration of one hour. The outcome is the total revenue gener-
ated during each hour of the experiment, t ∈ [T ] and from city i ∈ [N]. The firm wishes to
learn the best policy for each city and the best overall policy across all cities. To do so, it
may conduct a panel experiment with an individualistic treatment assignment in which
the probability a particular pricing policy is administered in a given city over the next
hour depends on prior observed revenue in that city in earlier hours of the experiment.

Remark 2.1. Many adaptive experimental strategies (such as the one described in Ex-
ample 1), in which a series of units are sequentially exposed to random treatments
whose probability vary depending on the past observed data, satisfy our individualistic
sequentially randomized assignment assumptions (e.g., Robbins (1952), Lai, Leung, and
Robbins (1985)). Such experiments are widely used by technology companies to quickly
discern user preferences in recommendation algorithms (Li et al. (2010), Li, Karatzoglou,
and Gentile (2016)) and by academics interested in improving their power against a par-
ticular hypothesis (van der Laan Mark (2008)). There has been a growing interest in
drawing causal inferences based on the collected data in such adaptive experimental
designs (Hadad et al. (2021), Zhang, Janson, and Murphy (2020)). Since the assignment

6If the researcher further observes characteristics Xi�t that are causally unaffected by the assignments,
then the definition of a sequentially randomized assignment mechanism can be modified to additionally
condition on past and contemporaneous values of the characteristics X1:N�1:t .
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probabilities are known to the researcher, our results can be viewed as providing finite
population techniques for drawing causal conclusions from adaptive experiments. In
the special case of our framework where N = 1, t ∈ [T ] indexes individuals arriving over
time and there no carryover effects, our results in the subsequent section are the finite
population analogue of the inference results in Hadad et al. (2021).7

Our finite population central limit theorems require that the assignment mechanism
be individualistic. In a nonindividualistic assignment mechanism, the past outcomes
of other units may affect the contemporaneous assignment of a given unit, which in-
troduces complex dependence structure across units. A similar difficulty arises in the
growing literature on relaxing the noninterference assumptions in cross-sectional ex-
periments, where researchers allow one unit’s potential outcomes to depend on another
unit’s assignments (e.g., see Sävje, Aronow, and Hudgens (2019)). To derive the asymp-
totic distribution of causal estimators in such settings, researchers typically require the
assignment mechanism to be independent (Chin (2018)) or at least have only limited
dependence structure across units (Aronow and Samii (2017)).

2.4 Dynamic causal effects

A dynamic causal effect compares the potential outcomes for unit i at time t along dif-
ferent assignment paths, which we denote by τi�t(wi�1:t � w̃i�1:t) := Yi�t(wi�1:t ) − Yi�t(w̃i�1:t )
for assignment paths wi�1:t � w̃i�1:t ∈ W t . We use these dynamic causal effects to build up
causal estimands of interest.

2.4.1 Lag-p dynamic causal effects and average dynamic causal effects Since the num-
ber of potential outcomes grows exponentially with the time period t, there is a consid-
erable number of possible causal estimands. To make progress, we restrict our attention
to a core class, referred to as the lag-p dynamic causal effects.

Definition 4. For 0 ≤ p< t and w� w̃ ∈ Wp+1, the i, tth lag-p dynamic causal effect is

τi�t(w� w̃;p) :=
{
τi�t

({
wobs
i�1:t−p−1�w

}
�
{
wobs
i�1:t−p−1� w̃

})
if p< t − 1�

τi�t(w� w̃) otherwise�

The i, tth lag-p dynamic causal effect measures the difference between the out-
comes from following assignment path w from period t − p to t compared to the al-
ternative path w̃, fixing the assignments for unit i to follow the observed path up to time
t −p− 1. Generally, when N � T we recommend setting p= t − 1, removing the depen-
dence on the observed path.8

7The setup with N = 1 was developed in Bojinov and Shephard (2019), but this connection to adaptive
experiments has not been previously made.

8In a time series experiment with N = 1, Bojinov and Shephard (2019) introduced defining causal effects
that depend on the observed assignment path because most potential outcomes are unobserved since there
is only one experimental unit in their setting. In our more general panel experiments setting, an analogous
problem arises when T is of a similar order as N .
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By further restricting the paths w and w̃ to share common features, we obtain the
weighted average i, tth lag-p dynamic causal effect.

Definition 5. For integers p, q satisfying 0 ≤ p< t, 0 < q ≤ p+ 1, the weighted average
i, tth lag-p, q dynamic causal effect is

τ†
i�t(w� w̃;p�q) :=

∑
v∈Wp−q+1

avτi�t
(
(w�v)� (w̃�v);p)

�

where w� w̃ ∈ Wq and {av} are nonstochastic weights chosen by the researcher that sat-
isfy

∑
v∈Wp−q+1 av = 1 and av ≥ 0 for all v ∈ Wp−q+1.

The weighted average i, tth lag-p, q dynamic causal effect summarizes the ceteris
paribus, average causal effect of switching the assignment path between period t − p

and period t − p + q from w to w̃ on outcomes at time t.9 In this sense, the weighted
average lag-p, q causal effect is a finite-population causal generalization of an im-
pulse response function, which is a common estimand of interest in existing econo-
metric research.10 Whenever q = 1, we drop the q from the notation, simply writing
τ†
i�t(w� w̃;p) := τ†

i�t(w� w̃;p�1).
The main estimands of interest in this paper are averages of the dynamic causal ef-

fects that summarize how different assignments impact the experimental units.

Definition 6. For p< T and w� w̃ ∈ Wp+1,

1. the time-t lag-p average dynamic causal effect is τ̄·t(w� w̃;p) := 1
N

∑N
i=1 τi�t(w� w̃;

p).

2. the unit-i lag-p average dynamic causal effect is τ̄i·(w� w̃;p) := 1
T−p

∑T
t=p+1 τi�t(w�

w̃;p).

3. the total lag-p average dynamic causal effect is

τ̄(w� w̃;p) := 1
N(T −p)

T∑
t=p+1

N∑
i=1

τi�t(w� w̃;p)�

These estimands extend to the weighted average i, tth lag-p dynamic causal effect by
analogously defining τ̄†

·t (w� w̃;p�q), τ̄†
i·(w� w̃;p�q), and τ̄†(w� w̃;p�q).

We can augment any of the above averages to incorporate nonstochastic weights.
For example, we could define {ci�t}Ni=1 the weights and consider the weighted time-t lag-p

average dynamic causal effect 1
N

∑N
i=1 ci�tτi�t(w� w̃;p). These weights, for instance, could

be used to adjust for different assignment path probabilities up to time t −p− 1, which
are nonstochastic since the assignment mechanism is known.

9For a binary assignment, setting N = q = 1 gives us a special case that was studied in Bojinov and Shep-
hard (2019).

10For time series experiments, Rambachan and Shephard (2020) show that a particular version of the
weighted average lag-p, 1 causal effect is equivalent to the generalized impulse response function (Koop,
Hashem Pesaran, and Potter (1996)).
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3. Nonparametric estimation and inference

In this section, we develop a nonparametric Horvitz and Thompson (1952) type estima-
tor of the i, tth lag-p dynamic causal effects and derive its properties. If the assignment
mechanism is individualistic (Definition 3) and probabilistic (defined below), our pro-
posed estimator is unbiased for the i, tth lag-p dynamic causal effects and its related av-
erages over the assignment mechanism. An appropriately scaled and centered version
of our estimator for the average lag-p dynamic causal effects becomes approximately
normally distributed as either the number of units or time periods grows large. These
limiting results are finite population central limit theorems in the spirit of Freedman
(2008), and Li and Ding (2017).

3.1 Setup: Adapted propensity score and probabilistic assignment

For each i, t, and any w = (w1� � � � �wp+1) ∈ W(p+1), the adapted propensity score summa-
rizes the conditional probability of a given assignment path and is given by pi�t−p(w) :=
Pr(Wi�t−p:t = w|Wi�1:t−p−1�Yi�1:t(Wi�1:t−p−1�w)). Even though the assignment mechanism
is known, we only observe the outcomes along the realized assignment path Yi�1:t (wobs

i�1:t ),
and so it is not possible to compute pi�t−p(w) for all assignment paths. However,
we can compute the adapted propensity score along the observed assignment path,
pi�t−p(w

obs
i�t−p:t) (see Appendix B in the Online Supplementary Material (Bojinov, Ram-

bachan, and Shephard (2021) for further discussion).
We next assume that the assignment mechanism is probabilistic.

Assumption 2 (Probabilistic assignment). Consider a potential outcome panel. There
exists CL�CU ∈ (0�1) such that CL < pi�t−p(w) < CU for all i ∈ [N], t ∈ [T ] and w ∈
W(p+1).

This is also commonly known as the “overlap” or “common support” assumption.
All expectations, denoted by E[·], are computed with respect to the probabilistic as-

signment mechanism. We write Fi�t−p−1 as the filtration generated by Wi�1:t−p−1 and
F1:N�t−p−1 as the filtration generated by W1:N�1:t−p−1. Since we condition on all of the
potential outcomes, conditioning on Wi�1:t−p−1 is the same as conditioning on both
Wi�1:t−p−1 and Yi�1:t−p−1(Wi�1:t−p−1).

3.2 Estimation of the i, tth lag-p dynamic causal effect

For any w� w̃ ∈W(p+1), the nonparametric estimator of τi�t(w� w̃;p) is

τ̂i�t(w� w̃;p) :=
{Yi�t

(
wobs
i�1:t−p−1�w

)
1
(
wobs
i�t−p:t = w

)
pi�t−p(w)

− Yi�t

(
wobs
i�1:t−p−1� w̃

)
1
(
wobs
i�t−p:t = w̃

)
pi�t−p(w̃)

}
�

where 1{A} is an indicator function for an event A. Under individualistic assignments

(Definition 3), the estimator simplifies to τ̂i�t(w� w̃;p) = yobs
i�t {1(wobs

i�t−p:t=w)−1(wobs
i�t−p:t=w̃)}

pi�t−p(w
obs
i�t−p:t )

.
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Theorem 3.1. Consider a potential outcome panel with an assignment mechanism that
is individualistic (Definition 3) and probabilistic (Assumption 2). For any w� w̃ ∈W(p+1),

E
[
τ̂i�t(w� w̃;p)|Fi�t−p−1

] = τi�t(w� w̃;p)�
Var

(
τ̂i�t(w� w̃;p)|Fi�t−p−1

) = γ2
i�t(w� w̃)− τi�t(w� w̃;p)2 := σ2

i�t �

where

γ2
i�t(w� w̃;p) = Yi�t

(
wobs
i�1:t−p−1�w

)2

pi�t−p(w)
+ Yi�t

(
wobs
i�1:t−p−1� w̃

)2

pi�t−p(w̃)
�

Further, for distinct w� w̃� w̄� ŵ ∈W(p+1),

Cov
(
τ̂i�t(w� w̃;p)� τ̂i�t(w̄� ŵ;p)|Fi�t−p−1

) = −τi�t(w� w̃;p)τi�t(w̄� ŵ;p)�

Finally, τ̂i�t(w� w̃) and τ̂j�t(w� w̃) are independent for i �= j conditional on F1:N�t−p−1.

Theorem 3.1 states that for every i, t, the error in estimating τi�t(w� w̃;p) is a
martingale difference sequence through time and conditionally independent across
units. The variance of τ̂i�t(w� w̃;p) depends upon the potential outcomes under both
the treatment and counterfactual and is generally not estimable. However, its vari-
ance is bounded from above by γ2

i�t(w� w̃;p), which we can estimate by γ̂2
i�t(w� w̃;p) =

(yobs
i�t )2{1(wobs

i�t−p:t=w)+1(wobs
i�t−p:t=w̃)}

pi�t−p(w
obs
i�t−p:t )2 . The following proposition establishes that γ̂2

i�t(w� w̃;p) is

an unbiased estimator of γ2
i�t(w� w̃;p) and its error in estimating γ2

i�t(w� w̃;p) is also
a martingale difference sequence through time and conditionally independent across
units.

Proposition 3.1. Under the setup of Theorem 3.1, E[γ̂2
i�t(w� w̃;p)|Fi�t−p−1] = γ2

i�t(w� w̃;
p). Additionally, γ̂2

i�t(w� w̃;p) and γ̂2
j�t(w� w̃;p) are independent for i �= j conditional on

F1:N�t−p−1.

The variance bound γ2
i�t(w� w̃;p) is different from the typical Neyman variance

bound, derived under the assumption of a completely randomized experiment (Imbens
and Rubin (2015), Chapter 5). In a completely randomized experiment, there is a neg-
ative correlation between any two units’ assignments since the total number of units
assigned to each treatment is fixed. In our setting, all units’ assignments are condition-
ally independent under individualistic assignments, precluding us from exploiting the
negative correlation in deriving a bound.

Remark 3.1. Since the weighted average i, tth lag-p, q dynamic causal effects (Defini-
tion 5) are linear combinations of the i, tth lag-p dynamic causal effects, we can directly
apply Theorem 3.1 and Proposition 3.1. We provide the details for the case when q = 1.
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For w� w̃ ∈ W� and v ∈ Wp, the nonparametric estimator of τ†
i�t(w� w̃;p) is

τ̂†
i�t(w� w̃;p) =

∑
v∈W p

av

{Yi�t

(
wobs
i�1:t−p−1�w�v

)
1
(
wobs
i�t−p:t = (w�v)

)
pi�t−p(w�v)

− Yi�t

(
wobs
i�1:t−p−1� w̃�v

)
1
(
wobs
i�t−p:t = (w̃�v)

)
pi�t−p(w̃�v)

}
�

Under an individualistic assignment mechanism, this estimator simplifies to

τ̂†
i�t(w� w̃;p) =

awobs
i�t−p+1:t

yobs
i�t

{
1
(
wobs
i�t−p =w

)
)− 1

(
wobs
i�t−p = w̃

)}
pi�t−p

(
wobs
i�t−p:t

) �

This estimator is unbiased over the randomization distribution, and its variance can be
bounded from above. For uniform weights, the rest of the generalizations follow imme-
diately by noticing that we can replace all instances of w and w̃ with (w�v) and (w̃�v).

3.3 Estimation of lag-p average causal effects

The martingale difference properties of the nonparametric estimator means that the
averaged plug-in estimators

ˆ̄τ·t (w� w̃;p) := 1
N

N∑
i=1

τ̂i�t(w� w̃;p)�

ˆ̄τi·(w� w̃;p) := 1
(T −p)

T∑
t=p+1

τ̂i�t(w� w̃;p)�

ˆ̄τ(w� w̃;p) := 1
N(T −p)

N∑
i=1

T∑
t=p+1

τ̂i�t(w� w̃;p)

are also unbiased for the average causal estimands τ̄·t(w� w̃;p), τ̄i·(w� w̃;p), and τ̄(w� w̃;
p), respectively. We next derive the limiting distribution of appropriately scaled and cen-
tered versions of these averaged estimators.

Theorem 3.2. Consider a potential outcome panel with an individualistic (Definition 3)
and probabilistic assignment mechanism (Assumption 2). Further assume that the poten-
tial outcomes are bounded.11 Then, for any w� w̃ ∈W(p+1),

√
N

{ ˆ̄τ·t (w� w̃;p)− τ̄·t(w� w̃;p)}
σ·t

d−→ N(0�1) as N → ∞�

11Assuming the potential outcomes are bounded is a common simplifying assumption made in deriv-
ing finite population central limit theorems. As discussed in Li and Ding (2017), this assumption can often
be replaced by a finite-population analogue of the Lindeberg condition in analyses of cross-sectional, ran-
domized experiments.
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T −p

{ ˆ̄τi·(w� w̃;p)− τ̄i·(w� w̃;p)}
σi·

d−→ N(0�1) as T → ∞�

√
N(T −p)

{ ˆ̄τ(w� w̃;p)− τ̄(w� w̃;p)}
σ

d−→ N(0�1) as NT → ∞�

where σ·t , σi·, and σ are the square root of the appropriate averages of σ2
i�t , defined in

Theorem 3.1.

Likewise, for bounded potential outcomes with an individualistic and probabilistic
assignment mechanism, the scaled variances are

N × Var
( ˆ̄τ·t(w� w̃;p)|F1:N�t−p−1

) = E
[
σ2·t |F1:N�t−p−1

]
�

(T −p)× Var
( ˆ̄τi·(w� w̃;p)|Fi�0

) = E
[
σ2
i·|Fi�0

]
�

N(T −p)× Var
( ˆ̄τ(w� w̃;p)|F1:N�0

) = E
[
σ2|F1:N�0

]
�

Following the same logic as earlier, we can establish unbiased and consistent estimators
of the variance bounds of the averaged estimators.

Proposition 3.2. Under the setup of Theorem 3.2, for any w� w̃ ∈W(p+1),

E

[(
1
N

N∑
i=1

γ̂2
i�t(w� w̃;p)

)∣∣∣F1:N�t−p−1

]
= 1

N

N∑
i=1

γ2
i�t(w� w̃;p)�

E

[(
1

(T −p)

T∑
t=p+1

γ̂2
i�t(w� w̃;p)− 1

(T −p)

T∑
t=p+1

γ2
i�t(w� w̃;p)

)∣∣∣Fi�0

]
= 0�

E

[(
1

N(T −p)

N∑
i=1

T∑
t=p+1

γ̂2
i�t(w� w̃;p)− 1

N(T −p)

N∑
i=1

T∑
t=p+1

γ2
i�t(w� w̃;p)

)∣∣∣F1:N�0

]
= 0�

Moreover,

1
N

N∑
i=1

γ̂2
i�t(w� w̃;p)− 1

N

N∑
i=1

γ2
i�t(w� w̃;p) p−→ 0 as N → ∞�

1
(T −p)

T∑
t=p+1

γ̂2
i�t(w� w̃;p)− 1

(T −p)

T∑
t=p+1

γ2
i�t(w� w̃;p) p−→ 0 as T → ∞�

1
N(T −p)

N∑
i=1

T∑
t=p+1

γ̂2
i�t(w� w̃;p)− 1

N(T −p)

N∑
i=1

T∑
t=p+1

γ2
i�t(w� w̃;p) p−→ 0 as NT → ∞�

Proposition 3.2 shows that increasing the lag p increases our estimator’s variance,
highlighting an important trade-off: increasing the lag p reduces the dependence on the
observed treatment path at the cost of increased variance. Striking the correct balance
depends on the context and the design of the experiment.
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Theorem 3.2 and Proposition 3.2 naturally extend to the weighted average i, tth lag-
p, q dynamic causal effect from Definition 5 by using the estimator developed in Re-
mark 3.1.

3.4 Confidence intervals and testing for lag-p average causal effects

Combining the variance bound estimators in Proposition 3.2 with the central limit
theorems in Theorem 3.2, we can carry out conservative inference for τ̄·t (w� w̃;p),
τ̄i·(w� w̃;p), and τ̄(w� w̃;p). Such techniques can be used to construct conservative con-
fidence intervals or tests of weak null hypotheses that the average dynamic causal effects
are zero. For example, these may be H0 : τ̄i·(w� w̃;p) = 0 for i = 3 or H0 : τ̄·t(w� w̃;p) = 0
for t = 4.

Alternatively, we may construct exact tests for sharp null hypotheses. An example
of such a sharp null hypothesis is H0 : τ̄i�t(w� w̃;p) = 0, for all, w, w̃, i ∈ [N], and spe-
cific t = 4. Since all potential outcomes are known under such sharp null hypotheses,
we can simulate the assignment path Wi�t−p:t |W obs

i�1:t−p−1, yobs
i�1:t−p−1 for each unit i and

compute τ̂i�t(w� w̃;p) at each draw. Therefore, we may simulate the exact distribution of
any test statistics under the sharp null hypothesis and compute an exact p-value for the
observed test statistic. These randomization tests only require us to be able to simulate
from the randomization distribution of the assignments paths. Therefore, such random-
ization tests may also be conducted if the treatment assignment mechanism is sequen-
tially randomized (Definition 2).

4. Estimation in a linear potential outcome panel

This section explore the properties of commonly used linear estimators, such as the
canonical unit fixed-effects estimator and two-way fixed effects estimator, under the
potential outcomes panel model. We establish that if there are dynamic causal effects
and serial correlation in the treatment assignment mechanism, both the unit fixed-
effects estimator and the two-way fixed effects estimator are asymptotically biased for
a weighted average of contemporaneous causal effects. In Appendix B, we consider an-
alyzing the panel experiment as a repeated cross-section, estimating a separate linear
model in each period t.

Throughout this section, we further assume that the potential outcomes themselves
are a linear function of the assignment path.

Definition 7. A linear potential outcome panel is a potential outcome panel where

Yi�t(wi�1:t ) = βi�t�0wi�t + � � �+βi�t�t−1wi�1 + εi�t ∀t ∈ [T ] and i ∈ [N]�
and the nonstochastic coefficients βi�t�0:t−1 and nonstochastic error εi�t do not depend
upon treatments.

We adapt notation used in Wooldridge (2005) for analyzing panel fixed effects mod-
els. For a generic random variable Ai�t , we compactly write the within-period trans-
formed variable as Ȧi�t = Ai�t − Ā·t and the within-unit transformed variable as qAi�t =
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Ai�t − Āi·. The within-unit and within-period transformed variable is |̇Ai�t = (Ai�t − Ā)−
(Ā·t − Ā)− (Āi· − Ā).

4.1 Interpreting the unit fixed effects estimator

Our next result characterizes the finite population probability limit of the unit fixed
effects estimator, β̂UFE = ∑N

i=1
∑T

t=1
qYi�t

|Wi�t/
∑N

i=1
∑T

t=1
|W 2
i�t , under the linear potential

outcome panel model. Define Cov(|Wi�t� |Wi�s|F1:N�0�T ) := qσW�i�t�s and qμi�t :=
E[|Wi�t |F1:N�0�T ].

Proposition 4.1. Assume a linear potential outcome panel and that the assignment
mechanism is individualistic (Definition 3) with Var(|Wi�t |F1:N�0�T ) := qσ2

W�i�t < ∞ for each
i ∈ [N], t ∈ [T ]. Further assume that as N → ∞, the following sequences converge non-
stochastically:

N−1
N∑
i=1

βi�t�sqσW�i�t�s → qκW �β�t�s ∀t ∈ [T ] and s ≤ t�

N−1
N∑
i=1

qσ2
W�i�t → qσ2

W�t ∀t ∈ [T ]�

N−1
N∑
i=1

qYi�t(0)qμi�t → qδt ∀t ∈ [T ]�

Then, as N → ∞,

β̂UFE
p−→

T∑
t=1

qκW�β�t�t

T∑
t=1

qσ2
W�t

+

T∑
t=1

t−1∑
s=1

qκW �β�t�s

T∑
t=1

qσ2
W�t

+

T∑
t=1

qδt

T∑
t=1

qσ2
W�t

�

Proposition 4.1 decomposes the finite population probability limit of the unit fixed
effects estimator into three terms. The first term is a weighted average of contempora-
neous dynamic causal coefficients, describing how the contemporaneous causal coeffi-
cients covary with the within-unit transformed assignments over the assignment mech-
anism. The second term captures how past causal coefficients covary with the within-
unit transformed treatments and arises due to the presence of dynamic causal effects.
The last term is an additional error that arises due to the possible relationship between
the demeaned counterfactual qYi�t(0) and the average, demeaned treatment assignment.
A sufficient condition for the last term to be equal zero is for the counterfactual out-
comes to be time invariant Yi�t(0) = αi, in which case qYi�t(0) = 0 for all i ∈ [N], t ∈ [T ].
Therefore, the last term is zero whenever unit fixed effects correctly summarize the vari-
ation in the “control-only” counterfactual outcomes across units and time.
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Proposition 4.1 is related to yet crucially different from results in Imai and Kim
(2019), which show that the unit fixed effects estimator recover a weighted average of
unit-specific contemporaneous causal effects if there are no carryover effects. In con-
trast, we establish that the unit fixed effects estimator does not recover a weighted aver-
age of unit-specific contemporaneous causal effects in the presence of carryover effects
and persistence in the treatment path assignment mechanism.

Example 2. Consider a linear outcome panel model with, for all t > 1, Yi�t(wi�1:t ) =
β0wi�t +β1wi�t−1 + εi�t and Yi�1(wi�1) = β0wi�1 + εi�1 for t = 1. Assume Var(|Wi�t |F1:N�0�T ) =
qσ2
W�t for all t and Cov(|Wi�t� |Wi�t−1|F1:N�0�T ) = qσW�t�t−1 for all t > 1 are constant across

units. In this case, Proposition 4.1 implies

β̂UFE
p−→ β0 +β1

T∑
t=2

qσW�t�t−1

T∑
t=1

qσ2
W�t

+

T∑
t=1

qδt

T∑
t=1

qσ2
W�t

�

The unit fixed effects estimator converges in probability to the contemporaneous dy-
namic causal coefficient β0 plus a bias that depends on two terms. The first component
of the bias depends on the lag-1 dynamic causal coefficient and the covariance between
assignments across periods.

4.2 Interpreting the two-way fixed effects estimator

Consider the two-way fixed-effect estimator is

β̂TWFE =
N∑
i=1

T∑
t=1

q̇Yi�t
|̇Wi�t

/ N∑
i=1

T∑
t=1

|̇W 2
i�t �

Define E(|̇Wi�t |F1:N�0�T ) := q̇μi�t and Cov(|̇Wi�t� |̇Wi�s) := q̇σW�i�t�s.

Proposition 4.2. Assume a linear potential outcome panel and assume that the assign-

ment mechanism is individualistic and Var(|̇Wi�t |F1:N�0�T ) := q̇σ2
W�i�t < ∞ for each i ∈ [N],

t ∈ [T ]. Further assume that as N → ∞, the following sequences converge nonstochasti-
cally:

N−1
N∑
i=1

βi�t�s q̇σW�i�t�s → q̇κW �β�t�s ∀t ∈ [T ] and s ≤ t�

N−1
N∑
i=1

q̇σ2
W�i�t → q̇σ2

W�t ∀t ∈ [T ]�

N−1
N∑
i=1

q̇Yi�t(0) q̇μi�t → q̇δt ∀t ∈ [T ]�
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Then, as N → ∞,

β̂TWFE
p−→

T∑
t=1

q̇κW�β�t�t

T∑
t=1

q̇σ2
W�t

+

T∑
t=1

t−1∑
s=1

q̇κW �β�t�s

T∑
t=1

q̇σ2
W�t

+

T∑
t=1

q̇δt

T∑
t=1

q̇σ2
W�t

Similar to Proposition 4.1, the two-way fixed effects estimand can be decomposed
into three components under the linear potential outcome panel model, where the in-
terpretation of each component is similar to the unit fixed effects estimator. A simple
sufficient condition for the last term to equal zero is for counterfactual outcome to be
additively separable into a time-specific and unit-specific effect, Yi�t(0) = αi + λt for all
i ∈ [N], t ∈ [T ]. Therefore, the last term is zero whenever unit and time fixed effects are
correctly summarize the variation in the “control-only” counterfactual outcomes across
units and time.

An active literature in econometrics analyzes the two-way fixed effects estimator un-
der various identifying assumptions. For example, de Chaisemartin and D’Haultfoeuille
(2020) ruled out carryover effects and decomposed the two-way fixed effects estimand
under a “common-trends” assumption that restricts how the potential outcomes under
control evolve over time across groups. Abraham and Sun (2020) decomposed the two-
way fixed effects estimand in staggered designs (meaning units receive the treatments at
some period and forever after) under a common-trends assumption. Boryusak and Jar-
avel (2017), Athey and Imbens (2018), and Goodman-Bacon (2018) also provided a de-
composition of the two-way fixed effects estimand in staggered designs. Proposition 4.2
provides a decomposition in panel experiments without restrictions on the carryover ef-
fects, whereas these existing decompositions are useful in observational settings where
other identifying assumptions may be plausible.

5. Simulation study

We conduct a simulation study to investigate the finite sample properties of the asymp-
totic results presented in Section 3. These simulations show that the finite population
central limit theorems (Theorem 3.2) hold for a moderate number of treatment periods
and experimental units. The proposed conservative tests for the weak null of no average
dynamic causal effects have correct size and reasonable rejection rates against a range
of alternatives.

5.1 Simulation design

We generate the potential outcomes for the panel experiment using an autoregressive
model,

Yi�t = φi�t�1Yi�t−1(wi�1:t−1)+ � � � �φi�t�t−1Yi�1(wi�1)+βi�t�0wi�t + � � �

+βi�t�t−1wi�1 + εi�t ∀t > 1� (1)
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Yi�1(wi�1) = βi�1�0wi�1 + εi�1 with φi�t�1 = φ, φi�t�s = 0 for s > 1, βi�t�0 = β and βi�t�s = 0
for s > 0. We vary the choice φ, which governs the persistence of the process, and β,
which governs the size of the contemporaneous causal effects. We vary the probability of
treatment pi�t−p(w) = p(w) as well as the distribution of the errors εi�t , which we either
sample from a standard normal or Cauchy distribution.

We document the performance of our nonparametric estimators over the random-
ization distribution, meaning that we first generate the potential outcomes Y1:N�1:T
and simulate over different assignment panels W1:N�1:T , holding the potential outcomes
fixed. In the main text, we focus on evaluating the properties of our estimator for the to-
tal average dynamic causal effect ˆ̄τ(1�0;0). Appendix C explores the properties of our es-
timators for the time-t average ˆ̄τ·t (1�0;0) and the unit-i average ˆ̄τi·(1�0;0), as well as our
estimators of the lag-1 weighted average dynamic causal effects ˆ̄τ†

·t (1�0;1)� ˆ̄τ†
i·(1�0;1),

and ˆ̄τ†(1�0;1).

5.2 Normal approximations and size control

Figure 1 plots the randomization distribution for the estimator of the total average dy-
namic causal effect ˆ̄τ(1�0;0). We present results for the case with N = 100, T = 10, and
N = 500, T = 100 (the results are similar when the roles of N , T are reversed). When the
errors εi�t are normally distributed, the randomization distribution quickly converges to

Figure 1. Simulated randomization distribution for ˆ̄τ(1�0;0) under different choices of the pa-
rameter φ (defined in equation (1)) and treatment probability p(w). The rows index the param-
eter φ ∈ {0�25�0�5�0�75}. The columns index the treatment probability p(w) ∈ {0�25�0�5�0�75}.
Panel (a) plots the simulated randomization distribution with normally distributed errors
εi�t ∼ N(0�1) and N = 100, T = 10. Panel (b) plots the simulated randomization distribution with
Cauchy distribution errors εi�t ∼ Cauchy and N = 500, T = 10. Results are computed over 5,000
simulations.
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Table 1. Null rejection rate for the test of the null hypothesis H0 : τ̄(1�0;0) = 0 based upon
the normal asymptotic approximation to the randomization distribution of ˆ̄τ(1�0;0). Panel (a)
reports the null rejection probabilities in simulations with εi�t ∼ N(0�1) and N = 100, T = 10.
Panel (b) reports the null rejection probabilities in simulations with εi�t ∼ Cauchy and N = 500,
T = 100. Results are computed over 5,000 simulations.

p(w) p(w)

0�25 0�5 0�75 0�25 0�5 0�75

(a) εi�t ∼ N(0�1), N = 100, T = 10 (b) εi�t ∼ Cauchy, N = 500, T = 100
φ 0�25 0�050 0�047 0�048 0�028 0�029 0�032

0�5 0�052 0�052 0�050 0�046 0�039 0�044
0�75 0�050 0�049 0�048 0�055 0�044 0�054

a normal distribution. When the errors are Cauchy distributed, the total number of units
and time periods must be quite large for the randomization distribution to become ap-
proximately normal. There is little difference in the results across the values of φ and
p(w). Appendix C provides quantile-quantile plots of the simulated randomization dis-
tributions to further illustrate the quality of the normal approximations. Testing based
on the normal asymptotic approximation controls size effectively, staying close to the
nominal 5% level (see Table 1).

5.3 Rejection rate

Focusing on simulations with normally distributed errors, we next investigate the rejec-
tion rate of statistical tests based on the normal asymptotic approximations. To do so,
we generate potential outcomes Y1:N�1:T under different values of β, which governs the
magnitude of the contemporaneous causal effect. As we vary β = {−1�−0�9� � � � �0�9�1},
we also vary the parameter φ ∈ {0�25�0�5�0�75} and probability of treatment p(w) ∈
{0�25�0�5�0�75} to investigate how rejection varies across a range of parameter values.
We report the fraction of tests that reject the null hypothesis of zero average dynamic
causal effects.

Figure 2 plots rejection rate curves against the weak null hypotheses H0 : τ̄(1�0;0) =
0 and H0 : τ̄†(1�0;1) = 0 as the parameter β varies for different choices of the parameter
φ and treatment probability p(w). The rejection rate against H0 : τ̄(1�0;0) = 0 quickly
converges to one as β moves away from zero across a range of simulations, indicating
that the conservative variance bound still leads to informative tests. When φ = 0�25, the
rejection rate against H0 : τ̄†(1�0;1) = 0 is relatively low—lower values of φ imply less
persistence in the causal effects across periods. When φ = 0�75, there is substantial per-
sistence in the causal effects across periods and we observe that the rejection rate curves
looks similar.

Appendix C analyzes the rejection rate curves against the weak null hypothesis on
the time-t average dynamic causal effects with N = 100 units and the unit-i average
dynamic causal effect with T = 100 time periods. The conservative tests can have low
power against these unit-specific or time period-specific weak null hypotheses in small
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Figure 2. Rejection probabilities for a test of the null hypothesis H0 : τ̄(1�0;0) = 0 and
H0 : τ̄†(1�0;1) = 0 as the parameter β varies under different choices of the parameter φ and
treatment probability p(w). The rejection rate curve against H0 : τ̄(1�0;0) = 0 is plotted by
the circles and the rejection rate curve against H0 : τ̄†(1�0;1) = 0 is plotted by the triangles.
The rows index the parameter φ ∈ {0�25�0�5�0�75}. The columns index the treatment proba-
bility p(w) ∈ {0�25�0�5�0�75}. The simulations are conducted with normally distributed errors
εi�t ∼ N(0�1) and N = 100, T = 10. Results are averaged over 5000 simulations.

experiments with few units or few time periods. Unless researchers are analyzing a panel
experiment with a large cross-sectional or time dimension, we recommend that re-
searchers focus on analyzing total lag-p dynamic causal effects, which enables them
to improve power by pooling information across both units and time periods.

6. Empirical application in experimental economics

We apply our methods to reanalyze a panel experiment from Andreoni and Samuelson
(2006) that tests a game-theoretic model of “rational cooperation” and studied how vari-
ation in the payoff structure of a two-player, twice-played prisoners’ dilemma affects the
choices of players.

The payoffs of the game were determined by two parameters x1�x2 ≥ 0 such that
x1 + x2 = 10. In each period, both players simultaneously select either C (cooperate) or
D (defect) and subsequently received the payoffs associated with these choices. Table 2
summarizes the payoff structure. Let λ = x2

x1+x2
∈ [0�1] govern the relative payoffs be-

tween the two periods of the prisoners’ dilemma; when λ = 0, all payoffs occurred in
period one and when λ = 1, all payoffs occurred in period two. The authors develop a
model of rational cooperation that predicts when λ is large; players will cooperate more
often in period one compared to when λ is small.

To investigate this hypothesis, Andreoni and Samuelson (2006) conducted a panel-
based experiment. In each session of the experiment, 22 subjects were recruited to play
20 rounds of the twice-played prisoners’ dilemma in Table 2. In each round, partici-
pants were randomly matched into pairs, and each pair was then randomly assigned
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Table 2. Stage games from twice-played prisoners’ dilemma in the experiment conducted by
Andreoni and Samuelson (2006), where the parameters satisfy x1�x2 ≥ 0, x1 + x2 = 10, and λ =

x1
x1+x2

. The choice C denotes “cooperate” and the choice D “defect.”

C D C D

Period one Period two
C (3x1�3x1) (0�4x1) (3x2�3x2) (0�4x2)

D (4x1�0) (x1�x1) (4x2�0) (x2�x2)

λ ∈ {0�0�1� � � � �0�9�1} with equal probability. The authors conducted the experiment over
five sessions for a total sample of 110 participants and we observe 2200 choices total.

This panel experiment is a natural application of our methods. The sequential nature
of the experiment raises the possibility that past assignments may impact future actions
as participants learn about the structure of the game over time. For example, random
variation in the payoff structure may induce players to explore the strategy space. Ad-
ditionally, the authors originally analyzed the experiment using regression models with
unit-level fixed effects, which may be biased in the presence of dynamic causal effects
even if the potential outcomes are linear as discussed in Section 4.

In our analysis, the outcome of interest Y is an indicator that equals one whenever
the participant cooperated in period one of the stage game, N = 110, and T = 20. The
assignment W ∈ W = {0�1} is binary and equals one whenever the assigned value λ is
greater than 0�6, meaning that the payoffs are more concentrated in period two than
period one of the stage game. We binarize the assignment in this manner to keep its car-
dinality (and, therefore, the number of possible assignment paths) manageable, while
continuing to test the authors’ core prediction on cooperative behavior. For a given pair
of subjects, the assignment mechanism is Bernoulli with probability p = 5/11 for treat-
ment and p = 6/11 for control.12 Table 3 summarizes the observed assignments and
observed outcomes in the experiment.

Table 3. Summary statistics for the experiment in Andreoni and Samuelson (2006). The treat-
ment Wi�t equals one when the assigned value of λ is larger than 0�6. The outcome Yi�t equals one
whenever the participant cooperates in period one of the twice-repeated prisoners’ dilemma.
There are 110 participants and we observe 2220 choices total.

Counts

0 1 Mean

Observed treatment, Wi�t 1136 1064 0�484
Observed outcome, Yi�t 521 1679 0�763

12One potential complication that may arise from the subjects playing against each other in the stage
game is possible spillovers or interference across units. The impact of such spillovers is, however, unlikely
to be substantial as the matches are anonymous, and no players play each other more than once. We ignore
this concern in our analysis.
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Table 4. Estimates of the total lag-p weighted average dynamic causal effect for p = 0�1�2�3.
The conservative p-value reports the p-value associated with testing the weak null hypothesis
of no average dynamic causal effects, H0 : τ̄†(1�0;p) = 0, using the conservative estimator of
the asymptotic variance of the nonparametric estimator (Theorem 3.2). The randomization p-
value reports the p-value associated with randomization test of the sharp null of dynamic causal
effects, H0 : τi�t(w� w̃;p) = 0 for all i ∈ [N], t ∈ [T ]. The randomization p-values are constructed
based on 10,000 draws.

lag-p

0 1 2 3

Point estimate, ˆ̄τ†(1�0;p) 0�285 0�058 0�134 0�089
Conservative p-value 0�000 0�226 0�013 0�126
Randomization p-value 0�000 0�263 0�012 0�114

6.1 Inference on total lag-p weighted average dynamic causal effects

We analyze the total lag-p weighted average causal effect τ̄†(1�0;p) for p = 0�1�2�3,

which pools information across all units and time periods to investigate dynamic

causal effects.13 Based on the conservative test in Section 3.4, the weak null hypoth-

esis τ̄†(1�0;0) = 0 can be soundly rejected, indicating that the treatment has a positive

contemporaneous effect on cooperation in period one of the stage game and confirming

the hypothesis of Andreoni and Samuelson (2006). Table 4 summarizes these estimates

of the total lag-p weighted average causal effects. Interestingly, the point estimates are

positive at p = 1�2�3, suggesting there may be dynamic causal effects on cooperative be-

havior across rounds of the twice-repeated prisoners’ dilemma. For example, the treat-

ment may induce participants to learn about the value of cooperation, thereby produc-

ing persistent effects.

We further investigate these results using randomization tests based on the sharp

null of no dynamic causal effects. We construct the randomization distribution for the

nonparametric estimator of the total lag-p weighted average dynamic causal effect
ˆ̄τ†(1�0;p) for p = 0�1�2�3 under the sharp null hypothesis of no lag-p dynamic dy-

namical causal effects for all units and time periods; H0 : τi�t(w� w̃;p) = 0 for all i ∈ [N],
t ∈ [T ].14 Table 4 summarizes randomization p-values for the total lag-p weighted aver-

age causal effects. The p-value for the randomization test at p = 0 is approximately zero,

strongly rejecting the sharp null of no contemporaneous dynamic causal effects for all

units and again confirming the hypothesis of Andreoni and Samuelson (2006).

13Appendix D investigates unit-specific and period-specific weighted average lag-p dynamic causal ef-
fects. Since there are only N = 110 units and T = 20 periods in the experiment, these estimates are noisier
than our estimates of the total lag-p weighted average dynamic causal effects.

14When simulating the randomization distribution, we redraw assignment paths in a manner that re-
spects the realized pairs of subjects in the experiment, meaning that subjects that are paired in the same
round receive the same assignment.
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7. Conclusion

This paper developed a potential outcome model for studying dynamic causal effects in
a panel experiment. We defined new panel-based dynamic causal estimands such as the
lag-p dynamic causal effect and introduced an associated nonparametric estimator. Our
proposed estimator is unbiased for lag-p dynamic causal effects over the randomization
distribution, and we derived its finite population asymptotic distribution. We developed
tools for inference on these dynamic causal effects—a conservative test for weak nulls
and an exact randomization test for sharp nulls. We showed that the linear unit fixed
effects estimator and two-way fixed effects estimator are asymptotically biased for the
contemporaneous causal effects in the presence of dynamic causal effects and persis-
tence in the assignment mechanism. Finally, we illustrated our results through a simu-
lation study and analyzed a panel experiment on rational cooperation in games.
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