
Aguirregabiria, Victor; Marcoux, Mathieu

Article

Imposing equilibrium restrictions in the estimation of
dynamic discrete games

Quantitative Economics

Provided in Cooperation with:
The Econometric Society

Suggested Citation: Aguirregabiria, Victor; Marcoux, Mathieu (2021) : Imposing equilibrium
restrictions in the estimation of dynamic discrete games, Quantitative Economics, ISSN 1759-7331,
The Econometric Society, New Haven, CT, Vol. 12, Iss. 4, pp. 1223-1271,
https://doi.org/10.3982/QE1735

This Version is available at:
https://hdl.handle.net/10419/253612

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by-nc/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3982/QE1735%0A
https://hdl.handle.net/10419/253612
https://creativecommons.org/licenses/by-nc/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Quantitative Economics 12 (2021), 1223–1271 1759-7331/20211223

Imposing equilibrium restrictions
in the estimation of dynamic discrete games

Victor Aguirregabiria
Department of Economics, University of Toronto and CEPR

Mathieu Marcoux
Département de sciences économiques, Université de Montréal, CIREQ, and CIRANO

Imposing equilibrium restrictions provides substantial gains in the estimation of
dynamic discrete games. Estimation algorithms imposing these restrictions have
different merits and limitations. Algorithms that guarantee local convergence typ-
ically require the approximation of high-dimensional Jacobians. Alternatively, the
Nested Pseudo-Likelihood (NPL) algorithm is a fixed-point iterative procedure,
which avoids the computation of these matrices, but—in games—may fail to con-
verge to the consistent NPL estimator. In order to better capture the effect of iter-
ating the NPL algorithm in finite samples, we study the asymptotic properties of
this algorithm for data generating processes that are in a neighborhood of the NPL
fixed-point stability threshold. We find that there are always samples for which the
algorithm fails to converge, and this introduces a selection bias. We also propose
a spectral algorithm to compute the NPL estimator. This algorithm satisfies local
convergence and avoids the approximation of Jacobian matrices. We present sim-
ulation evidence and an empirical application illustrating our theoretical results
and the good properties of the spectral algorithm.

Keywords. Dynamic discrete games, nested pseudo-likelihood, fixed-point algo-
rithms, spectral algorithms, convergence, convergence selection bias.

JEL classification. C13, C57, C61, C73.

1. Introduction

Economic theory often delivers models in which the distribution of agents’ decisions is
implicitly defined as a fixed point. For instance, this is the case in models where agents’
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decisions are interpreted via equilibrium conditions based on rational expectations. In
this class of models, there are typically two different objects of interest: The conditional
choice probabilities (CCPs), which are a probabilistic representation of agents’ behav-
ior, and the structural parameters of the model. In order to reduce the computational
burden of estimating such models, it is common practice to first estimate the CCPs in
a flexible way and then to estimate the structural parameters conditional on these es-
timates. While consistent in large samples, this two-step procedure is known to suffer
from a few drawbacks in finite samples. In particular, imprecise estimates in the first
step may affect the properties of the second-step estimator. Furthermore, consistent
first-step estimates may not be available, as it is the case if choice probabilities depend
on unobserved heterogeneity with continuous support.

These drawbacks motivated the Nested Pseudo-Likelihood (NPL) estimator pro-
posed by Aguirregabiria and Mira (2002, 2007): a fixed point of the so-called NPL map-
ping, which embeds both the pseudo-maximum likelihood estimation of the structural
parameters and the equilibrium restrictions for the CCPs. As a method to obtain the
NPL estimator, Aguirregabiria and Mira (2002, 2007) proposed the NPL fixed-point al-
gorithm, which iteratively updates the estimated CCPs using the NPL mapping.1 As a
fixed-point iterative method, this algorithm can only converge to fixed points satisfying
some stability conditions. The algorithm is expected to fail to converge to the consistent
NPL estimator when the data generating process corresponds to an unstable fixed point
(Pesendorfer and Schmidt-Dengler (2008, 2010)). A perhaps more concerning issue is
that Monte Carlo studies have recently shown that the NPL algorithm may fail to con-
verge even when the data generating process does satisfy stability conditions (Egesdal,
Lai, and Su (2015)). Unfortunately, the literature has so far failed to provide a convincing
explanation in such cases.

In this paper, we take another look at the sequential estimation of dynamic discrete
games in order to bridge the literature’s incomplete understanding of the NPL algo-
rithm’s failure to converge. We depart from existing works in two ways.

First, we treat the NPL algorithm as being iterated in finite samples rather than in
large samples. While the latter approach is commonly used in the literature, the former
interpretation is better aligned with the motivation of imposing equilibrium restrictions
to improve upon the finite sample performance of two-step estimation. This important
distinction allows us to show that the convergence of the NPL algorithm is driven by
the stability of the NPL mapping in the sample, as opposed to the NPL mapping in the
population. As a result, the NPL algorithm may fail to converge even if the data gener-
ating process corresponds to a stable fixed point. The NPL algorithm is likely to fail to
converge in finite samples if the data generating process is stable, but close to being un-
stable. To appreciate this property of the NPL algorithm, the Monte Carlo simulations in-
cluded in this paper are repeated for a grid of data generating processes that satisfy sta-
bility conditions to different degrees. We find that Aguirregabiria and Mira’s (2007) data
generating process—commonly used as a benchmark for Monte Carlo experiments—is
in fact close to being unstable.

1Throughout the paper, we use the terms NPL algorithm and NPL fixed-point algorithm as synonymous.
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Second, we present a new analysis of the implications of the NPL algorithm’s possi-
ble failure to converge on the asymptotic properties of the estimator obtained upon con-
vergence. To do so, we study the asymptotic properties of this estimator for sequences
of stable data generating processes whose limit corresponds to a data generating pro-
cess exactly on the stability threshold. This local asymptotic analysis, that is, for data
generating processes close to the stability threshold, leads to nontrivial probabilities of
convergence for the fixed-point algorithm, even in large samples. Since convergence
of the fixed-point iterations is a stochastic condition, the possibility of no convergence
generates a selection problem, which we refer to as convergence selection. Random sam-
ples for which the NPL algorithm converges have statistical properties that are different
from samples where convergence fails. We characterize the properties of this selection in
terms of the empirical distribution of the spectral radius of the sample fixed-point map-
ping. In our Monte Carlo experiments, this convergence selection problem affects espe-
cially the estimation of the structural parameter that represents competition effects: It
introduces an attenuation bias in this parameter.

An additional contribution of this paper is that we propose an alternative iterative
algorithm to compute the NPL estimator. Instead of fixed-point iterations, the proposed
algorithm uses a spectral approach to solve for the fixed points of the NPL mapping.
Similarly, as for Jacobian-based algorithms that guarantee local convergence, fixed-
point instability does not prevent the spectral algorithm to converge. However, just like
the NPL fixed-point algorithm, the spectral algorithm avoids the approximation of high-
dimensional Jacobians. Our simulation evidence suggests that this alternative algorithm
performs very well, even if the data generating process admits multiple equilibria. It is
also worth mentioning that its computational cost is often cheaper than the NPL fixed-
point algorithm when this procedure converges. The good properties of the spectral ap-
proach are also confirmed in an empirical application to a dynamic game of fast food
restaurant location featuring a relatively large dimensional vector of equilibrium CCPs
(counting about 190,000 elements).

The rest of the paper is organized as follows. Section 2 reviews the related literature.
The model of interest, a discrete choice dynamic game with incomplete information, is
presented in Section 3. The NPL estimator and different sequential estimators, including
our proposed spectral algorithm, are described in Section 4. Section 5 presents our main
theoretical results. We provide necessary and sufficient conditions for the convergence
of the NPL fixed-point algorithm, and use these conditions to characterize the statistical
properties of the estimator upon convergence. We also describe the selection bias due
to convergence. In Section 6, we present evidence that the selection problem generated
by the lack of convergence is the most important source of finite sample bias when the
data generating process is stable. Section 7 summarizes the empirical application and
proposes a step-by-step guide for the implementation of the algorithms. Section 8 con-
cludes. Codes in R for all our Monte Carlo experiments for different versions of the data
generating processes in Aguirregabiria and Mira (2007) and Pesendorfer and Schmidt-
Dengler (2008) as well as the material to replicate our empirical application are available
here.

https://drive.google.com/drive/folders/14CWB3J1Re0d3jJYy6kKHHAU_YpuuKnxz
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2. Related literature

A natural starting point to estimate dynamic games would be to extend a Nested Fixed-
Point (NFXP) algorithm similar to Rust (1987) to a game setting to obtain a maximum
likelihood estimator (MLE) of the structural parameters of interest. Multiplicity of equi-
libria in games however complicates the implementation of the NFXP algorithm com-
pared to its typical application to single-agent dynamic discrete choice problems. An
important reduction in the computational burden can be achieved by using a two-step
approach in which reduced-form CCPs are estimated in the first step and then taken
as given when estimating the structural parameters in the second step. This approach
corresponds to an application of Hotz and Miller’s (1993) CCP estimator to the dynamic
games framework and was initially proposed by Aguirregabiria and Mira (2007).2 Differ-
ent two-step estimators have been proposed in the context of dynamic games: Bajari,
Benkard, and Levin’s (2007) simulated minimum distance estimator; Pakes, Ostrovsky,
and Berry (2007) advocating for the use of method of moments estimators in the second
step; and Pesendorfer and Schmidt-Dengler’s (2008) asymptotic least squares estimator.

Despite being computationally convenient and having nice asymptotic properties,
two-step approaches tend to perform poorly in small samples, especially when there is a
large number of states in the model. It is also worth noting that—since they are reduced-
form estimates—the first-step CCPs do not satisfy the fixed-point restrictions in finite
samples. Aguirregabiria and Mira (2007) aimed at addressing these issues by proposing
the NPL estimator and an iterative algorithm to compute this estimator.

The NPL estimator is defined as a vector of structural parameters and a vector
of CCPs that satisfy two conditions: The vector of structural parameters maximizes a
pseudo-likelihood function that depends on the CCPs; and the vector of CCPs satisfies
the model equilibrium restrictions associated with the vector of structural parameters.
These two conditions lead to a fixed-point representation: the vector of CCPs is a fixed
point of the so-called NPL mapping. If the NPL mapping has multiple fixed points, then
the NPL estimator is the solution with the maximum value of the pseudo-likelihood
function.

To compute the NPL estimator, Aguirregabiria and Mira (2007) proposed a fixed-
point iterative procedure, denoted as the NPL (fixed-point) algorithm. Given a vector of
CCPs as input, a single iteration of the NPL algorithm provides a new vector of CCPs
that is equal to players’ best response to the input CCPs when the vector of structural
parameters is the one that maximizes the pseudo-likelihood function for the input CCPs.
Upon convergence, the NPL algorithm delivers a fixed point of the NPL mapping.

Aguirregabiria and Mira (2007) did not formally show the convergence of the NPL
fixed-point algorithm. In a nutshell, the limitations of this algorithm can be summa-
rized in two important criticisms. First, if the data generating process corresponds to
an unstable fixed point of the NPL mapping, then none of the NPL fixed points found

2An assumption commonly maintained when implementing this CCP estimator is that, while the game
theoretical model may admit multiple equilibria, the same equilibrium is realized whenever the same game
is played.
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by the NPL algorithm initiated at different values of the CCPs correspond to the NPL
estimator in large samples. Then, if it converges, the NPL algorithm leads to an incon-
sistent estimator (Pesendorfer and Schmidt-Dengler (2008, 2010)). Second, even if the
data generating process satisfies desirable stability conditions, the NPL algorithm may
still fail to converge (Egesdal, Lai, and Su (2015)).3

It is important to highlight the fundamental difference between the NPL (fixed-
point) algorithm and the NPL estimator. The NPL estimator, as defined by Aguirregabiria
and Mira (2007, p. 20), is “the NPL fixed point in the sample with the maximum value of
the pseudo-likelihood.” The nice asymptotic properties of the NPL estimator (Aguirre-
gabiria and Mira (2007, Proposition 2)) do not depend on stability conditions required
for the NPL algorithm to converge. In other words, the NPL estimator exists regardless
whether the NPL algorithm converges or not.

At this point, it is worth expanding on the two different ways of investigating the
asymptotic properties of the sequences of estimates generated by the NPL algorithm,
which were mentioned in the Introduction. The first one—which is the one commonly
used in the literature (e.g., Kasahara and Shimotsu (2012), Bugni and Bunting (2021))—
consists in considering an asymptotic approximation to the NPL algorithm, as if the iter-
ations were performed in a large sample. Under this interpretation, the convergence of
the NPL algorithm is determined by the stability of the equilibrium generating the data
since one is effectively updating the choice probabilities using the NPL mapping in the
population. A second interpretation— motivated by Pesendorfer and Schmidt-Dengler’s
(2010) criticism—rather iterates the sequential estimator in finite samples and then con-
siders the sample size to grow to infinity. This is the interpretation that is considered
in the current paper. Furthermore, to highlight how nonconvergence of the NPL algo-
rithm may be more problematic around the stability threshold even in large samples,
we study asymptotic properties of the estimator obtained upon convergence of the NPL
algorithm for sequences of stable data generating processes whose limit is a data gener-
ating process exactly satisfying the stability threshold. To the best of our knowledge, we
are the first to investigate such local asymptotic properties for the estimator defined by
the NPL algorithm.

Some alternative algorithms or/and estimators have been proposed in hope of ad-
dressing the convergence issues associated with the NPL fixed-point algorithm. One of
them is the NPL relaxation method from Kasahara and Shimotsu (2012). This iterative
algorithm uses a relaxation method that perturbs the original NPL mapping according
to a fixed parameter α. Kasahara and Shimotsu (2012) provided simulation evidence that
this relaxation method works well when the parameter α is set optimally. However, such
an optimal value is not available in practice since it requires the knowledge of the NPL
mapping in the population, which is unknown to the econometrician. Kasahara and Shi-
motsu (2012) therefore recommended using a small arbitrary value for this parameter.

3Mogensen (2015) provided simulation evidence that nonconverging sequences typically coincide with
parameters’ estimates for which the stability conditions required for local contraction do not hold. This
observation is, to the best of our knowledge, the first attempt at understanding the NPL algorithm’s possible
failure to converge when desirable stability conditions hold.
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Unfortunately, Egesdal, Lai, and Su (2015) have found the properties of this NPL relax-
ation algorithm to be much less appealing when using such a small arbitrary value.

Another alternative approach is a class of Mathematical Program with Equilibrium
Constraints (MPEC) estimators which was proposed by Su and Judd (2012) for single-
agent dynamic discrete choice models, and extended to dynamic games by Egesdal,
Lai, and Su (2015). This approach consists in computing the MLE by maximizing the
(pseudo) likelihood function with respect to the structural parameters and the vector of
CCPs subject to the equilibrium constraints using state of the art Jacobian-based opti-
mization algorithms with good local convergence properties. On one hand, MPEC has
the advantage of delivering the MLE. On the other hand, it now requires optimizing over
a large vector of parameters, which includes the structural parameters, the CCPs, and
the Lagrange multipliers of all the equilibrium constraints. Furthermore, in contrast to
the NPL algorithm, MPEC requires the computation of Jacobian matrices with respect to
the vector of CCPs such that the complexity of this method—relative to NPL—increases
fast with the state space.4  Egesdal, Lai, and Su (2015) provided simulation evidence sug-
gesting better convergence properties than the estimator obtained using the NPL fixed-
point algorithm.5

Dearing and Blevins (2021) have recently proposed the Efficient Pseudo-Likelihood
(EPL) algorithm as an alternative to NPL. This algorithm is similar to NPL, but it iterates
in the space of conditional choice values, instead of the space of CCPs. The authors show
that their algorithm converges in situations where NPL fixed-point iterations do not and
is asymptotically equivalent to the MLE. However, since the iterative procedure used to
obtain the EPL is based on a Newton step, it also requires approximating the inverse of
a potentially large dimensional Jacobian.

While alternatives such as Kasahara and Shimotsu’s (2012) modified NPL algorithm,
Egesdal, Lai, and Su (2015)’s MPEC approach and Dearing and Blevins’s (2021) estimator
clearly have merit, there is still room for a better understanding of the NPL algorithm’s
properties. In applications with large state spaces, the NPL algorithm is arguably much
easier to implement and has a substantially smaller computational cost. An important
goal of the current paper is to improve our understanding of the NPL algorithm’s failure
to converge in hopes to identify in which settings this method can be safely used in
empirical applications.6

4To deal with this curse of dimensionality, MPEC can leverage on the potential sparsity of the Jacobian
matrices involved in the maximization problem. However, in many applications of dynamic games the Ja-
cobian of the equilibrium mapping with respect to CCPs is not sparse. For instance, in a dynamic game of
market entry, a player’s best response probability at any state depends on other players’ CCPs at any state.

5For single-agent dynamic discrete choice model, Iskhakov, Lee, Rustm Schjerning, and Seo (2016) pro-
vided simulation evidence suggesting that the NFXP algorithm may actually have better convergence prop-
erties than the MPEC estimator.

6It is worth noting that the NPL algorithm has been used in several empirical applications of single-
agent dynamic models (Copeland and Monnet (2009), De Pinto and Nelson (2009), Tomlin (2014), Aguir-
regabiria and Alonso-Borrego (2014)), dynamic games (Sweeting (2013), Aguirregabiria and Ho (2012),
Collard-Wexler (2013), Kano (2013), Huang and Smith (2014), Lin (2015), Gayle and Xie (2018)), static games
(Ellickson and Misra (2008), Han and Hong (2011)), and networks (Lin and Xu (2017), Liu and Zhou (2017)).
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3. The model

3.1 General framework

Let Y and X be two discrete and finite sets and let P0(y|x) be the true probability distribu-
tion of the realization of a N × 1 vector y ∈ YN , for N ≥ 1, conditional on a vector of vari-
ables x ∈ X. Also, denote P0 = {P0(y|x) : y ∈ YN�x ∈ X} ∈ P. There is a parametric struc-
tural model for this vector of conditional probabilities. Consider a finite-dimensional
vector of structural parameters θ ∈ Θ and denote the vector of parametrized probabil-
ities as P(θ) = {P(y|x�θ) : y ∈ YN�x ∈ X}. The true value of the structural parameters in
the population, denoted θ0, satisfies P(θ0) = P0.

There is no closed-form analytical expression for P(y|x�θ). The parametric distribu-
tion of y is implicitly defined as a fixed point of the following mapping in the probability
space:

P(θ) =Ψ
(
θ�P(θ)

)
� (1)

where Ψ(·) : Θ × P → P and Ψ(θ�P) = {Ψ(y|x�θ�P) : y ∈ YN�x ∈ X} is a vector with ele-
ments organized in the same order as in P.

Assumption 1 (Regularity Conditions). (A) The mapping Ψ(θ�P) is twice continuously
differentiable. (B) θ0 ∈ int(Θ). (C) Θ is compact. (D) There is an open ball around P0 that
does not include any other fixed point of the mapping Ψ(θ0� ·).

In empirical applications of dynamic games, the researcher typically has panel
data from M games (e.g., markets, locations) indexed by m ∈ {1�2� � � � �M}, N play-
ers indexed by i ∈ {1�2� � � � �N}, and T time periods indexed by t ∈ {1�2� � � � �T }. For
each observation (m� t), the data set includes the realizations of players’ actions, ymt =
(y1mt� y2mt� � � � � yNmt) ∈ YN , and the vector of observable state variables xmt ∈ X. Typi-
cally, the asymptotic results depend on either the number of markets M or the number
of time periods T . For what follows, we consider asymptotic results as M → ∞.

Assumption 2 summarizes the conditions on the data generating process typically
supposed to be satisfied in the literature. In essence, these restrictions guarantee that the
sample consists of independent draws generated from a single (given observed states)
equilibrium.

Assumption 2 (Data Generating Process). (A) P0(y|x) =Ψ(y|x�θ0�P0), ∀(y�x) ∈ YN ×X.
(B) For any P that solves P = Ψ(θ�P), P �= P0 whenever θ �= θ0. (C) Observations in the
data set {ymt�xmt : m= 1� � � � �M; t = 1� � � � �T } are independent over m and Pr(xmt = x) > 0
for all x ∈X.

Throughout the paper, we use a hat superindex to indicate that an object is a statistic
or a stochastic function that has sampling variation. Objects without a hat superindex
are deterministic functions or parameters.
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3.2 Example: Dynamic game of market entry and exit

In this section, we introduce one of the dynamic games of market entry and exit that
will be used for the Monte Carlo experiments in Section 6. This model comes from
Aguirregabiria and Mira (2007) and it is a particular case of the general framework pre-
sented above. It has been used in several simulation exercises, namely Pesendorfer and
Schmidt-Dengler (2008), Kasahara and Shimotsu (2012), and Egesdal, Lai, and Su (2015).
Our Monte Carlo simulations also include the simpler game of market entry and exit
proposed by Pesendorfer and Schmidt-Dengler (2008).

Every period t, each firm i decides whether or not to operate in a market m. In this
context, Y = {0�1} is each firm’s choice set, such that yimt = 1 if firm i operates in market
m at time t. Let ymt be the vector (yimt : i = 1� � � � �N). A firm maximizes its expected and
discounted stream of current and future profits in the market: Et[∑∞

s=0 β
sUim�t+s], where

β ∈ (0�1) is the discount factor, and Uimt is the period profit.
Suppose that a firm’s decision to operate depends on the market size (smt ), the num-

ber of competitors that are operating (
∑

j �=i yjmt ), an entry cost, a firm-specific fixed cost,
and the vector of variables εimt = [εimt(0)� εimt(1)]′, which are player i’s private informa-
tion. Let εmt be the vector (εimt : i = 1� � � � �N). The dynamic dimension to the firm’s de-
cision comes from the firm paying the entry cost only if it has not been operating in the
market during the previous period.

An observation is a firm-market-period-tuple. Besides the decision of being active
in the market, the econometrician observes the market size (smt ) and the incumbency
status of the firms (ym�t−1). To be consistent with the notation introduced above, denote
the observable state variables in market m at period t as xmt = [smt�y′

m�t−1]′.
Following Rust (1987), the literature of dynamic discrete choice structural models—

and more specifically, dynamic discrete games—has used the assumptions of addi-
tive separability and conditional independence of the unobservable state variables εimt .
These two assumptions —together with the condition that the space of the observable
state variables, X, is discrete —imply that this class of dynamic models can be repre-
sented using the general framework presented in the previous section.

Additive separability The contemporaneous payoff function is additively separable
in its observable and unobservable components: Ui(ymt�xmt�εimt) = ui(ymt�xmt) +
εimt(yimt).

Conditional independence The transition probability Pr(xm�t+1�εim�t+1|xmt�εimt�ymt)

factors as 	(xm�t+1|xmt�ymt)G(εim�t+1), where G(·) is the cumulative distribution func-
tion of εimt , which is i.i.d. across players, markets, and time periods.

For instance, Aguirregabiria and Mira (2007) considered the following specification
of the payoff function Ui(ymt�xmt�εimt):⎧⎪⎨⎪⎩

θRSsmt − θRN ln
[

1 +
∑
j �=i

yjmt

]
− θEC(1 − yim�t−1)− θFC�i + εimt(1)� yimt = 1�

εimt(0)� yimt = 0�

(2)
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where θRS measures the effect of the market size on the firm’s payoff; θRN is referred to
as the strategic interaction parameter; θEC corresponds to the entry cost; and θFC�i is the
firm-specific fixed cost.

We assume that players’ behavior can be rationalized via a Markov perfect equilib-
rium, which implies that player i’s strategies only depend on this player’s payoff-relevant
state variables, more precisely xmt and εimt . At a given state—defined by xmt and εimt—
let σi(·) : X × R

2 	→ Y be player i’s strategy function. Given the other firms’ strategies—
represented as σ−i�mt ≡ σ−i(xmt�ε−i�mt)—firm i’s best response is the solution of a dy-
namic programming problem with the following value function and Bellman equation:

Vi(xmt�εimt)

= max
y∈{0�1}

{
Eε−i�mt

[
Ui

(
y�σ−i�mt�xmt�εimt(y)

)
+β

∫ ∑
xm�t+1∈X

Vi(xm�t+1�εim�t+1)	
(
xm�t+1|xmt� y�σ−i�mt

)
dG(εim�t+1)

]}
� (3)

In equilibrium, players’ strategies are best responses to each other and—taking the
strategies of the other players as given—a player’s best response is the solution of a
single-agent dynamic programming problem. The set of players’ strategies also deter-
mine their CCPs such that:

P
(
yi|xmt�θ

)=
∫
1
{
yi = σi(xmt�εimt)

}
dG(εimt)� (4)

Aguirregabiria and Mira (2007, representation lemma) show that, in this class of dy-
namic games, a Markov perfect equilibrium can be represented as a fixed point of a
mapping in the space of the vector of CCPs for all players and observable states.

4. NPL estimator and sequential estimators

In this section, we introduce the NPL mapping and use it to define the (algorithm-free)
NPL estimator. We also present a series of sequential estimators including the Hotz–
Miller estimator, the K-step estimator, the NPL algorithm, the relaxation algorithm, and
a new algorithm to compute the NPL estimator.

4.1 NPL mapping and estimator

Let Q̂(θ�P) ≡ M−1∑M
m=1 ln[Ψ(ym|xm�θ�P)] be the pseudo log-likelihood function for

any θ ∈ Θ and any P ∈ P. Let Q0(θ�P) ≡ EP0[ln[Ψ(ym|xm�θ�P)]] be its population coun-
terpart, where EP0[·] is computed with respect to the true probability distribution P0.
By maximizing these functions over Θ for a given P ∈ P, one obtains the pseudo-
maximum likelihood estimator ϑ̂(P) = arg maxθ∈Θ Q̂(θ�P) and its population counter-
part ϑ0(P) = arg maxθ∈ΘQ0(θ�P).

By maximizing the pseudo log-likelihood function evaluated at a consistent re-
duced-form estimate of the CCPs, say P̂0, one obtains the two-step pseudo MLE or Hotz–
Miller estimator applied to dynamic discrete games. This estimator is formally defined
in Definition 1.
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Definition 1 (Two-Step Pseudo MLE). For a given consistent reduced-form estimate
of the CCPs P̂0, the two-step pseudo MLE estimator θ̂1 satisfies

θ̂1 ≡ ϑ̂(P̂0) = arg max
θ∈Θ

Q̂(θ� P̂0)� (5)

The vectors ϑ̂(P) and ϑ0(P) are also used to define the sample and the population
NPL mappings. As it is formally stated in Definition 2, for any P ∈ P, the NPL mapping is
a function that returns the vector of best response CCPs at the corresponding pseudo-
maximum likelihood estimator of θ. The only difference between the population NPL
mapping and its sample counterpart is whether the pseudo-maximum likelihood esti-
mator of θ is computed in the population or in the sample.

Definition 2 (NPL Mapping). For any P ∈ P, the sample NPL mapping is ϕ̂(P) ≡
Ψ(ϑ̂(P)�P); its population counterpart is ϕ0(P) ≡Ψ(ϑ0(P)�P).

Notice that these NPL mappings are continuous functions on a compact set, that is,
from P to itself. By Brouwer’s fixed-point theorem, a fixed point of the NPL mapping al-
ways exists, both for the sample and the population mappings. In other words, the vector
mappings φ̂(P) ≡ P − ϕ̂(P) and φ0(P) ≡ P −ϕ0(P) both have at least one root. However,
uniqueness is not guaranteed. Definition 3 formally states the conditions satisfied by a
fixed point of the sample NPL mapping.

Definition 3 (Fixed Point of the Sample NPL Mapping). P̂∗ is a fixed point of the sam-
ple NPL mapping if P̂∗ = ϕ̂(P̂∗). This implies that for θ̂∗ ≡ ϑ̂(P̂∗) the following conditions
hold: (A) θ̂∗ = arg maxθ∈Θ Q̂(θ� P̂∗); and (B) P̂∗ = Ψ(θ̂∗� P̂∗).

The NPL estimator is formally stated in Definition 4.

Definition 4 (NPL Estimator). The NPL estimator (θ̂NPL� P̂NPL) is defined as the fixed
point of the sample NPL mapping achieving the largest value of the pseudo-likelihood
function. That is, it satisfies the following conditions: (A) P̂NPL = ϕ̂(P̂NPL); (B) θ̂NPL =
ϑ̂(P̂NPL); and (C) (θ̂NPL� P̂NPL) maximizes Q̂(θ�P) within the set of fixed points of the
sample NPL mapping.

Aguirregabiria and Mira (2007, Proposition 2) showed that the NPL estimator is con-
sistent and asymptotically normal. Furthermore, if the spectral radius, that is, the largest
eigenvalue in absolute value of the Jacobian matrix ∂ϕ0(P)/∂P evaluated at P0 is smaller
than one, it is asymptotically more efficient than the two-step estimator.

It is worth comparing the properties of the NPL estimator with those of the MLE
that jointly maximizes the likelihood function with respect to P and θ subject to the
constraint P = Ψ(θ�P). In particular, we want to emphasize that they are different es-
timators for models of dynamic games. The NPL estimator is the maximizer of Q̂(θ�P)
among (θ̂NPL� P̂NPL) satisfying two conditions: (i) P̂NPL = Ψ(θ̂NPL� P̂NPL) and (ii) θ̂NPL =
ϑ̂(P̂NPL). The constrained MLE is the maximizer of Q̂(θ�P) among (θ̂ML� P̂ML) satisfy-
ing three conditions: (i) P̂ML = Ψ(θ̂ML� P̂ML), (ii) �θQ̂(θ̂ML�P̂ML)

− λ′�θΨ (θ̂ML�P̂ML)
= 0,
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and (iii) �PQ̂(θ̂ML�P̂ML)
− λ′�PΨ (θ̂ML�P̂ML)

= 0. While conditions (i) and (ii) are asymp-
totically equivalent across both estimators, the NPL estimator does not impose the La-
grange first-order conditions with respect to P corresponding to the constrained MLE’s
condition (iii). This difference potentially leads to substantial computational savings in
large state spaces at the cost of losing asymptotic efficiency. This lost of efficiency only
arises when the NPL estimator is applied to empirical games. For single-agent models,
the zero-Jacobian property (Aguirregabiria and Mira (2002)) implies that the NPL esti-
mator always satisfies condition (iii) such that both estimators are equivalent in that
setting.

The main challenge in obtaining the NPL estimator is how to compute the fixed
point(s) of the sample NPL mapping. Aguirregabiria and Mira (2007) proposed to use
the NPL fixed-point algorithm that is defined in the next subsection.

4.2 NPL fixed-point algorithm

Let P̂0 be a vector of nonparametric or reduced-form estimates of the CCPs. Let θ̂1 be
the two-step pseudo-maximum likelihood estimator—or Hotz-Miller estimator—as in
Definition 1. These estimates can be used to update the CCPs using P̂1 = Ψ(θ̂1� P̂0),
construct a new pseudo log-likelihood function Q̂(θ� P̂1) to be maximized, and so on.
Such an iterative process is referred to as the NPL fixed-point algorithm. When iterated
for a fixed K number of times, this approach delivers the K-step estimator.

Definition 5 (NPL Fixed-Point Algorithm and K-Step Estimator). The kth iteration of
the NPL fixed-point algorithm for k ∈ N is defined as P̂k = ϕ̂(P̂k−1), or equivalently,

P̂k = Ψ(θ̂k� P̂k−1) (6)

with

θ̂k ≡ ϑ̂(P̂k−1)= arg max
θ∈Θ

Q̂(θ� P̂k−1) (7)

and P̂0 is a reduced-form estimate of the CCPs. The K-step estimator iterates until
k=K.

It is easy to see that, upon convergence, the NPL fixed-point algorithm delivers a
fixed point of the sample NPL mapping. It is worth repeating that the estimator obtained
upon convergence of the NPL algorithm does not necessarily correspond to the NPL
estimator in Definition 4 as the NPL estimator is one of the potentially multiple fixed
points of the sample NPL mapping.

It is important to emphasize that fixed-point iterations in the NPL mapping is only
one possible method to obtain an NPL fixed point. The NPL algorithm failing to con-
verge should therefore not be interpreted as evidence against the existence of a NPL
fixed point since—as already mentioned above—the sample NPL mapping has at least
one fixed point. Furthermore, even if the NPL algorithm may converge to different NPL
fixed points when initiated at distinct starting values, it may still fail to obtain all NPL
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fixed points. The reasons for such lack of convergence and failure to deliver the full set
of NPL fixed points will be presented in Section 5.

Nonetheless, there are two cases where the NPL algorithm is guaranteed to converge
to the consistent NPL estimator. First, when applied to single-agent dynamic discrete
choice models, convergence follows from the zero-Jacobian property shown by Aguir-
regabiria and Mira (2002, Proposition 2). Second, Aguirregabiria and Mira (2007, Exam-
ple 5) highlighted several appealing properties of the NPL algorithm when the number
of structural parameters in θ is exactly equal to the number of free probabilities in P. In
fact, the NPL mapping then has a unique fixed point, this fixed point is stable, and the
NPL algorithm reaches this consistent fixed point in only two iterations.

4.3 Relaxation algorithm

Since it will be included in the simulation exercises in Section 6, we now define one of
the modified NPL algorithms proposed by Kasahara and Shimotsu (2012).

Definition 6 (Relaxation Algorithm and K-Step Relaxation Estimator). The kth itera-
tion of the relaxation algorithm for k ∈N is defined as

P̂k =Ψ(θ̂k� P̂k−1)
α ∗ (P̂k−1)

1−α (8)

with

θ̂k ≡ ϑ̂(P̂k−1)= arg max
θ∈Θ

Q̂(θ� P̂k−1)� (9)

where P̂0 is a reduced-form estimate of the CCPs and ∗ denotes Hadamard product. The
K-step relaxation estimator iterates until k=K.

In other words, this modified NPL algorithm updates the CCPs by using a log-linear
combination of the kth CCPs and their corresponding best response. As pointed out by
Kasahara and Shimotsu (2012), such a log-linear combination is known as the relaxation
method in numerical analysis. For the rest of the paper, we will therefore refer to this
algorithm as the relaxation algorithm. The mapping used to update the CCPs will be the
relaxation mapping

Ideally, one would like to choose α optimally by using the value that minimizes the
spectral radius of the Jacobian of the relaxation mapping evaluated at the true CCPs
and structural parameters. Since these values are unknown in practice, Kasahara and
Shimotsu (2012, footnote 13, p. 2314) proposed using α ≈ 0.

4.4 Spectral algorithm

In this section, we propose an alternative algorithm to compute the NPL estimator.
Computing the NPL estimator requires solving a system of nonlinear equations. We now
describe how a derivative-free nonmonotone spectral residual method—proposed by
La Cruz, Martinez, and Raydan (2006)—can be used to find a solution to this system of
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equations. In contrast to the NPL algorithm, the proposed method is not based on fixed-
point iterations and can be used to find unstable fixed points. Also very importantly, in
contrast to Newton’s method, the spectral algorithm does not require the computation
nor the approximation of high dimension Jacobian matrices.

We are interested in finding the solution(s) to φ̂(P) = 0, where φ̂(·) : P 	→
(−1�1)dim{P} is a nonlinear continuous function. This boils down to solving a large di-
mensional system of nonlinear equations. A derivative-free spectral approach is espe-
cially appealing in the current setting for two reasons. First, it does not require the com-
putation, nor the approximation of the Jacobian of φ̂(·). Second, its small memory needs
make it applicable to large dimensional P’s.

Spectral methods initially proposed by Barzilai and Borwein (1988) are most easily
understood by comparing them with other existing methods commonly used to solve
nonlinear systems of equations. For instance, Newton’s method would update P̂k to P̂k+1

as

P̂k+1 = P̂k − [�φ̂(P̂k)
]−1φ̂(P̂k) (10)

which unfortunately requires computing and inverting the Jacobian matrix �φ̂(P̂k)
at

each iteration. Alternatively, quasi-Newton methods such as Broyden’s would use

P̂k+1 = P̂k − B−1
k φ̂(P̂k)� (11)

where the matrices Bk are defined sequentially as

Bk+1 = Bk + φ̂(P̂k+1)
P̂′
k+1


P̂′
k+1
P̂k+1

(12)

with 
P̂k+1 ≡ P̂k+1 − P̂k. While rank-one updates could be used to obtain B−1
k+1, the

inverse of �φ̂(P̂k)
is still typically approximated at the first iteration and the approach

requires carrying potentially large dimensional matrices in large state spaces. Spectral
methods rather propose to update the CCPs using:

P̂k+1 = P̂k − αk φ̂(P̂k)� (13)

where αk is the spectral steplength. A key feature of the spectral step length is that it
is a scalar. Different αk’s have been proposed in the literature. Let 
φ̂(P̂k) ≡ φ̂(P̂k) −
φ̂(P̂k−1). Barzilai and Borwein (1988) proposed using

αk = 
P̂′
k
φ̂(P̂k)


φ̂(P̂k)
′
φ̂(P̂k)

� (14)

Alternatively, La Cruz, Martinez, and Raydan (2006) proposed

αk = 
P̂′
k
P̂k


P̂′
k
φ̂(P̂k)

� (15)
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Finally, Varadhan and Roland (2008) proposed using

αk = sgn
(

P̂′

k
φ̂(P̂k)
) ‖
P̂k‖∥∥
φ̂(P̂k)

∥∥ � (16)

where sgn(a) = a/|a| if a �= 0; sgn(a) = 0 otherwise. Commonly used values for the initial
α0 are α0 = 1 or α0 = min{1�1/|φ̂(P0)|}.

A consequence of using spectral step lengths as the ones presented above is that
they generate nonmonotone updating processes. An important contribution of La Cruz,
Martinez, and Raydan (2006) has been to propose a nonmonotone line search as a glob-
alization strategy that allows for such nonmonotone behavior. More precisely, for some
merit function f (·) such that f (P) = 0 ⇔ φ̂(P) = 0, each step must satisfy

f (P̂k+1) ≤ max
0≤j≤J−1

f (P̂k−j)+ηk − γα2
kf (P̂k)� (17)

where J is a nonnegative integer, 0 < γ < 1 and
∑

k ηk < ∞. This globalization strategy
is a safeguard that can improve the performance of the algorithm.

La Cruz, Martinez, and Raydan (2006) have shown attractive local convergence prop-
erties for this spectral residual approach. A solution P̂∗ is said to be isolated if there exists
κ > 0 such that φ̂(P) �= 0 whenever ‖P − P̂∗‖ ≤ κ. If an isolated solution is a limit point
of the sequence of P̂’s generated by the algorithm, then the whole sequence converges
to this solution (La Cruz, Martinez, and Raydan (2006, Theorem 3)). Furthermore, a so-
lution P̂∗ is said to be strongly isolated if φ̂(P̂∗) = 0 and there exists κ > 0 such that
‖P − P̂∗‖ ≤ κ implies that φ̂(P)′[�φ̂(P)]′φ̂(P) �= 0. If the point used to initialize the algo-
rithm is close enough to some strongly isolated solution, the whole sequence converges
to this solution (La Cruz, Martinez, and Raydan (2006, Theorem 4)).

As it can be seen by comparing (10) with (13), the spectral algorithm described here
uses a scalar 1/αk to approximate the matrix �φ̂(P̂k)

. A useful intuition to understand
why such a scalar helps in finding the solution of a nonlinear system of equations is
given by Fletcher (1990). For instance, notice that the formula for αk proposed by La
Cruz, Martinez, and Raydan (2006) as written in (15) implies that

1
αk

= 
P̂′
k
φ̂(P̂k)


P̂′
k
P̂k

≈

P̂′

k�φ̂(P̂k)

P̂k


P̂′
k
P̂k

= 
P̂′
k�φ̂

s

(P̂k)

P̂k


P̂′
k
P̂k

� (18)

where the approximation follows from 
φ̂(P̂k) ≈�φ̂(P̂k)

P̂k, that is, the secant formula

for the Jacobian, and �φ̂s

(P̂k)
= [�φ̂(P̂k)

+ �φ̂′
(P̂k)

]/2 is the symmetric part of �φ̂(P̂k)
. In

other words, 1/αk is the Rayleigh quotient with respect to a secant approximation of
�φ̂s

(P̂k)
. Since �φ̂s

(P̂k)
is symmetric, it is diagonalizable with only real eigenvalues. Well-

known properties of Rayleigh quotients imply that 1/αk is bounded by the smallest and
the largest eigenvalues of �φ̂s

(P̂k)
. Furthermore, one can interpret the last equality in (18)

as a weighted average of the eigenvalues of �φ̂s

(P̂k)
with weights given by the square of

the corresponding coordinate of 
P̂k in the eigenbasis. This weighted average therefore
assigns larger weights to the elements of P in the eigenbasis, which varied the most be-
tween step k− 1 and k.
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The updating of the spectral step length αk at each iteration is also a relevant dis-
tinctive feature of the spectral approach when compared to the relaxation algorithm
described in Section 4.3. Notice that, based on the definition of the relaxation method
(Definition 6), ln[P̂k+1] can be written as

ln[P̂k+1] = ln[P̂k] − α
{
ln[P̂k] − ln

[
Ψ(θ̂k+1� P̂k)

]}
� (19)

Since ln[P̂] − ln[Ψ(θ̂(P̂)� P̂)] = 0 if and only if P̂ = Ψ(θ̂(P̂)� P̂), the part of equation (19)
inside braces corresponds to a residual function which is equal to 0 only at the NPL
fixed point(s). One can therefore interpret the log-linearized version of the relaxation
algorithm as a “spectral method” that updates ln[P̂k] using a constant “spectral step
length” α. Our comparison of the performance of the relaxation and the spectral al-
gorithms shows that updating the scalar spectral step length as part of the iterative
process—once again, similarly as Newton and quasi-Newton methods update approxi-
mations of the inverse of a matrix— leads to substantially better convergence properties.
Furthermore, a log-linearized version of the relaxation algorithm as in (19) that would
update the spectral step length according to the expressions of αk reported above would
be locally convergent in a neighborhood of a strongly isolated solution (once again by
La Cruz, Martinez, and Raydan (2006, Theorem 4)).

There are three other points that are worth mentioning. First, since there is no guar-
antee that the NPL sample mapping has a unique fixed point, this iterative procedure
should be initiated at different starting values. Second, the procedure described above
is also iterative, just like the NPL algorithm. However, it does not make fixed-point iter-
ations over the NPL mapping. For this reason, the spectral approach is able to find un-
stable fixed points that would not be attainable via the NPL algorithm. Third, it should
be noted that the spectral approach is not much harder to code than NPL: one basically
uses the code of a K = 1 step iteration to construct the system of nonlinear equations to
be solved.

4.5 Comparing domains of attraction

The spectral algorithm described above is therefore an alternative approach that can be
used to compute the NPL estimator. In order to appreciate how its convergence prop-
erties compare to the NPL algorithm and to other iterative approaches available in the
literature, it is useful to highlight how a given solution’s domain of attraction may vary
across different methods.

There is an important consequence of using the NPL algorithm to find fixed points
of the sample NPL mapping: if the stability condition required for convergence—which
will be provided below—fails to hold, the relevant domain of attraction is a singleton.
In other words, the only way to find the NPL fixed point corresponding to the NPL esti-
mator would be to initiate the algorithm exactly at the solution. As a result, the domain
of attraction of the NPL estimator has zero Lebesgue measure when stability fails. This
feature is a consequence of using fixed-point iterations in an NPL mapping that—in the
case of games—is not a contraction.
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As discussed above, fixed-point iterations are not the only method available to solve
for the fixed points of a nonlinear system of equations. Under very general conditions—
which hold in our problem—Newton or quasi-Newton algorithms have desirable local
convergence properties. In fact, for these algorithms, the solution’s domain of attraction
is a singleton if and only if the Jacobian matrix of the system of equations to solve is
singular when evaluated at the solution. Under very mild conditions, the set of such un-
regular solutions has zero Lebesgue measure, such that the domain of attraction of any
solution is generically larger than a singleton. This observation is true even if stability
fails. It follows that, when stability fails, estimating algorithms based on Newton meth-
ods are associated with domains of attraction leading to a consistent estimator that are
larger than the NPL algorithm’s.

This distinction between fixed-point iterations and Newton methods is key to under-
stand the properties of different algorithms used to estimate dynamic discrete games.
For instance, the properties of the NFXP applied to dynamic games crucially depend on
the method used to solve for the fixed point in the inner algorithm. If one uses fixed-
point iterations, instability of the best response mapping may prevent the inner algo-
rithm to converge unless this algorithm is initiated at the fixed point of interest. In such
cases, the inner algorithm’s domain of attraction being a singleton implies that the do-
main of attraction of the NFXP algorithm must also have zero Lebesgue measure. For
this reason, it may be preferable to implement a NFXP algorithm that uses Newton
methods to solve for the fixed point to ensure that the algorithm locally converges to
the consistent estimator.

MPEC methods can also be interpreted as a set of variations of Newton methods
used to find the solution of a constrained optimization problem. As a result, the MPEC
algorithm applied to dynamic discrete games should locally converge to a solution. Of
course, this algorithm may still fail to converge for a given initial value. However, the
set of starting values leading to a consistent estimator has a strictly positive Lebesgue
measure. In fact, simulation evidence from Egesdal, Lai, and Su (2015) suggests that the
MPEC could always be initiated at a starting value leading to a converging sequence,
despite the algorithm failing to converge for some sequences.

To sum up, one way to guarantee convergence to the NPL estimator would be to ap-
ply a Newton algorithm to solve for a zero of the system of equations φ̂(P) = 0. The New-
ton method does not rely on fixed-point iterations and guarantees local convergence un-
der mild regularity conditions. It is worth emphasizing a considerable advantage of the
spectral approach over Newton and quasi-Newton algorithms that is especially relevant
in the context of dynamic discrete games with large state spaces: replacing the approx-
imation of the Jacobian to be inverted by a scalar that has a closed-form expression. In
that sense, spectral methods offer a generic approach that is implemented in practice
with limited effort. While Newton methods may have higher rates of convergence and
may require a smaller number of iterations, the burden of computing or approximating
the inverse of large Jacobian matrices and the tricks available to reduce this burden vary
across models. For instance, MPEC methods typically leverage sparsity properties. How-
ever, it should be noted that the Jacobian of the Ψ(θ�P) with respect to P is typically not
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sparse in games.7 Furthermore, the dimensionality of the problem solved by the spec-
tral algorithm remains smaller than implementing the MPEC estimator of Egesdal, Lai,
and Su (2015). While solving the system of nonlinear equations requires searching over
the CCPs’ space, MPEC is searching over the spaces of the CCPs, the parameters, and the
Lagrange multipliers.

Should one conclude that the NPL fixed-point algorithm is necessarily dominated
by algorithms based on Newton or spectral methods? A single iteration of the NPL al-
gorithm is computationally much cheaper than such alternative methods in very large
state spaces. Better understanding under which conditions the NPL algorithm can be
applied is therefore needed.

5. Local asymptotic properties of the NPL algorithm

We now turn to studying the asymptotic properties of the estimator generated by the
NPL fixed-point algorithm. To shed new light on mixed simulation results found in the
literature, our analysis departs from existing work in two ways. First, we are assessing
the convergence properties of the NPL algorithm when it is iterated in small samples.
Second, we derive asymptotic properties that are local to the stability threshold deter-
mining the convergence of the NPL algorithm in the population.

We start by distinguishing between the stability of the data generating process and
the convergence of the NPL algorithm iterated in small samples. This point is key to ex-
plain why the NPL algorithm may fail to converge even if the equilibrium generating
the data is stable. We show that convergence of the NPL algorithm to the NPL estimator
depends on a particular property of the sample NPL mapping. We characterize the prob-
ability that the NPL algorithm delivers the NPL estimator for data generating processes
that are around the stability threshold. Standard asymptotic arguments would conclude
that this probability is either zero or one depending on the stability of the data generat-
ing process. Our local asymptotic analysis allows us to characterize the nondegenerate
probability of the NPL algorithm delivering the NPL estimator even in large samples,
which is consistent with our Monte Carlo simulations.

Furthermore, we investigate how the NPL algorithm could lead to an estimator that
is asymptotically different from the NPL estimator. First, the algorithm could converge to
an inconsistent fixed point of the sample NPL mapping. Second, the condition that de-
termines the convergence of the algorithm to the consistent NPL estimator is stochastic
and is not independent of the NPL estimator itself. This dependence introduces a se-
lection bias in the NPL fixed-point algorithm estimator. To the best of our knowledge,
the implications of this selection have never been explored in the literature. The relative
importance of these two sources of bias depends on the data generating process, as it is
highlighted in Section 6.

7This is an important distinction with single-agent models for which the Jacobian is the zero matrix.
Since a given player’s payoffs depend on the other players’ decisions, derivatives with respect to other play-
ers’ choice probabilities are nonzero. As a result, the Jacobian matrix displays blocks of zeros along the
diagonal, but the remaining off-diagonal blocks are nonzero.
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Definition 7 (NPL Fixed Points in the Population and in the Sample). F0 is the set of
NPL fixed points of the mapping ϕ0(·). For any P0∗ ∈ F0, let θ0∗ ≡ ϑ0(P0∗). Similarly, F̂ is
the set of NPL fixed points of the mapping ϕ̂(·). For any P̂∗ ∈ F̂, let θ̂∗ ≡ ϑ̂(P̂∗).

The stability of fixed points of the NPL mapping is defined in Definition 8. For a given
square matrix A, let ρ(A) denote its spectral radius, that is, its largest eigenvalue in ab-
solute value. The condition ρ(A) < 1 is sufficient, but not necessary, for AK to converge
to 0 for large enough K (where AK denotes the matrix product of K matrices A).

Definition 8 (Stable Fixed Points of the Population and the Sample NPL Mappings).
Under Assumptions 1 and 2: (A) the data generating process is stable if ρ(�ϕ0

(P0)
) < 1

and (B) a fixed-point P̂∗ of the sample NPL mapping ϕ̂(·) is stable if ρ(�ϕ̂(P̂∗)) < 1.

By the local contraction theorem, condition ρ(�ϕ0
(P0)

) < 1 implies that there is a
neighborhood of P0—say N(P0)—such that an algorithm that starts at a vector within
N(P0) and iterates in the population NPL mapping must converge to P0. Similarly, un-
der condition ρ(�ϕ̂(P̂∗)) < 1, there is a neighborhood N(P̂∗) such that starting at a vec-
tor within this neighborhood and iterating in the sample NPL mapping eventually con-
verges to the fixed- point P̂∗. Very importantly, the stability condition in the population
NPL mapping is not sufficient to guarantee the convergence of the NPL algorithm in
finite samples.

Kasahara and Shimotsu (2012, Proposition 1) studied the properties of the NPL al-
gorithm estimator under the condition that the sample size is large enough such that:
(i) the sample NPL mapping can be approximated arbitrarily well using the popula-
tion NPL mapping and (ii) the algorithm starts at a consistent nonparametric estima-
tor that is arbitrarily close to P0. This is the reason why their convergence conditions
are stated in terms of ρ(�ϕ0

(P0)
) as in Definition 8(A). In contrast, our approach studies

the properties of estimators when convergence of the algorithm is determined in small
samples according to Definition 8(B). Our approach echoes criticisms to the asymp-
totic approximation—formulated by Pesendorfer and Schmidt-Dengler (2010)—and it
is more in line with the idea of using the NPL algorithm as a device to reduce finite sam-
ple bias.

To alleviate the notation, let ρ̂NPL ≡ ρ(�ϕ̂(P̂NPL)
) and ρ0 ≡ ρ(�ϕ0

(P0)
). Since the sam-

ple NPL mapping is a random object, one cannot guarantee that the stability of the equi-
librium generating the data implies that ρ̂NPL < 1 for a fixed sample size M . The random-
ness of the sample NPL mapping implies that—for finite M—there is always a strictly
positive probability that ρ̂NPL > 1, even when the population is such that ρ0 < 1. This
observation can explain the lack of convergence of the NPL algorithm when the data
generating process is stable. Nonetheless, standard asymptotic arguments would con-
clude that, as M → ∞, Pr(ρ̂NPL < 1) is either 0 or 1 depending on the sign of 1 − ρ0. To
preserve nondegenerate probabilities of ρ̂NPL being smaller than 1 when ρ0 > 1 even in
large samples, we consider an asymptotic analysis that is local to ρ0 = 1. In other words,
we consider a sequence of stable data generating processes, which depend on the sam-
ple size M and asymptotically converge to a data generating process satisfying ρ0 = 1, in
which the equilibrium generating the data is unstable.
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The local asymptotics framework has been used in different branches of literature in
econometrics. For instance, it has been applied in seminal contributions studying the
problems of specification testing (e.g., Hausman (1978)), unit roots in autoregressive
models (e.g., Phillips (1987), Phillips and Perron (1988), Elliott, Rothenberg, and Stock
(1996)) and weak instruments (e.g., Staiger and Stock (1997)), among others. In many
cases, the local asymptotics framework is used to analyze the power of statistical tests.
Recently, Bugni and Ura (2019) used local asymptotics to study the effect of local mis-
specification on sequential estimation for single-agent dynamic discrete choice models.
In our setting, we leverage such asymptotic arguments to derive the distribution of the
estimator obtained upon convergence of the NPL algorithm when the data generating
process is local to ρ0 = 1. We are focusing on this specific value of ρ0 since it is the thresh-
old defining stability of NPL fixed points in the population.

Our local asymptotics consider that there is a sequence of data generating processes
{P0

M : M ≥ 1} defined by

P0
M = P0 + cP√

M
(20)

for some unknown constant vector cP. This sequence of data generating processes is
such that P0

M − P0 = O(M−1/2). Let Q0
M(θ�P) ≡ EP0

M
[ln[Ψ(ym|xm�θ�P)]], where EP0

M
[·] is

computed with respect to P0
M . By maximizing Q0

M(θ�P) over Θ for a given P ∈ P, one
obtains ϑ0

M(P) ≡ arg maxθ∈ΘQ0
M(θ�P). Let θ0

M ≡ ϑ0
M(P0

M), and let ρ0
M ≡ ρ(�ϕ0

M�(P0
M)

)

where �ϕ0
M�(P0

M)
is the Jacobian of ϕ0

M(P)= Ψ(ϑ0
M(P)�P) evaluated at P0

M .

The following Lemma 1 provides useful results about the local asymptotic proper-
ties of NPL fixed points. Parts 1(A)–1(B) establish that the sequence of data generating
processes {P0

M :M ≥ 1} implies sequences of sets of fixed points denoted F0
M . Parts 1(C)–

1(D) derive the local asymptotic properties of the (algorithm-free) statistics P̂∗ and θ̂∗ as
M → ∞ under {P0

M :M ≥ 1}.

Lemma 1 (Local Asymptotic Properties of NPL Fixed Points). Let Assumptions 1 and 2
be satisfied. As M → ∞ under {P0

M : M ≥ 1}, the following statements hold:

(A) Let {F0
M : M ≥ 1} be the sequence of the set of fixed points of the mapping ϕ0

M(·).
Every set in this sequence is nonempty. Furthermore, this sequence converges to F0.

(B) For any P0
M∗ ∈ F0

M , there exists a P0∗ ∈ F0 and some constant vectors c∗
P, c∗

θ such
that P0

M∗ = P0∗ + c∗
P/

√
M + o(M−1/2) and θ0

M∗ = θ0∗ + c∗
θ/

√
M + o(M−1/2) where

θ0
M∗ ≡ ϑ0

M(P0
M∗).

(C) For any P̂∗ ∈ F̂, there exists a P0
M∗ ∈ F0

M such that
√
M(P̂∗ − P0

M∗) and the corre-

sponding
√
M(θ̂∗ − θ0

M∗) both converge in distribution to vectors of normal ran-
dom variables with zero means.

(D) For any P̂∗ ∈ F̂, there exists a P0∗ ∈ F0 such that P̂∗
p→ P0∗, θ̂∗

p→ θ0∗.

Proof. See Appendix B.1 of the Online Supplementary Material (Aguirregabiria and
Marcoux (2021)).
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Since the spectral radius of the Jacobian of the NPL mapping is key to determine
whether the NPL algorithm converges to a given fixed point, we state its local asymptotic
properties in Lemma 2. Using a notation similar to the one above, let ρ̂∗ ≡ ρ(�ϕ̂(P̂∗)) for

P̂∗ ∈ F̂, ρ0∗ ≡ ρ(�ϕ0
(P0∗)

) for P0∗ ∈ F0, and ρ0
M∗ ≡ ρ(�ϕ0

M�(P0
M∗)

) for P0
M∗ ∈ F0

M . Lemma 2

establishes the asymptotic distribution of the statistic ρ̂∗ as M → ∞ under {P0
M : M ≥ 1}.

Lemma 2 (Local Asymptotic Properties of the Spectral Radius). Let Assumptions 1 and
2 be satisfied and let P0

M = P0 + cP/
√
M for some unknown constant vector cP. Then, as

M → ∞ under {P0
M : M ≥ 1}, for P̂∗ ∈ F̂, there exist a P0

M∗ ∈ F0
M and a P0∗ ∈ F0 such that:

(A) ρ0
M∗ = ρ0∗ + c∗

ρ/
√
M + o(M−1/2);

(B)
√
M(ρ̂∗ − ρ0

M∗)
d→ Normal(0�σ2

ρ0∗
) where σ2

ρ0∗
is defined in Appendix B.2; and

(C) Pr(ρ̂∗ > ρ0∗) → �(
c∗
ρ

σ
ρ0∗
) where �(·) is the cumulative distribution function of the

standard normal.8

Proof. See Appendix B.2.

Lemmas 1 and 2 apply to all the NPL fixed points, including the NPL estimator.
Therefore, a corollary of Lemmas 1 and 2 is that, as M → ∞ under {P0

M : M ≥ 1}, the

(algorithm-free) NPL estimator (θ̂NPL� P̂NPL) converges in probability to (θ0�P0). More-
over,

√
M(θ̂NPL − θ0

M) and
√
M(P̂NPL − P0

M) converges in distribution to vectors of ran-

dom variables with zero means. Finally, Pr(ρ̂NPL > ρ0) → �(
c0
ρ

σ
ρ0
) where c0

ρ is such that

ρ0
M = ρ0 + c0

ρ/
√
M + o(M−1/2).

The rest of this section presents the local asymptotic properties of the estimator gen-
erated by the NPL fixed-point algorithm, that we represent as (θ̂FP� P̂FP) to distinguish
it from the NPL estimator. In cases where the NPL algorithm finds multiple fixed points,
the FP estimator is the one that maximizes the pseudo log-likelihood among all fixed
points found by the algorithm. When the sequence {ρ0

M : M ≥ 1} satisfies the stability
condition ρ0

M < 1 but its limit is ρ0
M → ρ0 = 1, the probability of ρ̂NPL > 1 is strictly posi-

tive as M → ∞, such that the NPL estimator may not be a stable fixed point of the sam-
ple mapping ϕ̂(·) even if the data generating process satisfies ρ0

M < 1. We can distinguish
three possible scenarios for the FP estimator.

Scenario 1 (ρ̂NPL < 1) The NPL estimator is a stable fixed point of the sample NPL map-
ping and the NPL algorithm converges to this fixed point such that θ̂FP = θ̂NPL.

8It is worth noting that, for any ρ̄ �= ρ0∗,

lim
M→∞

Pr(ρ̂∗ > ρ̄) = �

(
−

lim
M→∞

√
M
[
ρ̄− ρ0

M∗
]

σρ0∗

)
is either 0 or 1 under {P0

M : M ≥ 1} (depending on the sign of ρ̄− ρ0
M∗). The reason why limM→∞ Pr(ρ̂∗ > ρ̄)

is degenerate while limM→∞ Pr(ρ̂∗ > ρ0∗) is nondegenerate is because ρ0
M∗ − ρ0∗ = O(M−1/2).
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Scenario 2 (ρ̂NPL ≥ 1 and ∃P̂∗ ∈ F̂ such that ρ̂∗ < 1) The NPL algorithm does not con-
verge to the NPL estimator, but it converges to the stable fixed-point P̂∗ (that maximizes
the pseudo log-likelihood among all fixed points found by the algorithm). The resulting
FP estimator θ̂FP �= θ̂NPL is not a consistent estimator of θ0.

Scenario 3 (ρ̂NPL ≥ 1 and ρ̂∗ ≥ 1 ∀P̂∗ ∈ F̂) The NPL fixed-point algorithm does not con-
verge and the FP estimator θ̂FP does not exist.

For what follows, we consider that the NPL fixed-point algorithm always finds all the
stable fixed points in F̂. In practice, finding all such stable fixed points is achieved by
initializing the NPL algorithm at sufficiently many starting values. For the sake of sim-
plicity, but without loss of generality for our results, we consider that the mapping ϕ̂(·)
has at most only one fixed point other than the NPL estimator. In other words, we con-
sider that F̂ = {P̂NPL� P̂∗}, but we allow for cases where P̂∗ = P̂NPL. The following equation
summarizes the three possible scenarios.

θ̂FP =

⎧⎪⎪⎨⎪⎪⎩
θ̂NPL if ρ̂NPL < 1�

θ̂∗ �= θ̂NPL if ρ̂NPL ≥ 1 and ρ̂∗ < 1�

does not exist if min{ρ̂NPL� ρ̂∗} ≥ 1�

(21)

Equation (21) shows two sources of bias in the FP estimator. First, θ̂FP is a mixture
of the consistent estimator θ̂NPL and the inconsistent estimator θ̂∗. Second, the FP esti-
mator exists only if condition min{ρ̂NPL� ρ̂∗} < 1 holds. This condition introduces a trun-
cation in the distribution of the FP estimator. Even when θ̂NPL is the only NPL fixed
point—such that there is not the first source of bias—the distribution of the FP estimator
is equal to the distribution of θ̂NPL conditional on ρ̂NPL < 1. This truncation introduces
a selection bias in the FP estimator.

Proposition 1 establishes the local asymptotic distribution of the FP estimator con-
ditional on the existence of this estimator, that is, conditional on min{ρ̂NPL� ρ̂∗} < 1. This
Proposition includes three different cases of local asymptotics. In all these cases, the
limit of ρ0

M is ρ0 = 1. The three cases correspond to different values for the limit ρ0∗ of the
sequence {ρ0

M∗}: (1) ρ0∗ < 1, (2) ρ0∗ = 1, and (3) ρ0∗ > 1.

Proposition 1 (Local Asymptotic Distribution of the FP Estimator). Let Assumptions 1
and 2 be satisfied and let P0

M = P0 + cP/
√
M for some unknown constant vector cP. Un-

der {P0
M : M ≥ 1} as M → ∞, Lemma 1(C) implies that

√
M(θ̂NPL − θ0

M)
d→ ξθ(P0) and√

M(θ̂∗ − θ0
M∗)

d→ ξθ(P0∗) where ξθ(P0) and ξθ(P0∗) are vectors of normal random vari-

ables with zero means. Furthermore, Lemma 2(B) implies that
√
M(ρ̂NPL −ρ0

M)
d→ ξρ(P0)

and
√
M(ρ̂∗ − ρ0

M∗)
d→ ξρ(P0∗) where ξρ(P0) and ξρ(P0∗) are scalar normal random vari-

ables. Then, when the limit of the sequence {ρ0
M : M ≥ 1} is ρ0 = 1, the following results

hold:
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(A) The limiting distribution of the event EM = {min{ρ̂NPL� ρ̂∗}< 1} is

lim
M→∞

Pr(EM)=

⎧⎪⎪⎨⎪⎪⎩
1 if ρ0∗ < 1�

Pr
(
min

{
ξρ
(
P0)+ c0

ρ�ξρ
(
P0∗
)+ c∗

ρ

}
< 0

)
if ρ0∗ = 1�

Pr
(
ξρ
(
P0)+ c0

ρ < 0
)

if ρ0∗ > 1�

(22)

(B) For any set B, the limit of Pr(
√
M(θ̂FP − θ0

M) ∈B|EM) as M → ∞ is as follows.
If ρ0∗ < 1,

Pr
(
ξθ
(
P0) ∈B|ξρ

(
P0)+ c0

ρ < 0
)

Pr
(
ξρ
(
P0)+ c0

ρ < 0
)

+ Pr
(
ξθ
(
P0∗
)+ lim

M→∞
√
M
(
θ0
M∗ − θ0

M

) ∈B|ξρ
(
P0)+ c0

ρ ≥ 0
)

× Pr
(
ξρ
(
P0)+ c0

ρ ≥ 0
)
� (23)

If ρ0∗ = 1,

Pr
(
ξθ
(
P0) ∈B|ξρ

(
P0)+ c0

ρ < 0
) Pr

(
ξρ
(
P0)+ c0

ρ < 0
)

Pr
(
min

{
ξρ
(
P0)+ c0

ρ�ξρ
(
P0∗
)+ c∗

ρ

}
< 0

)
+ Pr

(
ξθ
(
P0∗
)+ lim

M→∞
√
M
(
θ0
M∗ − θ0

M

) ∈B
∣∣ξρ(P0)+ c0

ρ ≥ 0� ξρ
(
P0∗
)+ c∗

ρ < 0
)

× Pr
(
ξρ
(
P0)+ c0

ρ ≥ 0� ξρ
(
P0∗
)+ c∗

ρ < 0
)

Pr
(
min

{
ξρ
(
P0)+ c0

ρ�ξρ
(
P0∗
)+ c∗

ρ

}
< 0

) � (24)

If ρ0∗ > 1,

Pr
(
ξθ
(
P0) ∈B|ξρ

(
P0)+ c0

ρ < 0
)
� (25)

Proof. See Appendix B.3.

Proposition 1 shows that, for sequences of data generating processes local to ρ0 = 1,
the limiting distribution of θ̂FP is a mixture of truncated normal distributions. The ex-
act mixture depends on the stability of the other fixed point(s) of the NPL mapping in
the population, that is, ρ0∗. The mixed distributions are: the truncated distribution of the
NPL estimator (Scenario 1) and the truncated distribution of the inconsistent estimator
θ̂∗ (Scenario 2). The truncations are due to the fact that the FP estimator only exists un-
der some conditions (Scenario 3). The weights associated with the mixture correspond
to Pr(ρ̂NPL < ρ0) (from Lemma 2) conditional on the existence of θ̂FP.

The simplest case is when ρ0∗ > 1, that is, the other fixed point is “sufficiently” un-
stable. Then the limiting distribution of θ̂FP is simply the asymptotic distribution of the
NPL estimator, conditional on the existence of θ̂FP. In other words, the only source of
bias in that case is the convergence selection.

If the other fixed point is stable, then there is an additional—and more severe—
source of bias: the possibility of the NPL algorithm converging to an inconsistent es-
timator. This source of bias has already been highlighted in the literature by Pesendorfer
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and Schmidt-Dengler (2008, 2010). Since we are considering the case where ρ0 = 1, our
asymptotic results emphasize that inconsistency does not arise with probability 1.

Finally, if both fixed points in F0 are equal to 1, both convergence selection and
convergence to an inconsistent estimator are potential sources of asymptotic bias.9 The
weights associated with each of the mixed distributions differ from the ones in the case
with ρ0∗ < 1 since ρ0 = ρ0∗ = 1 implies that both ρ̂NPL < 1 and ρ̂∗ < 1 can happen with
nondegenerate probabilities.

Furthermore, Proposition 1 leads to interesting conclusions that shed light on con-
vergence issues associated with the NPL fixed-point algorithm. These implications,
which are supported by the simulation evidence reported in Section 6, are summarized
as follows.

First, having a sequence of stable data generating processes is not sufficient for con-
sistency of the FP estimator. If this sequence is local around ρ0 = 1, there is a strictly
positive probability that the fixed-point algorithm does not converge to the consistent
NPL estimator. In that sense, the theoretical results presented above explain why the
NPL algorithm may fail to converge or may converge to an inconsistent estimator even
if the data are generated from a stable fixed point in the population. To the best of our
knowledge, we are the first to provide a theoretical explanation for this property of the
FP estimator, which has been observed in simulation experiences previously reported in
the literature without convincing explanations. The local asymptotic approach around
ρ0 = 1 is especially relevant to understand cases where the data generating process is
stable, but close to being unstable. Even for relatively large M , the randomness in the
sample NPL mapping may make the iterative procedure unstable despite the stability of
the fixed point in the population.

Second, the fact that the FP estimator only exists under Scenarios 1 and 2 introduces
a selection bias, which we refer to as the convergence selection bias. Even in the unfea-
sible case where the researcher could know ρ̂NPL and select the FP estimator only when
the convergence condition ρ̂NPL < 1 holds, the convergence selection would still intro-
duce a discrepancy between the FP and the NPL estimators. To the best of our knowl-
edge, the effect of this convergence selection on the asymptotic properties of the FP
estimator had not been studied prior to the current paper.

6. Monte Carlo experiments

In our Monte Carlo experiments, we consider two sets of data generating processes that
have been commonly used in the literature to compare the performance of different
algorithms. The first set is based on Aguirregabiria and Mira (2007); the second one is
from Pesendorfer and Schmidt-Dengler (2008).

9It is also worth noting that ρ0∗ = 1 includes F0 being a singleton as a special case. Then, since
ξρ(P0)+c0

ρ = ξρ(P0∗)+c∗
ρ, Pr(ξρ(P0)+c0

ρ ≥ 0� ξρ(P0∗)+c∗
ρ < 0) = 0 and the limiting distribution is Pr(ξθ(P0) ∈

B|ξρ(P0)+ c0
ρ < 0) as for the case ρ0∗ > 1.
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6.1 Experiments I: Aguirregabiria and Mira (2007)

The first set of data generating processes are based on Experiment 3 in Aguirregabiria
and Mira (2007). The same data generating process, or a simplified version of it, was
also used by Kasahara and Shimotsu (2012) and by Egesdal, Lai, and Su (2015).

The model corresponds to the dynamic game of market entry and exit presented in
Section 3 above. A number N = 5 of firms must decide whether or not to operate in M

independent markets. There are N + 1 = 6 observable state variables: market size (smt )
and the incumbency status of each player (ym�t−1). The support of smt is S = {1�2�3�4�5}.
The observable state space is denoted by X ≡ S × YN and the total number of possible
states is dim(X) = 5 × 25 = 160. The transition probability of incumbency statuses triv-
ially corresponds to the firms’ decisions CCPs. The transition matrix for market size smt

is ⎡⎢⎢⎢⎢⎢⎣
0�8 0�2 0 0 0
0�2 0�6 0�2 0 0
0 0�2 0�6 0�2 0
0 0 0�2 0�6 0�2
0 0 0 0�2 0�8

⎤⎥⎥⎥⎥⎥⎦ � (26)

The values of the parameters in the payoff function are θRS = 1, θEC = 1, θFC�1 = 1�9,
θFC�2 = 1�8, θFC�3 = 1�7, θFC�4 = 1�6, and θFC�5 = 1�5. The discount rate is assumed to be
known and equal to β = 0�95.

The strategic interaction parameter θRN has an important role in the stability of the
data generating process. Note that θRN = 0 corresponds to a single-agent dynamic dis-
crete choice model, and in this case stability—in the sense of Definition 8(A)—is guaran-
teed through the zero-Jacobian property (Aguirregabiria and Mira (2002, Proposition 2)).
Figure 1 presents the spectral radius ρ0 for different values of θRN.10

Simulation exercises available in the literature—that have used this data generating
process—have typically focused on two specific values of θRN: θRN = 2, which will be
referred to as the mildly stable case since the corresponding spectral radius at the true
CCPs is 0�9237 and θRN = 4, which will be the very unstable case with spectral radius of
1�6748. We present below Monte Carlo experiments and convergence results for these
two cases. Furthermore, to provide a finer picture of the properties of the sequential es-
timators, we also consider a very stable case by setting θRN = 1, corresponding spectral
radius 0�4623, and a mildly unstable case where θRN = 2�4 spectral radius equal to 1�1168.
These four cases allow us to study how different degrees of (in)stability at the population
level affect the statistical properties of the sample NPL mapping and the estimators. Ta-
ble C1 in Appendix C.1 reports summary statistics from the simulated data.

The equilibrium CCPs needed to generate the data solve the fixed-point mapping in
(1) when the unobservable state variables follow the extreme value type 1 distribution.
The equilibrium CCPs can be found by using a built-in solver for a system of nonlin-

10The Jacobians used to compute these spectral radii have been approximated using numerical deriva-
tives.
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Figure 1. Spectral radii for different θRN—Population NPL mapping.

ear equations.11 For each version of the data generating process, we initiated the solver
at 100 randomly picked starting values. All starting values returned the same vector of
equilibrium CCPs.

For each version of the data generating process, we take a random sample of M mar-
kets from the ergodic distribution of the state variables, and use the equilibrium CCPs
to generate firms’ entry/exit decisions in each market. We implement experiments with
M = 400 and with M = 5000 markets. For each experiment, we draw 500 Monte Carlo
samples.

We compute estimates using three different algorithms: the NPL fixed point, the re-
laxation, and the spectral algorithms. We iterate each algorithm at most K = 100 times
and study the properties of the sequences of estimates. All algorithms were initialized
with 5 different starting values, including the frequency estimator of the CCPs as one of
them.12 For a given algorithm, if different starting points generate different estimates,
then the solution with the highest value of the pseudo-likelihood is selected as the esti-
mate for that algorithm. We have also considered the case where the frequency estimate
of CCPs is the only starting value, and we report these results in Appendix C.3.13

11We used R’s BBsolve function with its default settings. Similar solvers can be found in other softwares.
BBsolve is an off-the-shelf function that implements a spectral algorithm with some extra safeguards. It is
the same function that is referred to as the “spectral solver” below.

12Estimated zeros and ones are replaced with 10−10 and 1 − 10−10, respectively.
13Our results in the experiments in Appendix C.3 show that using multiple starting values is necessary for

the relative good performance of the spectral algorithm and solver when they are applied to data generating
processes featuring multiple fixed points, such as our Experiments II, but not for our Experiments I. In that
sense, the need for multiple starting values has a similar justification as when maximizing a log-likelihood
function that has multiple local maxima.
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The spectral approach was implemented in two different ways. First, we consider a
simple version using the spectral step length proposed by La Cruz, Martinez, and Ray-
dan (2006), without their nonmonotone line search. We refer to this version as the “spec-
tral algorithm.” It was used to reduce the computational burden when comparing the
sequence of estimates generated by the spectral approach and by the NPL fixed-point al-
gorithm. Second, spectral estimates are obtained using R’s BBsolve function (Varadhan
and Gilbert (2009)) which incorporates the nonmonotone line search along with other
safeguards. This version is referred to as the “spectral solver.” In each model specifica-
tion (very stable, mildly stable, mildly unstable, and very unstable) and each sample size
considered, the BBsolve algorithm only failed to converge in at most 0.4% Monte Carlo
samples. Interestingly, the estimates obtained from the simpler version of the spectral
approach (i.e., the spectral algorithm) always coincided with the more involved imple-
mentation (i.e., the spectral solver). More precisely, the L∞ distance between the two
vector of estimates is always smaller than 10−2.

Finally, when implementing the relaxation algorithm, we follow Kasahara and Shi-
motsu’s (2012) advice to use α ≈ 0 and we fix α = 0�05.

6.1.1 Results

Convergence to the NPL estimator We first assess whether, upon convergence, the al-
gorithms deliver the NPL estimator. For each Monte Carlo sample, we compute the fixed
points (i.e., upon convergence) that maximizes the log-likelihood function for each al-
gorithm. We call the NPL estimator the estimates that correspond to the fixed point that
maximizes the log-likelihood across all estimators. Then we compare the estimates ob-
tained from each algorithm with this NPL estimator. We consider that an algorithm has
reached the NPL estimator if the difference in absolute value for each parameter is not
larger than 10−2. The results are reported in Table 1. We find that whenever the spectral
solver converges (which happens in at least 99�6% of the samples in each experiment) it
delivers the NPL estimator. Furthermore, whenever the NPL fixed-point algorithm con-
verges (which happens almost always in the very stable case, but almost never in the
very unstable case), it delivers the NPL estimator. The relaxation algorithm never finds
the NPL estimator within K = 100. Of course, one caveat of defining the NPL estimator as

Table 1. Convergence to the NPL estimator—Experiments I.

Very Stable Mildly Stable Mildly Unstable Very Unstable

400 5K 400 5K 400 5K 400 5K

% NPL fixed-point algorithm 92�2 100�0 58�0 71�8 43�2 26�6 2�2 0�0
% Relaxation algorithm 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0
% Spectral algorithm 100�0 100�0 100�0 100�0 100�0 100�0 100�0 100�0
% Spectral solver 100�0 99�8 100�0 99�6 99�8 99�8 99�6 99�6

Note: Percentages computed over 500 Monte Carlo samples. For each sample, the NPL estimate corresponds to the fixed
point of the sample NPL mapping that maximizes the log-likelihood function among all fixed points found by the fixed-point
algorithm, the relaxation algorithm, the spectral algorithm, and the spectral solver. An estimator is deemed converging to the
NPL estimator if the L∞ distance between its estimates and the NPL estimates is not greater than 10−2 .
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Figure 2. Boxplots of sample spectral radii at NPL estimates—M = 400.

we do is that we cannot rule out the case where none of the estimators we consider actu-
ally finds the NPL fixed point that truly maximizes the log-likelihood function. However,
the nice properties of the spectral solver estimator that will be presented below suggest
that the spectral algorithm succeeds in finding the NPL estimator in our simulation ex-
periments.

Empirical distribution of ρ̂NPL Figure 2 illustrates how the distribution of ρ̂NPL varies
with ρ0. For each value ρ0 over a grid, we draw boxplots of ρ̂NPL from 50 Monte Carlo
samples of M = 400 markets.14 The results are consistent with Lemma 2. As expected,
ρ̂NPL < 1 is a more likely event in more stable data generating processes. However, a large
fraction of the sample spectral radii can be on both sides of 1 when the data generating
process is close to the stability cut-off.

Convergence rates Table 2 compares the algorithms’ convergence rates. We consider a
sequence to have converged if max{|P̂k − P̂k−1|} < 10−5 for k ≤ 100. Table 2 also reports
the fractions of Monte Carlo samples for which the spectral radius evaluated at the NPL
estimates is smaller than 1.15 The results support that the convergence properties of the
NPL fixed-point algorithm are driven by the spectral radius of the sample NPL mapping
evaluated at the NPL estimator. In fact, the fraction of samples for which this algorithm
converges and the share of ρ̂NPL being smaller than 1 both increase when the data gen-
erating process is further from being unstable.

We find that the relaxation algorithm never converges within K = 100 iterations. This
disappointing performance of the relaxation algorithm in the current setting is likely due

14For θRN = 1�4, there was a value of ρ̂NPL which was close to 6. We dropped this outlier when drawing
Figure 2 to make the figure easier to read.

15Given our results in Table 1, the spectral solver estimates are used as P̂NPL.
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Table 2. Sample stability and convergence—Experiments I.

Very Stable Mildly Stable Mildly Unstable Very Unstable

400 5K 400 5K 400 5K 400 5K

Convergence rates
% NPL fixed-point algorithm 92�2 99�8 58�0 71�6 43�2 26�6 2�2 0�0
% Relaxation algorithm 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0
% Spectral algorithm 100�0 99�8 100�0 99�6 99�8 99�8 99�6 99�6
% Spectral solver 100�0 99�8 100�0 99�6 99�8 99�8 99�6 99�6

Spectral radius <1 95�8 99�6 64�2 88�0 50�0 47�0 4�6 0�0

Note: Percentages computed over 500 Monte Carlo samples. “Spectral radius” refers to ρ̂NPL, which is computed using the

spectral solver estimates. The NPL, relaxation, and spectral algorithms are deemed having converged if max{|P̂k− P̂k−1|}< 10−5

for k≤ 100.

to the fact that—following Kasahara and Shimotsu’s (2012) advice—we use α ≈ 0 instead
of using its optimal value. However, it is worth noting that computing the optimal α
would require knowing P0 and θ0 therefore making this approach infeasible in practice.

An important feature of the spectral algorithm and the spectral solver that is observ-
able from Table 2 is that they almost always converge, regardless of the data generating
process and the value of the sample spectral radius. This observation confirms the im-
portance of separating the properties of the NPL estimator itself from the properties of
the NPL fixed-point algorithm. The definition of the NPL estimator does not depend on
the stability of the sample NPL fixed point: It exists even if the NPL algorithm may fail to
deliver it.

In Proposition 1, we highlighted two potential sources of discrepancy between the
asymptotic properties of the FP and the NPL estimators. On one hand, Proposition 1 im-
plies that the NPL algorithm could converge to an inconsistent estimator when ρ̂NPL ≥ 1.
This would be the case if there exist some stable fixed points of the sample NPL map-
ping in addition to the unstable NPL fixed point defining the NPL estimator. According
to Table 2, the NPL algorithm almost never converges when ρ̂NPL ≥ 1. It follows that
convergence to an inconsistent estimator is unlikely to be a convincing explanation of
the properties of the NPL algorithm estimates in our experiments. On the other hand,
Proposition 1 suggests that the converged NPL fixed-point algorithm sequences repre-
sent a selected subset of sequences that may have properties that differ from those of
the NPL estimator. Table 2 shows that the NPL algorithm does not converge in a non-
negligible share of samples even when the data generating process is stable—28�4% in
the mildly stable case with M = 5000—and it does converge in a nonnegligible propor-
tion of samples when the population is unstable—26�6% in the mildly unstable case with
M = 5000. It seems that convergence selection is a suitable candidate to explain how the
FP estimator may differ from the consistent NPL estimator in Experiments I.

Average estimates and standard errors Table 3 reports average estimates and standard
errors of several estimators of interest for M = 400. The results for M = 5000 are reported
in Table C3 in Appendix C.2. First, we report two-step estimates (i.e., θ̂1) obtained using
the simple frequency count estimators for the CCPs. The results suggest that this estima-
tor is heavily biased, even with the larger sample size of M = 5000. This observation is
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Table 3. Simulation results—M = 400, Experiments I.

θRS = 1 θRN θEC = 1 θFC�1 = 1�9 θFC�2 = 1�8 θFC�3 = 1�7 θFC�4 = 1�6 θFC�5 = 1�5

Two-step estimates
Very stable
(θRN = 1)

0�4338 0�1674 1�2006 1�1414 1�1069 1�0617 1�0195 0�9905
(0�1241) (0�3510) (0�1316) (0�2255) (0�2281) (0�2053) (0�2067) (0�2035)

Mildly stable
(θRN = 2)

0�3843 0�1659 1�1645 1�3746 1�3115 1�2473 1�1799 1�1110
(0�1041) (0�3349) (0�1214) (0�2290) (0�2080) (0�2096) (0�2000) (0�1960)

Mildly unstable
(θRN = 2�4)

0�3694 0�1709 1�1988 1�4514 1�3669 1�2919 1�2131 1�1301
(0�0980) (0�3373) (0�1230) (0�2257) (0�2166) (0�2097) (0�1914) (0�1869)

Very unstable
(θRN = 4)

0�3457 0�3327 1�4784 1�7093 1�5856 1�4510 1�2712 0�9046
(0�0917) (0�4230) (0�1538) (0�2978) (0�2738) (0�2581) (0�2327) (0�2036)

Converged K = 100 NPL fixed-point algorithm estimates
Very stable
(θRN = 1)

1�0002 0�9782 1�0048 1�9194 1�8349 1�7250 1�6165 1�5238
(0�1916) (0�5822) (0�1158) (0�2249) (0�2222) (0�2101) (0�1994) (0�1935)

Mildly stable
(θRN = 2)

0�8324 1�3676 1�0535 1�9132 1�8119 1�6990 1�5851 1�4726
(0�1489) (0�5223) (0�1101) (0�2090) (0�1934) (0�1897) (0�1931) (0�1874)

Mildly unstable
(θRN = 2�4)

0�7653 1�4513 1�0985 1�9035 1�7862 1�6705 1�5493 1�4259
(0�1226) (0�4603) (0�1121) (0�2107) (0�1923) (0�1842) (0�1859) (0�1873)

Very unstable
(θRN = 4)

0�6151 1�7496 1�3533 1�9620 1�8595 1�6507 1�4566 1�1281
(0�0921) (0�2360) (0�0796) (0�2831) (0�3244) (0�3112) (0�3031) (0�2909)

All K = 100 NPL fixed-point algorithm estimates
Very stable
(θRN = 1)

1�0355 1�0882 0�9990 1�9058 1�8206 1�7124 1�6076 1�5156
(0�2217) (0�6761) (0�1177) (0�2304) (0�2313) (0�2181) (0�2055) (0�1998)

Mildly stable
(θRN = 2)

0�9603 1�8406 1�0181 1�9082 1�8046 1�7043 1�6004 1�4957
(0�1953) (0�6930) (0�1098) (0�2218) (0�2130) (0�2062) (0�2069) (0�2059)

Mildly unstable
(θRN = 2�4)

0�9154 2�0475 1�0476 1�8998 1�7899 1�6834 1�5802 1�4721
(0�1640) (0�6134) (0�1133) (0�2291) (0�2165) (0�2100) (0�2077) (0�2083)

Very unstable
(θRN = 4)

0�7892 2�7388 1�2489 1�9232 1�8002 1�6744 1�5110 1�2762
(0�0869) (0�2833) (0�1105) (0�2769) (0�2620) (0�2491) (0�2426) (0�2311)

All K = 100 relaxation algorithm estimates
Very stable
(θRN = 1)

1�5330 2�5713 0�8939 1�8395 1�7690 1�6830 1�6012 1�5350
(0�6963) (2�0664) (0�2138) (0�2818) (0�2771) (0�2641) (0�2527) (0�2513)

Mildly stable
(θRN = 2)

1�9311 5�2818 0�6627 2�1403 2�0882 2�0427 2�0125 1�9916
(0�6812) (2�3969) (0�2940) (0�3894) (0�3982) (0�4195) (0�4504) (0�4842)

Mildly unstable
(θRN = 2�4)

1�8782 5�7878 0�6053 2�1786 2�1297 2�0985 2�0833 2�0810
(0�5786) (2�2225) (0�3066) (0�3996) (0�4061) (0�4239) (0�4537) (0�4930)

Very unstable
(θRN = 4)

1�2755 5�5171 0�7397 1�9935 1�9106 1�8474 1�8310 1�9230
(0�1709) (0�7769) (0�1883) (0�3489) (0�3337) (0�3309) (0�3342) (0�3608)

All K = 100 spectral algorithm estimates
Very stable
(θRN = 1)

1�0416 1�1071 0�9973 1�9043 1�8192 1�7113 1�6064 1�5148
(0�2377) (0�7264) (0�1204) (0�2328) (0�2337) (0�2205) (0�2075) (0�2014)

Mildly stable
(θRN = 2)

1�0308 2�0941 0�9869 1�9209 1�8212 1�7240 1�6244 1�5258
(0�2922) (1�0461) (0�1383) (0�2300) (0�2220) (0�2189) (0�2232) (0�2269)

Mildly unstable
(θRN = 2�4)

1�0135 2�4333 0�9951 1�9230 1�8200 1�7192 1�6218 1�5230
(0�2722) (1�0528) (0�1509) (0�2416) (0�2318) (0�2289) (0�2336) (0�2429)

Very unstable
(θRN = 4)

0�9818 3�8546 1�0316 1�9337 1�8250 1�7229 1�6106 1�4913
(0�1591) (0�7949) (0�1793) (0�3046) (0�2882) (0�2769) (0�2762) (0�2989)

(Continues)
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Table 3. Continued.

θRS = 1 θRN θEC = 1 θFC�1 = 1�9 θFC�2 = 1�8 θFC�3 = 1�7 θFC�4 = 1�6 θFC�5 = 1�5

Spectral solver estimates
Very stable
(θRN = 1)

1�0416 1�1071 0�9973 1�9043 1�8192 1�7113 1�6064 1�5148
(0�2377) (0�7264) (0�1204) (0�2328) (0�2337) (0�2205) (0�2075) (0�2014)

Mildly Stable
(θRN = 2)

1�0308 2�0941 0�9869 1�9209 1�8212 1�7240 1�6244 1�5258
(0�2922) (1�0461) (0�1383) (0�2300) (0�2220) (0�2189) (0�2232) (0�2269)

Mildly Unstable
(θRN = 2�4)

1�0135 2�4331 0�9953 1�9228 1�8199 1�7190 1�6217 1�5231
(0�2725) (1�0539) (0�1510) (0�2418) (0�2320) (0�2291) (0�2338) (0�2432)

Very unstable
(θRN = 4)

0�9813 3�8541 1�0320 1�9315 1�8235 1�7213 1�6089 1�4898
(0�1592) (0�7964) (0�1796) (0�3031) (0�2878) (0�2763) (0�2754) (0�2987)

Note: Averages and standard errors (in brackets) computed over 500 Monte Carlo samples. The K = 100 NPL algorithm is

deemed having converged if max{|P̂k − P̂k−1|} < 10−5 for some k ≤ 100. The relaxation algorithm never converged by K = 100.
Since the spectral algorithm almost always converged, the results conditional on convergence are very similar to the ones
obtained from all samples and are not reported.

not surprising given that there is a small number of markets in each realized state there-
fore making the estimated CCPs very imprecise. This poor performance of the two-step
estimator motivates imposing equilibrium restrictions in the estimation.

We then report the results for the NPL fixed-point algorithm. We consider two cases.
First, we focus only on the estimates obtained from the converged NPL algorithm, where
a sequence is deemed having converged if max{|P̂k − P̂k−1|} < 10−5 for k ≤ 100. Second,
we include all estimates at K = 100, regardless whether the sequence of estimates has
converged or not.

We find that restricting the NPL algorithm’s estimates to converged sequences can
introduce a substantial bias, especially when the DGP is unstable. The results are more
encouraging for the converged NPL algorithm estimates in the “very stable” data gen-
erating process. By comparing the results from the “very stable” and the “mildly stable”
cases, it is obvious that the properties of the converged NPL algorithm estimator vary
within the category of stable data generating processes, with more stable equilibria be-
ing more suitable for this estimator. While this insight is quite intuitive, the current sim-
ulation exercise seems to be the first one to make this point.

Interestingly, except in the “very stable” case, one typically improves upon the prop-
erties of the NPL algorithm estimator by considering any sequence of estimates, regard-
less whether it converged, instead of focusing on converged ones. We are not aware of
existing work in the literature that has made this comparison. This feature of the NPL
algorithm is related to the convergence selection exposed in Proposition 1.

Since the relaxation algorithm has been proposed as a modified NPL algorithm, we
also include the results obtained from this estimator (with α = 0�05). As already men-
tioned above, no sequence of estimates has converged by K = 100. When looking at the
last iteration estimates, we also find that they are heavily biased and very imprecise.

Finally, we report estimates obtained from the spectral algorithm and the spectral
solver. Since these two algorithms feature convergence frequencies close to 100%, we
do not include separate results focusing only on the converging sequences of estimates.
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For most cases, the spectral approach has nice properties as one expects from the fre-
quency at which this approach delivers the NPL estimator. In particular, it has much
better properties than the NPL algorithm estimator when the equilibrium generating
the data is not stable. This observation is coherent with the fact that the NPL estima-
tor should be consistent even if stability of the sample NPL mapping fails at the NPL
estimates.

Distribution of estimates We now compare the empirical distributions of estimates
from the converged NPL fixed point and the spectral solver algorithms. Since the strate-
gic interaction parameter θRN is the most problematic one according to the results pre-
sented in Tables 3 and C3, we focus our attention on this parameter.16

Figure 3 compares the histograms of θ̂RN −θ0
RN obtained from the converged NPL al-

gorithm estimates and the spectral solver’s estimates. While the distributions are practi-
cally identical for the “very stable” case, sizeable differences appear as the data generat-
ing process becomes less stable. Sample size does affect the level of similitude between
distributions. While the distributions are still quite similar in the “mildly stable” data
generating process with M = 5000, they are already quite different with M = 400.

The distribution of the spectral approach estimator is roughly normal (perhaps a bit
skewed in smaller samples) and centered close to the true value of the parameter. This
observation is coherent with the properties of the NPL estimator. However, the distribu-
tions of the converged NPL algorithm estimates tend to be shifted away from the true
value in more unstable cases and look like truncated normals. Such a truncation is con-
sistent with Proposition 1. The direction of the truncation is also as expected. Converg-
ing sequences of the NPL algorithm tend to be associated with smaller values of the esti-
mated strategic interaction parameter. A similar finding was noted by Mogensen (2015).
This pattern is not surprising given the spectral radii reported in Figure 1. It also offers an
obvious explanation for the direction of the bias associated with the NPL algorithm esti-
mator restricted to converging sequences: Since converging sequences typically lead to
smaller values of estimated strategic interaction parameters, the convergence selection
implies an attenuation bias.

Histograms in Figure C1, in Appendix C.4, split the distributions of spectral solver
estimates in two groups: With ρ̂NPL < 1, and with ρ̂NPL ≥ 1. It emphasizes that the NPL
estimator exists regardless the stability of the sample NPL fixed point defining the NPL
estimator. As predicted by Proposition 1, there are noticeable truncations in the distri-
butions conditional on ρ̂NPL < 1.

Computational cost The results obtained from the spectral algorithm and the spec-
tral solver are quite encouraging. They suggest that the spectral approach delivers the
NPL estimator, which has nice properties, even if the data generating process does not
satisfy desirable stability conditions. One important question remains: how costly is it
compared with other methods?17

16Similar distributions for all other parameters are available from the authors upon request.
17All the Monte Carlo experiments have been implemented using R programming language in a Dell

Precision T7500 Workstation, with Dual Six Core Intel Xeon Processor X5680 3�33 GHz, 48 Gb of RAM
(1333 MHz), and Windows 10 Professional (64 bit) Operating System.
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Table 4 summarizes each algorithm’s computational burden per starting value.18

When comparing the time needed to perform a single iteration, we find that the NPL
fixed point, the relaxation, and the spectral algorithms are quite similar, with the spectral
algorithm being slightly faster. However, both the average number of iterations needed
to reach convergence and its standard deviation are much smaller for the spectral al-
gorithm than for the NPL algorithm.19 As a result, the total time until convergence is
on average much smaller for the spectral algorithm than for the NPL algorithm and we
conclude that the former is computationally cheaper than the latter. Even if the compu-
tational cost of the spectral algorithm increases for unstable data generating processes,
it remains cheaper to implement than the NPL algorithm.

We also report the total time required by the spectral solver to converge. Since we
are directly implementing R’s BBsolve function from the BB package, we did not com-
pute the computational time needed to perform a single iteration. Nonetheless, the total
time needed to reach convergence is reported in Table 4. Since the spectral solver adds a
nonmonotone search and other safeguards, it does not converge as fast as the manually
coded spectral algorithm, but it is still cheaper than the NPL algorithm.

Fixed-point multiplicity For these experiments, we did not find evidence of multiple
fixed points in the sample NPL mappings. Upon convergence, each sequence initiated
at five randomly chosen starting values lead to the same fixed point. Once again, this
observation supports that the disappointing performance of the NPL algorithm for some
data generating processes is explained by the failure to converge rather than converging
to an inconsistent NPL fixed point.

In order to detect as many multiple fixed points in the sample NPL mapping as pos-
sible, we reran a smaller-scale Monte Carlo simulation (25 samples) in which the algo-
rithms were initiated at a larger number of starting values (25 instead of 5) and a larger
number of iterations (K = 500 instead of 100) was allowed for. As before, the NPL, the re-
laxation and the spectral algorithms are deemed having converged if max{|P̂k − P̂k−1|} <
10−5 for k ≤ 500. For the spectral solver, R’s BBsolve default tolerance (i.e., the L2 norm of
φ̂(P) being smaller than

√
dim(P)× 10−7) is used. After having identified all fixed points

across the 25 different starting values (the first set being the frequency count estimator of
the CCPs and the 24 remaining ones being randomly chosen), we measure the distance
between two fixed points as the maximum absolute value of the difference between the
vectors of fixed point CCPs, that is, the L∞ distance. Two fixed points are deemed differ-
ent if the L∞ distance between them is greater than 10−5. The average number of differ-
ent fixed points are computed across Monte Carlo samples and reported in Table 5. This
table also shows the maximum distance between the fixed point maximizing the log-
likelihood function and all the other fixed points found across different starting values
and across Monte Carlo samples.

18In Table 4, the reported averages and standard deviations of the number of iterations, the time per iter-
ation, and the time until convergence are computed using only the starting value that leads to the highest
log-likelihood among all the starting values that are used.

19The number of iterations to reach convergence is not available for the relaxation algorithm because
the algorithm failed to converge within K = 100.
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Table 4. Computational cost—Experiments I.

Very Stable Mildly Stable Mildly Unstable Very Unstable

400 5K 400 5K 400 5K 400 5K

NPL fixed-point algorithm
Number of iterations 16�11 12�63 25�64 41�86 27�30 56�50 33�91 –

(13�55) (2�80) (18�85) (19�12) (19�11) (21�62) (15�23) (–)

Time per iteration
Full iteration 1�4209 2�1368 1�7561 2�7194 1�8554 2�7578 1�8225 2�8106

(0�1806) (0�2888) (0�1899) (0�3321) (0�1692) (0�2617) (0�1199) (0�1824)
Update parameters 1�4179 2�1340 1�7530 2�7163 1�8522 2�7548 1�8194 2�8077

(0�1807) (0�2889) (0�1899) (0�3320) (0�1692) (0�2617) (0�1199) (0�1823)
Update CCPs 0�0030 0�0028 0�0030 0�0030 0�0032 0�0030 0�0030 0�0028

(0�0019) (0�0017) (0�0012) (0�0009) (0�0010) (0�0007) (0�0006) (0�0006)

Time until convergence 23�287 27�041 44�902 114�15 50�951 154�16 61�906 –
(20�968) (7�273) (33�934) (55�479) (37�137) (61�865) (27�129) (–)

Relaxation algorithm
Number of iterations – – – – – – – –

(–) (–) (–) (–) (–) (–) (–) (–)

Time per iteration
Full iteration 1�6361 2�2188 1�8498 2�7212 1�8894 2�7805 1�8764 2�8376

(0�1186) (0�1657) (0�0977) (0�2671) (0�0893) (0�1876) (0�0724) (0�1653)
Update parameters 1�6329 2�2158 1�8466 2�7179 1�8860 2�7773 1�8732 2�8345

(0�1186) (0�1657) (0�0976) (0�2671) (0�1893) (0�1875) (0�0724) (0�1653)
Update CCPs 0�0032 0�0030 0�0032 0�0032 0�0033 0�0031 0�0032 0�0030

(0�0006) (0�0006) (0�0006) (0�0006) (0�0006) (0�0006) (0�0006) (0�0006)

Time until convergence – – – – – – – –
(–) (–) (–) (–) (–) (–) (–) (–)

Spectral algorithm
Number of iterations 9�99 9�06 13�52 11�89 14�68 12�94 23�11 22�32

(2�23) (0�64) (4�41) (1�07) (4�72) (1�46) (6�97) (2�21)

Time per iteration
Full iteration 1�4167 2�0886 1�7171 2�6572 1�8416 2�7616 1�8349 2�8164

(0�1713) (0�2444) (0�1741) (0�2906) (0�1499) (0�2181) (0�1278) (0�2100)
Update parameters 1�4134 2�0856 1�7140 2�6538 1�8383 2�7583 1�8317 2�8133

(0�1712) (0�2443) (0�1742) (0�2905) (0�1500) (0�2181) (0�1279) (0�2100)
Update CCPs 0�0033 0�0030 0�0031 0�0034 0�0033 0�0033 0�0031 0�0030

(0�0021) (0�0021) (0�0017) (0�0020) (0�0017) (0�0017) (0�0013) (0�0013)

Time until convergence 14�253 18�924 23�329 31�613 27�164 35�737 42�387 62�843
(4�0135) (2�628) (8�349) (4�588) (9�328) (5�043) (13�127) (7�594)

Spectral solver
Time until convergence 20�578 24�300 36�915 43�935 40�640 48�963 58�776 82�576

(14�193) (4�071) (29�897) (24�211) (28�001) (6�873) (18�539) (9�014)

Note: Number of iterations needed to converge (conditional on convergence) and computational time in seconds. Averages
and standard deviations (in brackets) computed over 500 Monte Carlo samples. The NPL, relaxation, and spectral algorithms
are deemed having converged at kth iteration if max{|P̂k − P̂k−1|} < 10−5 . Time to perform a full iteration is divided in two
parts: updating the parameters θ given the CCPs (a pseudo-maximum likelihood problem) and updating the CCPs given the
parameters (using the algorithm-specific rule). For the spectral solver, the total computation time to reach convergence (with
R’s BBsolve default tolerance, i.e., the L2 norm of φ̂(P) being smaller than

√
dim(P)× 10−7) is reported.
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Table 5. Fixed-point multiplicity/uniqueness in sample NPL mapping.(1) Experiments I.

Very Stable Mildly Stable Mildly Unstable Very Unstable

400 5K 400 5K 400 5K 400 5K

NPL fixed-point algorithm(3)

Avg # of fixed points(2) 1�00 1�00 1�00 1�05 1�00 1�00 1�00 –
Max distance(5) 0�0000 0�0000 0�0000 0�0000 0�0000 0�0000 0�0000 –

Relaxation algorithm(3)

Avg # of fixed points 25�00 25�00 24�96 25�00 24�83 25�00 20�96 24�96
Max distance 0�0009 0�0004 0�0015 0�0006 0�0017 0�0007 0�0020 0�0019

Spectral algorithm(3)

Avg # of fixed points 3�08 1�20 4�16 3�68 6�24 5�92 10�04 8�04
Max distance 0�0000 0�0000 0�0000 0�0000 0�0004 0�0000 0�0005 0�0001

Spectral solver(4)

Avg # of fixed points 1�00 1�00 1�00 1�04 1�00 1�00 1�000 1�00
Max distance 0�0000 0�0000 0�0000 0�0000 0�0000 0�0000 0�0000 0�0000

Note: (1) In an attempt to detect multiple fixed points in the sample NPL mapping, the algorithms are initiated at a larger
number of starting values (25 instead of 5) and a larger number of iterations (K = 500 instead of 100) is allowed for. (2) Averages
and maxima computed over 25 Monte Carlo samples. (3) The NPL, relaxation, and spectral algorithms are deemed having
converged to a fixed point if max{|P̂k − P̂k−1|} < 10−5 for k ≤ 500. (4) For the spectral solver, R’s BBsolve default tolerance (i.e.,

the L2 norm of φ̂(P) being smaller than
√

dim(P)× 10−7) is used. (5) The distance between two fixed points is measured by the
maximum absolute value of the difference between the vectors of fixed point CCPs. Two fixed points are deemed different if
their distance is greater than 10−5 . The reported maximum distance is the largest distance between the fixed point maximizing
the likelihood function and all the other fixed points found across different starting values and across Monte Carlo samples.

The results in Table 5 show that for Experiments I, while multiple fixed points may
be found, they are all numerically very similar. For most Monte Carlo samples, the NPL
algorithm and the spectral solver find a single fixed point across the 25 different starting
values. The relaxation and the spectral algorithms do find multiple fixed points. How-
ever, for all algorithms, L∞ distance between the vectors of fixed point is always smaller
than 10−2, and for most data generating processes it is smaller than 10−5.20

6.2 Experiments II: Pesendorfer and Schmidt-Dengler (2008)

The data generating processes based on Aguirregabiria and Mira (2007) have shown that
the spectral approach is an appealing alternative algorithm to obtain the NPL estimator
regardless of the stability of the data generating process. For those data generating pro-
cesses, convergence selection is the only explanation for the bad performance of the
NPL algorithm when the data are generated from an unstable equilibrium. In this sec-
ond part of our Monte Carlo experiments, we compare the algorithms’ performance us-
ing a different dynamic game of market entry and exit proposed by Pesendorfer and
Schmidt-Dengler (2008). This alternative data generating process has been used in the

20A result from the experiments presented in Table 5 that is also worth mentioning is that when the
relaxation algorithm is allowed to iterate up to K = 500 (instead of 100) it almost always converges. We
have found that convergence of this algorithm requires more than 200 iterations, which is why in our main
experiments with K = 100 this algorithm always failed to converge.
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literature to show that the NPL algorithm may converge to an inconsistent fixed point of
the NPL mapping.

More precisely, we use the same reparameterization as in Dearing and Blevins
(2021). There are N = 2 players in a dynamic game of market entry and exit. Their cur-
rent utility Ui(ymt�xmt�εimt(yimt)) is such that{

θM + θC y2−i�mt + θEC(1 − yim�t−1)+ εimt(1)� yimt = 1�

θSV yim�t−1 + εimt(0)� yimt = 0�
(27)

The only state variables are players’ incumbency status. The total number of possible
states is therefore dim(X) = 22 = 4. The values of the parameters in the payoff function
are θM = 1�2, θC = −2�4, θEC = −0�2, θSV = 0�1, and β = 0�9, and εimt(0), εimt(1) are inde-
pendent and identically distributed Normal(0�0�5).

Pesendorfer and Schmidt-Dengler (2008, p. 920) described five different equilibria
of the game. Initializing a built-in solver for systems of nonlinear equations21 at 500 ran-
domly picked starting values, we found all five equilibria. In our data generating pro-
cesses, we consider equilibria referred to as (i), (ii), and (iii) by Pesendorfer and Schmidt-
Dengler (2008). Only equilibrium (i) is stable according to Definition 8(A). Table C2 in
Appendix C.1 reports summary statistics from the simulated data.

For each of these three equilibria, we take a random sample of M markets from the
ergodic distribution of the incumbency statuses and use the equilibrium CCPs to gener-
ate players’ decisions. We draw 500 Monte Carlo samples of size M = 100 and M = 1000.

We slightly modify the implementation of the algorithms. Multiple randomly picked
starting values must be used in order to find multiple sample NPL fixed points. Since the
computational burden of a single estimation is very small, we use 100 different starting
values. The first one is the frequency count estimator and the second one is P̂k for k= 1.
The other 98 starting values are randomly chosen. Once again, Appendix C.3 reports a
comparison with the case where the frequency count estimates of the CCPs are used as
the only set of starting values. Also because a single iteration is relatively cheap to com-
pute, we increase the number of iterations to K = 500. This large increase has proven to
be useful to appreciate the properties of the relaxation algorithm.

We are still reporting two different algorithms for the spectral approach. While the
non-monotone line search and the other safeguards included in the spectral solver
seemed to lead to the same estimates as with the manually coded spectral algorithm
in Experiments I, they can differ in the current set of data generating processes. This
observation is especially true for M = 100.

6.2.1 Results

Convergence to the NPL estimator Table 6 shows how often each algorithm succeeds in
reaching the NPL estimator. Once again, the spectral solver almost always reaches the
sample NPL fixed point that is associated with the largest log-likelihood function. Most
algorithms are able to reach the NPL estimator in the stable equilibriun (i.e., equilib-
rium (i)) especially in large samples. However, the NPL fixed point and the relaxation

21Once again, we use R’s BBsolve function.
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Table 6. Convergence to the NPL estimator—Experiments II.

Eq (i) Eq (ii) Eq (iii)

100 1K 100 1K 100 1K

% NPL algorithm 88�0 100�0 32�8 1�0 28�4 0�2
% Relaxation algorithm 53�6 81�8 27�6 1�8 23�4 0�8
% Spectral algorithm 88�2 100�0 71�0 79�4 68�6 91�0
% Spectral solver 100�0 100�0 96�0 95�8 97�4 94�0

Note: Percentages computed over 500 Monte Carlo samples. For each sample, the NPL estimates correspond to the fixed
point of the sample NPL mapping that maximizes the log-likelihood function among all fixed points found by the NPL algo-
rithm, the relaxation algorithm, the spectral algorithm, and the spectral solver. An estimator is deemed converging to the NPL
estimator if the maximum of the absolute difference between its estimates and the NPL estimates is at most 10−2 .

algorithms typically converge to another fixed point if the data are generated from an
unstable equilibrium. Finally, the nonmonotone line search and the other safeguards
implemented with the spectral solver seems to make it more likely to reach the NPL es-
timator compared to the spectral algorithm.

Comparing convergence rates One of the most important differences between the re-
sults from the two sets of experiments can be found in Table 7, which reports the con-
vergence rates of the different algorithms: even in unstable data generating processes,
the NPL algorithm always converges. This observation suggests that the properties of
the NPL algorithm estimates in these data generating processes are likely not affected
by the convergence selection problem, but rather by the convergence to an inconsistent
NPL fixed point. Another important difference is that the relaxation algorithm now con-
verges in most Monte Carlo samples. As shown below, this convergence usually happens
after a large number of iterations.

Average estimates and standard errors Table 8 summarizes the simulation results for
both sample sizes used. While the two-step estimates are biased and imprecise when
M = 100, they are more convincing when M = 1000. This observation highlights that,
while two-step estimation may be useful in some settings, it typically requires a large

Table 7. Sample stability and convergence—Experiments II.

Eq (i) Eq (ii) Eq (iii)

100 1K 100 1K 100 1K

Convergence rates
% NPL algorithm 100�0 100�0 100�0 100�0 100�0 100�0
% Relaxation algorithm 55�4 81�8 92�0 98�8 93�0 99�4
% Spectral algorithm 100�0 100�0 100�0 100�0 100�0 100�0
% Spectral solver 100�0 100�0 100�0 100�0 100�0 100�0

Spectral radius <1 88�0 100�0 33�4 1�6 28�4 0�2

Note: Percentages computed over 500 Monte Carlo samples. “Spectral radius” refers to ρ̂NPL, which is computed using the

spectral solver estimates. The NPL, relaxation, and spectral algorithms are deemed having converged if max{|P̂k− P̂k−1|} < 10−5

for k= 500.
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Table 8. Simulation results—M = 100 and M = 1000, Experiments II.

M = 100 M = 1000

θM = 1�2 θC = −2�4 θEC = −0�2 θSV = 0�1 θM = 1�2 θC = −2�4 θEC = −0�2 θSV = 0�1

Two-step estimates
Eq (i) 1�0415 −2�0807 −0�2661 0�0497 1�1891 −2�3733 −0�2072 0�0939

(0�3188) (0�6005) (0�1710) (0�1537) (0�1094) (0�1973) (0�0572) (0�0507)
Eq (ii) 0�8957 −1�7680 −0�3162 0�0143 1�1511 −2�2903 −0�2200 0�0849

(0�3917) (0�8408) (0�2298) (0�1983) (0�1478) (0�3320) (0�0929) (0�0799)
Eq (iii) 0�9019 −1�7850 −0�3142 0�0156 1�1532 −2�2975 −0�2191 0�0856

(0�3766) (0�8196) (0�2314) (0�2013) (0�1466) (0�3278) (0�0928) (0�0798)

All K = 500 NPL algorithm estimates
Eq (i) 1�1639 −2�3227 −0�2358 0�0678 1�1960 −2�3910 −0�2033 0�0971

(0�3054) (0�4216) (0�1059) (0�0812) (0�0917) (0�0986) (0�0237) (0�0165)
Eq (ii) 0�9534 −1�6759 −0�3884 −0�0637 0�9858 −1�7460 −0�3576 −0�036

(0�2355) (0�3279) (0�1124) (0�0943) (0�0702) (0�0769) (0�0326) (0�0273)
Eq (iii) 0�9542 −1�6674 −0�3952 −0�0706 0�9747 −1�7180 −0�3702 −0�047

(0�2372) (0�3139) (0�1113) (0�0930) (0�0685) (0�0749) (0�0330) (0�0278)

Converged K = 500 relaxation algorithm estimates
Eq (i) 1�1358 −2�2504 −0�2579 0�0485 1�1956 −2�3877 −0�2042 0�0962

(0�3196) (0�4594) (0�1123) (0�0854) (0�0938) (0�1019) (0�0243) (0�0168)
Eq (ii) 0�9660 −1�6943 −0�3828 −0�0594 0�9889 −1�7520 −0�3561 −0�0350

(0�2369) (0�3321) (0�1121) (0�0939) (0�0697) (0�0769) (0�0326) (0�0273)
Eq (iii) 0�9623 −1�6832 −0�3911 −0�0674 0�9776 −1�7249 −0�3685 −0�0462

(0�2363) (0�3144) (0�1112) (0�0932) (0�0689) (0�0812) (0�0337) (0�0286)

All K = 500 relaxation algorithm estimates
Eq (i) 1�1645 −2�3270 −0�2337 0�0699 1�1966 −2�3917 −0�2031 0�0972

(0�3004) (0�4064) (0�1033) (0�0794) (0�0920) (0�0995) (0�0239) (0�0167)
Eq (ii) 0�9561 −1�6831 −0�3869 −0�0625 0�9883 −1�7525 −0�3563 −0�0351

(0�2355) (0�3279) (0�1124) (0�0943) (0�0698) (0�0770) (0�0325) (0�0273)
Eq (iii) 0�9565 −1�6733 −0�3941 −0�0697 0�9773 −1�7249 −0�3686 −0�0463

(0�2376) (0�3137) (0�1113) (0�0930) (0�0689) (0�0810) (0�0337) (0�0286)

All K = 500 spectral algorithm estimates
Eq (i) 1�1653 −2�3316 −0�2334 0�0701 1�1960 −2�3910 −0�2033 0�0971

(0�3062) (0�4585) (0�1196) (0�0971) (0�0917) (0�0986) (0�0237) (0�0165)
Eq (ii) 1�1372 −2�2497 −0�2388 0�0675 1�1753 −2�3318 −0�2158 0�0866

(0�4481) (1�0049) (0�2771) (0�2380) (0�1575) (0�3693) (0�1014) (0�0867)
Eq (iii) 1�1356 −2�2413 −0�2430 0�0634 1�1904 −2�3690 −0�2083 0�0926

(0�4147) (0�9567) (0�2732) (0�2375) (0�1561) (0�3621) (0�1024) (0�0879)

Spectral solver estimates
Eq (i) 1�1959 −2�3840 −0�2309 0�0695 1�1960 −2�3910 −0�2033 0�0971

(0�3382) (0�4968) (0�1102) (0�0826) (0�0917) (0�0986) (0�0237) (0�0165)
Eq (ii) 1�2283 −2�4820 −0�1889 0�1083 1�1940 −2�3809 −0�2055 0�0950

(0�5376) (1�1835) (0�3226) (0�2752) (0�1547) (0�3486) (0�0979) (0�0836)
Eq (iii) 1�2502 −2�5356 −0�1763 0�1187 1�2011 2�3986 −0�2020 0�0979

(0�5357) (1�1805) (0�3309) (0�2836) (0�1486) (0�3313) (0�0956) (0�0820)

Note: Averages and standard errors (in brackets) computed over 500 Monte Carlo samples. The K = 500 NPL algorithm is

deemed having converged if max{|P̂k − P̂k−1|}< 10−5 for some k≤ 500. Since the NPL algorithm, the spectral algorithm and the
spectral solver always converged, the results conditional on convergence are the same as the ones obtained from all samples
and are therefore not reported.
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number of observations per state (about 250 when M = 1000), which may not be the
case in many empirical applications.

Our results illustrate how the instability of the equilibrium generating the data al-
ters the properties of the NPL fixed-point algorithm estimates. While the NPL algorithm
performs very well in equilibrium (i), it is severely biased in equilibria (ii) and (iii). The
NPL algorithm seems to be converging to an inconsistent NPL fixed point in the latter
cases. The observed bias is not a consequence of the convergence selection since the
NPL algorithm converges in all Monte Carlo samples.

We also find that the relaxation algorithm is not performing better than the NPL
algorithm. While it performs well in equilibrium (i), it seems to be converging to an in-
consistent NPL fixed point in equilibria (ii) and (iii). In fact, the results obtained from
the relaxation algorithm do not differ much from the NPL algorithm’s estimates. This
finding may be due to using α = 0�05 as opposed to using the unfeasible optimal value.

On average, the estimates generated by the spectral approach, especially the ones
obtained from the spectral solver, are much closer to the true values of the parameters.
This is true, for all equilibria generating the data. The relatively smaller bias for the spec-
tral solver compared to the spectral algorithm is also aligned with the finding that the
latter does not reach the NPL estimator as often.

Distribution of estimates In Figure 4, we plot the same distributions as in Figure 3 for
the strategic interaction parameter θC. Once again, the distribution of the spectral solver
estimates is roughly normal (perhaps skewed in smaller samples) and centered near
the true value. While the distribution of the NPL algorithm estimates is very similar to
the spectral solver’s in equilibrium (i) it is strikingly different for equilibria (ii) and (iii).
Very interestingly, the distributions are quite different from the ones obtained in Exper-
iments I. There is no truncation due to convergence selection: all Monte Carlo samples
lead to an estimate for both algorithms. However, the distribution of the NPL algorithm
estimates is now concentrated around a value that is not the true value of the parameter.
This evidence supports that the NPL algorithm converges to an inconsistent NPL fixed
point in equilibria (ii) and (iii).

Figure C2, in Appendix C.4, shows that the Monte Carlo samples with ρ̂NPL < 1 are
associated with estimates of the strategic interaction parameter that are different from
the estimates in samples with ρ̂NPL ≥ 1. Provided that the NPL algorithm fails to deliver
the NPL estimator when ρ̂NPL ≥ 1, it follows that the NPL algorithm’s estimates may also
lead to an attenuation bias in the current set of data generating processes.

Computational cost Table 9 presents results on the computational cost of the different
algorithms in these experiments.22 Once again, the computation time per iteration is
very similar for the NPL, the relaxation, and the spectral algorithms, and we do find that
the number of iterations required to reach convergence is, in many cases, smaller for the
spectral algorithm. The spectral algorithm’s total time until convergence is often smaller

22Overall, the computational burden of all the algorithms considered in the analysis is much smaller in
Experiments II than in Experiments I. This difference is due to the drastic difference in the size of the state
spaces (4 vs. 160) and the number of parameters to be estimated (4 vs. 8).
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Table 9. Computational cost—Experiments II.

Equilibrium (i) Equilibrium (ii) Equilibrium (iii)

100 1K 100 1K 100 1K

NPL algorithm
Number of iterations 52�13 56�52 33�73 24�35 32�06 22�77

(22�79) (10�86) (36�83) (9�39) (31�88) (3�98)

Time per iteration
Full iteration 0�008411 0�018849 0�009433 0�022783 0�009343 0�022809

(0�000670) (0�001157) (0�000816) (0�001353) (0�000863) (0�001125)
Update parameters 0�008322 0�018764 0�009349 0�022696 0�009259 0�022749

(0�000696) (0�001155) (0�000850) (0�001379) (0�000869) (0�001139)
Update CCPs 0�000065 0�000063 0�000066 0�000063 0�000072 0�000048

(0�000149) (0�000135) (0�000190) (0�000202) (0�000213) (0�000175)

Time until convergence 0�437 1�064 0�320 0�554 0�302 0�519
(0�200) (0�209) (0�351) (0�215) (0�310) (0�084)

Relaxation algorithm
Number of iterations 397�35 395�01 330�08 293�25 327�49 296�82

(70�14) (75�61) (74�20) (63�78) (65�94) (54�85)

Time per iteration
Full iteration 0�008452 0�018948 0�009383 0�022740 0�009294 0�022641

(0�000541) (0�001125) (0�000705) (0�001129) (0�000715) (0�001078)
Update parameters 0�008365 0�018861 0�009300 0�022658 0�009211 0�022558

(0�000545) (0�001126) (0�000705) (0�001129) (0�000714) (0�001078)
Update CCPs 0�000068 0�000068 0�000064 0�000066 0�000065 0�000065

(0�000052) (0�000056) (0�000055) (0�000059) (0�000056) (0�000059)

Time until convergence 3�308 7�412 3�091 6�687 3�039 6�732
(0�586) (1�495) (0�721) (1�570) (0�651) (1�313)

Spectral algorithm
Number of iterations 26�58 26�43 23�87 34�07 24�08 31�49

(15�08) (7�80) (15�68) (22�63) (16�93) (22�30)

Time per iteration
Full iteration 0�008509 0�019258 0�009294 0�021727 0�009273 0�021451

(0�000714) (0�001214) (0�001005) (0�001667) (0�000943) (0�001428)
Update parameters 0�008383 0�019138 0�009159 0�021601 0�009158 0�021342

(0�000763) (0�001233) (0�001059) (0�001654) (0�000978) (0�001447)
Update CCPs 0�000094 0�000099 0�000109 0�000101 0�000091 0�000091

(0�000240) (0�000242) (0�000291) (0�000247) (0�000268) (0�000242)

Time until convergence 0�227 0�512 0�222 0�747 0�226 0�680
(0�137) (0�171) (0�147) (0�511) (0�167) (0�483)

Spectral solver
Time until convergence 1�706 4�031 2�137 6�967 2�203 6�955

(1�775) (4�014) (1�088) (4�414) (1�791) (4�150)

Note: Number of iterations needed to converge (conditional on convergence) and computational time in seconds. Averages
and standard deviations (in brackets) computed over 500 Monte Carlo samples. The NPL, relaxation, and spectral algorithms
are deemed having converged at kth iteration if max{|P̂k − P̂k−1|} < 10−5 . Time to perform a full iteration is divided in two
parts: updating the parameters θ given the CCPs (a pseudo-maximum likelihood problem) and updating the CCPs given the
parameters (using the algorithm-specific rule). For the spectral solver, the total computation time to reach convergence (with
R’s BBsolve default tolerance, i.e., the L2 norm of φ̂(P) being smaller than

√
dim(P)× 10−7) is reported.
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than the NPL and the relaxation algorithms. We therefore conclude that the benefit of
the spectral approach does not come at a higher computational burden.

An important difference between the results obtained from our second set of exper-
iments compared to the first one is that the smaller computational burden of each esti-
mation has allowed us to considerably increase the number of iterations from K = 100
to K = 500. By doing so, we have found that the relaxation algorithm did converge for a
relatively large number of Monte Carlo samples. However, Table 9 shows that, on aver-
age, the relaxation method requires a large number of iterations (typically above 300) to
converge. Of course, this large number of iterations may be due to using α = 0�05.

As mentioned above, as opposed to the first set of experiments, the spectral algo-
rithm does not always generate the same estimates as the spectral solver. In particular,
it may fail to deliver the NPL estimator. In that sense, the nonmonotone line search and
the other safeguards built in the spectral solver from R’s BBsolve function seem to be
more relevant in Pesendorfer and Schmidt-Dengler’s (2008) data generating processes
than in Aguirregabiria and Mira (2007). It is true that these additions increase the com-
putational cost: There is a significant difference in the time until convergence for the
spectral solver compared to the spectral algorithm’s. However, it is worth emphasizing
that the spectral solver’s computational burden remains small.

6.3 Summary and practical implications

Our local asymptotic analysis and our simulation exercises shed new light on the prop-
erties of the estimator defined upon convergence of the NPL algorithm. We confirm
existing convergence issues of this fixed-point algorithm, and characterize the condi-
tion under which this simple iterative approach delivers the NPL estimator. This stabil-
ity condition depends on the NPL estimator itself, such that it is not feasible in practice
to check for this condition before applying the fixed-point algorithm. For this reason, we
see the spectral algorithm as a better approach to compute the NPL estimator. We also
show that the additional computational burden of using spectral algorithms is small.

The spectral approach typically succeeds in finding NPL fixed points without having
to take a stand on their stability in the sample nor in the population. Given its better
convergence properties, we recommend implementing the nonmonotone line search,
which is available in off-the-shelf software packages such as R’s BBsolve function. A very
small coding effort is required beyond the code needed to perform the NPL fixed-point
algorithm. The code of a K = 1 step iteration is used to construct the system of nonlin-
ear equations to be solved by the spectral solver. We also emphasize that one must use
multiple starting values and pick the fixed point maximizing the log-likelihood function
in case where the sample NPL mapping admits several fixed points.

7. Application

In this section, we present an application to a dynamic game of restaurant location be-
tween McDonalds (MD) and Burger King (BK) using data for the UK during the period
1991–1995. The dataset was collected by Toivanen and Waterson (2005), and has also
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been used in Aguirregabiria and Magesan (2020). We refer the reader to these papers
for details about the data. The main purpose of this section is to illustrate the imple-
mentation of the algorithms using actual data. In particular, the dimensionality of the
vector of equilibrium CCPs in many empirical applications may be much larger than in
our Monte Carlo simulations. This section highlights that the spectral approach finds
the NPL estimator in an application with a vector of CCPs that contains almost 190,000
elements.

7.1 Payoff function and state space

In each market m at time t, chain i ∈ {BK�MD} decides whether it adds a new restaurant
(yimt = 1) or not (yimt = 0) to its existing stock of restaurants (rimt =∑

s<t yims). The game
is dynamic because opening a new restaurant is an irreversible decision. Chain i’s payoff
depends on its total number of restaurants (nimt = rimt + yimt ), its competitor’s (njmt =
rjmt + yjmt ), and exogenous market characteristics assumed to be constant over time
such as market size (sm) and a vector wm containing population density, income, average
rent, and retail taxes. Let ymt = [yBK�mt� yMD�mt]′ and xmt = [rBK�mt� rMD�mt� sm�w′

m]′. The
current payoff function depends on variable profits (VP), fixed costs (FC), and a standard
normal private information shock εimt such that Ui(ymt�xmt�εimt) is equal to

VPi(ymt�xmt)− FCi(ymt�xmt)+ yimtεimt� (28)

with

VPi(ymt�xmt)

= sm
[
θ0

VP�i1{nimt > 0} + θ1
VP�i(nimt − njmt)+ θ2

VP�i(nimt − njmt)
2]� and (29)

FCi(ymt�xmt) = θ0
FC�i1{nimt > 0} + θ1

FC�inimt + θ2
FC�in

2
imt + nimtw′

mθMS� (30)

This payoff function is linear in parameters such that Ui(ymt�xmt�εimt) = zimt(yimt�

yjmt)
′θi + yimtεimt where θi = [θ0

VP�i� θ
1
VP�i� θ

2
VP�i� θ

0
FC�i� θ

1
FC�i� θ

2
FC�i�θ

′
MS]′, and zimt(yimt�

yjmt)
′ is[

sm1{nimt > 0}� sm(nimt − njmt)� sm(nimt − njmt)
2�1{nimt > 0}� nimt�n

2
imt� nimtw′

m

]
� (31)

Since sm and wm are constant over time, we consider that each market m corre-
sponds to a particular state. The joint support of rBK�mt and rMD�mt determines the
size of the state space per market. There are at most 13 restaurants owned by a single
chain in a given market in the data. We therefore consider the support of rimt to be
{0�1� � � � �14} such that there are 15 × 15 = 225 possible states per market. Since there
are 422 markets and two players in the data, the NPL mapping is defined over a total of
225 × 422 × 2 = 189,900 CCPs.

7.2 Step-by-step implementation

First, we describe in five steps the construction of the NPL mapping. Then we explain
how each algorithm—NPL fixed point, relaxation, and spectral—uses this mapping. We
drop the market index m to alleviate the notation.
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Step 1: Compute expected current payoffs for every action and state The expected cur-
rent payoff of chain i choosing yit given xt is

UP
i (yit �xt � εit) = zP

it (yit)
′θi + yitεit � (32)

where zP
it(yit)≡ Pj(xt )zit (yit �1)+ (1 − Pj(xt ))zit (yit �0) and Pj(xt ) = Pr(yjt = 1|xt).

Step 2: Transition probabilities Compute the transition from xt to xt+1 conditional on
yit in all possible states for both chains. For chain i, these transition probabilities are

	P
i (xt+1|xt � yit)= 1{ri�t+1 = rit + yit}Pj(xt )1{rj�t+1=rjt+1}(1 − Pj(xt )

)1{rj�t+1=rjt }� (33)

Let �P
x be the transition matrix after integrating out both chains’ decisions. The elements

of this matrix are: (1 − Pi(xt ))	P
i (xt+1|xt �0)+ Pi(xt )	P

i (xt+1|xt �1).

Step 3: Discounted payoffs Chain i’s expected and discounted sum of current and future
payoffs when it chooses yit given xt can be written as z̃P

it (yit)
′θi + ẽP

it(yit)+ yitεit where

z̃P
it(yit)≡ zP

it(yit)+β
∑

xt+1∈X
	P
i (xt+1|xt � yit)vP

zi(xt+1)� (34)

ẽP
it(yit)≡ β

∑
xt+1∈X

	P
i (xt+1|xt � yit)vP

ei(xt+1) (35)

with vP
zi(xt ) = (1 − Pi(xt ))z̃P

it (0) + Pi(xt )z̃P
it (1) being a vector of the same dimension

as z̃P
it(yit); vP

ei(xt ) = (1 − Pi(xt ))ẽP
it (0) + Pi(xt )ẽP

it(1) + eP
it being a scalar, and eP

it =
E[yitεit |xt � yit is optimal] = φ(�−1(Pi(xt ))), with φ(·) and �(·) being the pdf and the cdf
of the standard normal distribution, respectively. The closed-form expressions for the
matrix VP

Zi ≡ {vP
zi(x) : x ∈X} and the vector VP

ei ≡ {vP
ei(x) : x ∈X} are given by

VP
zi =

[
I −β�P

x
]−1[

(1 − Pi) ∗ ZP
i (0)+ Pi ∗ Zi(1)

]
� (36)

VP
ei =

[
I −β�P

x
]−1eP

i � (37)

where ∗ denotes the Hadamard product, I is the identity matrix, Pi is the vector contain-
ing Pi(x) for all possible values of x, ZP

i (y) is a matrix with rows corresponding to zP
it(y)

′
for all possible values of x, and eP

i is a vector containing eP
it for all possible values of x.

Step 4: Best response mapping The values of z̃P
it (yit) and ẽP

it(yit) are used to compute the
best response mapping �([z̃P

it (1)− z̃P
it (0)]′θi + ẽP

it(1)− ẽP
it(0)).

Step 5: NPL mapping The best response mapping is used to construct the log-
likelihood function to be maximized over θ for a given vector P to obtain ϑ̂(P). The
sample NPL mapping ϕ̂(P) is constructed by evaluating the best response mapping at P
and ϑ̂(P).

NPL algorithm The NPL algorithm uses the NPL mapping to update the CCPs. For an
initial P̂0, one obtains P̂1 = ϕ̂(P̂0), then P̂2 = ϕ̂(P̂1), etc., and iterates until the maximum
number of iterations is reached or until the maximum absolute value between two suc-
cessive vectors P̂k and P̂k−1 is smaller than some tolerance level.
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Relaxation algorithm For an initial P̂0 and a fixed value of the relaxation parameter
α, the relaxation algorithm generates a new vector of CCPs as P̂1 = ϕ̂(P̂0)

α ∗ P̂1−α
0 , then

P̂2 = ϕ̂(P̂1)
α ∗ P̂1−α

1 , etc., and iterates until the maximum number of iterations is reached
or until the maximum absolute value between two successive vectors P̂k and P̂k−1 is
smaller than some tolerance level. We use α = 0�05 as in our simulations.

Spectral solver One constructs the function P − ϕ̂(P) and uses R’s BBsolve to find a
solution to P − ϕ̂(P)= 0. We use the default settings, with the following exceptions. The
parameters “maxit” and “tol” are set to the same maximum number of iterations and
the tolerance level, respectively, used in the other two algorithms. We set the parameter
“method” to c(2�3�1) to use the same consecutive trials of spectral step lengths as in our
simulations.

Other details All three methods are initiated at the same set of 100 vectors of starting
values for the P. The first vector of starting values correspond to the frequency count
estimator. The other 99 starting values are independent draws from the uniform distri-
bution. We restrict choice probabilities to be between 10−12 and 1 − 10−12 both for the
starting values and the updated vectors of CCPs. The tolerance level used to declare con-
vergence is 10−6 for all methods and the maximum number of iterations is set to 1000.

7.3 Estimates and computational time

Except for one vector of starting values for the relaxation algorithm,23 we find that all
three methods converge to the same NPL estimator across all starting values. The esti-
mates associated with the starting values leading to the best value of the log-likelihood
are reported in Table D1 in Appendix D. They are almost exactly the same for all three
methods. For this data set, neither the relaxation algorithm nor the spectral solver finds
any unstable fixed point in the sample NPL mapping.

We have also computed the total time until convergence for each vector of starting
values and each method. The results are aligned with our findings in Section 6. Despite
the dimensionality of the vector of equilibrium CCPs, we confirm that the spectral solver
is an appealing alternative to computing the NPL estimator. Its computational cost is
even slightly smaller than the NPL algorithm’s. Once again, the relaxation algorithm is
slower to converge, at least when the value of the relaxation parameter is fixed to 0�05.

8. Concluding remarks

There are multiple reasons why researchers may want to impose the equilibrium re-
strictions of their models when estimating structural parameters: efficiency, reduction
of finite sample bias, allowing for rich forms of unobserved heterogeneity, or using es-
timated choice probabilities that are comparable to those obtained in counterfactual

23The only exception is the vector of starting values corresponding to the frequency count estimator. For
this vector of starting values, the relaxation algorithm eventually leads to two successive vectors of CCPs
that satisfy the convergence criterion, but do not correspond to an NPL fixed point. This issue is likely a
consequence of the vector of starting values containing many numerical zeros.
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experiments. Imposing equilibrium restrictions requires researchers to go beyond sim-
ple two-step estimators.

In the estimation of dynamic discrete games, the existing algorithms that impose the
model equilibrium restrictions—NFXP, NPL, MPEC, and their variations—have different
merits and limitations. As a quasi-Newton algorithm, MPEC guarantees local conver-
gence, but it requires the repeated computation of high-dimensional Jacobian matrices
at each iteration of the algorithm. In contrast, the NPL algorithm does not involve the
computation of these Jacobian matrices. However, since the NPL algorithm uses fixed-
point iterations, it requires some stability conditions to converge. Simulation evidence
has shown that convergence may fail even if the stability conditions are satisfied at the
population level.

This paper has two main contributions. First, we investigate the reasons and the im-
plications of the lack of convergence of the NPL algorithm. We show that the random-
ness in the sample NPL mapping—used to update the CCPs—is the culprit. While typi-
cally ignored in existing asymptotic studies of the properties of the NPL algorithm, the
role of this sample randomness is made obvious when considering that the NPL algo-
rithm is, in practice, iterated in fixed samples. We show that any data generating process
in a neighborhood of the NPL fixed-point stability threshold always has a strictly positive
probability to generate samples where the algorithm does not converge, as well as sam-
ples where the algorithm does converge. We show that the samples for which the algo-
rithm converges are different in a particular and substantial way. This difference gener-
ates a convergence selection bias in this type of estimation algorithms. We characterize
the nature of this bias and show in Monte Carlo experiments that it can be substantial.
This selection bias has a particularly important impact on the structural parameters that
capture strategic interactions or competition effects: the estimates of these parameters
are biased toward zero. Intuitively, the algorithm converges only for samples consistent
with weaker strategic interactions, and this introduces an attenuation bias in the esti-
mation of these strategic parameters.

Second, we propose and implement a spectral algorithm to obtain the NPL esti-
mator. This algorithm has advantages relative to the NPL and the MPEC algorithms.
Compared to NPL, the spectral algorithm satisfies local convergence to the consistent
estimator. And in contrast to the MPEC algorithm, it does not require the calculation
of high-dimensional Jacobian matrices. Furthermore, the dimensionality of the spec-
tral approach’s optimization problem is smaller than the MPEC method, which searches
over the joint spaces of CCPs, Lagrange multipliers, and structural parameters.
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