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Synthetic controls with imperfect pretreatment fit

Bruno Ferman
Sao Paulo School of Economics-FGV

Cristine Pinto
Sao Paulo School of Economics-FGV

We analyze the properties of the Synthetic Control (SC) and related estimators
when the pre-treatment fit is imperfect. In this framework, we show that these
estimators are generally biased if treatment assignment is correlated with un-
observed confounders, even when the number of pre-treatment periods goes to
infinity. Still, we show that a demeaned version of the SC method can improve
in terms of bias and variance relative to the difference-in-difference estimator.
We also derive a specification test for the demeaned SC estimator in this setting
with imperfect pre-treatment fit. Given our theoretical results, we provide practi-
cal guidance for applied researchers on how to justify the use of such estimators
in empirical applications.

Keywords. Synthetic control, difference-in-differences, policy evaluation, linear
factor model.

JEL classification. C13, C21, C23.

1. Introduction

In a series of influential papers, Abadie and Gardeazabal (2003), Abadie, Diamond, and
Hainmueller (2010), and Abadie, Diamond, and Hainmueller (2015) proposed the Syn-
thetic Control (SC) method as an alternative to estimate treatment effects in compara-
tive case studies when there is only one treated unit. The main idea of the SC method is
to use the pretreatment periods to estimate weights such that a weighted average of the
outcomes of the control units reconstructs the pretreatment outcomes of the treated
unit, and then use these weights to compute the counterfactual of the treated unit in
case it were not treated. According to Athey and Imbens (2017), “the simplicity of the
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idea, and the obvious improvement over the standard methods, have made this a widely
used method in the short period of time since its inception,” making it “arguably the most
important innovation in the policy evaluation literature in the last 15 years.” As one of
the main advantages that helped popularize the method, Abadie, Diamond, and Hain-
mueller (2010) derived conditions under which the SC estimator would allow confound-
ing unobserved characteristics with time-varying effects, as long as a weighted average
of the control units using the SC weights perfectly fits the outcomes of the treated unit
for a long set of preintervention periods.

In this paper, we analyze the properties of the SC and related estimators when po-
tential outcomes are determined by a linear factor model. More specifically, we consider
that potential outcome of unit j at time t, in the absence of treatment, is given by

yNjt = cj + δt + λtμj + εjt� (1)

where cj and δt are unit- and time-invariant fixed effects, λt is an 1 × F vector of unob-
served common factors, μj is an F × 1 vector of unknown factor loadings, and εjt are
unobserved idiosyncratic shocks. This is the structure considered by Abadie, Diamond,
and Hainmueller (2010) and Abadie (2020) to derive the main theoretical justifications
for the SC estimator.

Differently from Abadie, Diamond, and Hainmueller (2010), we consider the case
in which the pretreatment fit is imperfect.1 In a model with “nondiverging” common
factors and a fixed number of control units (J), we show that the estimated SC weights
converge in probability to weights that do not, in general, reconstruct the factor loadings
of the treated unit when the number of pretreatment periods (T0) goes to infinity.2 This
happens because, in this setting, the SC weights converge to weights that simultaneously
attempt to match the factor loadings of the treated unit and to minimize the variance
of a linear combination of the idiosyncratic shocks. Therefore, weights that reconstruct
the factor loadings of the treated unit are not generally the solution to this problem,
even if such weights exist. While in many applications T0 may not be large enough to
justify large-T0 asymptotics (e.g., Doudchenko and Imbens (2016)), our results can also
be interpreted as the SC weights not converging to weights that reconstruct the factor
loadings of the treated unit even when T0 is large.

As a consequence, the SC estimator is biased if treatment assignment is correlated
with the factor structure (λtμj), even when the number of pretreatment periods goes to
infinity. The intuition is the following: if treatment assignment is correlated with the fac-
tor structure in the post-treatment periods, then we would need a SC unit that is affected

1We refer to “imperfect pretreatment fit” as a setting in which it is not assumed existence of weights such
that a weighted average of the outcomes of the control unit perfectly fits the outcome of the treated unit
for all pretreatment periods. The perfect pretreatment fit condition is presented in equation (2) of Abadie,
Diamond, and Hainmueller (2010).

2We refer to “nondiverging” common factors when the pretreatment average of of the first and second
moments of the common factors converge in probability to a constant. We focus on the SC specification
that uses the outcomes of all pretreatment periods as predictors. Specifications that use the average of the
pretreatment periods outcomes and other covariates as predictors are also considered in Appendix A.5 in
the Online Supplemental Material (Ferman and Pinto (2021)).
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in exactly the same way by the factor structure as the treated unit, but did not receive
the treatment, to obtain an unbiased estimator. However, this condition is not attained
when the pretreatment fit is imperfect, even when T0 is large.3 Our results are not as
conflicting with the results from Abadie, Diamond, and Hainmueller (2010) as it might
appear at first glance. The asymptotic bias of the SC estimator, in our framework, goes to
zero when the variance of the idiosyncratic shocks is small. This is the case in which one
should expect to have a close-to-perfect pretreatment fit when T0 is large, which is the
setting the SC estimator was originally designed for. Our theory complements the theory
developed by Abadie, Diamond, and Hainmueller (2010), by considering the properties
of the SC estimator when the pretreatment fit is imperfect.

One important implication of the SC restriction to convex combinations of the con-
trol units is that the SC estimator may also be biased if the SC unit fails to reconstruct
the time-invariant fixed effect of the treated unit. Therefore, the SC estimator may be
biased in settings in which the difference-in-differences (DID) estimator would be un-
biased. We consider a modified SC estimator, where we demean the data using infor-
mation from the preintervention period, and then construct the SC estimator using the
demeaned data.4 An advantage of demeaning is that it is possible to, under some condi-
tions, show that the SC estimator dominates the DID estimator in terms of variance and
bias in this setting. Moreover, we provide a specification test for the validity of the de-
meaned SC estimator in this setting with an imperfect pretreatment fit. Finally, we also
show that, in a setting with both nondiverging and diverging common factors, diverg-
ing common shocks would not generate asymptotic bias in the demeaned SC estimator,
but we need that treatment assignment is uncorrelated with the nondiverging common
factors to guarantee asymptotic unbiasedness.5

If potential outcomes follow a linear factor model structure, then it would be possi-
ble to construct a counterfactual for the treated unit if we could consistently estimate
the factor loadings.6 However, with fixed J, it is only possible to estimate factor load-
ings consistently under strong assumptions on the idiosyncratic shocks (e.g., Bai (2003)
and Anderson (1984)). Therefore, the asymptotic bias we find for the SC estimator is

3Ben-Michael, Feller, and Rothstein (2018) derived finite-sample bounds on the bias of the SC estimator,
and show that the bounds they derive do not converge to zero when J is fixed and T0 → ∞. This is con-
sistent with our results, but does not directly imply that the SC estimator is asymptotically biased when J

is fixed and T0 → ∞. In contrast, our result on the asymptotic bias of the SC estimator imply that it would
be impossible to derive bounds that converge to zero in this case. Moreover, we show the conditions under
which the estimator is asymptotically biased.

4Demeaning the data before applying the SC estimator is equivalent to relaxing the nonintercept con-
straint, as suggested, in parallel to our paper, by Doudchenko and Imbens (2016). We formally analyze the
implication of this modification to the bias of the SC estimator. The estimator proposed by Hsiao, Ching,
and Wan (2012) relaxes not only the the nonintercept but also the adding-up and nonnegativity constraints.
We consider the properties of the estimator proposed by Hsiao, Ching, and Wan (2012) in Remark 5.

5For this result, we need an assumption of existence of weights that reconstruct the factor loadings of
the treated unit associated with the diverging common factors. This result holds for the demeaned SC esti-
mator, but not for the original SC estimator.

6Assuming that it is possible to construct a linear combination of the factor loadings of the control units
that reconstructs the factor loadings of the treated unit, then this linear combination of the control units’
outcomes would provide an unbiased counterfactual for the treated unit.
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consistent with the results from a large literature on factor models. We show that the
asymptotic bias we derive for the SC estimator also applies to other related panel data
approaches that have been studied in the context of an imperfect pre-treatment fit, such
as Hsiao, Ching, and Wan (2012), Li and Bell (2017), Carvalho, Masini, and Medeiros
(2018), Carvalho, Masini, and Cunha Medeiros (2016), and Masini and Medeiros (2019),
when we consider settings with fixed J. We show that these papers rely on assumptions
that implicitly imply no selection on unobservables, which clarifies why their consis-
tency/unbiasedness results when J is fixed are not conflicting with our main results.

Also consistent with the literature on factor models, if we impose restrictions on the
idiosyncratic shocks, then there are asymptotically unbiased alternatives. For example,
Amjad, Shah, and Shen (2018) proposed a denoising algorithm, but it relies on idiosyn-
cratic errors being serially uncorrelated.7 However, this may not be an appealing as-
sumption in common applications. To the best of our knowledge, there is no estimator
that is asymptotically valid in settings with fixed J without assuming such kind of addi-
tional assumptions. Finally, Powell (2018) proposed a 2-step estimation in a setting with
fixed J in which the SC unit is constructed based on the fitted values of the outcomes on
unit-specific time trends. However, we show that the demeaned SC method is already
very efficient in controlling for polynomial time trends

When both J and T0 diverge, Gobillon and Magnac (2016), Xu (2017), Athey et al.
(2018), and Arkhangelsky et al. (2018) provided alternative estimation methods that are
asymptotically valid when the number of both pretreatment periods and controls in-
crease. This is also consistent with the literature on linear factor models, which shows
that these models can be consistently estimated in large panels (e.g., Bai (2003), Bai and
Ng (2002), Bai (2009), and Moon, Roger, and Weidner (2015)). Ferman (2019) provided
conditions under which the original and the demeaned SC estimators are also asymp-
totically unbiased in this setting with large J/large T0. The main requirement is that, as
the number of control units increases, there are weights diluted among an increasing
number of control units that recover the factor loadings of the treated unit. However, if
J and T0 are not large, then we should expect from our results the SC estimator to be
biased if treatment assignment is correlated with the factor structure, even if J and T0
are roughly of the same magnitudes. Moreover, even if J and T0 are large, we should also
expect the bias we derive to be relevant if the condition on diluted weights that recover
the factor loadings of the treated unit does not hold.8

The remainder of this paper proceeds as follows. In Section 2, we describe our set-
ting and provide a brief review of the SC estimator. The main results are presented in

7This is also the case for an IV-like SC estimator we presented in an earlier version of this paper (Ferman
and Pinto (2019)).

8In this case, there would not be a sequence of weights that recover the factor loadings of the treated
unit such that the variance of a linear combination of the idiosyncratic shocks using those weights goes
to zero when J and T0 diverge. Therefore, the competing goals of the SC weights that we describe in our
paper—that they simultaneously attempt to match the factor loadings of the treated unit and to minimize
the variance of a linear combination of the idiosyncratic shocks—would remain relevant even when J and
T0 diverge. In contrast, if the condition stated by Ferman (2019) holds, then it is possible to match the
factor loadings of the treated unit with weights such that the variance of the linear combination of the
idiosyncratic shocks using those weights goes to zero. Therefore, minimizing the variance of this linear
combination of the idiosyncratic shocks would become asymptotically irrelevant.
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Section 3. We then present a Monte Carlo (MC) simulation in Section 4, and an empiri-
cal illustration in Section 5. In Section 6, we provide a guideline for applied researchers
on how to justify the use of the SC method, based on our theoretical results. We conclude
in Section 7.

2. Base model

Suppose we have a balanced panel of J + 1 units indexed by j = 0� � � � � J observed on
a total of T periods. We want to estimate the treatment effect of a policy change that
affected only unit j = 0, and we have information before and after the policy change.
Let T0 (T1) be the set of time indices in the pretreatment (post-treatment) periods. We
assume that potential outcomes follow a linear factor model.

Assumption 1 (Potential outcomes). Potential outcomes when unit j at time t is treated
(yIjt ) and nontreated (yNjt ) are given by{

yNjt = cj + δt + λtμj + εjt�

yIjt = αjt + yNjt �
(2)

where δt is an unobserved common factor with constant factor loadings across units, cj is
an unknown time-invariant fixed effect, λt is a (1 × F) vector of unobserved common
factors, μj is a (F × 1) vector of unknown factor loadings, and the error terms εjt are
unobserved idiosyncratic shocks.

In principle, the terms δt and cj could be included in the linear factor structure λtμj .
We include these separately because we want to consider λt as a vector of common
factors that do not have constant effects across units and that do not include a time-
invariant fixed effect. Therefore, we can think of λt as time-varying unobservables that
may affect different units differently. In order to simplify the exposition of our main re-
sults, we consider the model without observed covariates Zj . In Appendix Section A.5.2,
we consider the model with covariates.

The treatment effect on unit j at time t is given by αjt , and the main goal of the SC
method is to estimate the effect of the treatment on unit 0 for each post-treatment t, that
is {α0t}t∈T1 . However, we only observe yjt = djty

I
jt + (1 − djt)y

N
jt , where djt = 1 if unit j is

treated at time t.
We treat the vector of unknown factor loadings (μj), the unit fixed effects (cj), and

the treatment assignment as fixed, while we consider the properties of the SC estimator
under a repeated sampling framework over the distributions of common factors (λt ),
time effects (δt ), and idiosyncratic shocks (εjt ). Alternatively, we can think that we have
an underlying model where treatment assignment, μj , and cj are also stochastic, but we
are conditioning on these variables. Assumption 2 defines the observed sample.

Assumption 2 (Sampling). We observe a realization of {y0t � � � � � yJt}t∈T0∪T1 , where yjt =
djty

I
jt +(1−djt)y

N
jt , while djt = 1 if j = 0 and t ∈ T1, and zero otherwise. Potential outcomes

are determined by equation (2). We treat {cj�μj}Jj=0 as fixed, and {λt}t∈T0∪T1 , {δt}t∈T0∪T1 ,
and {εjt}t∈T0∪T1 for j = 0� � � � � J as stochastic.
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In the assumption below, we consider the identification assumption usually consid-
ered in the SC literature.

Assumption 3 (Idiosyncratic shocks). E[εjt] = 0 for all j ∈ {0�1� � � � � J} and t ∈ T1 ∪ T0.

Assumption 3, combined with the fact that we consider treatment assignment and
factor loadings as fixed, compose the main restrictions we impose on the treatment
assignment mechanism. It is easier to think about the assignment mechanism if we
consider an underlying model in which treatment assignment and factor loadings are
stochastic, and the expectation in Assumption 3 is conditional on the realization of
these variables. In this case, Assumption 3 implies that idiosyncratic shocks are mean-
independent from the treatment assignment. However, it does not impose any restric-
tion on the dependence between treatment assignment and the factor structure. In par-
ticular, Assumption 3 does not impose any restriction on the distribution of λt for t ∈ T1.
We refer to that as “selection on unobservables,” meaning that treatment assignment
may be correlated with the factor structure, but is uncorrelated with the idiosyncratic
shocks.9

Let μ ≡ [μ1 � � �μJ]′, c ≡ [c1 � � � cJ]′, yt ≡ (y1t � � � � � yJt) and εt ≡ (ε1t � � � � � εJt). Following
the original SC papers, we start restricting to convex combinations of the control units,
so we consider weights in �J−1 ≡ {(w1� � � � �wJ) ∈ R

J |wj ≥ 0 and
∑J

j=1 wj = 1}. We define

	̃ = {w ∈ �J−1 | μ0 = μ′w and c0 = c′w}. Therefore, w in the set 	̃ is such that a weighted
average of the control units absorbs all factor structure associated to the treated unit,
λtμ0, and also the time-invariant fixed effect of the treated unit (c0). Assuming 	̃ is not
empty, if we knew w∗ in 	̃, then we could consider an infeasible SC estimator using these
weights, α̂∗

0t = y0t − y′
tw

∗. For a given t ∈ T1, we would have

α̂∗
0t = y0t − y′

tw
∗ = α0t + (

ε0t − ε′
tw

∗)� (3)

Therefore, under Assumption 3, E[α̂∗
0t] = α0t , which implies that this infeasible SC

estimator is unbiased. Intuitively, the infeasible SC estimator constructs a SC unit for
the counterfactual of y0t that is affected in the same way as unit 0 by each of the com-
mon factors (i.e., μ0 = μ′w∗) and has the same time-invariant fixed effect (c0 = c′w∗),
but did not receive treatment. Therefore, the only difference between unit 0 and this SC
unit, beyond the treatment effect, would be given by the idiosyncratic shocks, which are
assumed to have mean zero (Assumption 3), implying that this infeasible SC estimator
is unbiased.

It is important to note that Abadie, Diamond, and Hainmueller (2010) do not make
any assumption on 	̃ being not empty. Instead, they consider that there is a set of
weights w̃∗ ∈ �J−1 that satisfies y0t = y′

tw̃
∗ for all t ∈ T0.10 We call the existence of such

9This assumptions is essentially the same as the ones considered by, for example, Abadie, Diamond, and
Hainmueller (2010), Gobillon and Magnac (2016), and Ben-Michael, Feller, and Rothstein (2018) (in their
Section 4.1), where they assume unconfoundness conditional on the unobserved factor loadings.

10Abadie, Diamond, and Hainmueller (2010) assumed that such weights also provided perfect balance in
terms of observed covariates. Botosaru and Ferman (2019) analyzed the case in which the perfect balance
on covariates assumption is dropped, but there is still perfect balance on pretreatment outcomes.
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weights w̃∗ as a “perfect pretreatment fit” condition. While subtle, this reflects a cru-
cial difference between our setting and the setting considered in the original SC papers.
Abadie, Diamond, and Hainmueller (2010) and Abadie, Diamond, and Hainmueller
(2015) considered the properties of the SC estimator conditional on having a perfect
preintervention fit. As stated by Abadie, Diamond, and Hainmueller (2015), they “do not
recommend using this method when the pretreatment fit is poor or the number of pre-
treatment periods is small.”

Abadie, Diamond, and Hainmueller (2010) provided conditions under which exis-
tence of w̃∗ ∈ �J−1 such that y0t = y′

tw̃
∗ for all t ∈ T0 (for large T0) implies that those

weights approximately reconstruct the factor loadings of the treated unit (i.e., μ0 ≈
μ′w̃∗). In this case, the bias of the SC estimator would be bounded by a function that
goes to zero when T0 increases. We depart from the original SC setting in that we con-
sider a setting with imperfect pretreatment fit, meaning that we do not assume existence
of w̃∗ ∈ �J−1 such that y0t = y′

tw̃
∗ for all t ∈ T0. The motivation to analyze the SC method

in our setting is that the SC estimator has been widely used even when the pretreat-
ment fit is far from perfect. Therefore, it is important to understand the properties of the
estimator in this setting. Moreover, we show that the estimator can provide important
improvements relative to DID even when the fit is imperfect, although in this case we
should be more careful about the conditions for unbiasedness.

In order to implement their method, Abadie, Diamond, and Hainmueller (2010) rec-
ommended a nested minimization problem using the preintervention data to estimate
the SC weights. We focus on the case where one includes all preintervention outcome
values as predictors. In this case, the nested optimization problem proposed by Abadie,
Diamond, and Hainmueller (2010) simplifies to11

ŵSC = argmin
w∈�J−1

1
T0

∑
t∈T0

[
y0t − y′

tw
]2
� (4)

For a given t ∈ T1, the SC estimator is then defined by α̂0t = y0t − y′
tŵ

SC. Ferman,
Pinto, and Possebom (2020) provided conditions under which the SC estimator using all
pretreatment outcomes as predictors will be asymptotically equivalent, when T0 → ∞,
to any alternative SC estimator such that the number of pretreatment outcomes used as
predictors goes to infinity with T0, even for specifications that include other covariates.
Therefore, our results are also valid for these SC specifications under these conditions.
In Appendix A.5, we also consider SC estimators using (1) the average of the preinter-
vention outcomes as predictor, and (2) other time-invariant covariates in addition to
the average of the preintervention outcomes as predictors.

3. Main results

We consider the asymptotic properties of the SC and alternative estimators when T0 di-
verges and J is fixed. As we discuss in Remark 2, our results are also relevant for the

11See Kaul et al. (2015) and Doudchenko and Imbens (2016).
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case in which T0 is small. We consider the properties of the original SC estimator in Sec-
tion 3.1 in a setting in which common factors are “nondiverging,” in the sense that the
second moments of the pretreatment averages of the common factors and of the id-
iosyncratic shocks converge in probability to nonstochastic constants. We propose and
analyze a demeaned version of the SC estimator in Section 3.2 in this setting. Then we
discuss in Section 3.3 a setting in which some common factors are “diverging.”

3.1 Asymptotic bias of the original SC estimator

We consider a settings in which the pretreatment averages of the first and second mo-
ments of the common factors and the idiosyncratic shocks converge in probability to
nonstochastic constants. Importantly, note we do not require that the observed out-
comes yjt satisfy these conditions, because we do not impose any restriction on δt . We
discuss in Section 3.3 the case in which diverging common shocks may have heteroge-
neous effects across units. Let εt = (ε0t � � � � � εJt).

Assumption 4 (Common and idiosyncratic shocks). 1
T0

∑
t∈T0

λt
p→ 0, 1

T0

∑
t∈T0

εt
p→ 0,

1
T0

∑
t∈T0

λ′
tλt

p→ Ω0 positive semidefinite, 1
T0

∑
t∈T0

εtε
′
t

p→ σ2
ε IJ+1, and 1

T0

∑
t∈T0

εtλt
p→ 0

when T0 → ∞.

Assumption 4 allows for serial correlation for both idiosyncratic shocks and com-
mon factors. The only restriction on the serial correlation is that we can apply a law
of large numbers so that these pretreatment averages converge in probability. We as-

sume 1
T0

∑
t∈T0

εtε
′
t

p→ σ2
ε IJ+1 in order to simplify the exposition of our results. How-

ever, this can be easily replaced by 1
T0

∑
t∈T0

εtε
′
t

p→ Σ for any symmetric positive defi-
nite (J + 1)× (J + 1) matrix Σ, so that idiosyncratic shocks may be heteroskedastic and

correlated across j. Assuming that 1
T0

∑
t∈T0

λt
p→ ω0, setting ω0 = 0 is without loss of

generality.12 Assumption 4 would be satisfied if, for example, (ε′
t � λt) is α-mixing with

exponential speed, with uniformly bounded fourth moments in the pretreatment pe-
riod, and εt and λt are independent. Note that this would allow the distribution of λt
to be different when we consider pretreatment periods closer to the assignment of the
treatment. In this case, λt would not be stationary, but Assumption 4 would still hold.
Finally, note that we do not impose any restriction on δt .

We consider in Proposition 1 the asymptotic distributions of the original SC in this
setting.

Proposition 1. Under Assumptions 1 to 4, ŵSC p→ w̄SC ≡ (w̄SC
1 � � � � � w̄SC

J ) when T0 → ∞,
where (c0�μ0) �= (c′w̄SC�μ′w̄SC), unless σ2

ε = 0 or 	̃ ∩ argminw∈�J−1{w′w} �= ∅. Moreover,
for t ∈ T1,

α̂0t = y0t − y′
tŵ

SC p→ α0t + λt
(
μ0 −μ′w̄SC) + (

c0 − c′w̄SC)
+ (

ε0t − ε′
tw̄

SC)
when T0 → ∞� (5)

12If ω0 �= 0, then we can consider an observably equivalent model with ω0 = 0 by adjusting cj .
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Proposition 1 shows that the weights of the original SC estimators will generally not
converge to weights that recover the factor loadings of the treated unit. The intuition
is that ŵSC converges in probability to w ∈ �J−1 that minimizes the probability limit of
equation (4), which is given by

Q0(w) = [(
c0 − c′w

)2 + (
μ0 −μ′w

)′
Ω0

(
μ0 −μ′w

)] + σ2
ε

(
1 + w′w

)
� (6)

This objective function has two parts. The first one reflects the presence of common
factors λt and differences in the fixed effects that remain after we choose the weights
to construct the SC unit. If 	̃ is not empty, then we can set this part equal to zero by
choosing w∗ in the set 	̃. However, this objective function also depends on the variance
of a weighted average of the idiosyncratic shocks εjt , implying that choosing w∗ in the
set 	̃ will not generally be the solution to this problem. As a consequence, the SC weights
will generally converge to weights that do not recover the factor loadings of the treated
unit, even if 	̃ is not empty. There are two conditions in which the SC weights would
asymptotically recover the factor loadings of the treated unit. First, if σ2

ε equals zero then
any weighted average of the idiosyncratic shocks would have variance equal to zero, so
any w in the set 	̃ would minimize the objective function Q0(w). Given this rationale,
the distortion on the SC weights will tend to be smaller when the common trends are
much stronger than the idiosyncratic shocks (so that the second part of the objective
function Q0(w) becomes less relevant). Alternatively, if there are weights w in the set 	̃
that also minimize the variance of the weighted average of the idiosyncratic shocks, then
such weights would also minimize the objective function Q0(w).13 We present details
of proof in Appendix A.1.1. Another intuition for this result is that the outcomes of the
controls work as proxy variables for the factor loadings of the treated unit, but they are
measured with error. We present this interpretation in more detail in Appendix A.2.

Proposition 1 also shows that the SC estimator converges in probability to the pa-
rameter we want to estimate (α0t ) plus linear combinations of contemporaneous id-
iosyncratic shocks and common factors.14 By Assumption 3, E[εjt] = 0, so whether this
estimator is asymptotically unbiased depends crucially on the differences in how the
treated and the SC units are affected by the common shocks, λt(μ0 − μ′w̄SC), and on
whether the SC unit reconstructs c0. We can guarantee asymptotic unbiasedness for the
original SC estimator if we assume that, for t ∈ T1, E[λkt ] = 0 for all common factors
k such that the factor loadings of the treated unit associated with these common fac-
tors are not asymptotically reconstructed by the SC weights (i.e., μk

0 �= ∑
j �=0 w̄

SC
j μk

j ), and
also that the SC weights asymptotically reconstruct the fixed effect of treated unit (i.e.,
c0 = c′w̄SC).15 Therefore, once we relax the perfect fit condition, Assumption 3, which

13Note that, if we relax the assumption that the idiosyncratic errors are homoskedastic, then the weights
that minimize the variance of the weighted average of the idiosyncratic shocks will not necessarily be 1/J
for all control units.

14For simplicity, we consider the case in which α0t is a fixed parameter. More generally, we could consider
α0t stochastic, and redefine the parameter of interest as E[α0t ]. The intuition for all results would remain
unchanged.

15There could also be linear combinations of biases arriving from different common factors that end up
canceling out, but we see that as uninteresting “knife-edge” cases.
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allows for selection on unobservables, is not sufficient to guarantee that the SC estima-
tor is asymptotically unbiased. This means that, even if the true model for the potential
outcomes follows a linear factor model as considered in Assumption 1, the SC estima-
tor may be asymptotically biased. More specifically, Proposition 1 shows that, once we
relax the perfect fit condition, the original SC estimator will generally be asymptotically
biased when treatment assignment is correlated with time-varying unobservables, and
when the SC weights fail to recover the levels of the treated unit. This second conclu-
sion implies that the SC estimator may be biased even when a DID estimator would be
unbiased.

Remark 1. The discrepancy of our results with the results from Abadie, Diamond, and
Hainmueller (2010) arises because we consider different frameworks. Abadie, Diamond,
and Hainmueller (2010) considered the properties of the SC estimator conditional on
having a perfect pretreatment fit. Our results are not as conflicting with the results from
Abadie, Diamond, and Hainmueller (2010) as they may appear at first glance. In a model
with nondiverging common factors, the probability that one has a data set at hand such
that the SC weights provide a close-to-perfect preintervention fit with a moderate T0

is close to zero, unless the variance of the idiosyncratic shocks is small. Therefore, our
results agree with the theoretical results from Abadie, Diamond, and Hainmueller (2010)
in that the asymptotic bias of the SC estimator should be small in situations where one
would expect to have a close-to-perfect fit for a large T0.

Remark 2. While many SC applications do not have a large number of pretreatment
periods to justify large-T0 asymptotics (see, e.g., Doudchenko and Imbens (2016)), our
results can also be interpreted as the SC weights not converging to weights that recon-
struct the factor loadings of the treated unit when J is fixed even when T0 is large. In
Appendix A.2, we show that the problem we present remains if we consider a setting
with finite T0.

Remark 3. Related to Remarks 1 and 2, if T0 is very small relative to J, then the objec-
tive function in equation (4) may be close to zero because the SC weights are chosen so
that the idiosyncratic shocks compensate discrepancies between the factor loadings of
the treated unit (μ0) and the implied factor loadings of the SC unit (μ′ŵSC). That is, a
good pretreatment fit might be achieved due to overfitting. In this case, we should not
expect that the SC weights approximately reconstruct μ0, and the bias we derive for the
SC estimator when treatment assignment is correlated with time-varying unobservables
remains relevant. Therefore, the bias we derive for the SC estimator in Proposition 1 does
not come from the fact that it becomes harder to have a good pretreatment fit when T0

increases. On the contrary, this problem remains relevant even when T0 is small.16

16Consistent with this idea, the bounds on the bias of the SC estimator derived by Abadie, Diamond, and
Hainmueller (2010) only goes to zero when T0 increases. Therefore, we have no guarantee that the bias of
the SC estimator is small when T0 is not large, even when we consider a setting in which we have a perfect
pretreatment fit.
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3.2 Comparison with DID estimator & the demeaned SC estimator

In contrast to the SC estimator, the DID estimator for the treatment effect in a given
post-intervention period t ∈ T1 would be given by

α̂DID
0t = y0t − 1

J
y′
t i − 1

T0

∑
τ∈T0

[
y0τ − 1

J
y′
τi

]
� (7)

where i is a J × 1 vector of ones.17 Under Assumptions 1, 2, and 4, we have that

α̂DID
0t

p→ α0t +
(
ε0t − 1

J
ε′
t i
)

+ λt

(
μ0 − 1

J
μ′i

)
when T0 → ∞� (8)

Therefore, the DID estimator will be asymptotically unbiased in this setting if E[λt] =
0 for the factors such that the factor loadings of the treated unit are not reconstructed by
a simple average of the control units (i.e., μ0 �= 1

Jμ
′i). This would be the case if treatment

assignment is uncorrelated with the time-varying common factors. Differently from the
SC estimator, however, the DID estimator would not be biased if the average of the con-
trol units does not recover the fixed effect of the treated unit.

As an alternative to the standard SC estimator, we suggest a modification in which we
calculate the pretreatment average for all units and demean the data. This is equivalent
to a generalization of the SC method suggested, in parallel to our paper, by Doudchenko
and Imbens (2016), which includes an intercept parameter in the minimization problem
to estimate the SC weights and construct the counterfactual.18 Here, we formally con-
sider the implications of this alternative on the bias and variance of the SC estimator.

The demeaned SC estimator is given by α̂SC′
0t = y0t − y′

tŵ
SC′ − (ȳ0 − ȳ′ŵSC′

), where
ȳ0 is the pretreatment average of unit 0, and ȳ is an J × 1 vector with the pretreatment
averages of the controls. We define 	= {w ∈ �J−1 |μ0 = μ′w}. Therefore, any w in the set
	 is such that a weighted average of the control units absorbs all time correlated shocks
of unit 0, λtμ0. However, such weights do not necessarily absorb the time-invariant fixed
effects. In this case, the weights ŵSC′

are given by

ŵSC′ = argmin
w∈�J−1

1
T0

∑
t∈T0

[
y0t − y′

tw − (
ȳ0 − ȳ′w

)]2
� (9)

Proposition 2. Under Assumptions 1, 2, 3, and 4, ŵSC′ p→ w̄SC′ ≡ (w̄SC′
1 � � � � � w̄SC′

J ) when

T0 → ∞, where μ0 �= μ′w̄SC′
, unless σ2

ε = 0 or 	 ∩ argminw∈�J−1{w′w} �= ∅. Moreover, for
t ∈ T1,

α̂SC′
0t

p→ α0t + (
ε0t − ε′

tw̄
SC′) + λt

(
μ0 −μ′w̄SC′)

when T0 → ∞� (10)

17Note that the DID estimator in this case with one treated unit is numerically the same as the two-
way fixed effects (TWFE) estimator using unit and time fixed effects. Since the goal in the SC literature
is to estimate the effect of the treatment for unit 1 at a specific date t, this circumvents the problem of
aggregating heterogeneous effects, as considered by de Chaisemartin and D’Haultfauille (2020), Callaway
and Sant’Anna (2018), Athey and Imbens (2018), and Goodman-Bacon (2018) in the DID setting.

18Relaxing the nonintercept constraint was already a feature of Hsiao, Ching, and Wan (2012). The differ-
ence here is that we relax this constraint while maintaining the adding-up and nonnegativity constraints,
which allows us to rank the demeaned SC with the DID estimator under some conditions.
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Therefore, when potential outcomes follow a linear factor model, both the de-
meaned SC and the DID estimators are asymptotically unbiased when E[λt] = 0 for
t ∈ T1.19 This means that these estimators are asymptotically unbiased if treatment as-
signment is not correlated with time-varying unobservables. Importantly, differently
from the original SC estimator, these estimators do not require that the weights recover
the time-invariant fixed effect of the treated unit for unbiasedness. Therefore, Proposi-
tion 2 shows that the demeaned SC estimator is asymptotically unbiased under the usual
identification assumptions considered when we rely on the DID estimator. The proof is
essentially the same as the one for Proposition 1 (details in Appendix A.1.2).

With additional assumptions on (ε0t � � � � � εJt�λ
′
t) in the post-treatment periods, we

can also assure that the demeaned SC estimator is asymptotically more efficient than
DID.

Assumption 5 (Stability in the pre and post-treatment periods). For t ∈ T1, E[λt] = 0,
E[εt] = 0, E[λ′

tλt] = Ω0, and E[εtε′
t] = σ2

ε IJ+1, cov(εt�λt) = 0.

Assumptions 4 and 5 imply that idiosyncratic shocks and common factors have
the same first and second moments in the pre and post-treatment periods. Again, the
assumptions that idiosyncratic errors are homoskedastic is made just for simplifica-
tion. What is crucial in this assumption is that the variance/covariance matrix of the
idiosyncratic shocks in the post-treatment periods is the same as the long-run vari-
ance/covariance matrix of the idiosyncratic shocks in the pretreatment periods. From
Proposition 2, Assumption 5 implies that the demeaned SC estimator is asymptotically
unbiased. We now show that, when potential outcomes follow a linear factor model, this
assumption also implies that the demeaned SC estimator has lower asymptotic MSE
than the DID estimator.

Proposition 3. Under Assumptions 1 to 5, the demeaned SC estimator (α̂SC′
0t ) dominates

the DID estimator (α̂DID
0t ) in terms of asymptotic MSE when T0 → ∞.

The intuition of this result is that, under Assumption 5, the demeaned SC weights
converge to weights that minimize a function �(w) such that �(w̄SC′

) = a� var(α̂SC′
0t ), and

�({ 1
J � � � � �

1
J }) = a� var(α̂DID

1t ). Therefore, it must be that the asymptotic variance of α̂SC′
0t is

weakly lower than the variance of α̂DID
1t . Moreover, these estimators are unbiased under

these assumptions (details in Appendix A.1.3).
If treatment assignment is correlated with time-varying unobservables (i.e., E[λt] �= 0

for t ∈ T1), then both the demeaned SC and the DID estimators would generally be
asymptotically biased. In general, it is not possible to rank the demeaned SC and the
DID estimators in terms of bias and MSE if treatment assignment is correlated with
time-varying common factors. We provide in Appendix A.4 a specific example in which

19This is a sufficient condition. More generally, the demeaned SC estimator would be asymptotically

unbiased if E[λkt ] = 0 for t ∈ T1 for any common factor k such that μk
0 �= ∑

j �=0 w̄
SC′
j μk

j . However, as we show

in Proposition 2, if σ2
ε > 0, then we would only have μk

0 = ∑
j �=0 w̄

SC′
j μk

j in knife-edge cases. Therefore, we
focus on the sufficient condition E[λt ] = 0 for t ∈ T1.
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the DID can have a smaller bias relative to the demeaned SC estimator. This might hap-
pen when selection into treatment depends on common factors with low variance, and
it happens that a simple average of the controls provides a good match for the factor
loadings associated with these common factors. In general, however, we should expect
a lower bias for the demeaned SC estimator, given that the demeaned SC weights are
partially chosen to minimize the distance between μ0 and μ′ŵSC′

, while the DID esti-
mator uses weights that are not data driven.

Since the biases of these two estimators would generally differ when E[λt] �= 0 for
t ∈ T1, we can consider a specification test by contrasting these two estimators. More
specifically, if the DID estimator is very different from the demeaned SC estimator, this
would suggest that both estimators are biased (considering the setting in which the pre-
treatment fit is imperfect).

A potential problem in properly testing the equality of these two estimators is that
they are generally not asymptotically normal. Still, if we consider a stronger assumption
that λt and εjt are stationary and weakly dependent for all periods (both pre and post-
intervention)—which implies that E[λt] = 0 for t ∈ T1—then we can follow the idea from
Chernozhukov, Wuthrich, and Zhu (2017) and test this condition using in-time placebos.
More specifically, let w̃ be the demeaned SC weights using all periods to estimate the SC
weights. We consider

ût =
(

w̃′yt − 1
T0 + T1

∑
τ∈T0∪T1

(
w̃′yτ

)) −
(
J−1i′yt − 1

T0 + T1

∑
τ∈T0∪T1

(
J−1i′yτ

))
� (11)

The idea is that ût contrasts the demeaned and the DID estimators. The outcomes
for the treated unit do not appear directly in this expression because they cancel out
when we contrast the two estimators, but they are used in the estimation of w̃. Following
Chernozhukov, Wuthrich, and Zhu (2017), we impose the null E[λt] = 0 for t ∈ T1 and
estimate the model using all periods of data to provide better finite sample properties.

The main idea is that, in this linear factor model setting, λt and εjt stationary and
weakly dependent, implies that ût will approximately be stationary and weakly depen-
dent. Therefore, we can construct a test statistic S(û) = | 1

T1

∑
t∈T1

ût |, and derive the dis-
tribution of the test statistic by considering the set of all moving block permutations of
the time periods. Let T0 = {1� � � � �T0} and T1 = {T0 + 1� � � � �T }, and let Π be the set of
permutations πj indexed by j ∈ 0� � � � �T − 1 such that

πj(i) =
{
i+ j if i+ j ≤ T�

i+ j − T otherwise�
(12)

Then the p-value of the specification test is given by

p̂ = 1
T

T−1∑
j=0

1
{
S(û) > S(ûπj )

}
� (13)

We formalize this idea in the following proposition.
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Proposition 4. Assume λt and εjt are stationary and weakly dependent, with finite sec-
ond moments, and that Assumptions 1 and 2 hold. Then, for any a ∈ (0�1), Pr(p̂ ≤ a) → a

when T0 → ∞ and T1 is fixed.

If we find a low p̂, indicating that the DID and the demeaned SC estimators are sig-
nificantly different, then this would be an indication that both estimators are biased
(considering the case in which the pretreatment fit is imperfect). In contrast, a high p̂

would provide some evidence that the condition E[λt] = 0 for t ∈ T1 is valid. If λt and
εjt are serially uncorrelated, then this test is exact. If there is serial correlation, though,
then we may have distortions when T0 is finite, but the test is asymptotically valid when
T0 → ∞.

Importantly, this test is completely uninformative about Assumption 3. Moreover, it
relies on stationarity as an auxiliary assumption, which is not a necessary assumption
for validity of the DID and the demeaned SC estimators in this setting. We also recom-
mend applied researchers should plot the demeaned SC and the DID estimators to pro-
vide a visual inspection of the differences between these two estimators.

Remark 4. In general, it is not possible to compare the original and the demeaned SC
estimators in terms of bias and variance. For example, if units with similar factor load-
ings also have similar fixed effects, then matching also on the levels would help provide
a better approximation to μ0. Moreover, the demeaning process may increase the vari-
ance of the estimator for a finite T0. Finally, demeaning essentially implies extrapolation,
while some may consider that one of the advantages of the original SC estimator is that
it avoids extrapolation (e.g., Abadie, Diamond, and Hainmueller (2015)). Therefore, it is
not clear whether demeaning is the best option in all applications, and the use of this
estimator depends on the willingness of the researcher to allow for extrapolation.

Remark 5. Our main result that the original and the demeaned SC estimators are gen-
erally asymptotically biased if there are unobserved time-varying confounders (Propo-
sitions 1 and 2) still applies if we also relax the nonnegative and the adding-up con-
straints, which essentially leads to the panel data approach suggested by Hsiao, Ching,
and Wan (2012), and further explored by Li and Bell (2017). Our conditions for unbi-
asedness of the SC estimator also apply to the estimators proposed by Carvalho, Masini,
and Medeiros (2018) and Carvalho, Masini, and Cunha Medeiros (2016) when J is fixed.
In Appendix A.5.3, we show that these papers rely on assumptions that implicitly imply
that there is no selection on time-varying unobservables. This clarifies what selection
on unobservables means in this setting, and reconciles our findings with the asymptotic
unbiasedness/consistency results in these papers.

3.3 Model with “diverging” common factors

While the assumptions considered in Sections 3.1 and 3.2 allow for outcomes with diver-
gent pre-treatment averages (which would be the case when we consider, e.g., GDP or
average wages), we restrict to settings in which such diverging common shocks affect all
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units in the same way. In Appendix A.3, we modify Assumption 1 to consider the case in
which we may have diverging common shocks with heterogeneous effects across unit.

Assuming that there exist weights that reconstruct the factor loadings of the treated
unit associated to the diverging common shocks, we show that the asymptotic distribu-
tion of the demeaned SC estimator does not depend on such diverging common shocks
when T0 diverges. The intuition is that, as T0 diverges, the variance of the weighted av-
erage of the idiosyncratic shocks becomes irrelevant relative to the cost of failing to re-
cover the factor loadings associated with the diverging common shocks. This is consis-
tent with the conclusion from Section 3.1 that the bias of the SC estimator should be
less relevant when the common shocks are stronger relative to the idiosyncratic shocks.
However, if we also have nondiverging common shocks, then the demeaned SC weights
will generally not asymptotically recover the factor loadings of the treated unit associ-
ated with those nondiverging shocks. This implies that the demeaned SC estimator may
be asymptotically biased if there is correlation between treatment assignment and these
nondiverging shocks, for exactly the same reasons outlined in Section 3.1.

We also show that the conclusion that the demeaned SC estimator does not depend
on the diverging common shocks is not valid for the original SC estimator. While the
SC weights considering the original SC method converge in probability to weights that
recover the factor loadings of the treated associated to the diverging common shocks,
this convergence may not be fast enough to compensate that such common shocks are
diverging. We present all details on this setting in Appendix A.3.

4. Monte Carlo simulations

To illustrate our theoretical findings, we construct a MC simulation based on a real data
set using the monthly employment data for 50 US states and the District of Columbia
(J + 1 = 51) from January 1982 to December 2019 (T = 456). We construct these series by
aggregating the Current Population Survey (CPS) microdata at the state × month level.20

We estimate a factor model that best approximates this data. In addition to the state and
time fixed effects, we estimate four common factors.21 We find evidence that these four
factors and the 51 idiosyncratic shocks are stationary, suggesting that any nonstationary
trends in the outcomes come from the time fixed effects, δt .22 This provides evidence
that this data set is well approximated by the setting we consider in Sections 3.1 and 3.2.
We consider state-specific Gaussian ARMA models for the distribution of each εjt and
also for the distribution of the four common factors λt .23

20We created our CPS extract using IPUMS (Ruggles et al. (2015)).
21We estimate the linear factor model using the iterated fixed effects method proposed by Bai (2009).

The number of factors was selected using the ICp1 criterion in Bai and Ng (2002). We used the interFE

function in the package gsynth (Xu (2017)).
22For each of these series, we consider the Augmented Dickey–Fuller test for a unit root, where the num-

ber of lags is chosen using the MAIC criterion of Ng and Perron (2001). We also test for the presence of
deterministic trends using the test statistics proposed by Dickey and Fuller (1981).

23For each estimated factor and for each state time series of residuals, we use the auto.arima function
in the R package forecast to perform grid search over the autoregressive and moving-average dimen-
sions; and select the best model according to the BIC criterion (Hyndman and Khandakar (2008)).
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For each simulation, we fix the estimated factor loadings μj and consider random
draws for λt and εjt . We set T1 = 12 (1 year) and T0 ∈ {120�240�480�1200}, and we vary
which state is considered as treated. We consider 5000 replications for each scenario.
The case with T0 = 480 have approximately the same number of pretreatment periods
as we have in our original data set, while the cases with smaller T0 reflect more common
setting in which we have 10 or 20 years of pretreatment data. We include the case T0 =
1200 to approximate the asymptotic behavior of the estimators when T0 → ∞.

We consider in Panels A and B of Table 1 the case in which E[λt] equals zero for t ∈ T1.
In Panel A, we consider that the treated state is such that its time-invariant fixed effect
(c0) is the second largest value in the distribution of cj , while in Panel B the treated state
has the second smallest value of c0. We find that the original SC estimator is biased in
both cases, even though it would be possible to have weights that reconstruct c0. The
problem is that such weights would be very concentrated on the state with largest (or
smallest) cj , so the SC weights would converge to weights that are more diluted, even if
this means not recovering c0. This is consistent with Proposition 1.

Table 1. Monte Carlo simulations.

Bias Standard error

SC Demeaned SC DID SC Demeaned SC DID
(1) (2) (3) (4) (5) (6)

Panel A: second largest cj , no break
T0 = 120 0�243 0�009 0�020 0�531 0�573 0�915
T0 = 240 0�200 −0�002 0�006 0�505 0�532 0�960
T0 = 480 0�196 0�006 0�007 0�501 0�514 1�007
T0 = 12,000 0�167 −0�004 −0�010 0�503 0�500 1�005

Panel B: second smallest cj , no break
T0 = 120 −0�565 0�020 0�028 1�173 0�823 1�368
T0 = 240 −0�601 −0�012 0�002 1�242 0�801 1�431
T0 = 480 −0�596 −0�011 0�004 1�264 0�755 1�469
T0 = 12,000 −0�581 −0�002 −0�003 1�242 0�714 1�442

Panel C: second largest μ1j , break in factor 1
T0 = 120 1�142 1�043 2�143 0�772 0�819 1�247
T0 = 240 0�934 0�797 2�129 0�728 0�764 1�308
T0 = 480 0�808 0�675 2�110 0�713 0�728 1�337
T0 = 12,000 0�718 0�598 2�112 0�688 0�691 1�310

Panel D: second smallest μ1j , break in factor 1
T0 = 120 −1�821 −1�851 −3�176 1�200 1�167 1�777
T0 = 240 −1�573 −1�532 −3�157 1�130 1�113 1�794
T0 = 480 −1�415 −1�324 −3�110 1�082 1�058 1�816
T0 = 12,000 −1�366 −1�230 −3�162 1�028 0�996 1�793

Note: This table presents the MC simulations discussed in Section 4. Panels A and B consider the case in which all common
factors have mean zero in the post-treatment periods. In Panel A, the treated unit is the state with second largest fixed effect in
the distribution of cj , while in Panel B the treated unit is the state with the second smallest fixed effect. Panels C and D consider
the case in which the first common factor has expected value equal to two times its standard deviation in the post-treatment
periods. In Panel C, the treated unit is the state with second largest factor loadings associated to the first common factor in the
distribution of μ1j , while in Panel D the treated unit is the state with the second smallest factor loading. In all simulations, the
true treatment effect is equal to zero.
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Figure 1. Monte Carlo simulations. Notes: Figure A presents the bias of the original SC estima-
tor as a function of the time-invariant fixed effect of the treated state. We consider in this case
a setting with no structural break for the common factors. Figure B presents the bias of the de-
meaned SC estimator as a function of the factor loadings associated to the first common factor
of the treated state. We consider the case in which the first common factor has expected value
equal to two times its standard deviation in the post-treatment periods. We present the settings
with T0 = 120 and T0 = 1200. In all simulations, the true treatment effect is equal to zero.

Figure 1.A shows the bias of the original SC estimator as a function of the time-
invariant fixed effect of the treated state. We find relevant bias of the SC estimator when
the time-invariant fixed effect of the treated state is in the extreme of the distribution of
time-invariant fixed effects, while the bias is closer to zero when the treated state is more
in the middle of this distribution. This happens because, as we consider a treated state
with time-invariant fixed effect more toward the center of this distribution, we can have
a weighted average of the control states with more diluted weights that reconstruct the
time-invariant fixed effect of the treated. Therefore, the term in equation (6) related to
the variance of the linear combination of idiosyncratic shocks becomes less relevant in
the minimization problem. Indeed, if we consider a measure of concentration of weights
given by ‖ŵSC‖2, then the correlation between the absolute value of the bias of the SC
estimator and this measure ranges from 0.723 to 0.849 (depending on the value of T0).24

In contrast to the original SC estimator, both the demeaned SC and the DID estima-
tors are unbiased in this setting, as presented in Panel A of Table 1. This is consistent
with Proposition 2. Moreover, as expected from Proposition 3, the demeaned SC esti-
mator is more efficient than the DID estimator, with roughly 40%–50% smaller standard
errors.

In Panels C and D of Table 1, we consider a setting in which the first common factor
has expected value equal to two times its standard deviation in the post-treatment pe-
riods. In Panel C, we consider the case in which the treated state is such that its factor
loading associated to the first common factor (μ10) is the second largest value in the dis-
tribution of μ1j , while in Panel D we consider the case in which it is the second smallest.

24For each T0 and a treated state, we calculate the average bias and the average ‖ŵSC‖2. Then we consider
the correlation between these two variables for each T0.



1214 Ferman and Pinto Quantitative Economics 12 (2021)

Therefore, again we are in a setting in which it would be possible to construct a SC state
that is affected by λ1t in the same way as the treated unit. Still, the results from columns
1 and 2 show that the original and the demeaned SC estimators are biased even when
T0 is large. This happens because the SC weights fail to reconstruct μ10, despite the fact
that there exist weights that would do so. This is consistent with the results from Propo-
sitions 1 and 2. Note also that the biases of the original and demeaned SC estimators are
larger when T0 is smaller. See Ferman and Pinto (2019) for a more thorough discussion
on that. Figure 1.B shows the bias of the demeaned SC estimator as a function of the
factor loadings of the treated unit. Again, the bias is closer to zero when the treated unit
is in the middle of the distribution of μ1j . If we consider a measure of concentration of

weights given by ‖ŵSC′ ‖2, then the correlation between the absolute value of the bias of
the demeaned SC estimator and this measure ranges from 0.723 to 0.810 (depending on
the value of T0).

While the biases of the original and the demeaned SC estimators do not converge
to zero when there is selection on unobservables, these biases are substantially smaller
than the bias of the DID estimator in this setting (column 3). Interestingly, the demeaned
SC estimator attenuates the bias from the DID estimator, but does not eliminate it. The
idea is that, when we move from the DID to the demeaned SC estimator, the weights
move in the direction of weights that reconstruct the factor loadings. However, the SC
weights do not generally go all the way through to recover μ0 because of the idiosyn-
cratic shocks. Moreover, the DID estimator presents a substantially larger standard error
(columns 4 to 6). These results are consistent with the conclusions from Section 3.2, in
that the demeaned SC estimator improves relative to DID in terms of bias and variance
(under Assumption 5).25

Finally, we consider the size and power of the specification test proposed in Sec-
tion 3.2 (see Appendix Table A.1). When there is no structural break (so both the de-
meaned SC and the DID estimators are asymptotically unbiased), the test presents rel-
evant overrejection when T0 is small, but such distortions become less relevant when
T0 increases. Such distortions with finite T0 arise because the common factors exhibit
serial dependence. If we did not have dependence, then the test would be exact. Overall,
the fact that the test has some overrejection when T0 is small is less worrisome than if
we had underrejection, because this would lead researchers to be more cautious about
the use of the demeaned SC estimator. When we consider the case in which there is
a structural break, the test would have power to detect that the demeaned SC and the
DID estimators are different, especially when the treated unit is on the extremes of the
distribution of μ1j . When the treated unit is in the middle of this distribution, then the
bias of both the demeaned SC and of the DID estimators become less relevant, so the
probability of rejecting specification test becomes lower.

25In these simulations, the bias of the original SC estimator is only slightly larger than the bias of the
demeaned SC estimator, suggesting that, in this setting, the SC state approximately reconstructs the fixed
effect of the treated state. Note, however, that such comparison cannot be extrapolated to other settings, as
discussed in Remark 4.



Quantitative Economics 12 (2021) Synthetic controls with imperfect pretreatment fit 1215

5. Empirical illustration

As an empirical illustration, we revisit the application presented by Abadie and Gardeaz-
abal (2003). We present in Figure 2.A the per capita GDP time series for the Basque Coun-
try and for other Spanish regions, while in Figure 2.B we replicate their Figure 1, which
displays the per capita GDP of the Basque Country contrasted with the per capita GDP
of a SC unit constructed to provide a counterfactual for the Basque Country without ter-
rorism. We construct three different SC units, with the original SC estimator using all
pretreatment outcome lags as predictors, with the demeaned SC estimator using all pre-
treatment outcome lags as predictors, and with the specification considered by Abadie

Figure 2. Abadie and Gardeazabal (2003) application. Notes: Figure A presents time series for
the treated and for the control units used in the empirical application from Abadie and Gardeaz-
abal (2003). In Figure B, we present the time series for the treated and for the SC units. We con-
sider the SC unit estimated with the original SC estimator using all pretreatment periods lags,
with the demeaned SC estimator using all pretreatment periods lags, and with the specification
considered by Abadie and Gardeazabal (2003). In Figure C, we present the same information as
in Figure B after subtracting the control groups’ averages for each time period. In Figure D, we
present the counterfactuals using the demeaned SC and the DID estimators.
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and Gardeazabal (2003). All specifications point out to large negative treatment effects,
although the estimated effects are slightly smaller for the original specifications consid-
ered by Abadie and Gardeazabal (2003).

Figure 2.B displays a remarkably good pretreatment fit, regardless of the specifica-
tion. However, the per capita GDP series are clearly nonstationary, with all regions dis-
playing similar trends before the intervention. Considering the results presented in Sec-
tion 3, such nonstationarity may come either from time fixed effects δt , or from non-
stationary common shocks that may have heterogeneous effects across regions. If the
nonstationarity comes from a common factor δt that affects every unit in the same way,
then the series ỹjt = yjt − 1

J

∑
j′ �=0 yj′t would not display nonstationary trends. As shown

in Figure 2.C, this appears to be the case in this application.26

In light of the results from Section 3, the distortions in the SC weights depend on
the relative magnitudes of the variance of the nondiverging common factors relative to
the variance of the idiosyncratic shocks. Therefore, Figure 2.C provides a better visual
assessment of whether the pretreatment fit is good relative to Figure 2.B. While the pre-
treatment fit is still reasonably good after we discard the nonstationary part of the series,
it is not as good as when we consider the series in levels.

We can consider whether we would be able to justify the use of the SC method in this
setting without relying on theoretical results based on perfect pretreatment fit approxi-
mations. First, note that the estimated weights in this application are very concentrated
among a few control regions, so we cannot rely on the theoretical results from Ferman
(2019) to argue that the SC estimator is asymptotically unbiased in this setting (see Ap-
pendix Table A.2). Following the discussion in Section 3.2, we also contrast in Figure 2.D
the DID and the demeaned SC estimators. If they were very similar, then we would have
some support to rely on these estimators even if they failed to reconstruct the factor
loadings of the treated region. However, we find the the estimated effect using the de-
meaned SC estimator is systematically larger. The p-value of the specification test pro-
posed in Proposition 4 is 0�023. This suggests that we may have selection on time-varying
unobservables, implying that both the demeaned and the DID estimators are asymptot-
ically biased, although the bias of the demeaned SC estimator should be smaller.

Overall, since in this particular application the pretreatment fit is reasonably good
even once we subtract the nonstationary trends, and the treatment effects are large rel-
ative to the pretreatment gaps, we should expect that any potential bias from the de-
meaned SC estimator does not explain a large proportion of the estimated effects. More-
over, given the discussions from Sections 3.2 and 4, we should expect the demeaned
SC estimator to partially control for any bias that the DID estimator experience. Since
the estimated effects with the demeaned SC estimator are stronger than the DID esti-
mates, given this rationale, we should expect, if anything, that the demeaned SC estima-
tor would provide a lower bound on the (absolute values of the) treatment effects. There-
fore, a careful analysis of the potential problems of the SC method would not change the
main conclusions from this empirical application. Still, in other settings in which the

26Given the adding-up constraint, note that the SC estimator is numerically the same if we estimated it
using the original data or ỹjt . If there were other sources of nonstationarity, then the series would remain
nonstationary even after such transformation. In such cases, other strategies to detrend the series could be
used, such as, for example, considering parametric trends.
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pretreatment fit is worse, and in which moving from the DID to the demeaned SC es-
timator leads to weaker results, then it would not be possible to rely on the arguments
used above, and the problems we highlight in this paper may undermine conclusions
from the SC method.

6. Recommendations

Taken together, our results clarify the conditions in which the SC and related estimators
can be reliably used, when we consider a setting in which potential outcomes are well
approximated by a linear factor model. Based on these results, we provide guidance on
how applied researchers could justify the use of these methods. First, a condition like
the one we present in Assumption 3 is always necessary to justify the SC estimator. It
states that treatment assignment is not related to shocks that are specific to the treated
unit. It does allow, however, for unobserved confounders that may also affect other con-
trol units. Indeed, the main reason why a researcher should use these kind of methods
is if he/she believes that there may be confounding factors that also affect the control
units. In this case, information from the control units could be used to control for such
confounders. Therefore, any applied paper relying on the SC method should discuss the
possible unobserved confounders in the specific application, and argue that such con-
founders are not specific to the treated unit.

Importantly, even if it is plausible that idiosyncratic shocks are not correlated with
the treatment assignment, whether the SC method is able to reliably control for the com-
mon shocks depends crucially on details of the empirical application. There are two set-
tings that provide validity for the SC estimator even when there are time-varying unob-
served confounders. First, Abadie, Diamond, and Hainmueller (2010) showed that the
SC estimator is reliable if the pretreatment fit is good for a large number of pretreatment
periods. This condition can be checked by contrasting the outcomes of the treated and
of the SC units in the pretreatment periods. Based on our results, we recommend that
applied researchers should also consider the pretreatment fit after discarding diverging
trends, in order to provide a better understanding of the relative magnitude between the
variances of the nondiverging common factors and of the idiosyncratic shocks.27 Also, it
is important that the number of control units in this case cannot be large in comparison
to T0, otherwise a good pretreatment fit might be a consequence of overfitting. In this
case, the bias of the SC estimator we uncover in our paper may remain relevant even if
we have a good pretreatment fit.

Second, when both J and T0 are large, Ferman (2019) showed that the SC estimator
may be asymptotically unbiased even when the pretreatment fit is imperfect. This would
be the case if the confounders affect a large number of control units, and in this case
the SC weights would get diluted among an increasing number of control units when
J → ∞. Therefore, we recommend that applied researchers also report the L2 norm of
the SC weights, ‖ŵSC‖2. If this is close to zero, then we would have evidence that we are

27Given the adding-up constraint, note that the SC estimator is numerically the same if we estimated it
using the original data or if we detrend the data by subtracting a term at for all units in period t. This will be
the case if we have a setting as the one considered in Section 5.
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closer to the setting considered by Ferman (2019). In contrast, if the weights are concen-
trated, then we would have evidence that the bias we uncover in our paper is potentially
relevant. As we show in our MC simulations in Section 4, the cases in which we find
largest biases are exactly the ones in which the SC weights are more concentrated.

The results we derive in Section 3 are informative about the properties of the SC
estimator when the conditions outlined by Abadie, Diamond, and Hainmueller (2010)
and Ferman (2019) do not hold. This would be the case when (i) the pretreatment fit is
imperfect and J is not large, (ii) the pretreatment fit is imperfect with large J and T0,
but the SC weights are not diluted among a large number of control units, or (iii) the
pretreatment fit is good, but J is much larger than T0, so such pretreatment fit is possibly
good due to overfitting.

In these cases, we show that the SC estimator can still provide important gains rela-
tive to the DID estimator, but the applied researcher should be more careful in justifying
the use of the method. If one considers the demeaned SC estimator, then the assump-
tions for unbiasedness would be the same as those for the DID estimator. That is, the
researcher should argue that the relevant unobserved confounders are not time varying.
The advantage of relying on the demeaned SC estimator relative to DID in this case is
that it would be more efficient if common shocks are stable before and after the treat-
ment, and that it should have lower bias in case there is correlation between treatment
assignment and time-varying unobservables. We also show that contrasting the DID and
the demeaned SC estimators is informative about whether these conditions for unbi-
asedness are valid, and propose a specification test based on that. If we find evidence
that these two estimators are similar, then we should be more confident that the con-
ditions for asymptotic unbiasedness of the demeaned SC estimator holds even when
we are not in the settings considered by Abadie, Diamond, and Hainmueller (2010) or
Ferman (2019).

Importantly, if the conditions considered by Abadie, Diamond, and Hainmueller
(2010) or Ferman (2019) hold in a specific application, then the demeaned SC estima-
tor would be asymptotically unbiased, while the DID estimator may be biased. In this
case, any information from the specification test indicating that the demeaned SC and
the DID estimators are different would not imply that the demeaned SC estimator is in-
valid. Therefore, it is crucial to understand the conditions under which each of these
estimators are valid to interpret the conclusions from this specification test.

Finally, if one considers the original SC estimator, then one should have to inspect
the pre-treatment fit. If the SC unit recovers the levels of the treated unit (even if the
pretreatment fit is imperfect), then again the estimator would be reliable if there is no
relevant time-varying unobserved confounders. If the SC unit does not recover the lev-
els, then the original SC estimator should not be used. In such settings, the researcher
should either use the demeaned SC estimator, or discard such application in case he/she
does not want to rely on extrapolation.

7. Conclusion

We consider the properties of the SC and related estimators, in a linear factor model
setting, when the pretreatment fit is imperfect. We show that, in this framework, the
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SC estimator is generally biased if treatment assignment is correlated with the unob-
served heterogeneity, and that such bias does not converge to zero even when the num-
ber of pretreatment periods is large. Still, we also show that a modified version of the
SC method can improve relative to DID, even if the pretreatment fit is not close to per-
fect and if T0 is not large. Overall, we show that the SC method can provide substantial
improvement relative to DID, even in settings where the method was not originally de-
signed to work. However, researchers should be more careful in the evaluation of the
identification assumptions in those cases. Importantly, our results clarify the conditions
in which the SC and related estimators are reliable, and provide practical guidance on
how applied researchers should justify the use of such estimators in empirical applica-
tions.
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