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Saddle cycles: Solving rational expectations models featuring
limit cycles (or chaos) using perturbation methods

Dana Galizia
Department of Economics, Carleton University

Unlike linear ones, nonlinear business cycle models can generate sustained fluc-
tuations even in the absence of shocks (e.g., via limit cycles/chaos). A popular ap-
proach to solving nonlinear models is perturbation methods. I show that, as typ-
ically implemented, these methods are incapable of finding solutions featuring
limit cycles or chaos. Fundamentally, solutions are only required not to explode,
while standard perturbation algorithms seek solutions that meet the stronger re-
quirement of convergence to the steady state. I propose a modification to stan-
dard algorithms that does not impose this overly strong requirement.

Keywords. Dynamic equilibrium economies, computational methods, nonlinear
solution methods, limit cycles, chaos.

JEL classification. C63, C68, E37.

1. Introduction

Rational expectations models where nonlinearities play an important role have become
increasingly used in macroeconomics in recent years. Unlike their linear counterparts,
nonlinear models are in some cases capable of generating sustained fluctuations in eco-
nomic aggregates even in the absence of stochastic forces, such as through limit cy-
cle dynamics (i.e., endogenous fluctuations that repeat indefinitely in the absence of
shocks).1 A common criticism of many existing models of the business cycle is their
perceived overreliance on unobserved (and often empirically unjustified) exogenous
stochastic forces in matching the persistence and volatility found in the data. As shown
in Beaudry, Galizia, and Portier (2016) and Beaudry, Galizia, and Portier (2020),2 mod-
els that feature limit cycles are capable of endogenously delivering that persistence and
volatility, and need only be combined with relatively small stochastic forces in order to
make fluctuations as unpredictable and irregular as those found in the data. This sug-

Dana Galizia: dana.galizia@gmail.com
Thanks to Paul Beaudry, Josh Brault, Franck Portier, and anonymous referees for helpful comments. All
errors are mine.

1The solution method in this paper can also be applied without modification to nonrepetitive endoge-
nous fluctuations (i.e., chaos). However, the discussion will focus on limit cycles, which appear to be the
more empirically plausible case.

2These papers were by no means the first to explore the relevance of limit cycles and/or chaos to macroe-
conomic fluctuations, and indeed this literature has a long history (see the references contained in Beaudry,
Galizia, and Portier (2020)). However, combining such forces with more conventional stochastic ones ap-
pears to have gone largely unexplored in that earlier literature.
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gest that models featuring such “stochastic limit cycles” may be a promising avenue for
business cycle research.

For a model featuring a limit cycle to be useful for quantitative applications, one
must be able to (at least approximately) obtain a solution to it. There is a substantial
body of literature devoted to the development of approximate solution methods for
nonlinear rational expectations models. These methods vary in complexity, computa-
tional burden, and accuracy. As several studies have noted (e.g., Gaspar and Judd (1997),
Aruoba, Fernández-Villaverde, and Rubio-Ramírez (2006)), perturbation (i.e., Taylor ap-
proximation) methods are relatively simple, often produce a reasonable degree of accu-
racy, and are significantly faster than other popular alternatives, making them a good
candidate for solving larger models and/or for use in estimation exercises. Perturbation
methods would thus seem like an attractive choice for solving limit cycle models. How-
ever, standard perturbation algorithms3 are incapable of dealing with such models. This
fact—which, to my knowledge, this paper is the first to explicitly point out—has at least
two important consequences. First, this potentially fruitful research avenue may have
gone largely unexplored to date in part because of the unavailability of practicable so-
lution methods. Second, there could in fact be existing models in the literature that can
produce limit cycles for certain parameterizations, but for which (a) such parameteri-
zations have been discarded because the researcher (or the software package used by
the researcher) incorrectly believes that there is no solution to the model, or (b) in addi-
tion to solutions the researcher has found, there are additional solutions featuring limit
cycles that have been inadvertently ignored.

The reason standard perturbation methods cannot solve models featuring attractive
limit cycles—cycles to which the system would eventually converge in the absence of
any shocks—is straightforward. A solution to a rational expectations model is typically
defined as a function that maps current predetermined variables into current jump vari-
ables/future predetermined variables, and that (1) implicitly satisfies a particular dif-
ference equation (DE), and (2) results in trajectories that do not explode, that is, that
satisfy a transversality condition (TVC). Referring henceforth to a function that satisfies
the DE (but not necessarily the TVC) as a “DE function,” a natural approach to find-
ing such a solution is to search among DE functions—of which there is typically a finite
multiplicity—for one that also satisfies the TVC.

As is well known,4 DE functions are generally indexed by their linear approxima-
tions about the steady state, and it is typically straightforward to obtain this indexing
set directly from the DE using the implicit function theorem. Further, given a linear ap-
proximation to a DE function, it is straightforward to sequentially obtain the associated
second-order Taylor approximation, then third-order, etc., up to any desired approxima-
tion order. Thus, when using a perturbation approach, selecting from among the set of

3See, for example, Judd (1996), Judd and Guu (1997), Uhlig (1999), Schmitt-Grohé and Uribe (2004),
Aruoba, Fernández-Villaverde, and Rubio-Ramírez (2006), Gomme and Klein (2011), Kollman et al. (2011),
and Caldara et al. (2012). See Fernández-Villaverde, Rubio-Ramírez, and Schorfheide (2016) (Section 4) for
a recent comprehensive overview of these methods.

4See, for example, Judd (1998).
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DE functions boils down to selecting from among the set of linear approximations that
index those functions.

The linear approximation selected by standard perturbation algorithms is the one
that solves the linearized model (LM), that is, the model obtained by linearizing the DE.
Since the LM is by definition linear, its trajectories generically either converge to the
steady state or explode.5 Thus, a trajectory satisfies the LM TVC if and only if it is con-
vergent. However, if the solution to the original nonlinear model features an attractive
limit cycle then, by construction, its linear part will not be convergent and, therefore,
this linear part cannot be a solution to the LM. Put more succinctly, standard pertur-
bation methods only look for convergent solutions and, therefore, cannot find solutions
involving limit cycles. In practice, when the unique solution involves a limit cycle, typical
software packages (e.g., Dynare) would, for a single solution attempt, generally report an
error indicating that the Blanchard–Kahn conditions are violated, while in an estimation
exercise the associated parameterization would typically be discarded.

The present paper describes a relatively simple way to extend standard perturbation
methods so as to be able to accommodate solutions that feature limit cycles. Essentially,
rather than assuming that a DE function satisfies the TVC only if its linear approxima-
tion is a solution to the LM, the method described below proposes to actually check
each DE function to see whether it satisfies the TVC. In practice, this involves obtain-
ing higher-order perturbation approximations to each DE function, and then simulating
numerically to check whether trajectories explode. Importantly, the method is a strict
generalization of standard methods, and can therefore be applied without modification
to models that do not feature limit cycles (and in many cases without a significant in-
crease in computational burden). Thus, one need not determine in advance whether
limit cycles are relevant in order to apply the method.

Other methods

Perturbation methods are not the only possible way to solve models featuring limit
cycles. Roughly speaking, solution methods for rational expectations models can be
grouped into two classes. The first involves finding functions that (approximately) solve
the DE. Within this class, there are two principal methods that have been used: local
perturbation methods, as used in this paper, and the global projection methods formally
introduced to economics by Judd (1992) and Gaspar and Judd (1997) (among others). Be-
cause of their global nature, projection methods are often capable of delivering a higher
degree of accuracy than perturbation methods. However, even in the simplest models,
solution times are typically on the order of tens of seconds or longer, and increase rapidly
with the number of state variables (and the desired degree of accuracy). As a result, es-
timation using projection methods is essentially infeasible in all but the very simplest
of cases. In contrast, depending on the model and perturbation order used, solution

5When the endogenous part of the LM has eigenvalues lying exactly on the complex unit circle, there
may also exist trajectories that neither converge nor explode. To keep the discussion simple, I ignore these
cases since in practice they typically correspond to a measure-zero of the parameter space. Nonetheless,
the solution method described below will automatically deal with them.



872 Dana Galizia Quantitative Economics 12 (2021)

times for perturbation methods are often on the order of fractions of a second. For ex-

ample, in the application of Section 5, which features a model with four state variables

(putting it at the high end among cases to which projection methods have been applied

in the literature), a single solution using a third-order perturbation takes less than 0.01

seconds, while still delivering a reasonable degree of accuracy. Further, in addition to

their heavier computational burden, projection methods are also typically more com-

plicated to implement, and, in order to optimize computation times (a top priority with

such methods), are frequently coded in a low-level programming language like Fortran

or C++. In contrast, perturbation methods are relatively simple to implement, and are

able to deliver fast solution times even when coded in a high-level language like MAT-

LAB.

The second class of solution methods is based on solving for agents’ value functions

by iterating on the Bellman equations of the model. Similar to the projection methods

discussed above, the principal drawback of these methods is their computational bur-

den. This is especially acute in cases where the first welfare theorem fails to hold, since

one must simultaneously solve not only for the private value and policy functions, but

also for each function mapping the aggregate state into a relevant price (or other co-

ordinating mechanism). Since limit cycles may be especially relevant when there are

strategic complementarities,6 in which case the first welfare theorem would fail, this

is precisely an application in which value function methods would be especially com-

putationally expensive. Furthermore, complementarities may in fact cause the search

problem to become nonconvex, in which case numerical algorithms are not guaranteed

to converge.

The remainder of the paper is organized as follows.7 Section 2 outlines the main

elements of the solution algorithm as it applies to deterministic models. While mod-

ern business cycle analysis is conducted mainly using stochastic models, focusing first

on the deterministic case allows the basic ideas underlying the method to be conveyed

in the simplest possible setting. Section 3 then discusses how one can implement the

method in practice. Section 4 extends the discussion to the more general stochastic case

and discusses computation. Section 5 illustrates the method by applying it to a micro-

founded model that features a stochastic limit cycle, and finally Section 6 concludes.

2. The deterministic case

To make exposition of the method as simple as possible, this section addresses deter-

ministic environments. Once results and intuition have been established for this case, it

will be straightforward to extend them to the stochastic case in Section 4.

6See Beaudry, Galizia, and Portier (2020).
7For considerations of length, it will generally be assumed that the reader has a basic familiarity with

standard nonlinear perturbation algorithms (both theory and implementation). See Fernández-Villaverde,
Rubio-Ramírez, and Schorfheide (2016, Section 4), for an overview of these standard methods.
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2.1 Set-up

Suppose xt ∈ R
n is a vector of endogenous variables at date t, and the economy evolves

deterministically according to the potentially nonlinear difference equation

�
(
x�x′) = 0� (1)

where x denotes current-period values, x′ denotes values in the subsequent period, and
� : R2n→R

n is a locally C∞ function.8 We take � as primitive (and known to the re-
searcher). Letting a function with a subscript denote its Jacobian with respect to the
subscripted argument, we impose the following assumptions.

Assumption 1. �(x�x)= 0 has a unique solution, which we denote x̄.

Assumption 2. For any x, there is a unique solution to (1) for x′, and �x′(x̄� x̄) is invert-
ible.

Assumption 1 ensures that the system has a unique steady state (SS).9 This SS will
serve as the natural point around which to perturb the system. Assumption 2, mean-
while, requires both that, given x, a solution for x′ exists (an unrestrictive assumption in
most settings) and that this solution is both globally unique and unique to a first-order
approximation. Uniqueness in turn requires as a first step that all “static” relationships
be eliminated from the system. Assumption 2 can be easily relaxed to accommodate
static relationships (e.g., as in King and Watson (1998), Klein (2000), or Sims (2002) for
the case of linear models), though at the cost of significantly obscuring the intuition.
We therefore maintain Assumption 2 for now, and relax it below in Section 4 when dis-
cussing the more general stochastic case.

Without loss of generality, henceforth make the normalization that the unique SS
is given by x̄ = 0. Partition the state vector as x = (y� z), where y ∈ R

ny corresponds to
the set of variables that are predetermined at date t, z ∈ R

nz corresponds to the set of
variables free to change at date t (i.e., the jump variables), and ny + nz = n. A solution to
the model takes the form of a pair of functions π : Rny → R

ny and φ : Rny → R
nz giving,

respectively, y ′ and z as functions of the current predetermined variables y. Specifically,
we have the following.

Definition 1. A model solution (π�φ) is a pair of functions such that, for some open
subsetΘ containing zero (the SS), we have

�
(
y�φ(y)�π(y)�φ

(
π(y)

)) = 0� ∀y ∈Θ� (2)

8In practice, we only require that � be Ck, where k is at least as big as the desired perturbation order.
9One can replace Assumption 1 with the less stringent assumption that there is only one relevant SS; that

is, that there is only one SS of practical interest. This will allow the method to address, for example, models
in which capital is a necessary input to production, which typically feature as an uninteresting SS the one
associated with no capital.
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and for each y ∈Θ,

lim sup
t→∞

‖xt‖<∞� (3)

where xt = (yt� zt), y0 = y, yt = π(yt−1), and zt =φ(yt).

In this definition, ‖ · ‖ denotes the Euclidean norm. Note that, since we will employ
Taylor approximations, we are inherently restricted to considering only local dynamics,
hence the focus on Θ. We also assume (as is always implicitly the case for perturbation
methods) that � is such that, if a unique model solution exists, then it is analytic on Θ.
As we will only be interested in actually obtaining a solution when it is unique,10 this
assumption will allow us to focus our search within the set of analytic functions.

Also of interest will be the linearized system. Let

A≡ −�−1
x′ �x�

where a Jacobian without an argument gives its value evaluated at the SS. The linearized
system is thus given by

x′ =Ax�
LetΛ denote the set of eigenvalues ofA. For an eigenvalue λ ∈Λ, let e(λ) denote the

corresponding generalized eigenspace, and let

r(λ)≡ Re
[
e(λ)

] ⊕ Im
[
e(λ)

]
�

where Re[a] and Im[a] denote the real and imaginary parts of a, respectively, and ⊕ de-
notes the direct sum.11 We will refer to r(λ) as the real generalized eigenspace (RGE)
associated with λ. Note that r(λ)= r(λ) (where λ denotes the complex conjugate), r(λ)
is an A-invariant12 linear subspace, and if λ is real then the dimension of r(λ) is the
same as e(λ), while if it is complex the dimension is twice that of e(λ).

Finally, let W denote the set of all A-invariant linear subspaces of R
n (excluding

the trivial A-invariant subspace {0}), and let S denote the set of analytic function pairs
(π�φ) satisfying (2) (regardless of whether they also satisfy (3)).

2.2 Some useful properties

For ease of exposition, in the remainder of Section 2, we assume that all eigenvalues of
A have algebraic multiplicity one. While this assumption is usually not restrictive (cases
with repeated eigenvalues typically represent a measure zero of the parameter space),
we will nonetheless relax it in Section 3 below when discussing how to implement the
method in practice. Note that this assumption implies that RGEs corresponding to real

10Issues related to indeterminacy are addressed in Section 3.
11The direct sum of two setsX and Y is given byX ⊕Y ≡ {x+ y : x ∈X�y ∈ Y }.
12A set M is invariant with respect to a function F if x ∈M implies F(x) ∈M . By A-invariant, we mean

invariant with respect to the function x 
→Ax.
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eigenvalues always have dimension one, and those corresponding to complex eigenval-
ues always have dimension two. It also implies that w ∈ W if and only if it is either an
RGE itself, or the direct sum of two or more RGEs.

Since they are analytic by assumption, the functions (π�φ) ∈ S can be equivalently
and uniquely represented by their sets of partial derivatives (of every order) evaluated at
the SS. The first-order SS derivatives (πy�φy) clearly must satisfy the linear approxima-
tion of (2), that is,

�y + �zφy + �y ′πy + �z′φyπy = 0∀y� (4)

As is well known, while there are typically multiple solutions (πy�φy) to (4), given any
one such solution, using (2) we can sequentially and (typically) uniquely obtain all
higher-order SS derivatives of π and φ.13 In this sense, the elements of S are indexed
by the solutions of (4).

Given a pair of functions (π�φ) ∈ S , let

M(φ)≡ {
(y� z) ∈R

n : y ∈Θ�z =φ(y)}
be the ny-dimensional surface in R

n mapped out by z =φ(y), y ∈Θ, and

W (φ)≡ {
(y� z) ∈R

n : y ∈R
ny � z =φyy

}
be the ny-dimensional linear subspace tangent toM(φ) at x= 0. The following proposi-
tion establishes thatW (φ) isA-invariant.14

Proposition 1. If (π�φ) ∈ S , thenW (φ) ∈ W .

All proofs are in Appendix B in the Online Supplementary Material (Galizia (2021)).
The next proposition establishes a similar result in the reverse direction: if w is an

A-invariant linear subspace that is mapped out by z = ψy, y ∈ R
ny , for some matrix ψ,

then there is a pair (π�φ) ∈ S with M(φ) tangent to w at x= 0 (or, equivalently, there is
a pair (πy�φy) satisfying (4) with φy =ψ).

Proposition 2. Define W∗ as follows: w ∈ W∗ if and only if (i) w ∈ W , and (ii) there is a
matrix ψ such that we can write

w= {
(y� z) ∈R

n : y ∈R
ny � z =ψy}� (5)

Then for anyw ∈ W∗, there exists a pair (π�φ) ∈ S such thatW (φ)=w. Further, the eigen-
values of πy are given by the eigenvalues associated with the RGEs that make up w.

13To obtain SS derivatives of order k≥ 2 given SS derivatives up to and including order k− 1, first obtain
all kth-order derivatives of (2), and then evaluate the results at the SS. The resulting system of equations will
be linear in the kth-order SS derivatives (the only unknowns), and a unique solution for them will typically
exist. See Fernández-Villaverde, Rubio-Ramírez, and Schorfheide (2016) (Section 4), and the example of
Section 2.5 below.

14The properties highlighted by Propositions 1 and 2 in this section are not novel. However, I am not
aware of any existing explicit statement of these results in the literature. Given that they form the basis for
the proposed solution method, it is worth explicitly stating (and formally proving) them here.
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Figure 1. Illustrating Propositions 1 and 2. Notes: The figure is for the case where A has two
distinct real positive eigenvalues, one stable and one unstable. The wj ’s are the elements of W∗,
and themj ’s are the associated elements of S .

Together, Propositions 1 and 2 establish an equivalence between first-order approx-
imations of functions satisfying (2), and A-invariant linear subspaces. The last part of
Proposition 2 further establishes that the dynamics associated with any (π�φ) ∈ S—
which are driven by the “projected” system y ′ = π(y)—are, to first order, determined to
by the eigenvalues associated withW (φ).

The content of these Propositions is illustrated by example in Figure 1, which shows
a phase diagram for a simple case with ny = nz = 1 of the type often encountered in
macro. In particular, A is taken to have two distinct real positive eigenvalues, with one
stable and one unstable. The first element of all eigenvectors is taken to be nonzero, and
thus there are twow’s in W∗, given by the two (one-dimensional) RGEs. These are shown
as the gray linesw1 andw2 in the figure, wherew1 is associated with the stable eigenvalue
and w2 the unstable one. From Proposition 2, associated with each wj is a pair of func-
tions (π�φ) ∈ S for which M(φ) is tangent to wj . These latter surfaces are shown as the
thick black curves m1 and m2 in the Figure. Since w1 is associated with the stable eigen-
value, the dynamics along m1 converge (at least locally) to the SS. Conversely, since w2

is associated with the unstable eigenvalue, the dynamics along m2 diverge from the SS.
These convergence/divergence properties are indicated by the arrows placed along m1

andm2.

2.3 The solution method

The results in Section 2.2 suggest a way to find (analytic) functions (π�φ) satisfying (2).
First, find an element w ∈ W∗ using any of the well-established numerical methods for
doing so. Then, for such a w, one can obtain the associated (πy�φy) as suggested by
Proposition 2, and then use it to obtain the sequence of higher-order derivatives of π
and φ in the usual way.
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While there are generally multiple elements of S , typically only a subset (in many
cases of interest, only one) of them will also satisfy (3) and, therefore, be model solutions
as per Definition 1. To determine which of the elements of S actually constitute solu-
tions, standard perturbation algorithms (e.g., those described in Fernández-Villaverde,
Rubio-Ramírez, and Schorfheide (2016)) implicitly make the following additional as-
sumption.15

Assumption 3. Any trajectory that does not converge to the SS violates (3).

Under Assumption 3—which the method proposed in this paper does not make—in
order for a pair (π�φ) ∈ S to satisfy (3), the dynamics implied by the first-order approxi-
mation to π (i.e., y ′ = πyy) must involve convergence to the SS. That is, the eigenvalues
of πy must all be stable. In contexts where it is justified, Assumption 3 is useful since,
from the last part of Proposition 2, we need only consider elements w ∈ W∗ whose con-
stituent RGEs are each associated with stable eigenvalues, and if there is a unique such
w, it is straightforward to find it using any of several known algorithms.16

Unfortunately, as noted in the Introduction, Assumption 3 is not universally valid.
In particular, consider a (π�φ) ∈ S for which the system y ′ = π(y) features a globally
attractive limit cycle. Since all trajectories generated by this system necessarily satisfy
(3), (π�φ) is in fact a model solution. However, because its first-order approximation is
necessarily locally unstable, that is, πy will have unstable eigenvalues, naïvely imposing
Assumption 3 would cause this solution to be inappropriately discarded.

Figure 2 presents an example of such a situation for a case with two predetermined
variables (ny = 2) and one jump variable (nz = 1). Each panel of the Figure shows the
same phase diagram from a slightly different angle. In this example,A has a pair of com-
plex unstable eigenvalues, with the third eigenvalue real, positive, and unstable. W∗ has
one element w, which is the two-dimensional RGE associated with the pair of complex
eigenvalues. This is shown as the light gray plane in panel (a) of the figure. Associated
withw is a (π�φ) ∈ S .M(φ), which is tangent tow at zero, is shown as the dark gray non-
linear surface in each panel. The system y ′ = π(y) features a globally attractive limit cy-
cle: except for those beginning exactly at the SS (zero), all trajectories onM(φ) converge
to the limit cycle over time (and, therefore, satisfy (3)). Examples of such trajectories are
given by the solid and dotted curves in panel (b) of the figure. Trajectories beginning at
any point in R

n other than on M(φ) diverge from the SS and become unbounded, vio-
lating (3). Examples of such trajectories are shown as the dashed curves in panel (c) of
the figure. We see, then, that there is a unique model solution (π�φ). However, since its
local dynamics are driven by the pair of complex unstable eigenvalues, standard pertur-
bation algorithms would be unable to discover it. Instead, since all eigenvalues of A are
unstable, they would incorrectly conclude that there are no model solutions.

The method proposed in this paper is, conceptually, a straightforward modification
of standard perturbation algorithms that is designed to address the possibility of such a

15Recall that, to simplify the discussion, we have abstracted from the existence of unit-modulus eigen-
values. It is nonetheless straightforward to adapt the following discussion to the general case.

16See, for example, Blanchard and Kahn (1980), King and Watson (1998), Klein (2000), Sims (2002).
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Figure 2. A saddle limit cycle. Notes: Illustration of a unique solution (shown as the dark gray
surface in each panel) featuring a globally attractive limit cycle. Tangent to it is the associated
element of W∗ (light gray plane in panel (a)). Panel (b) shows trajectories on the solution surface,
which always converge to the limit cycle. Panel (c) shows trajectories off the solution surface,
which always diverge.

scenario. In particular, rather than relying on Assumption 3 to automatically select solu-
tions (π�φ) from S exclusively on the basis of the eigenvalues of πy , we will instead in-
dividually check (in practice, using numerical simulations), for each (π�φ) ∈ S , whether
the system y ′ = π(y) satisfies (3).

2.4 Applicability

As with all perturbation methods, the method developed here suffers from the limita-
tion that, for any given approximation order, the quality of the approximation generally
deteriorates as one moves further away from the expansion point. When the model so-
lution admits a limit cycle, the system tends to spend much of its time at points near
(or exactly on) the cycle, which is, by definition, away from the SS. This raises an im-
portant question: In such cases, is the quality of a Taylor approximation necessarily too
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poor to be useful? The answer to this is, no, not necessarily, for the same reason that it is
not necessarily inappropriate to apply perturbation methods to locally stable stochastic
models. For a desired error tolerance, there is generally some maximal neighborhood
Υ (in y-space) around the expansion point on which the approximation error is always
within the specified tolerance. In the case of a locally stable stochastic model, as long as
shocks are not large enough to push the system outside of Υ , then on the range in which
the system spends most of its time, the approximation error is within the specified toler-
ance. Similarly, for a model featuring a limit cycle, as long as the cycle is located within
Υ , the approximation error will be within the specified tolerance, and thus a perturba-
tion method would also be acceptable.

Of course, since the true solution is typically unknown, so is Υ (though there are di-
agnostic tools available to evaluate the accuracy of any approximation method). Gener-
ally speaking, the stronger are any expected nonlinearities in the true solution functions
(e.g., if the solution functions are discontinuous or kinked), the poorer would be the
quality of the approximation. As is always the case, judgment must be exercised in as-
certaining whether any expected increase in accuracy from using global methods (such
as projection methods) is large enough to offset their more difficult implementation and
slower computation times. Importantly, though, there is nothing intrinsic to limit cycles
that necessarily balances the scales in favor of global methods.

To illustrate, consider the case where ny = 1, and suppose the true solution for π is
given by the decreasing sigmoid function

π(y)= b(a)1 − eay
1 + eay � (6)

where a > 0 is a parameter that controls the degree of nonlinearity, and b(a) ≡ −(1 +
ea)/(1 − ea) is a normalization factor that ensures there is always a 2-period cycle at
y = ±1. Figure 3 illustrates the case for two different values of a. In each panel, the solid
black curve plots π(y), the gray dashed curve a third-order Taylor approximation to π,
and the gray dotted curve a fifth-order approximation. Also plotted as black dotted lines
are the 45◦ line as well as a box that highlights the 2-cycle at ±1. In panel (a), we show the
case where a= 1, for which π exhibits a mild degree of nonlinearity. In this case, over a
range extending well beyond the cycle, both Taylor approximations lie almost directly on
top of the true π, suggesting that even a third-order approximation may be sufficiently
accurate in practice. In panel (b), on the other hand, which shows the case of a= 4, the
true π is much more nonlinear, and both Taylor approximations are unacceptably poor
when the system is out near the 2-cycle.17

2.5 A worked example featuring a limit cycle

This section presents a simple model for which a rational-expectations solution exists
and can be found by the proposed method, but not by standard methods. Consider the

17Indeed, it can be verified that the Taylor series about zero does not converge for y = ±1.
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Figure 3. Limit cycle Taylor approximations. Notes: Each panel plotsπ(y) from equation (6) for
a different value of a as the black curve, and the third- and fifth-order Taylor approximations as
the gray dashed and dotted curves, respectively.

simple forward-looking model:

K′ = (1 − δ)K + I�
G(I)= I ′ − αK�

(7)

whereK (“capital”) is predetermined at date t, I (“investment”) is free to jump, δ ∈ (0�1)
and α > 0 are parameters, and G is a strictly increasing function satisfying G(0)= 0 and
G3 > 0, where a function with a subscript i denotes the ith derivative at the SS. To rule
out the possibility of multiple SSs we assume further that α > δ. Finally, to keep things
as simple as possible, we also assume thatG2 = 0.

We can write the evolution of this economy as

(
K′
I ′

)
=

(
(1 − δ)K + I
αK +G(I)

)
�

We then have that

A=
(

1 − δ 1
α G1

)
�

which has eigenvalues

λ1 = 1 − δ+G1 −
√
(1 − δ−G1)2 + 4α

2
�

λ2 = 1 − δ+G1 +
√
(1 − δ−G1)2 + 4α

2
�
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Suppose G1 < α + δ − 2. It can then be verified that λ1 < −1 and λ2 > 1. Since
the eigenvalues are both real, there are two elements of W∗, given by the two one-
dimensional RGEs of A. There are thus also two elements of S . Let (π(j)�φ(j)) denote
the element of S associated with λj , j = 1�2, and note that π(j)1 = λj . Since |π(j)1 |> 1 for
j = 1�2, the linear approximation to π(j) is always unstable. Thus, if one were to apply
standard perturbations methods (i.e., impose Assumption 3), one would conclude that
there are no solutions. As we show now, this conclusion is erroneous here: there exists (at
least to a third-order approximation) a unique solution to the nonlinear model, which
features a limit cycle.

Solutions (π�φ) ∈ S by definition satisfy (2), which for this example is given by(
π(K)

φ
(
π(K)

)
)

=
(
(1 − δ)K +φ(K)
αK +G(

φ(K)
)

)
�

Note for future reference that the first of these equations implies that π1 = (1 − δ)+φ1,
and πi =φi for i≥ 2. Substituting the first equation into the second for π(K) yields

φ
(
(1 − δ)K +φ(K)) = αK +G(

φ(K)
)
� (8)

Since condition (8) must hold for all K, sequentially taking derivatives three times of
this equation with respect to K, and then evaluating each at K = 0, we may obtain the
conditions

φ2
1 + (1 − δ−G1)φ1 − α= 0� (9)[

(1 − δ+φ1)
2 +φ1 −G1

]
φ2 = 0� (10)[

(1 − δ+φ1)
3 +φ1 −G1

]
φ3 =G3φ

3
1 − 3(1 − δ+φ1)φ

2
2� (11)

Equation (9) is a quadratic in φ1, which has two solutions. Each of these solutions in-
dexes a different (π�φ) ∈ S . It can be verified that these solutions are given by φ(j)1 =
λj − (1 −δ), j = 1�2. Substituting this into equation (10) forφ1, we find thatφ(j)2 satisfies

[
λ2
j + λj − (1 − δ+G1)

]
φ
(j)
2 = 0�

Except in knife-edge circumstances, the term in square brackets will be nonzero, and
thus φ(j)2 = 0.18 Substituting this and the expression for φ(j)1 into (11) yields

φ
(j)
3 =

[
λj − (1 − δ)]3

λ3
j − λ−j

G3�

where the notation λ−j denotes the eigenvalue that is not λj . Since λ1 <−1 and λ2 > 1,
the numerator and denominator of the fraction on the right-hand side of this expression
are of the same sign (negative when j = 1, positive when j = 2), and thus, since G3 > 0,

18This property is inherited directly from our earlier simplifying assumption thatG2 = 0.
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Figure 4. Evolution ofK, third-order approximation to π(j). Notes: Figure shows, for the deter-
ministic example, the evolution ofK according to the third-order approximation to (12) for each
j = 1�2. For j = 2,K becomes unbounded, while for j = 1 it approaches a 2-cycle at ±K̄.

we also have φ(j)3 > 0. It can then be verified that, to a third-order approximation, the
evolution ofK is given by

K′ = λjK + 1
6
φ
(j)
3 K3� (12)

Since λ2 > 1 and φ(2)3 > 0, for j = 2 this system is globally unstable: for any initial
value of K (except K = 0), the system will explode, violating (3). This is illustrated in
panel (b) of Figure 4. The solid black curve plots the third-order approximation to π(2),
while the gray dotted lines illustrate a typical path for K. Thus, (π(2)�φ(2)) cannot be a
solution.

Consider instead the j = 1 case. Since λ1 <−1, system (12) will not converge to the
SS. However, since φ(1)3 > 0, as long as the initial value of |K| is not too large,19 the
implied trajectory will remain bounded and, therefore, satisfy (3). These dynamics will
generically feature limit cycles or chaos, so that the system will typically neither explode
nor converge to a single point. This is illustrated in panel (a) of Figure 4, where the solid
black curve plots the third-order approximation to π(1), and the gray dotted lines illus-
trate a typical path for K. In this particular case, the model features a limit cycle: begin-
ning from a point near the SS, |K| grows each period, withK alternating signs. However,
as the system moves away from the SS, the growth in |K| eventually tapers off, and the
system settles into a 2-cycle given byKt = (−1)tK̄ for some K̄ > 0.

Since the system explodes for j = 2, but remains bounded for j = 1, we have verified
that, despite the conclusions one would draw by maintaining Assumption 3, a model

19For an initial value of |K| large enough, the accuracy of the third-order approximation to π(1) will have
degraded to the point that the approximated system no longer captures even the qualitative dynamics of
the true system K′ = π(1)(K). This is clear from the fact that, unlike the true system given by (7), the ap-
proximated system (12) possesses two unstable nonzero SSs ±K∗ for some K∗ > 0.
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solution does in fact exist (and is unique), and is given by (π(1)�φ(1)), with the resulting
dynamics of the system governed (to a third-order approximation) by (12) for j = 1.

3. Implementation

This section discusses how the solution method may be implemented in practice, in-
cluding how to apply it to a more general environment than described above, how one
can speed up the computation in practice, and how to deal with issues related to inde-
terminacy.

3.1 Generalizing the problem

Before proceeding with implementation details, we first generalize the problem. First,
we will no longer require that all eigenvalues of A have algebraic multiplicities equal to
one.

Second, up to now we have largely ignored the issue of indeterminacy. In particular,
we have only sought solution functions (π�φ) that map y into y ′ and z. This is overly
restrictive, however. In reality, the only fundamental restriction placed on solution func-
tions is that, since they are predetermined, elements of the current y may not be outputs
of any of these functions. However, it is in principle allowed for one or more elements of
the current z to be inputs of the functions determining y ′ and the remaining values of z.
The structure of Definition 1 does not allow for this, so we now generalize it.

In particular, given a set Q of indices chosen from the set {1� � � � � nz}, let u be the
subvector of z corresponding to these indices, let ŷ ≡ (y�u), let ẑ be the remaining jump
variables, and if necessary re-order the elements of x so that x = (ŷ� ẑ). The discussion
in Section 2—and in particular Definition 1—corresponds to the special case whereQ is
empty. We thus generalize Definition 1 as follows.

Definition 2. A model solution is a quadruple (Q�π�φ�χ) that satisfies Definition 1
after replacing y and z with, respectively, ŷ and ẑ, and, for a given initial y = y0, setting
the initial value of ŷ to ŷ0 = (y0�u0), where u0 = χ(y0).

We will henceforth use Definition 2. Note that if we can find a model solution withQ
nonempty and where there is more than one possible choice for the function χ pinning
down the initial value of u, then there typically exists a multiplicity of solutions; that is,
we would have indeterminacy.

As should be clear, for any given Q, after making the same replacements detailed in
Definition 2, all results and analysis of Section 2 go through without any further modifi-
cation. In particular, eachQ is associated with a set W∗

Q ofA-invariant linear subspaces
from Proposition 2, and a set SQ of pairs of analytic functions (π�φ) satisfying (2), each
of which is associated with aW (φ) ∈ W∗

Q. Thus, finding analytic model solutions for any
Q can be done exactly as detailed above for the special case where Q is empty.



884 Dana Galizia Quantitative Economics 12 (2021)

3.2 Finding elements of S

In this subsection, we discuss how to find elements of S = S∅, that is, SQ for the special
case where Q is empty. As noted above, it is straightforward to extend this procedure
to any Q. The algorithm uses real Schur decompositions of the matrix A to generate
elements of W∗

∅ . Such a decomposition is given byA=UTU�,20 where B� indicates the
transpose ofB,U is a real orthogonal matrix (and in particular,UU� = In), and T is a real
block-upper-triangular matrix with the following properties: (a) the diagonal blocks are
all either 1×1 or 2×2; (b) the real eigenvalues ofA appear in the 1×1 blocks; and (c) the
eigenvalues of each 2×2 block are a complex pair, and equal to such a pair fromA. Note
that this decomposition is not unique.

Given such a Schur decomposition of A, consider the first q > 0 columns of U , de-
noted U1, and the upper-left q× q block of T , denoted T11 (where we require only that
this partition does not split one of the 2 × 2 diagonal blocks of T described in property
(c) above). As is well known, the columns of U1 form a basis for a q-dimensional A-
invariant linear subspace; that is, the column spacew ofU1 is an element of W . Further,
the convergence properties of the system x′ = Ax restricted to w are governed by the
eigenvalues of T11. Finally, for any element w ∈ W with dimension q, we can always find
a Schur decomposition of A such that the column space of U1 is precisely w. Thus, in
principle we can generate any element of W through an appropriate choice (and parti-
tion) of the Schur decomposition.

While the particular ordering of a Schur decomposition (which determines which
element of W is spanned by the columns ofU1) is unpredictable for standard numerical
implementations, a given Schur decomposition can be “reordered” so as to obtain an
alternative Schur decomposition for which the first q columns of U are a basis for a dif-
ferent element of W .21 It would be useful if, by considering every possible reordering of
a given Schur decomposition, we could so generate every possible element of W . Unfor-
tunately, if we wish to allow for the possibility of eigenvalues with algebraic multiplicities
greater than one (as we now do), this will not generally be the case. In particular, whenA
has at least one eigenvalue with a geometric multiplicity greater than one, W will have an
uncountable number of elements. For example, for two linearly independent eigenvec-
tors associated with the same real eigenvalue, every linear combination of these eigen-
vectors is also an eigenvector, and the space w spanned by that new eigenvector is an
element of W . We can clearly generate an uncountably infinite number of w’s in this
way. Since there are only a finite number of possible reorderings of the Schur decom-
position, it is clearly not possible to find every element of W in this way, and indeed it
will not be feasible in practice to find every one of the infinite number of elements of W
using any algorithm. By necessity, we thus make the following additional assumption.

20See, for example, Golub and Van Loan (1996, Chapter 7). Numerical routines to compute a real Schur
decomposition are widely available. In MATLAB and Julia, it can be done using the function schur which,
for a real matrix, computes the real Schur decomposition by default. For implementation in Fortran or
C++, various routines are available, including the LAPACK routine dgees.

21Reordering of the real Schur decomposition can be done using the function ordschur in MATLAB and
Julia, or the LAPACK routine dtrsen in Fortran or C++.
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Assumption 4. Suppose there exists a unique model solution (π�φ).22 Then for any
eigenvalue λ, ifW (φ) and r(λ) have any nonzero element in common, then r(λ)⊆W (φ).

Assumption 4 states that, aside from the zero vector (which is always an element of
both W (φ) and r(λ)), W (φ) cannot contain only part of a given RGE: either the whole
RGE is contained inW (φ), or none of it is.23

Let R be the set of RGE’s ofA. Under Assumption 4,W (φ) is the direct sum of a sub-
set of R whose dimensions sum to ny . Since there are at most n RGE’s (fewer ifA has any
complex or repeated eigenvalues), it is feasible to compute direct sums of each possible
combination of the elements of R whose dimensions sum to ny (though in general, as
we show in Section 3.3, it will not be necessary to do so).

This suggests a simple way to find a solution if it exists. First, obtain any Schur de-
composition A = UTU�. Next, let r(λ1)� � � � � r(λk) be k distinct elements of R whose
dimensions sum to ny . Re-order the Schur decomposition so that the upper-left ny × ny
block of T has eigenvalues λ1� � � � � λk (with the same algebraic multiplicities as they ap-
pear in A) along with the corresponding conjugates of any complex λj ’s. The first ny
columns of U are then a basis for w≡ r(λ1)⊕ · · · ⊕ r(λk) ∈ W∗

∅ . By Proposition 2,24 asso-
ciated with thisw is a (π�φ) ∈ S∅ such thatW (φ)=w. PartitioningU and T conformably
with x= (y� z) as

U =
(
Uyy Uyz
Uzy Uzz

)
� T =

(
Tyy Tyz
0 Tzz

)
�

as noted in the proof of Proposition 2, the first-order Taylor coefficients for these func-
tions are given by

πy =UyyTyyU−1
yy �

φy = −U�−1
zz U�

yz�

These coefficients can then be used in the usual way to sequentially obtain higher-order
coefficients up to the desired order. One can then simulate to check whether the result-
ing approximate system satisfies (3). If it does, we have found a model solution. We can
then repeat this procedure for each different combination of RGEs whose dimensions
sum to ny in order to find every model solution for Q empty, and then repeat the proce-
dure for each possibleQ (of which there are a finite number).

3.3 Narrowing down the search

The algorithm above involves checking every possible combination of RGEs whose di-
mensions sum to at least ny to see whether the approximated system satisfies (3). How-
ever, we can often avoid checking many (even most) of these combinations. In many

22Recall that uniqueness implies that the only model solution hasQ empty.
23Assumption 3—which standard algorithms use, but the present method does not—implies Assump-

tion 4. Thus, we have essentially replaced Assumption 3 with the much weaker Assumption 4.
24It can be verified that Propositions 1–2 do not rely on the simplifying assumption that there are no

repeated eigenvalues, and thus also apply here where we have relaxed this assumption.
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applications, one is only interested in the actual model solution if it is unique, so if at
any point a second model solution is found one can stop searching for more. We can
also use theory to rule out many of the combinations, as established in the following
proposition.

Proposition 3. Let λ be an eigenvalue ofA.

(i) Suppose λ is real with λ > 1. Then for any Q and any (π�φ) ∈ SQ for which r(λ)⊂
W (φ), (π�φ) violates (3).

(ii) Suppose (a) there exists a unique model solution (π�φ), (b) |λ|< 1, and (c) we can
write r(λ)= {V y : y ∈ R

ny } for some n× ny matrix V . Then r(λ)⊂W (φ).

Part (i) of Proposition 3 implies that we need only consider Schur reorderings for
which Tyy has no real, positive, unstable eigenvalues. Part (ii) implies that, if we are will-
ing to assume that a model solution is unique whenever it exists, then we also need only
consider reorderings for which every stable eigenvalue appears in Tyy .25

The intuition for Proposition 3 is easiest to see in the simple case where ny = nz = 1
andA has two distinct real eigenvalues. To see part (i), suppose by hypothesis that λ > 1,
and (π�φ) ∈ S∅ is such that r(λ)⊂W (φ) (and thus r(λ)=W (φ)). Consider the evolution
of y for this solution, given by y ′ = π(y). This system has a SS at y = 0, and the dynamics
near that SS are given to a first-order approximation by y ′ = λy. Since λ > 1, there are
two possible configurations for the function π, displayed separately in panels (a) and
(b) of Figure 5. In the first configuration, illustrated in panel (a), π crosses the 45-degree
line at one or more nonzero points (in addition to the crossing at zero). Each additional
crossing, however, would represent an additional SS of y ′ = λy and, therefore, an addi-
tional SS of (1), a possibility that is ruled out by Assumption 1. Thus, this configuration
for π cannot occur under the maintained assumptions. The remaining possible config-
uration, wherein π crosses the 45-degree line at only one point (zero), is illustrated in
panel (b). In this case, as long as the initial y �= 0, |y| will grow over time without bound
(as illustrated by the gray line in the figure). Since y becomes unbounded, so does x, and
thus (3) becomes violated, which in turn implies that (π�φ) cannot be a model solution.

To see part (ii) of Proposition 3, suppose instead that |λ| < 1, and there exists a
unique model solution (π�φ). Let (π∗�φ∗) be the element of S∅ associated with λ, whose
dynamics are driven by y ′ = π∗(y). For y sufficiently close to zero, the system is domi-
nated by its linear part, π∗

y = λ. Since |λ|< 1, these trajectories converge to the SS, and
thus (π∗�φ∗) is a model solution. Since part (ii) supposes that any model solution is
unique, φ∗ =φ, and since r(λ)=W (φ∗), it follows immediately that r(λ)⊂W (φ).

Proposition 3 can significantly reduce the number of Schur reorderings that need to
be checked. For example, in a modestly sized system with ny = nz = 5 and n distinct real
eigenvalues, there are 10-choose-5 = 252 possible reorderings to check. However, if, say,
3 of the eigenvalues of this system are stable, and a further 3 are real and greater than

25Note that (c) in part (ii) restricts attention to RGEs that can be written as a function of the pre-
determined variables. This condition is likely to be met for all RGEs in most practical applications (and
can be easily checked).
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Figure 5. Configurations For π(y) When λ > 1. Notes: Figure illustrates the content of part (i)
of Proposition 3 for a system with ny = nz = 1 and for which A has two distinct real eigenvalues.
The dynamics of a solution (π�φ) associated with an eigenvalue λ > 1 are determined by the
mapping y ′ = π(y), which may either cross the 45-degree line multiple times (panel (a)), or one
time (panel (b)).

one, then using Proposition 3 one could narrow down the set of re-orderings to check to
4-choose-2 = 6. For larger systems, the potential computational savings are even greater.

3.4 Indeterminacy

Thus far we have largely proceeded under the assumption that if a solution exists then
it is unique. In general, of course, this may not be the case. In this section, we discuss
several ways to test for indeterminacy.26 It is worth emphasizing, however, that as with
any solution method, without imposing more structure on the problem we generally
cannot in practice ever entirely rule out the possibility of indeterminacy.

Under Assumption 3, there is a simple diagnostic test for indeterminacy (originally
stated in Blanchard and Kahn (1980)) that most macroeconomists are familiar with:
the model features indeterminacy if and only if the number of stable eigenvalues of A,
which we denote by ns, exceeds the number of pre-determined variables, ny . When re-
placing Assumption 3 with the less stringent Assumption 4 (as we have), this result car-
ries over, but in a weaker form. In particular, we have the following indeterminacy test
(IT):

Indeterminacy Test 1. If ns > ny , then the model features indeterminacy.

26If it turns out that a particular model features indeterminacy, the usefulness of the present paper comes
to an end. In particular, it does not contain any results about how one might characterize the set of inde-
terminate solution paths in such cases (as, e.g., was done in Lubik and Schorfheide (2003) for the case of
linear models). While such results could be useful, developing them is beyond the scope of this paper.
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Notice that ns > ny is a sufficient condition for indeterminacy here, but is no longer a
necessary one as it was under Assumption 3. Sufficiency of ns > ny for indeterminacy can
be seen directly from Proposition 3(ii), which implies that, if there is a unique solution
(π�φ), then all “stable” RGEs (i.e., those associated with stable eigenvalues) must be
contained in W (φ). Since W (φ) necessarily has dimension ny (since (π�φ) ∈ S in the
case of a unique solution), if W (φ) is to contain all the stable RGEs then the sum of the
dimensions of those stable RGEs—which equals ns—cannot exceed ny . Thus, IT 1 gives
a simple way to test for indeterminacy that, in most applications, requires a negligible
amount of computing time regardless of the size of the system. Of course, since ns ≤ ny
does not necessarily rule out indeterminacy, further investigation may be merited.

A second test for indeterminacy is given as follows:

Indeterminacy Test 2. If there are multiple elements of S = S∅ satisfying (3), then the
model features indeterminacy.

IT 2 follows obviously from the fact that, by definition, if (π�φ) is both an element
of S and satisfies (3), then it is a solution and, therefore, if there are multiple elements
of S satisfying (3), we have multiple solutions. Thus, IT 2 suggests that another way to
test for indeterminacy is simply to check all elements of S for conformity with (3). In
modestly sized systems, performing this check will not be very costly computationally,
especially if one first uses Proposition 3(i) to rule out elements of S wherever possible.
Furthermore, the extra computer code required to implement IT 2 is negligible, making
it quite simple to apply this test in practice.

ITs 1 and 2 both provide sufficient conditions for establishing the presence of inde-
terminacy, but in neither case are those conditions necessary. In order to conclusively
test for indeterminacy, one must instead use the following test:

Indeterminacy Test 3. If there are multiple elements of Sall ≡ ⋃
Q SQ satisfying (3),

then the model features indeterminacy.

IT 3 involves testing, for everyQ, each pair of functions (π�φ) ∈ SQ (see Definition 2)
for conformity with (3). The set Sall containing all of these pairs of functions is in turn
indexed by the set W∗

all made up of direct sums of RGEs whose dimensions sum to at
least ny (rather than exactly ny , as is the case with W∗

∅ ). Depending on the size and par-
ticular structure of the system, W∗

all could have a very large number of elements. Some
of these may be eliminated from consideration by applying Proposition 3(i). The follow-
ing proposition gives a way to further—and potentially greatly—reduce the number of
elements that one must check for conformity with (3) when applying IT 3.

Proposition 4. Suppose w ∈ W∗
all is associated with some model solution (Q�π�φ�χ),

and that we can find w1�w2 ∈ W∗
all which are both distinct proper subsets of w.27

Then associated with each wj is a model solution (Qj�π
j�φj�χj), with (Q1�π

1�φ1) �=
(Q2�π

2�φ2).

27That is, wj ⊂w, ∃x ∈w with x /∈wj , and w1 �=w2.
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Proposition 4 says that, if w ∈ W∗
all is associated with a model solution and contains

two or more distinct elements of W∗
all as proper subsets, then there are at least two model

solutions of a lower “dimension.” This implies that we do not need to check any elements
of W∗

all that contain at least two such proper subsets.28

As an example, suppose the eigenvalues of A are all real and distinct, so that the
RGEs all have dimension one. If w ∈ W∗

all has dimension b > ny , it can be written as the
direct sum of b RGEs. We can then generate an ny-dimensional proper subset of w by
choosing ny of those b RGEs and taking their direct sum. We can generate multiple dis-
tinct proper subsets ofw in this way, each of which is also an element of W∗

all. Proposition
4 implies that ifw is associated with a model solution, then so is each of those subsets. It
is therefore sufficient to look only for ny-dimensional model solutions in this example,
since if we cannot find more than one of those then there cannot be any model solutions
of a higher dimension.

While Propositions 3(i) and 4 can greatly reduce the computational burden associ-
ated with IT 3, the burden may still be significant, especially in larger systems. Further,
these tools cannot address the other main drawback of applying IT 3, which is the added
complexity of its implementation. For example, one must write code to identify the sub-
set of W∗

all that does not have at least two other elements as proper subsets. Also, since
the elements of this subset will in general have different dimensions, the code to obtain
the derivatives of (2) must be adapted for different partitions x = (ŷ� ẑ) (and possibly
reorderings as well). While these are by no means insurmountable difficulties, they are
not trivial either.

4. Extension to the stochastic case

Extending the solution method to the stochastic case is straightforward. Letting ε be an
nε-vector of mean-zero i.i.d. innovations, assume that the evolution of the nθ-vector of
exogenous stochastic variables θ evolves according to

θ′ =Π(
θ�ζε′

)
�

for some function Π : Rnθ+nε→R
nθ . Here, ζ ∈ R+ is a “perturbation parameter”, which

will be equal to one for the desired solution (see Fernández-Villaverde, Rubio-Ramírez,
and Schorfheide (2016)).

We assume that the n model equations governing the endogenous variables, ex-
pressed in deviations from the nonstochastic SS (i.e., the SS when ζ = 0), can be written

E
[
�
(
x�x′� θ�θ′)] = 0� (13)

where E denotes expectation conditional on current information. To keep the presenta-
tion simple, assume that the endogenous state y is known one period in advance, and
in particular y ′ is not affected by the realized value of ε′.29 In addition to extending the

28Note that if w ∈ W∗
all contains exactly one proper subset w1 ∈ W∗

all, then it is not generally sufficient to
check only the (π�φ) associated with w1.

29One can typically recast the system in this way if need be. In any case, it is tedious but not difficult to
adapt the discussion to the more general case.
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model to the stochastic case, we also now relax Assumption 2 to allow for the inclusion
of “static” relationships in (13), and in particular we will no longer require that �x′ be
invertible.

A solution is defined analogously to Definition 130 as follows.

Definition 3. A model solution (π�φ) is a pair of functions such that, for some open
subsetΘ containing zero, we have

E
[
�
((
y�φ(y�θ� ζ)

)
�
(
π(y�θ� ζ)�φ

(
π(y�θ� ζ)�Π

(
θ�ζε′

)
� ζ

))
� θ�Π

(
θ�ζε′

))] = 0�

∀(y�θ� ζ) ∈Θ; (14)

and for each (y�θ� ζ) ∈Θ,

lim sup
t→∞

E
[‖xt‖]<∞� (15)

where xt = (yt� zt), (y0� θ0� ζ)= (y�θ� ζ), θt =Π(θt−1� ζεt), yt = π(yt−1� θt−1� ζ), and zt =
φ(yt� θt� ζ).

We will take our perturbation approximations around the nonstochastic SS. Since
ζ equals one, not zero, for our desired solution, ζ itself will be one of the variables in
the Taylor expansion. For example, the first-order approximation to π will in general be
πθ · θ+πy · y +πζ · ζ, and in practice we will always feed ζ = 1 into this approximation.

Of interest will be the linearized system, which we can write as

�xx+ �x′E
[
x′] + �θθ+ �θ′E

[
θ′] = 0�

E
[
θ′] =Πθθ�

or, combining, and lettingA≡ −�x, B≡ �x′ , and C ≡ −(�θ + �θ′Πθ),

BE
[
x′] =Ax+Cθ� (16)

From this point, the solution method is a straightforward extension of the non-
stochastic case. In particular, the set of functions (π�φ) satisfying (14) is denoted by S ,
and as before this set is indexed by a set W∗ of invariant linear subspaces w of (16) that
can be written as in (5) for some nz × ny matrix ψ, with φy = ψ the first-order approx-
imation to the associated solution, and the eigenvalues of πy are those associated with
the RGEs making up w. The key differences are that, since we now allow for the possibil-
ity that �x′ = B is singular, (i) the eigenvalues in question are generalized eigenvalues of
(A�B),31 (ii) an invariant linear subspace of (16) is a linear subspace w such that for any
x ∈w there is a unique x′ ∈w satisfying Bx′ =Ax, and (iii) the RGEs making up w ∈ W∗
are spanned by a set of generalized eigenvectors from the generalized eigenvalue prob-
lem.

30It is straightforward to adapt Definition 2 to the stochastic case as well.
31λ is a generalized eigenvalue of (A�B) with associated eigenvector v if Av= λBv.
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In practice, the process for finding elements of W∗ is now based on the generalized
real Schur—or, more compactly, the (real) QZ—decomposition,32 that is,A=RTU� and
B=RSU�, which has the following properties: (i) R andU are each real orthogonal ma-
trices, (ii) T is a block-upper-triangular matrix, and (iii) S is an upper-triangular matrix
of the same rank as B with exactly n∞ ≡ n− rank(B) zeros on the main diagonal.33 Fur-
ther, for q > 0, if the upper-left q× q block S11 of S is non-singular, and if the upper-left
q× q block T11 of T does not split a diagonal block of T , then (i) the first q columns of
U form a basis for a q-dimensional invariant subspace w, and (ii) the eigenvalues of the
associated RGEs are given by the eigenvalues of S−1

11 T11. Just like with an ordinary real
Schur decomposition, real QZ decompositions can be easily reordered so as to generate
the invariant subspace associated with any desired collection of (generalized) eigenval-
ues.34

4.1 Computation

Details of how to compute the first-order approximation associated with a given re-
ordering of the QZ decomposition are presented in Appendix A in the Online Supple-
mentary Material (Galizia (2021)). MATLAB code is also provided to conduct this step.35

Given such a first-order approximation, one can then compute a higher-order approxi-
mation in the usual fashion. The general process for doing this is well known (see, e.g.,
Fernández-Villaverde, Rubio-Ramírez, and Schorfheide (2016)), and typically involves
using software capable of analytically obtaining derivatives (such as Mathematica or the
symbolic toolbox in MATLAB) to sequentially differentiate the appropriate model equa-
tions and then evaluate them at the SS. From these, one can then create functions that
take as inputs the quantitative solutions for all kth-order and lower SS derivatives and
output the SS derivatives of order k+ 1.36

5. Application

This section applies the methodology to a version of the microfounded New Keynesian
model of Beaudry, Galizia, and Portier (2020). In addition to some minor changes to

32See Klein (2000) and Golub and Van Loan (1996) (Chapter 7).
33In general, a QZ decomposition can have an S with more than n∞ zeros on the main diagonal in the

rare case where zero is a defective eigenvalue of B with an associated eigenvector v that is also an eigen-
vector of A. In our application, however, assuming �x′ is rank-deficient due only to the inclusion of static
relationships in (13) (and in particular, the mathematical relationships fundamentally allow for n∞ of the
current jump variables to always be solved for uniquely in terms of the remaining current endogenous and
exogenous variables), it can be verified that this will never happen.

34The real QZ decomposition can be computed in MATLAB and Julia using the function qz with the
“real” flag, and in Fortran or C++ using the LAPACK routine dhgeqz. Reordering can be done in MATLAB
and Julia via ordqz, and in Fortran or C++ using the LAPACK routine dtgsen.

35See the MATLAB function InvSubGen.m, which is available in the Online Supplementary Material
(Galizia (2021)).

36In the following section, we implement the proposed solution method for a particular example. The
MATLAB code to do this is also provided, including code to obtain and use the relevant higher-order deriva-
tives for that example.
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the model itself, the application here differs from Beaudry, Galizia, and Portier (2020)
in two key ways. First, Beaudry, Galizia, and Portier (2020) solve a restricted version of
their model, whereas a general solution is obtained here for the full unrestricted model.
Second, and more importantly, Beaudry, Galizia, and Portier (2020) use a third-order
approximation for only one of the model’s equations (the risk premium equation), while
the remaining equations are only linearly approximated. In contrast, here we nonlin-
early approximate all of the model’s equations.

The key features of the model are (i) equilibrium unemployment, (ii) limited enforce-
ment of debt contracts, and (iii) sticky prices. The combination of these features causes
households to face an endogenous risk premium on their borrowing that increases with
the default rate, which is in turn increasing in the unemployment rate. Because prices
are sticky, output is partially demand-determined, creating an equilibrium feedback
mechanism: when unemployment increases, so does the risk premium, which raises
the interest rate faced by households. This lowers household demand for consumption
goods, causing output to fall, which lowers firms’ demand for labor, thus increasing the
unemployment rate even further. This complementarity causes the steady state of the
model to be unstable, and a limit cycle to appear.

We briefly present the main components of the model here. Further details can be
found in Beaudry, Galizia, and Portier (2020). The model features a continuum of house-
holds of mass one, each of which is made up of a continuum of mass one of workers. The
head of the household maximizes

E0

∞∑
t=0

βtξt−1
[
U

(
Ct − γC∗

t−1
) + ν(1 − et)

]
�

where β�γ ∈ (0�1) are parameters, Et denotes expectation at date t, C is consumption
services enjoyed by the household, e is the fraction of household members employed,U
and ν are strictly increasing, concave utility functions, C∗ denotes average consumption
of all households (so that γC∗ is an external habit term), and ξ is an exogenous discount
factor shock.

Labor is assumed to be indivisible, with each employed worker supplying one unit
of labor. Each morning, the household head dictates a reservation wage to the worker
members, and instructs them to accept any job that meets that reservation wage. Work-
ers then depart the household and proceed first to the consumption market, where they
place orders for consumption to be received later that day. These orders must be paid for
in advance, which requires the workers to borrow from the bank at endogenous nominal
interest rate rt , with all debts to be repaid at the beginning of the next period. Impor-
tantly, consumption orders must placed and paid for—and therefore debts incurred—
before individual workers know whether they will actually be employed. If a particular
worker ends up unemployed, they will be unable to pay back their debts. In that case,
with some probability φ < 1 the bank can recover the owed amount from the worker’s
household by paying a cost�t < 1 per unit of the loan, while with probability 1−φ there
is no recourse for the bank, who must absorb the full amount of the default. As a result
of this, the total expected loan repayment is [e + (1 − e)φ](1 + r) per unit of the loan.
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One can show that this leads to a consumption Euler equation for the household of the
form

μtU
′(Ct − γCt−1)= β(1 + rt)

[
et + (1 − et)φ

]
Et

[
U ′(Ct+1 − γCt)

1 +πt+1

]
�

where πt+1 is the inflation rate and μt ≡ ξt−1/ξt .
In order to make loans and finance any loan recovery costs, banks borrow at the

risk-free nominal rate it . The total expected amount they must repay at the beginning of
the next period is therefore [1 + (1 − e)φ�](1 + i). Since banks must earn zero expected
profits in equilibrium, this implies

1 + rt = 1 + (1 − et)φ�t
et + (1 − et)φ (1 + it)�

The fraction on the right-hand side of this expression, which is greater than one when-
ever et < 1 (i.e., when there is unemployment), is an endogenous risk premium that
compensates banks for the possibility of default.

Consumption services are produced additively using an existing stock of durable
goods Xt and newly produced consumption goods ztF(et), where zt is exogenous pro-
ductivity and F is a strictly increasing, concave production function. Thus, Ct = Xt +
ztF(et). A fraction ψ of newly produced goods are assumed to be durable, with a frac-
tion δ of existing durables depreciating each period, so that

Xt+1 = (1 − δ)+ψztF(et)�
Finally, it is set according to a Taylor rule.

In practice, we use power production F(e) = eα and CRRA utility U(x) = (x1−ω −
1)/(1 −ω). We assume �t =�(et), where �(·) is a function satisfying �′(ē)= 0, where ē
is the steady state value of e. In particular, we adopt the flexible log-polynomial specifi-
cation�(e)= �̄exp{�̄2[100(e− ē)]2 +�̄3[100(e− ē)]3}. As in Beaudry, Galizia, and Portier
(2020), we use a Taylor rule of the form

1 + it =ΘEt
[
e
ϕe
t+1

U ′(Ct+1 − γCt)
Et

[
U ′(Ct+1 − γCt)

1 +πt+1

]]
≈ΘEt

[
e
ϕe
t+1(1 +πt+1)

]
�

where Θ�ϕe > 0 are parameters that control the steady state nominal interest rate and
elasticity of the interest rate with respect to employment, respectively. While this Taylor
rule is somewhat nonstandard, it simplifies the model by allowing us to ignore firms’
price-setting behavior. Letting Q(e)≡ [1 + (1 − e)φ�(e)] and Yt+1 ≡ zte

α
t , we can com-

bine the above to obtain the equilibrium system

μtλt =Q(et)Et
[
e
ϕe
t+1λt+1

]
�

λt =
(
Yt+1 + 1 − δ− γ

1 − δ Xt − 1 − δ−ψ
1 − δ γYt

)−ω
�

Xt+1 = (1 − δ)Xt +ψYt+1�

Yt+1 = zteαt �

(17)
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Finally, we assume that μt and zt both follow AR(1) processes in logs:

log(μt)= ρμ log(μt−1)+ σμεμ�t�
log(zt)= ρz log(zt−1)+ σzεz�t �

5.1 Solution and estimation

The model is solved to a third-order approximation (see Appendix C in the Online Sup-
plementary Material for details). The depreciation rate δ and the labor share α are cali-
brated to 0.05 and 0.67, respectively. For given values of the other parameters, β and Θ
together determine the steady state employment rate ē, and are not separately iden-
tified. Thus, rather than setting β and Θ, we instead treat ē as a parameter directly.
The remaining parameters are estimated as follows. First, we shut down the technology
shock z, and then estimate the parameters (including ē) to match as closely as possi-
ble (i) the (ergodic) mean unemployment rate in the data, (ii) the spectrum of log-hours
worked37 at periodicities between 2 and 50 quarters, and (iii) the skewness of detrended
log-hours.38 We then repeat the process with μt shut down instead of zt , giving us two
different parameterizations of the model: a μ-shock version, and a z-shock version.

Parameter estimates and details of the models’ fit can be found in Appendix D in the
Online Supplementary Material. Both estimated versions of the model feature a locally
unstable steady state and an attractive limit cycle. This is illustrated in Figure 6 for theμ-
shock version, and Figure 7 for the z-shock version. Panel (a) in each figure illustrates the
evolution of the system in y = (X�Y)-space when we feed log(μt)= log(zt)= 0 into the
model in every period,39 beginning from two different initial points: y0 = a (dotted tra-
jectory), and y0 = b (dashed trajectory). The system clearly always converges to the limit
cycle, which is shown as the solid black closed curve. The stars in the Figure, meanwhile,
show the locations of the nonstochastic SS’s.

Panel (b) in Figures 6–7 shows the evolution of employment et over time associated
with the dotted trajectory from panel (a). As one can see, by about t = 80 the system has
essentially converged to the cycle in both models, after which it repeats itself every 40
quarters or so.

Finally, Figure 8 shows, for the two different models, typical paths for et when we
feed in a random draw for the shock processes. Comparing panel (b) in Figures 6–7 with
Figure 8, one can see that the shock processes not only cause the amplitudes of the cy-
cles to fluctuate, but also makes the cycles quite irregular: unlike in Figures 6–7 where
there is a recession every 40 quarters, in Figure 8 the interval between successive reces-
sions varies, ranging from approximately 26 to 42 quarters in the μ-shock model, and
from 17 to 42 quarters in the z-shock model.

37The unemployment rate series is the rate for ages 16 years and over. The hours series is nonfarm busi-
ness hours worked, divided by population. The labor market series are both from the BLS, while popula-
tion is taken from the FRED database. The sample period is 1948I to 2015II. The spectrum is computed by
smoothing the raw periodogram using a Hamming kernel.

38Log-hours was detrended using a band-pass filter that removes fluctuations longer than 50 quarters.
39Note that this corresponds only to the case where the realizations of the shocks are all zero. In partic-

ular, agents in the economy nonetheless continue to believe that shocks will arrive in the future, and this
affects their current choices.
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Figure 6. Limit cycle: μ-Shock model. Notes: The dotted and dashed curves in panel (a) show
the evolution of the system beginning from a= (7�5�0�96) and b= (7�45�0�94), respectively, when
we feed in log(μt) = 0 every period. Panel (b) shows the path for et over time beginning from a

when we feed in log(μt)= 0 every period.

5.2 Accuracy

Relative to other popular nonlinear approaches (e.g., projection methods), standard
perturbation methods are typically easy to implement and have fast running times,
while often still producing a reasonable degree of accuracy. As we show now for the two
estimated versions of the model, this remains true for the method introduced in this
paper.

Figure 7. Limit sycle: z-Shock model. Notes: The dotted and dashed curves in panel (a) show
the evolution of the system beginning from a = (7�56�0�96) and b = (7�48�0�94), respectively,
when we feed in log(zt) = 0 every period. Panel (b) shows the path for et over time beginning
from a when we feed in log(zt)= 0 every period.
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Figure 8. Stochastic simulations.

A common way to measure the accuracy of a solution to a DSGE model, first pro-
posed by Judd (1992), is to consider normalized Euler equation errors. Letting

Et ≡
(
μ−1
t Q(et)Et

[
e
ϕe
t+1λt+1

])− 1
ω + γCt−1

Ct
− 1� (18)

we can express the Euler equation for this model simply as Et ≡ 0. This Euler equation
will generally only hold exactly for the true solution, however. Thus, one way to evaluate
the quality of an approximate solution is to compute |Et | for a given value of the state
vector using the approximated policy functions, and see how close it is to zero. Note
that, for a particular approximate solution, the numerator of the fraction in (18) is what
Ct should be equal to, while the denominator is whatCt actually is. Thus, roughly speak-
ing, one can interpret |Et | as the size of the optimization error an agent would make by
using the approximate solution instead of the true one, expressed as a percentage of
consumption (see Judd and Guu (1997)).

The solid curve in panel (a) of Figure 9 plots the magnitudes of the errors for the
perturbation approximation to the μ-shock model over a range of X , holding the other
state variables (i.e., Y and the shock) at their nonstochastic SS values.40 The errors are
reported in base-10 logarithms, where, for example, |Et | = 10−4 indicates an optimiza-
tion error worth 0�01% of consumption. Panel (b) plots the errors for a cross-section of
Y instead, holding X and the shocks at their nonstochastic SS values. Panels (c) and
(d) show the same as panels (a) and (b), but for the z-shock model. For reference, the
vertical lines in each panel show the minimum and maximum values the relevant state
variable achieves along the deterministic limit cycle.

Figure 9 shows that, at least for these cuts ofX and Y , the quality of the perturbation
approximation is generally quite good in both versions of the model. Within the limit-

40See Appendix F in the Online Supplementary Material for details of how the Euler errors were com-
puted.
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Figure 9. Euler errors versusX , Y .

cycle ranges, the errors are always less than 0�058% of consumption regardless of the
state variable or model, and in many cases are one or two orders of magnitude smaller
than that.

Figure 9 gives cuts of the Euler errors allowing one state variable to vary, holding the
others at their SS values. Since the state variables tend to move together in particular
ways, however, these may give a poor representation of what a typical error is. An alter-
native is to consider the ergodic distribution of the errors. Panels (a) and (b) of Figure 10
show these ergodic distributions for the μ- and z-shock models, respectively. Specifi-
cally, they show nonparametric estimates of the PDF (left axis) and CDF (right axis) of
the distributions of Euler errors associated with the ergodic distributions of the state
variables.41 As the plots indicate, for both models the bulk of the errors are in the range
of 0.01–0�03% of consumption, and are less than 0�1% over 99% of the time.

41Specifically, we first simulate T = 20�000 periods of data from the model, and then drop the first 10�000
periods as a burn-in sample. For each of the remaining 10�000 periods of simulated data, we compute the
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Figure 10. Euler errors, ergodic distribution.

Another way to measure the accuracy of the perturbation solution is to compare the
approximated policy functions to functions approximated using a global method that is
known to be capable of delivering highly accurate solutions. To that end, I resolve the
μ-shock model using a finite elements (FE) method (see Appendix E in the Online Sup-
plementary Material for details). As shown by the dotted curves in panels (a) and (b) of
Figure 9, this FE approximation delivers Euler errors that are quite small (almost always
less than 0�0001% of consumption within the limit cycle range), suggesting that the FE
solution is highly accurate. Thus, when it comes to the policy functions, any significant
difference between the perturbation and FE approximations can be taken to be an indi-
cation of error in the perturbation solution.

Figure 11 shows transversal cuts of the perturbation (solid curve) and FE (dotted
curve) policy functions for employment for theμ-shock model. Panel (a) shows the func-
tion for the same range of X as in the Euler error plot in panels (a) and (c) of Figure 9,
with Y and μ set to their respective nonstochastic SS levels. Panel (b) plots the same
thing, except over the range of Y , with X now set to its nonstochastic SS level. The per-
turbation policy functions track the FE ones quite well throughout most of the limit cycle
range, though in each case they are starting to deviate somewhat towards one of the ends
of these ranges, which suggests the accuracy of the perturbation solution is beginning
to deteriorate in those regions. This highlights the standard drawback of perturbation
methods, which is that they are inherently local, and their accuracy tends to suffer as
the system moves further away from the nonstochastic SS. For applications where one
is interested in the behavior of the economy in regions far away from this SS (e.g., out-
side of the limit cycle bounds in this example), a global method such as FE would be
called for.

Euler error for the corresponding state (Xt�Yt�μt� zt). The solid curves in each panel plot kernel density es-
timates for the resulting empirical distributions of Euler errors, while the dotted curves show the associated
CDFs.
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Figure 11. Employment policy function (μ-Shock model).

5.3 Computation times

While the Euler error plots in Figure 9 make it clear that the global FE approximation
dominates the local perturbation approximation in terms of accuracy, where the per-
turbation approximation shines is in terms of computation time. A solution run of the
model for a single parameterization—and including both the μ and z stochastic pro-
cesses as state variables—takes around 0�008 seconds on a 3.8GHz AMD Ryzen 9 3900X
computer running Windows 10, and implemented entirely in MATLAB. This includes all
steps of the solution algorithm, including finding the first-order solution coefficients as-
sociated with the elements of W∗, using these to obtain the higher-order coefficients,
and then simulating 1000 periods of data using the resulting approximation in order to
verify that the system does not explode. As a result of these fast running times, the esti-
mations undertaken above were easily feasible, each taking less than 20 minutes.

For the FE approximation, the time it takes to solve the model depends on a variety
of factors, including the desired accuracy of the solution, the quality of the initial guess,
and how well suited the particular nonlinear solver used is to the problem. In this case,
for a single FE solution to the μ-shock model—which features one less state variable
(i.e., z) than the perturbation approximation—computation times ranged from around
10 minutes (i.e., ∼80�000 times longer than the perturbation method) to obtain a solu-
tion that was roughly as accurate as the perturbation solution, up to several hours to
obtain the highly accurate FE approximation used in Section 5.2.42 While solution times
of this magnitude may be acceptable for applications involving only a handful of param-
eterizations, they make estimation exercises—such as the ones conducted above using
the perturbation approximation—largely infeasible using FE methods.

42For comparison purposes, both the perturbation and FE solutions were implemented entirely in MAT-
LAB. While low-level languages such as Fortran or C++ can in some cases offer significant speed advan-
tages over MATLAB, the expected gain is generally small for tasks that can be highly vectorized/parallelized,
as FE methods can. Thus, while there may be some modest speed gains from using Fortran/C++, they
would almost certainly be insufficient to make FE methods competitive with perturbation methods.
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6. Conclusion

Nonlinear rational expectations models are becoming increasingly important in the
macroeconomic literature. While there are a variety of algorithms that can be used to
solve these models, perturbation methods are relatively simple to implement, fast to ex-
ecute, and can produce a reasonable degree of accuracy. Indeed, outside of the simplest
economic models, the perturbation approach is the only one that is sufficiently fast that
it can feasibly be used for most estimation purposes.

Standard perturbation algorithms fundamentally require the linear approximation
of a solution to be linearly stable, so that all trajectories converge to the steady state. As a
result, these methods cannot be applied to models that feature attractive limit cycles or
chaos—which generally have linearly unstable solutions—effectively excluding a large
class of interesting and potentially empirically relevant economic models. As argued in
this paper, however, this limitation is not inherent to perturbation methods in general,
only to the precise way in which existing algorithms implement them. In particular, I
generalize existing perturbation algorithms and show that the approach can be used to
solve rational expectations models that may (or may not) feature limit cycles or chaos.

I then apply the method to a fully microfounded New Keynesian model in Section 5
and show that the method delivers reasonably accurate solutions, and in a small fraction
of the time that it takes to solve the model using a more accurate global solution method
(finite elements).
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