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Decentralization estimators for instrumental variable
quantile regression models

Hiroaki Kaido
Department of Economics, Boston University

Kaspar Wüthrich
Department of Economics, University of California San Diego

The instrumental variable quantile regression (IVQR) model (Chernozhukov and
Hansen (2005)) is a popular tool for estimating causal quantile effects with en-
dogenous covariates. However, estimation is complicated by the nonsmoothness
and nonconvexity of the IVQR GMM objective function. This paper shows that the
IVQR estimation problem can be decomposed into a set of conventional quantile
regression subproblems which are convex and can be solved efficiently. This re-
formulation leads to new identification results and to fast, easy to implement, and
tuning-free estimators that do not require the availability of high-level “black box”
optimization routines.

Keywords. Instrumental variables, quantile regression, contraction mapping,
fixed-point estimator, bootstrap.

JEL classification. C21, C26.

1. Introduction

Quantile regression (QR), introduced by Koenker and Bassett (1978), is a widely-used
method for estimating the effect of regressors on the whole outcome distribution. QR
is flexible, easy to interpret, and can be computed very efficiently as the solution to a
convex problem. In many applications, the regressors of interest are endogenous, ren-
dering QR inconsistent for estimating causal quantile effects. The instrumental variable
quantile regression (IVQR) model of Chernozhukov and Hansen (2005, 2006) generalizes
QR to accommodate endogenous regressors. Unfortunately, in sharp contrast to QR and
other IV estimators such as two-stage least squares (2SLS), estimation of IVQR models is
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computationally challenging because the resulting estimation problem, formulated as a
generalized method of moments (GMM) problem, is nonsmooth and nonconvex. From
an applied perspective, this issue is particularly troublesome as resampling methods
are often used to avoid the choice of tuning parameters when estimating the asymptotic
variance of IVQR estimators.

In this paper, we develop a new class of estimators for linear IVQR models. The pro-
posed estimators are fast, easy to implement, tuning-free, and do not require the avail-
ability of high-level “black box” optimization routines. They are particularly suitable for
settings with many exogenous regressors, a moderate number of endogenous regres-
sors, and a large number of observations, which are ubiquitous in applied research. The
key insight underlying our estimators is that the complicated and nonlinear IVQR esti-
mation problem can be “decentralized,” that is, decomposed into a set of more tractable
subproblems, each of which is solved by a “player” who best responds to the other play-
ers’ actions. Each subproblem is a conventional (weighted) QR problem, which is convex
and can be solved very quickly using robust algorithms. The IVQR estimator is then char-
acterized as a fixed point of such subproblems, which can be viewed as the pure strategy
Nash equilibrium of the “game.” Computationally, this reformulation allows us to recast
the original nonsmooth and nonconvex optimization problem as the problem of find-
ing the fixed point of a low dimensional map, which leads to substantial reductions in
computation times.

Implementation of our preferred procedures is straightforward and only requires the
availability of a routine for estimating QRs and in some cases a univariate root-finder.
The resulting estimation algorithms attain significant computational gains. For exam-
ple, we show that in problems with two endogenous variables, a version of our estimator
that uses a contraction algorithm is 149–308 times faster than the most popular existing
approach for estimating IVQR models, the inverse quantile regression (IQR) estimator
of Chernozhukov and Hansen (2006). Another version that uses a nested root-finding
algorithm, which is guaranteed to converge under a milder condition, is 84–134 times
faster than the IQR estimator. Importantly, these computational gains do not come at
a cost in terms of the finite sample performance of our procedures, which is very sim-
ilar to IQR. The computational advantages of our estimators are even more substantial
with more than two endogenous variables. The reason is that the dimensionality of the
grid search underlying IQR corresponds to the number of endogenous variables, which
renders IQR computationally prohibitive in empirically relevant settings whenever the
number of endogenous variables exceeds two or three.

The fixed-point reformulation also provides new insights into global identification
of IVQR models. In particular, it allows us to study identification and stability of the al-
gorithms (at the population level) in the same framework. Exploiting the equivalence
of global identification and uniqueness of the fixed point, we give a new identification
result and population algorithms based on the contraction mapping theorem. We then
compare our identification conditions to those of Chernozhukov and Hansen (2006).
Further, our reformulation is shown to be useful beyond setups where the contraction
mapping theorem applies as long as the parameter of interest is globally identified. For
such settings, algorithms based on root-finding methods are proposed. Finally, we show
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that, by recursively nesting fixed-point problems, it is possible to recast the IVQR estima-
tion problem as a univariate root-finding problem. While adding nests incurs additional
computational costs, our Monte Carlo experiments suggest that estimation procedures
based on nesting perform well and are computationally reasonable when the number of
endogenous variables is moderate.

We establish consistency and asymptotic normality of the proposed estimators and
prove validity of the empirical bootstrap for estimating the limiting laws. The bootstrap
is particularly attractive in conjunction with our computationally efficient estimation
algorithms as it allows us to avoid the choice of tuning parameters inherent to estimating
the asymptotic variance based on analytic formulas. The key technical ingredient for
deriving our theoretical results is the Hadamard differentiability of the fixed-point map.
This result may be of independent interest.

To illustrate the usefulness of our estimation algorithms, we revisit the analysis of
the impact of 401(k) plans on savings in Chernozhukov and Hansen (2004). Based on this
application, we perform extensive Monte Carlo simulations, which demonstrate that our
estimation and inference procedures have excellent finite sample properties.

1.1 Literature

We contribute to the literature on estimation and inference based on linear IVQR mod-
els. Chernozhukov and Hong (2003) have proposed a quasi-Bayesian approach which
can accommodate multiple endogenous variables but, as noted by Chernozhukov and
Hansen (2013), “requires careful tuning in applications” (p. 75). Chernozhukov and
Hansen (2006) have developed an inverse QR algorithm that combines grid search with
convex QR problems. Because the dimensionality of the grid search equals the number
of endogenous variables, this approach is computationally feasible only if the number
of endogenous variables is very low. Chernozhukov and Hansen (2008) and Jun (2008)
have studied weak instrument robust inference procedures based on the inversion of
Anderson–Rubin-type tests. Chernozhukov, Hansen, and Jansson (2009) have proposed
a finite sample inference approach. Andrews and Mikusheva (2016) have developed a
general conditional inference approach and derived sufficient conditions for the IVQR
model. Kaplan and Sun (2017) and de Castro, Galvao, Kaplan, and Liu (2019) have sug-
gested using smoothed estimating equations to overcome the non-smoothness of the
IVQR estimation problem; however, the nonconvexity persists. More recently, Chen and
Lee (2018) have proposed to recast the IVQR problem as a mixed-integer quadratic pro-
gramming problem that can be solved using well-established algorithms. However, ef-
ficiently solving such a problem is still challenging even for low-dimensional settings.
Zhu (2018) has shown that if the �∞ norm is used rather than the �2 norm, the prob-
lem admits a reformulation as a mixed-integer linear programming problem, which can
be solved more efficiently than the quadratic program in Chen and Lee (2018). This
procedure typically requires an early termination of the algorithm to ensure computa-
tional tractability which is akin to a tuning parameter choice. In addition, Zhu (2018) has
proposed a k-step approach that allows for estimating models with multiple endoge-
nous regressors based on large datasets, but requires estimating the gradient. Pouliot
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(2019) proposed a mixed integer linear programming formulation that allows for sub-
vector inference via the inversion of a distribution-free rankscore test and can be mod-
ified to accommodate weak instruments. An important drawback of the estimation ap-
proaches based on mixed integer reformulations is that they rely on the availability of
high-level “black box” optimization routines such as Gurobi and often require careful
tuning in applications. Finally, imposing a location-scale model for the potential out-
comes, Machado and Santos Silva (2019) proposed moment-based estimators for the
structural quantile function.

Compared to the existing literature on the estimation of linear IVQR models, the
main advantages of the proposed estimation algorithms are the following. First, by re-
lying on convex QR problems, our estimators are easy to implement, robust, and com-
putationally efficient in settings with many exogenous variables, a moderate number
of endogenous variables, and a large number of observations. Second, by exploiting the
specific structure of the IVQR estimation problem, our estimators are tuning-free and do
not require the availability of high-level “black box” optimization routines. Third, our es-
timators are based on the original IVQR estimation problem, and thus avoid the choice
of smoothing bandwidths and do not rely on additional restrictions on the structural
quantile function.

Semi- and nonparametric estimation of IVQR models have been considered by Cher-
nozhukov, Imbens, and Newey (2007), Horowitz and Lee (2007), Chen and Pouzo (2009),
Chen and Pouzo (2012), Gagliardini and Scaillet (2012), and Wüthrich (2019). We refer to
Chernozhukov and Hansen (2013) and Chernozhukov, Hansen, and Wüthrich (2017) for
reviews of the IVQR model and references to empirical applications.

Abadie, Angrist, and Imbens (2002) have proposed an alternative approach to the
identification and estimation of quantile effects with binary endogenous regressors,
which builds on the local average treatment effects framework of Imbens and Angrist
(1994). Their approach has been extended and further developed by Frandsen, Frölich,
and Melly (2012), Frölich and Melly (2013), and Belloni, Chernozhukov, Fernandez-Val,
and Hansen (2017) among others. We refer to Melly and Wüthrich (2017) for a recent re-
view of this approach and to Wüthrich (2020) for a comparison between this approach
and the IVQR model. Identification and estimation of nonseparable models with con-
tinuous endogenous regressors have been studied by Chesher (2003), Ma and Koenker
(2006), Lee (2007), Jun (2009), Imbens and Newey (2009), D’Haultfoeuille and Février
(2015), and Torgovitsky (2015) among others.

On a broader level, our paper contributes to the literature, which proposes esti-
mation procedures that rely on decomposing computationally burdensome estima-
tion problems into several more tractable subproblems. This type of procedure, which
we call decentralization, has been applied in different contexts. Examples include the
estimation of single index models with unknown link function (Weisberg and Welsh
(1994)), general maximum likelihood problems (Smyth (1996)), linear models with
high-dimensional fixed effects (e.g., Guimaraes and Portugal (2010), and the references
therein), sample selection models (Marra and Radice (2013)), peer effects models (Ar-
cidiacono, Foster, Goodpaster, and Kinsler (2012)), interactive fixed effects models (e.g.,
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Chen, Fernandez-Val, and Weidner (2014), Moon and Weidner (2015)), and random co-
efficient logit demand models (Lee and Seo (2015)). Most of these papers decompose a
single estimation problem into two subproblems. The present paper explicitly considers
cases in which the number of subproblems may exceed two.

1.2 Organization of the paper

The remainder of the paper is structured as follows. Section 2 introduces the setup and
the IVQR model. Section 3 shows that the IVQR estimation problem can be decentralized
into a series of (weighted) conventional QR problems. In Section 4, we introduce pop-
ulation algorithms based on the contraction mapping theorem and root-finders. Sec-
tion 5 discusses the corresponding sample algorithms. In Section 6, we establish the
asymptotic normality of our estimators and prove the validity of the bootstrap. Section 7
presents an empirical application. In Section 8, we provide simulation evidence on the
computational performance and the finite sample properties of our methods. Section 9
concludes. All proofs as well as some additional theoretical and simulation results are
collected in the Appendix in the Online Supplementary Material (Kaido and Wüthrich
(2021)).

2. Setup and model

Consider a setup with a continuous outcome variable Y , a dX × 1 vector of exogenous
covariates X , a dD × 1 vector of endogenous treatment variables D, and a dZ × 1 vector
of instruments Z. The IVQR model is developed within the standard potential outcomes
framework (e.g., Rubin (1974)). Let {Yd} denote the (latent) potential outcomes. The ob-
ject of primary interest is the conditional quantile function of the potential outcomes,
which we denote by q(d�x�τ). Having conditioned on covariates X = x, by the Skorohod
representation of random variables, potential outcomes can be represented as

Yd = q(d�x�Ud) with Ud ∼ Uniform(0�1)�

This representation lies at the heart of the IVQR model. With this notation at hand, we
state the main conditions of the IVQR model (Chernozhukov and Hansen (2005, As-
sumptions A1–A5)).

Assumption 1. Given a common probability space (Ω�F�P), the following conditions
hold jointly with probability one:

(1) Potential outcomes: Conditional on X = x, for each d, Yd = q(d�x�Ud), where
q(d�x�τ) is strictly increasing in τ and Ud ∼ Uniform(0�1).

(2) Independence: Conditional on X = x, {Ud} are independent of Z.

(3) Selection: D := δ(Z�X�V ) for some unknown function δ(·) and random vector V .

(4) Rank invariance or rank similarity: Conditional on X = x, Z = z,
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(a) {Ud} are equal to each other; or, more generally,

(b) {Ud} are identically distributed, conditional on V .

(5) Observed variables: Observed variables consist of Y := q(D�X�UD), D, X , and Z.

We briefly discuss the most important aspects of Assumption 1 and refer the inter-
ested reader to Chernozhukov and Hansen (2005, 2006, 2013) for more comprehensive
treatments. Assumption 1(1) states the Skorohod representation of Yd and requires strict
monotonicity of the potential outcome quantile function, which rules out discrete out-
comes. Assumption 1(2) imposes independence between potential outcomes and in-
struments. Assumption 1(3) defines a general selection mechanism. The key restriction
of the IVQR model is Assumption 1(4). Rank invariance (a) requires individual ranks Ud

to be the same across treatment states. Rank similarity (b) weakens this condition, allow-
ing for random slippages of Ud away from a common level U . Finally, Assumption 1(5)
summarizes the observables.

Remark 2.1. Assumption 1 does not impose any restrictions on how the instrument
Z affects the endogenous variable D. As a consequence, Assumption 1 alone does not
guarantee point identification of the structural quantile function. In Sections 3 and 4, we
discuss sufficient conditions for global (point) identification. Due to the nonlinearity of
the IVQR problem, these conditions are stronger than the usual first stage assumptions
in linear instrumental variables models and require the instrument to have a nontrivial
impact on the joint distribution of (Y�D). The identification conditions are particularly
easy to interpret when D and Z are binary; see Chernozhukov and Hansen (2005, Sec-
tion 2.4) and Appendix C.2.1 for a further discussion.

The main implication of Assumption 1 is the following conditional moment restric-
tion (Chernozhukov and Hansen (2005, Theorem 1)):

P
(
Y ≤ q(D�X�τ) | X�Z

) = τ� τ ∈ (0�1)� (2.1)

In this paper, we focus on the commonly used linear-in-parameters model for q(·) (e.g.,
Chernozhukov and Hansen (2006)):

q(d�x�τ)= x′θX(τ)+ d′θD(τ)�

where θ(τ) := (θX(τ)′� θD(τ)′)′ ∈ R
dX+dD is the finite-dimensional parameter vector of

interest. The conditional moment restriction (2.1) suggests GMM estimators based on
the following unconditional population moment conditions:

ΨP

(
θ(τ)

) := EP

[(
1
{
Y ≤X ′θX(τ)+D′θD(τ)

} − τ
)(

X

Z

)]
�

Our primary goal here is to obtain estimators in a computationally efficient and reli-
able manner. We therefore focus on just-identified moment restrictions where dZ = dD,
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for which the construction of an estimator is straightforward. A potential caveat of this
approach is that estimators based on these restrictions do not achieve the pointwise
(in τ) semiparametric efficiency bound implied by the conditional moment restrictions
(2.1). Appendix A provides a discussion of overidentified GMM problems and presents
a two-step approach for constructing efficient estimators based on the proposed algo-
rithms.

In what follows, we will often suppress the dependence on τ to lighten-up the ex-
position. We then define the true parameter value θ∗ as the solution to the moment
conditions, that is,

ΨP

(
θ∗) = 0�

The resulting GMM objective function reads

QGMM
N (θ) = −1

2

(
1√
N

N∑
i=1

mi(θ)

)′
WN(θ)

(
1√
N

N∑
i=1

mi(θ)

)
� (2.2)

where mi(θ) := (1{Yi ≤ X ′
iθX + D′

iθD} − τ)(X ′
i�Z

′
i)

′ and WN(θ) is a positive definite
weighting matrix. Estimation based on (2.2) is complicated by the nonsmoothness and,
most importantly, the nonconvexity of QGMM

N . This paper proposes a new set of algo-
rithms to address these challenges.

3. Decentralization

Here, we describe the basic idea behind our decentralization estimators. To simplify the
exposition, we first illustrate our approach with the population problem of finding the
true parameter value θ∗ in the IVQR model. Our estimator then adopts the analogy prin-
ciple, which will be presented in Section 5. The key insight is that the complicated non-
linear IVQR estimation problem can be “decentralized,” that is, decomposed into a set
of more tractable subproblems, each of which is solved by a “player” who best responds
to other players’ actions. Specifically, we first split the parameter vector θ into J sub-
vectors θ1� � � � � θJ , where J = dD + 1. We then decompose the grand estimation problem
into J subproblems. Each of the subproblems is allocated to a distinct player. For each
j, player j’s choice variable is the jth subvector θj . Her problem is to find the value of θj
such that a subset of the moment restrictions is satisfied given the other players’ actions
θ−j , where θ−j stacks the components of θ other than θj . This reformulation allows us
to view the estimation problem as a game of complete information and to characterize
θ∗ as the game’s pure strategy Nash equilibrium.

We start by describing the parameter subvectors. First, let θ1 = θX ∈ R
dX denote the

vector of coefficients on the exogenous variables. We allocate this subvector to player 1.
Similarly, for each j = 2� � � � � J, let θj ∈R denote the coefficient on the (j − 1)-th endoge-
nous variable, which is allocated to player j. The coefficient vector for the endogenous
variable can therefore be written as θD = (θ2� � � � � θJ)

′. For each θ ∈ R
dX+dD , define the

following (weighted) QR objective functions:

QP�1(θ) := EP

[
ρτ

(
Y −X ′θ1 −D1θ2 − · · · −DdDθJ

)]
� (3.1)

QP�j(θ) := EP

[
ρτ

(
Y −X ′θ1 −D1θ2 − · · · −DdDθJ

)
(Zj−1/Dj−1)

]
� j = 2� � � � � J� (3.2)
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where ρτ(u) = u(τ − 1{u < 0}) is the “check-function.” We assume that the model is
parametrized such that Z�/D� is positive for all � = 1� � � � � dD. Under our assumptions,
we can always reparametrize the model such that this condition is met; see Appendix B
for more details.

The players then solve the following optimization problems:

min
θ̃1∈RdX

QP�1(θ̃1� θ−1)�

min
θ̃j∈R

QP�j(θ̃j� θ−j)� j = 2� � � � � J�

Observe that each player’s problem is a weighted QR problem, which is convex in its
choice variable. For the sample analogues of these problems fast solution algorithms
exist (e.g., Koenker (2017)).

For each j, let L̃j(θ−j) denote the set of minimizers. Borrowing the terminology from
game theory, we refer to these maps as best response (BR) maps. Under an assumption,
we specify below the first-order optimality conditions imply that, for each j, any element
θ̃∗
j ∈ L̃j(θ−j) of the BR map satisfies

ΨP�1
(
θ̃∗

1� θ−1
) := EP

[(
1
{
Y ≤X ′θ̃∗

1 +D′θ−1
} − τ

)
X

] = 0� (3.3)

ΨP�j

(
θ̃∗
j � θ−j

) := EP

[(
1
{
Y ≤ (

X ′�D′
−(j−1)

)′
θ−j +Dj−1θ̃

∗
j

} − τ
)
Zj−1

]
= 0� j = 2� � � � � J� (3.4)

whereD−(j−1) stacks as a vector all endogenous variables except Dj−1. Note thatΨP(θ) =
(ΨP�1(θ)

′� � � � �ΨP�J(θ))
′ is the set of unconditional IVQR moment conditions. Hence, θ∗

satisfies

θ∗
j ∈ L̃j

(
θ∗

−j

)
� j = 1� � � � � J�

which implies that θ∗ is a fixed point of the BR-maps (i.e., a Nash equilibrium of the
game).

In what follows, we work with conditions that ensure the existence of singleton-
valued BR maps Lj , j = 1� � � � � J, such that, for each j, ΨP�j(Lj(θ−j)� θ−j) = 0.1 We say
that the IVQR estimation problem admits decentralization if there exist such BR func-
tions defined over domains for which the moment conditions can be evaluated.2 To en-
sure decentralization, we make the following assumption.

Assumption 2. The following conditions hold:

(1) Θ is a closed rectangle in R
dX+dD . θ∗ is in the interior of Θ.

1While it may be interesting to work with set-valued maps, the existence of the BR functions greatly
simplifies our analysis of identification and inference.

2In Appendix C.2, we also provide weaker conditions under which the decentralization holds on a local
neighborhood of θ∗. We call such a result local decentralization, which is sufficient for analyzing the (local)
asymptotic behavior of the estimator.
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(2) E[|Z�|2] < ∞ for � = 1� � � � � dD. E[|Xk|2] < ∞ for all k = 1� � � � � dX . For each � =
1� � � � � dD, D� has a compact support;

(3) The conditional cdf y → FY |D�X�Z(y) is continuously differentiable for all y ∈ R a.s.
The conditional density fY |D�Z�X is uniformly bounded a.s.;

(4) For any θ ∈ Θ, the matrices

EP

[
fY |D�X�Z

(
D′θ−1 +X ′θ1

)
XX ′]

and

EP

[
fY |D�X�Z

(
D′θ−1 +X ′θ1

)
D�Z�

]
� �= 1� � � � � dD�

are positive definite.

For each j, let Θ−j ⊂ R
d−j denote the parameter space for θ−j . Assumption 2(1) en-

sures that Θ is compact. This assumption also ensures that each Θ−j is a closed rect-
angle, which we use to show that Lj is well-defined on a suitable domain. Assumptions
2(2) and 2(3) impose standard regularity conditions on the conditional density and the
moments of the variables in the model. We assume D� has a compact support, which
allows us to always reparametrize the model so that the objective function in (3.2) is
well-defined and convex (cf. Appendix B). The first part of Assumption 2(4) is a standard
full rank condition which is a natural extension of the local full rank condition required
for local identification and decentralization (cf. Assumption 4 in the Appendix). For the
second part of Assumption 2(4), it suffices that the model is parametrized such that, for
each � ∈ {1� � � � � dD}, D�Z� (and Z�/D�) is positive with probability one.

For each j, define

R−j := {
θ−j ∈Θ−j : ΨP�j(θ) = 0� for some θ = (θj� θ−j) ∈Θ

}
� (3.5)

This is the set of subvectors θ−j for which one can find θj ∈ Θj such that θ = (θj� θ−j)
′

solve the jth moment restriction. We take this set as the domain of player j’s best re-
sponse function Lj .

The following lemma establishes that the IVQR model admits decentralization.

Lemma 1. Suppose that Assumptions 1 and 2 hold. Then, there exist functions Lj :
R−j →R

dj , j = 1� � � � � J such that, for j = 1� � � � � J,

ΨP�j

(
Lj(θ−j)� θ−j

) = 0� for all θ−j ∈R−j�

Further, Lj is continuously differentiable on the interior of R−j for all j = 1� � � � � J.

We now introduce maps that represent all players’ (joint) best responses. We con-
sider two basic choices of such maps; one represents simultaneous responses and the
other represents sequential responses. In what follows, for any subset a ⊂ {1� � � � � J}, let
θ−a denote the subvector of θ that stacks the components of θj ’s for all j /∈ a. If a is a
singleton (i.e., a = {j} for some j), we simply write θ−j . For each j and a⊆ {1� � � � � J} \ {j},
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let π−a : Θ−j → ∏
k∈{1�����J}\({j}∪a) Θk be the coordinate projection of θ−j to a further sub-

vector that stacks all components of θ−j except for those of θk with k ∈ a.
Let DK := {θ ∈ Θ : π−jθ ∈ R−j� j = 1� � � � � J}. Let K : DK → R

dX+dD be a map defined
by

K(θ)=
⎛
⎜⎝
K1(θ)

���

KJ(θ)

⎞
⎟⎠ =

⎛
⎜⎝
L1(θ−1)

���

LJ(θ−J)

⎞
⎟⎠ �

This can be interpreted as the players’ simultaneous best responses to the initial strategy
(θ1� � � � � θJ). With one endogenous variable, this map simplifies to

K(θ)=
(
L1(θ2)

L2(θ1)

)
�

Here, K maps θ = (θ1� θ2) to a new parameter value through the simultaneous best re-
sponses of players 1 and 2.

Similarly, let DM ⊂ R
dD and let M : DM →R

dD be a map such that

M(θ−1) =

⎛
⎜⎜⎜⎜⎝

M1(θ−1)

M2(θ−1)
���

MdD(θ−1)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

L2
(
L1(θ−1)�θ−{1�2}

)
L3

(
L1(θ−1)�L2

(
L1(θ−1)�θ−{1�2}

)
� θ−{1�2�3}

)
���

LJ

(
L1(θ−1)�L2

(
L1(θ−1)�θ−{1�2}

)
� � � �

)

⎞
⎟⎟⎟⎟⎠ �

which can be interpreted as the players’ sequential responses (first by player 1, then
player 2, etc.) to an initial strategy θ−1 = (θ2� � � � � θJ).3 Note that the argument of M is not
the entire parameter vector. Rather, it is a subvector of θ consisting of the coefficients on
the endogenous variables. In order to find a fixed point, this feature is particularly attrac-
tive when the number of endogenous variables is small. With one endogenous variable
(i.e., θ2 ∈R is a scalar), the map simplifies to

M(θ2)= L2
(
L1(θ2)

)
�

which is a univariate function whose fixed point is often straightforward to compute.
Define

R̃1 := {
θ−1 ∈Θ−1 : ΨP�1(θ1� θ−1) = 0�

ΨP�2(θ1� θ2�π−{1�2}θ−1)= 0�∃(θ1� θ2) ∈Θ1 ×Θ2
}
� (3.6)

This is the set on which the map θ−1 → L2(L1(θ−1)�π−{1�2}θ−1), the first component of
M , is well-defined. We then recursively define R̃j for j = 2� � � � � dD in a similar manner.

3One may define M by changing the order of responses as well. For theoretical analysis, it suffices to
consider only one of them. Once the fixed point θ∗

−1 of M is found, one may also obtain θ∗
1 using θ∗

1 =
L1(θ

∗
−1).
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A precise definition of these sets is given in Appendix C. Now define

DM :=
dD⋂
j=1

R̃j = R̃dD�

where the second equality follows because R̃dD turns out to be a subset of R̃j for all
j ≤ dD. The following corollary ensures that K and M are well-defined on DK and DM ,
respectively.

Corollary 1. The maps K : DK → R
dX+dD and M : DM → R

dD exist and are continu-
ously differentiable on the interior of their domains.

The key insight that we exploit is that, by construction of the BR maps, the problem
of finding a solution to ΨP(θ)= 0 is equivalent to the problem of finding a fixed point of
K (or M). The following proposition states the formal result.

Proposition 1. Suppose that Assumptions 1 and 2 hold. Then,

(i) ΨP(θ
∗) = 0 if and only if K(θ∗) = θ∗

(ii) ΨP(θ
∗) = 0 if and only if M(θ∗

−1) = θ∗
−1 and θ∗

1 =L1(θ
∗
−1).

In view of Proposition 1, the original IVQR estimation problem can be reformu-
lated as the problem of finding the fixed point of K (or M). This reformulation naturally
leads to discrete dynamical systems associated with these maps, which in turn provide
straightforward iterative algorithms for computing θ∗.

(1) Simultaneous dynamical system:4

θ(s+1) =K
(
θ(s)

)
� s = 0�1�2� � � � � θ(0) given� (3.7)

(2) Sequential dynamical system:5

θ
(s+1)
−1 = M

(
θ
(s)
−1

)
� s = 0�1�2� � � � � θ(0)−1 given� (3.8)

where θ(s+1)
1 =L1(θ

(s)
−1).

These discrete dynamical systems constitute the basis for our estimation algorithms.6

4. Population algorithms

In this section, we explore the implications of the fixed-point reformulation for con-
structing population-level algorithms for computing fixed points.

4This algorithm is similar to a Jacobi procedure.
5Smyth (1996) considers this type of algorithm for J = 2 and calls it “zigzag” algorithm. It is similar to a

Gauss–Seidel procedure.
6These discrete dynamical systems can also be viewed as learning dynamics in a game (e.g., Li and Basar

(1987), Fudenberg and Levine (2007)).



454 Kaido and Wüthrich Quantitative Economics 12 (2021)

4.1 Contraction-based algorithms

We first consider conditions under which K and M are contraction mappings. They en-
sure that the discrete dynamical systems induced by K and M are convergent to unique
fixed points. Moreover, in view of Proposition 1, (point) identification is equivalent to
the uniqueness of the fixed point of K or M . Therefore, the conditions we provide be-
low are also sufficient for the point identification of θ∗. We will discuss the relationship
between our conditions and existing ones in the next section.

For any vector-valued differentiable map E, let JE(x) denote its Jacobian matrix eval-
uated at its argument x. For any matrix A, let ‖A‖ denote its operator norm. We provide
conditions in terms of the Jacobian matrices of K and M , which are well-defined by
Corollary 1.

Assumption 3. There exist open strictly convex sets D̃K ⊆ DK and D̃M ⊆ DM such that

(1) ‖JK(θ)‖ ≤ λ for some λ < 1 for all θ ∈ D̃K ;

(2) ‖JM(θ−1)‖ ≤ λ for some λ < 1 for all θ−1 ∈ D̃M .

Under this additional assumption, the iterative algorithms are guaranteed to con-
verge to the fixed point. We summarize this result below.

Proposition 2. Suppose that Assumptions 1 and 2 hold.

(i) Suppose further that Assumption 3(1) holds. Then K is a contraction on the closure
of D̃K . The fixed point θ∗ ∈ cl(D̃K) of K is unique. For any θ(0) ∈ D̃K , the sequence
{θ(s)}∞s=0 defined in (3.7) satisfies θ(s) → θ∗ as s → ∞.

(ii) Suppose further that Assumption 3(2) holds. Then M is a contraction on the closure
of D̃M . The fixed point θ∗

−1 ∈ cl(D̃M) of M is unique. For any θ(0)−1 ∈ D̃M , the sequence

{θ(s)−1}∞s=0 defined in (3.8) satisfies θ(s)−1 → θ∗
−1 as s → ∞.

In the case of a single endogenous variable, the Jacobian matrices of K and M are
given by

JK(θ)=
(

0 JL1(θ2)

JL2(θ1) 0

)
and JM(θ2) = JL2

(
L1(θ2)

)
JL1(θ2)�

where

JL−j (θj) = −
(
∂ΨP�−j(θj� θ−j)

∂θ′
−j

∣∣∣∣
θ=(θj�L−j(θj))

)−1

× ∂ΨP�−j(θj� θ−j)

∂θ′
j

∣∣∣∣
θ=(θj�L−j(θj))

� j = 1�2� (4.1)

One may therefore check the high-level condition through the Jacobians of the original
moment restrictions. In Appendix C.2.1, we illustrate a simple primitive condition for
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a local version of Assumption 3. In practice, we found that violations of Assumption 3
lead to explosive behavior of the estimation algorithms, and thus, are very easy to detect
numerically.

4.2 Connections to the identification conditions in the literature

In view of Proposition 1, identification of θ∗ is equivalent to uniqueness of the fixed
points of K and M , which is ensured by Proposition 2. Here, we discuss how the condi-
tions required by Proposition 2 relate to the ones in the literature.

We start with local identification. The parameter vector θ∗ is said to be locally identi-
fied if there is a neighborhood N of θ∗ such that ΨP(θ) �= 0 for all θ �= θ∗ in the neighbor-
hood. Local identification in the IVQR model follows from standard results (e.g., Rothen-
berg (1971), Chen, Chernozhukov, Lee, and Newey (2014)). For example, if ΨP(θ) is dif-
ferentiable, Chen et al. (2014, Section 2.1) show that full rank of JΨP

(θ) at θ∗ is sufficient
for local identification.

It is interesting to compare this full rank condition to Assumption 5(1) in the Ap-
pendix, which is a local version of Assumption 3(1). Assumption 5(1) requires that
ρ(JK(θ

∗)) < 1, where ρ(A) denotes the spectral radius of a square matrix A. We high-
light the connection in the case with a single endogenous variable. Full rank of JΨP

(θ∗)
is equivalent to det(JΨP

(θ∗)) �= 0. Observe that, for any θ,

det
(
JΨP

(θ)
) = det

(
∂ΨP�1(θ1� θ2)/∂θ

′
1 ∂ΨP�1(θ1� θ2)/∂θ

′
2

∂ΨP�2(θ1� θ2)/∂θ
′
1 ∂ΨP�2(θ1� θ2)/∂θ

′
2

)

= det

((
∂ΨP�1(θ1� θ2)/∂θ

′
1 0

0 ∂ΨP�2(θ1� θ2)/∂θ
′
2

)(
Id1 −JL1(θ2)

−JL2(θ1) Id2

))

= det

(
∂ΨP�1(θ1� θ2)/∂θ

′
1 0

0 ∂ΨP�2(θ1� θ2)/∂θ
′
2

)
det

(
Id1 −JL1(θ2)

−JL2(θ1) Id2

)
�

If ∂ΨP�j(θ)/∂θ
′
j|θ=θ∗ is invertible for j = 1�2 (which is true under Assumption 2(4)),

JΨP
(θ∗) is full rank if and only if

0 �= det

(
Id1 −JL1

(
θ∗

2
)

−JL2

(
θ∗

1
)

Id2

)
= det

(
IdX+dD − JK

(
θ∗))� (4.2)

That is, it requires that none of the eigenvalues of JK has modulus one. Therefore, As-
sumption 5(1) is sufficient but not necessary for condition (4.2) to hold. Specifically, As-
sumption 5(1) requires all eigenvalues of JK(θ∗) to lie strictly within the unit circle, while
local identification only requires all eigenvalues not to be on the unit circle. In terms of
the dynamical system induced by K, the former ensures that the dynamical system has
a unique asymptotically stable fixed point, while the latter ensures that the system has a
unique hyperbolic fixed point, which is a more general class of fixed points (e.g., Galor
(2007)).7 Under the former condition, iteratively applying the contraction map induces

7The argument above also applies to settings with multiple endogenous variables. A similar result can
also be shown for M .
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convergence, while the latter generally requires a root finding method to obtain the fixed
point.

Now we turn to global identification and compare Proposition 2 to the global iden-
tification result in Chernozhukov and Hansen (2006).

Lemma 2 (Theorem 2 in Chernozhukov and Hansen (2006)). Suppose that Assumption 1
holds. Moreover, suppose that (i) Θ is compact and convex and θ∗ is in the interior of Θ;
(ii) fY |D�Z�X is uniformly bounded a.s.; (iii) JΨP

(θ) is continuous and has full rank uni-
formly over Θ; and (iv) the image of Θ under the mapping θ → ΨP(θ) is simply connected.
Then θ∗ uniquely solves ΨP(θ)= 0 over Θ.

Under Conditions (i)–(iv), which are substantially stronger than the local identifi-
cation conditions discussed above, the result in Lemma 2 follows from an application
of Hadamard’s global univalence theorem (e.g., Theorem 1.8 in Ambrosetti and Prodi
(1995)).

Comparing Lemma 2 to Proposition 2, we can see that the result in Lemma 2 es-
tablishes identification over the whole parameter space Θ, while Proposition 2 estab-
lishes identification over the sets D̃K and D̃M , which will generally be subsets of Θ. Re-
garding the underlying assumptions, Conditions (i) and (ii) in Lemma 2 correspond to
our Assumptions 2(1) and 2(3). Moreover, our Assumption 2(3) constitutes an easy-to-
interpret sufficient condition for continuity of JΨP

as required in Condition (iii). To apply
Hadamard’s global univalence theorem, Chernozhukov and Hansen (2006) assume the
simple connectedness of the image of ΨP (Condition (iv)). By contrast, we use a different
univalence theorem by Gale and Nikaido (1965) (applied to the map Ξ defined in (E.1)
that arises from each subsystem), which does not require further conditions. However,
when establishing global identification based on the contraction mapping theorem, we
need to impose an additional condition on the Jacobian (Assumption 3). In sum, our
conditions are somewhat stronger in terms of restrictions on the Jacobian, but they are
relatively easy to check and allow us to dispense with an abstract condition (simple con-
nectedness of the image of a certain map) to apply a global univalence theorem.

4.3 Root-finding algorithms and nesting

Assumption 3 is a sufficient condition for the uniqueness of the fixed point and the con-
vergence of the contraction-based algorithms. Even in settings where this assumption
fails to hold, one may still identify θ∗ and design an algorithm that is able to find it un-
der weaker conditions on the Jacobian. This is the case under the assumptions in the
general (global) identification result of Chernozhukov and Hansen (2006); see Lemma 2.

Note that, for the simultaneous dynamical system, θ∗ solves

(IdX+dD −K)
(
θ∗) = 0�

where IdX+dD is the identity map. Similarly, in the sequential dynamical system, θ∗
−1

solves

(IdD −M)
(
θ∗

−1
) = 0�

Therefore, standard root-finding algorithms can be used to compute the fixed point.
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For implementing root-finding algorithms, we find that reducing the dimension of
the fixed-point problem is often helpful. Toward this end, we briefly discuss another
class of dynamical systems and associated population algorithms which can be used
for the purpose of dimension reduction. Namely, with more than two players, one can
construct nested dynamical systems, which induce nested fixed-point algorithms. Nest-
ing is useful as it allows for transforming any setup with more than two players into a
two-player system.

To fix ideas, consider the case of three players (J = 3). Fix player 3’s action θ3 ∈Θ3 ⊂ R

and consider the associated “subgame” between players 1 and 2. To describe the sub-
game, define M1�2|3(· | θ3) :Θ2 → Θ2 pointwise by

M1�2|3(θ2 | θ3) := L2
(
L1(θ2� θ3)�θ3

)
�

This map gives the sequential best responses of players 1 and 2, while taking player 3’s
strategy given. Define the fixed point L12 : Θ3 →Θ1 ×Θ2 of the subgame by

L12(θ3) :=
(
θ̄1(θ3)

θ̄2(θ3)

)
=

(
L1

(
θ̄2(θ3)�θ3

)
M1�2|3

(
θ̄2(θ3) | θ3

)
)
�

This map then defines a new “best response” map. Here, given θ3, the players in the
subgame (i.e., players 1 and 2) collectively respond by choosing the Nash equilibrium of
the subgame. The overall dynamical system induced by the nested decentralization is
then given by

M3(θ3)= L3
(
L12(θ3)

)
�

Hence, we can interpret the nested algorithm as a two-player dynamical system where
one player solves an internal fixed-point problem. The nesting algorithms require ex-
istence and uniqueness of the fixed points in the subgame between players 1 and 2. In
Appendix C.3, we discuss the formal conditions required for the existence and unique-
ness of such fixed points.8

This nesting procedure is generic and can be extended to more than three players by
sequentially adding additional layers of nesting.9 It follows that any decentralized esti-
mation problem with more than two players can be reformulated as a nested dynamical
system with two players: player J and all others −J. The resulting dynamical system
MJ(θJ) = LJ(L−J(θJ)) is particularly useful when MJ is not necessarily a contraction
map since θJ is a scalar such that, as we see below, its fixed point can be computed us-
ing univariate root-finding algorithms.

8For an equilibrium of the subgame to be well-defined, one may directly assume that Chernozhukov
and Hansen’s (2006) global identification condition holds within the subgame, given player 3’s action θ3.
Alternatively, if Assumption 3 holds, it implies that M1�2|3(· | θ3) is a contraction, which in turn ensures the
existence and uniqueness of the fixed points in the subgame; see Appendix C.3.

9In the current example, consider adding player 4 and letting players 1–3 best respond by returning the
fixed point of the subgame through M3 given θ4. One can repeat this for additional players. This procedure
can also be applied to the simultaneous dynamical system induced by K.
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5. Sample estimation algorithms

5.1 Sample estimation problem

Let {(Yi�D
′
i�X

′
i�Z

′
i)}Ni=1 be a sample generated from the IVQR model. Our estimators are

constructed using the analogy principle. For this, define the sample payoff functions for
the players as

QN�1(θ) := 1
N

N∑
i=1

ρτ
(
Yi −X ′

iθ1 −D1�iθ2 − · · · −DdD�iθJ
)
� (5.1)

QN�j(θ) := 1
N

N∑
i=1

ρτ
(
Yi −X ′

iθ1 −D1�iθ2 − · · · −DdD�iθJ
)Zj−1�i

Dj−1�i
� j = 2� � � � � J� (5.2)

For each j = 1� � � � � J, let the sample BR function L̂j(θ−j) be a function such that

L̂1(θ−1) ∈ arg min
θ̃1∈RdX

QN�1(θ̃1� θ−1)� (5.3)

L̂j(θ−j) ∈ arg min
θ̃j∈R

QN�j(θ̃j� θ−j)� j = 2� � � � � J� (5.4)

Assuming that the model is parametrized in such a way that Z��i/D��i, � = 1� � � � � dD, is
positive, these are convex (weighted) QR problems for which fast solution algorithms
exist. In our empirical applications and simulations, we use the R-package quantreg to
estimate the QRs (Koenker (2020)). For example, L̂2(θ−2) can be computed by running
a QR with weights Z1�i/D1�i in which one regresses Yi −X ′

iθ1 −D2�iθ3 − · · · −DdD�iθJ on
D1�i without a constant. These sample BR functions also approximately solve the sample
analog of the moment restrictions in (3.3)–(3.4); see Lemma 10 in the Appendix.

Remark 5.1. The proposed estimators rely on decentralizing the original nonsmooth
and nonconvex IVQR GMM problem into a series of convex QR problems. The quality
and the computational performance of our procedures therefore crucially depends on
the choice of the underlying QR estimation approach, which deserves some further dis-
cussion. The interested reader is referred to Koenker (2017) for an excellent overview
on the computational aspects of QR. In this paper, we use the (modified) Barrodale and
Roberts algorithm, which is implemented as the default in the quantreg package and
described in Koenker and D’Orey (1987, 1994). Thequantreg implementation of this al-
gorithm is computationally tractable for problems up to several thousand observations.
For larger problems, we recommend using interior point methods, potentially after pre-
processing; see Portnoy and Koenker (1997) for a detailed description. These methods
are conveniently implemented in the quantreg package. For very large problems, one
can resort to first-order gradient descent methods, which are amenable to modern par-
allelized computation; see Section 5.5 in Koenker (2017) for an introduction and simu-
lation evidence on the performance of such methods.
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We focus on estimators constructed based on the dynamical system M . Lemma 5 in
the Appendix shows that the estimators based on M and K are asymptotically equiva-
lent. However, in our simulations, we found that, while the convergence properties of
contraction algorithms based on M are excellent, the convergence properties of con-
traction algorithms based on K can be sensitive to the choice of starting value. This may
be attributed to the fact that the algorithm based on K requires all dX +dD components
of the starting value to be in the domain of the contraction map, while the algorithm
based on M only requires that the same condition is satisfied by the starting value for
θ−1. Our simulations suggest that it is often easier to satisfy this requirement with M

since the number of components in θ−1, dD, is typically much smaller than dX + dD.
Also, for root-finding algorithms, we prefer the sequential dynamical system (induced
by M) because it again leads to a substantial dimension reduction: it reduces the origi-
nal (dX +dD)-dimensional GMM estimation problem to a dD-dimensional root-finding
problem.

We construct estimation algorithms by mimicking the population algorithms. Let M̂
denote a sample analog of M :

M̂(θ−1) :=

⎛
⎜⎜⎜⎜⎝

M̂1(θ−1)

M̂2(θ−1)
���

M̂dD(θ−1)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

L̂2
(
L̂1(θ−1)�θ−{1�2}

)
L̂3

(
L̂1(θ−1)� L̂2

(
L̂1(θ−1)�θ−{1�2}

)
� θ−{1�2�3}

)
���

L̂J

(
L̂1(θ−1)� L̂2

(
L̂1(θ−1)�θ−{1�2}

)
� � � �

)

⎞
⎟⎟⎟⎟⎠ �

where θ1 = L̂1(θ−1). This map induces a sample analog of the sequential dynamical sys-
tem in Section 3.

Sample sequential dynamical system:

θ
(s+1)
−1 = M̂

(
θ
(s)
−1

)
� s = 0�1�2� � � � � θ(0)−1 given� (5.5)

where θ(s+1)
1 = L̂1(θ

(s)
−1).

5.2 Contraction-based algorithms

The first set of algorithms exploits that, under Assumption 3, M̂ is a contraction mapping
with probability approaching one. In this case, we iterate the dynamical system (5.5) un-
til ‖θ(s)−1 −M̂(θ

(s)
−1)‖ is within a numerical tolerance eN .10 This iterative algorithm is known

to converge at least linearly. The approximate sample fixed point θ̂N = (θ̂N�1� θ̂N�−1) that
meets the convergence criterion then serves as an estimator for θ.

5.3 Algorithms based on root-finders and optimizers

We construct an estimator θ̂N of θ∗ as an approximate fixed point to the sample problem:∥∥θ̂N�−1 − M̂(θ̂N�−1)
∥∥ ≤ eN�

10In the next section, we require eN = o(N−1/2), which ensures that the numerical error does not affect
the asymptotic distribution.
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where θ̂N�1 = L̂1(θ̂N�−1) and eN is a numerical tolerance. This problem can be solved ef-
ficiently using well-established root-finding algorithms since M̂ is easy to evaluate as the
composition of standard QRs. When dD = 1, one may use Brent’s method (Brent (1971))
whose convergence is superlinear. When dD > 1, one could apply the Newton–Raphson
method, which achieves quadratic convergence but requires an estimate or a finite dif-
ference approximation of the derivative. The corresponding approximation error may
affect the performance. Alternatively, one can compute the fixed point by minimizing
‖M̂(θ) − θ‖2. The potential issue with this approach is that translating the root-finding
problem into a minimization problem can lead to local minima in the objective func-
tion. Therefore, it is important to use global optimization strategies.

As described in Section 4.3, nesting can be used to reduce the dimensionality even
further. In particular, the problem can be reformulated as a one-dimensional fixed-point
problem, which can be solved using existing methods. We found that Brent’s method
performs very well in our context. Nesting is suitable when the number of endogenous
variables is moderate. While adding nests incurs additional computational costs, our
Monte Carlo experiments suggest that they are not excessive when the number of en-
dogenous variables is moderate.11

5.4 Profiling algorithms

A key insight underlying our estimation algorithms is that, given θ−1, the estimation
problem becomes a standard convex QR problem:

L̂1(θ−1) ∈ arg min
θ̃1∈RdX

QN�1(θ̃1� θ−1)�

This insight suggests a profiling estimator.12 In particular, θ̂N�−1 can be obtained as the
approximate root of the function

f (θ−1)= 1
N

N∑
i=1

(
1
{
Yi ≤X ′

iL̂1(θ−1)+D′
iθ−1

} − τ
)
Zi�

and θ̂N�1 can be estimated as θ̂N�1 ∈ arg minθ̃1∈RdX QN�1(θ̃1� θ̂N�−1). When there is only
one endogenous variable, f is scalar-valued and univariate root-finders can be used.
With multivariate endogenous variables, one can either directly apply multivariate root-
finders or construct nested algorithms as described in Sections 4.3 and 5.3.

Relative to the root-finding methods described in Section 5.3, the profiling estima-
tor has the advantage that evaluating f only requires estimating one QR. On the other
hand, the root-finding algorithms in Section 5.3 efficiently exploit the convexity of the
subproblems for players j = 2� � � � � J, and demonstrate a better computational perfor-
mance than the profiling estimators with multiple endogenous variables (cf. Table 3).

11See Section 8 and Appendix D.
12We thank an anonymous referee for suggesting a comparison to this alternative estimator. Cher-

nozhukov, Hansen, and Wüthrich (2017) use profiling to construct IVQR GMM estimators based on Neyman
orthogonal scores.
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6. Asymptotic theory

6.1 Estimators

We define an estimator θ̂N of θ∗ as an approximate fixed point of M̂ in the following
sense: ∥∥θ̂N�−1 − M̂(θ̂N�−1)

∥∥ ≤ inf
θ′

−1∈Θ−1

∥∥θ′
−1 − M̂

(
θ′

−1
)∥∥ + op

(
N−1/2)� (6.1)

An estimator of θ∗
1 can be constructed by setting

θ̂N�1 := L̂1(θ̂N�−1)� (6.2)

In what follows, we call θ̂N = (θ̂N�1� θ̂N�−1) the fixed-point estimator of θ∗. Under the
conditions we introduce below, θ̂N is also an approximate fixed point of K̂; see Lemma 5
in the Appendix. This turns out to be useful for stating theoretical results in a concise
manner. While we mostly focus on algorithms based on M̂ below, some of our theoretical
results will be stated using K. M̂ (or K̂) is defined similarly for the nested dynamical
system in which one player solves a fixed-point problem in a subgame.

Consistency and parametric convergence rates of θ̂N can be established using exist-
ing results. When M̂ is asymptotically a contraction map, one may construct an estima-
tor θ̂N satisfying (6.1)–(6.2) using the contraction algorithm in Section 5.2 with tolerance
eN = o(N−1/2). One may then apply the result of Dominitz and Sherman (2005) to obtain
the root-N consistency of the estimator.13 For completeness, this result is summarized
in Appendix H.

More generally, if M̂ is not guaranteed to be a contraction, one may use root-finding
algorithms that solve θ−1 − M̂(θ−1) = 0 up to approximation errors of o(N−1/2). The
root-N consistency of θN�−1 then follows from the standard argument for extremum es-
timators, in which we take QN(θ−1) = ‖θ−1 − M̂(θ−1)‖ as a criterion function.14 Since
these results are standard, we omit details and focus below on the asymptotic distri-
bution and bootstrap validity of the fixed-point estimators. Our contributions are two-
fold. First, we establish the asymptotic distribution of the fixed-point estimator without
assuming that M̂ is an asymptotic contraction map, which therefore allows the practi-
tioner to conduct inference using the estimator based on the general root-finding al-
gorithm and complements the result of Dominitz and Sherman (2005). Second, to our
knowledge, the bootstrap validity of the fixed-point estimators is new. These results are
established by showing that, under regularity conditions, the population fixed point is
Hadamard-differentiable, and hence admits the use of the functional δ-method, which
may be of independent theoretical interest.

Remark 6.1. To establish the asymptotic properties, one could try to reformulate our
estimator as an estimator that approximately solves a GMM problem. Here, instead of

13Satisfying eN = o(N−1/2) requires the number of iterations to increase as the sample size tends to in-
finity, which in turn satisfies requirement (ii) in Theorem 2 of Dominitz and Sherman (2005).

14The key conditions for these results, uniform convergence (in probability) of the sample BR maps and
their stochastic equicontinuity, are established in Lemma 11.
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relying on another reformulation, which would require establishing a sample analog ver-
sion of Proposition 1, we develop and directly apply an asymptotic theory for fixed-point
estimators. We take this approach as the theory itself contains generic results (The-
orem 1 and Lemmas 6–7) surrounding the Hadamard-differentiability of fixed points,
which allow for applying the functional δ-method to obtain the asymptotic distribution
of θ̂N and bootstrap validity. These results can potentially be used to analyze decentral-
ized estimators outside the IVQR class.

6.2 Asymptotic theory and bootstrap validity

The following theorem gives the limiting distribution of our estimator. For each w =
(y�d′�x′� z′)′ and θ ∈ Θ, let f (w;θ) ∈R

dX+dD be a vector whose subvectors are given by

f1(w;θ) = (
1
{
y ≤ d′θ−1 + x′θ1

} − τ
)
x�

fj(w;θ) = (
1
{
y ≤ d′θ−1 + x′θ1

} − τ
)
zj−1� j = 2� � � � � J�

and let g(w;θ) = (g1(w;θ)′� � � � � gJ(w;θ))′ be a vector such that

gj(w;θ) =
(

∂2

∂θj∂θ
′
j

QP�j

(
Lj(θ−j)� θ−j

))−1
fj

(
w;Lj(θ−j)� θ−j

)
� j = 1� � � � � J�

Theorem 1. Suppose that Assumptions 1 and 2 hold. Suppose further that JΨP
(θ∗) is

full rank. Let {Wi}Ni=1 be an i.i.d. sample generated from the IVQR model, where Wi =
(Yi�D

′
i�X

′
i�Z

′
i). Then

√
N

(
θ̂N − θ∗) L→ N(0� V )� (6.3)

with

V = (
IdX+dD − JK

(
θ∗))−1

E
[
W

(
θ∗)

W
(
θ∗)′][(

IdX+dD − JK
(
θ∗))−1]′

� (6.4)

where W is a tight Gaussian process in �∞(Θ)dX+dD with mean zero and the covariance
kernel

Cov
(
W(θ)�W(θ̃)

) =EP

[(
g(W ;θ)−EP

[
g(W ;θ)])(g(W ; θ̃)−EP

[
g(W ; θ̃)])′]

�

In Theorem 1, we assume JΨP
(θ∗) is full rank, which ensures local identification of

θ∗. The asymptotic variance of θ̂N is characterized in terms of the Jacobian of K and a
Gaussian process W. This can be reformulated to show its asymptotic relationship to a
GMM estimator (which is asymptotically equivalent to IQR). Let θ̃N be an estimator that
solves the following estimating equations:

1
N

N∑
i=1

1
{
Yi ≤X ′

i θ̃N�1 +D1�iθ̃N�2 + · · · +DdD�iθ̃N�J

} − τ)

(
Xi

Zi

)
= op

(
N−1/2)� (6.5)
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Let Ψ(τ) = (X ′�Z′)′. As shown in Chernozhukov and Hansen (2006, Section 3.3, Theo-
rem 3, and Remark 3),

√
N(θ̃N − θ∗) converges weakly to a mean zero multivariate nor-

mal distribution with variance

Ṽ = τ(1 − τ)JΨP

(
θ∗)−1

E
[
Ψ(τ)Ψ(τ)′

][
JΨP

(
θ∗)−1]′

� (6.6)

where JΨP
(θ∗)= E[fε(τ)|X�D�Z(0)Ψ(τ)(X ′�D′)], ε(τ) = Y −X ′θ∗

1 −D′θ∗
−1, and fε(τ)|X�D�Z

is ε(τ)’s conditional density given (X�D�Z). The following corollary shows that the
fixed-point estimator θ̂N is asymptotically equivalent to θ̃N in terms of its limiting dis-
tribution.

Corollary 2. Suppose the conditions of Theorem 1 hold. Then V = Ṽ .

To conduct inference on θ∗, one may employ a natural bootstrap procedure. For this,
use in (6.1)–(6.2) the bootstrap sample instead of the original sample to define the boot-
strap analogs M̂∗ and θ̂∗

N�−1 of M̂ and θ̂N�−1. In practice, the bootstrap can be imple-
mented using the following steps:

(1) Compute the fixed-point estimator θ̂N using the original sample.

(2) Draw a bootstrap sample {W ∗
i }Ni=1 randomly with replacement from the empiri-

cal distribution PN . Use the sequential dynamical system based on M̂∗ combined
with a contraction or root-finding algorithm to compute θ̂∗

N .

(3) Repeat Step 2 across bootstrap replications b= 1� � � � �B. Let

FB(x) := 1
B

B∑
b=1

1
{√

N
(
θ̂∗�b
N − θ̂N

) ≤ x
}
� x ∈R�

Use FB as an approximation to the sampling distribution of the root
√
N(θ̂N −θ∗).

The bootstrap is particularly attractive in conjunction with our new and computation-
ally efficient estimation algorithms. By contrast, directly bootstrapping for instance the
IQR estimator of Chernozhukov and Hansen (2006) is computationally very costly. Al-
ternative methods (either an asymptotic approximation or a score-based bootstrap) re-
quire estimation of the influence function, which involves nonparametric estimation of
a certain conditional density. Directly bootstrapping our fixed-point estimators avoids
the use of any smoothing and tuning parameters.15

The following theorem establishes the consistency of the bootstrap procedure. For

this, let
L∗
� denote the weak convergence of the bootstrap law in outer probability, con-

ditional on the sample path {Wi}∞i=1.

15The use of the bootstrap here is for consistently estimating the law of the estimator. Whether one may
obtain higher-order refinements through a version of the bootstrap, for example, the m out of n bootstrap
with extrapolation (Sakov and Bickel (2000)), is an interesting question which we leave for future research.
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Theorem 2. Suppose that Assumptions 1 and 2 hold. Suppose further that JΨP
(θ∗) is full

rank. Let {Wi}Ni=1 be an i.i.d. sample generated from the IVQR model. Then

√
N

(
θ̂∗
N − θ̂N

) L∗
�N(0� V )�

where V is as in (6.4).

7. Empirical example

In this section, we illustrate the proposed estimators by reanalyzing the effect of 401(k)
plans on savings behavior as in Chernozhukov and Hansen (2004). This empirical ex-
ample constitutes the basis for our Monte Carlo simulations in Section 8. As described
by Chernozhukov and Hansen (2004), 401(k) plans are tax-deferred savings options that
allow for deducting contributions from taxable income and accruing tax-free interest.
These plans are provided by employers and were introduced in the United States in the
early 1980s to increase individual savings. To estimate the effect of 401(k) plans (D) on
accumulated assets (Y ), one has to deal with the potential endogeneity of 401(k) partici-
pation. Chernozhukov and Hansen (2004) proposed an instrumental variables approach
to overcome this problem. They use 401(k) eligibility as an instrument (Z) for the par-
ticipation in 401(k) plans. The underlying argument, which is due to Poterba, Venti, and
Wise (1994, 1995, 1998) and Benjamin (2003), is that eligibility is exogenous after con-
ditioning on income and other observable covariates. We use the same empirical ap-
proach here but note that there are also papers arguing that 401(k) eligibility violates
conditional exogeneity (e.g., Engen, Gale, and Scholz (1996)).

We use the same dataset as in Chernozhukov and Hansen (2004). The dataset con-
tains information about 9913 observations from a sample of households from the 1991
Survey of Income and Program Participation.16 We refer to Chernozhukov and Hansen
(2004) for more information about the data and to their Tables 1 and 2 for descriptive
statistics. Here, we focus on net financial assets as our outcome of interest.17

Following Chernozhukov and Hansen (2004), we consider the following linear IVQR
model:

q(D�X�τ)= X ′θX(τ)+DθD(τ)�

The vector of covariates X includes seven dummies for income categories, five dum-
mies for age categories, family size, four dummies for education categories, indica-
tors for marital status, two-earner status, defined benefit pension status, individual re-
tirement account participation status and homeownership, and a constant. Because
P(D = 0) > 0, we re-parametrize the model by replacing D by D� = D+ 1 to ensure that
Z/D� is well-defined and positive.

Below, we briefly describe the construction of the sequential response map for this
application. First, we allocate θX to player 1, and hence denote this subvector by θ1. Sim-
ilarly, we allocate θD to player 2 and denote it by θ2. For each τ, the sequential response
map can be constructed by taking the following steps:

16The dataset analyzed by Chernozhukov and Hansen (2004) has 9915 observations. Here, we delete the
two observations with negative income.

17Chernozhukov and Hansen (2004) also considered total wealth and net nonfinancial assets.
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Figure 1. Illustration fixed-point estimator.

(1) For any given θ2, compute θ1 = L̂1(θ2) by running an ordinary QR (for the τth
quantile) using Yi −D�

i θ2 as the dependent variable and Xi as a regressor vector.

(2) Given θ1 = L̂1(θ2) from the previous step, compute L̂2(θ1) by running an ordi-
nary QR with weights Zi/D

�
i using Yi −X ′

iθ1 as the dependent variable, D�
i as the

regressor, and omitting the constant.

Combining these two steps yields the sequential response map M̂(·) = L̂2(L̂1(·)). Fig-
ure 1 shows, for each τ ∈ {0�25�0�50�0�75}, the graph of θ2 �→ M̂(θ2). For each τ, the in-
tersection between M̂ and the 45-degree line (i.e., the identity map) is our fixed-point
estimator θ̂D(τ). Figure 1 further provides a straightforward graphical way to check the
validity of the sample analog of Assumption 3. We can see that the sample analog of JM
(i.e., the slope of M) is smaller than one at any θ2. This suggests that the contraction-
based sequential algorithm converges at all three quantile levels, which is indeed what
we find.

For each τ, the steps for numerically calculating the fixed-point estimator are as fol-
lows:

(3) Find the fixed point of M̂ using one of the following algorithms:

• Contraction algorithm: Set the tolerance eN .18 We set the initial value θ(0)2 to

the 2SLS estimate of the coefficient on D�
i . Iterate θ

(s+1)
2 = M̂(θ

(s)
2 ), for s =

0�1�2� � � � , until |θ(s+1)
2 − θ

(s)
2 | ≤ eN . Report θ(s+1)

2 as the estimate θ̂D of θD.

• Root-finding algorithm: Find the solution to the equation θ2 − M̂(θ2) = 0 by
applying Brent’s method as implemented by the R-function uniroot. Report
the solution as the estimate θ̂D of θD.

18In our application and simulations, we set eN equal to the square-root of the machine precision in R:
eN ≈ 1�5 · 10−8.
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Figure 2. Comparison point estimates.

(4) (Optional) Compute θ̂X = L̂1(θ̂D) (as in Step (2)) if one is also interested in the
coefficients on X . Recover estimates of the original coefficients following the dis-
cussion in Appendix B.

We compare our estimators to the IQR estimator of Chernozhukov and Hansen
(2006) based on a grid search over 500 points. IQR provides a very robust benchmark.
However, due to the use of grid search, it is computationally expensive. In our empirical
Monte Carlo study in Section 8, we find that, with 10,000 observations and one endoge-
nous regressor, IQR is nine times slower than the contraction algorithm and 23 times
slower than the root-finding algorithm. With two endogenous regressors, the compu-
tational advantages of our procedures are even more pronounced. IQR based on a grid
search over 100 × 100 points is 149 times slower than the contraction algorithm and 84
times slower than the nested root-finding algorithm.

Figure 2 displays the estimates of θD(τ) for τ ∈ {0�15�0�20� � � � �0�85}. We can see that
all estimation algorithms yield very similar results. We also note that the contraction
algorithm converges for all quantile levels considered.

Figures 3 depicts pointwise 95% confidence intervals for the proposed estimators
obtained using the empirical bootstrap described in Section 6.2 with 500 replications.
We can see that the resulting confidence intervals are very similar for both algorithms
and do not include zero at any quantile level considered.

8. Empirical Monte Carlo study

In this section, we assess the practical performance of our estimation algorithms in an
empirical Monte Carlo study based on the application in Section 7.

8.1 An application-based DGP

We consider DGPs which are based on the empirical application of Section 7.19 We focus
on a simplified setting with only two exogenous covariates: income and age. The covari-

19The construction of our DGPs is inspired by the application-based DGPs in Kaplan and Sun (2017).



Quantitative Economics 12 (2021) Decentralization estimators 467

Figure 3. Pointwise 95% bootstrap confidence intervals.

ates are drawn from their joint empirical distribution. The instrument Zi is generated
as Bernoulli(Z̄), where Z̄ is the mean of the instrument in the data. We then gener-
ate the endogenous variable as Di = Zi · 1{0�6 · Vi < Ui}, where Ui ∼ Uniform(0�1) and
Vi ∼ Uniform(0�1) are independent disturbances. The DGP for Di roughly matches the
joint empirical distribution of (Di�Zi). The outcome variable Yi is generated as

Yi = X ′
iθX(Ui)+DiθD(Ui)+G−1(Ui)�

The coefficient θX(·) is constant and equal to the IQR median estimate in the empiri-
cal application. θD(Ui) = 5000 + Ui · 10,000 is chosen to match the increasing shape of
the estimated conditional quantile treatment effects in Figure 2. G−1(·) is the quantile
function of a recentered Gamma distribution fitted to the distribution of the IQR residu-
als at the median. To investigate the performance of our procedure with more than one
endogenous variable, we add a second endogenous regressor:

Yi =X ′
iθX(Ui)+DiθD(Ui)+D2�iθD�2(Ui)+G−1(Ui)�

where we set θD�2(Ui) = 10,000. The second endogenous variable is generated as

D2�i = 0�8 ·Z2�i + 0�2 ·�−1(Ui)

and the second instrument is generated as Z2�i ∼ N(0�1). We set N = 9913 as in the em-
pirical application.

8.2 Estimation algorithms

We assess and compare several different algorithms, all of which are based on the dy-
namical system M̂ .20 For models with one endogenous variable, we consider a contrac-
tion algorithm and a root-finding algorithm based on Brent’s method. For models with

20We do not explore algorithms based on K̂ because, as discussed in Section 5, the algorithms based on

M̂ have advantages in terms of the choice of starting values (for the contraction algorithm) and dimension
reduction (for the root-finding algorithm).
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Table 1. Algorithms.

One endogenous variable

Algorithm R-Function

Contraction algorithm
Root-finding algorithm uniroot (R Core Team (2020))
Profiling algorithm uniroot (R Core Team (2020))
IQR

Two endogenous variables

Algorithm R-Function

Contraction algorithm
Nested root-finding algorithm uniroot (R Core Team (2020))
Root-finding algorithm (implemented as optimizer) optim_sa (Husmann, Lange, and Spiegel (2017))
Nested profiling algorithm uniroot (R Core Team (2020))
IQR (implementation: p. 132 in Chernozhukov,
Hansen, and Wüthrich (2017))

two endogenous variables, we consider a contraction algorithm, a nested root-finding
algorithm based on Brent’s method, and a root-finding algorithm implemented as a
minimization problem based on simulated annealing (SA).21 For all estimators, we use
2SLS estimates as starting values. We compare the results of our algorithms to (nested)
profiling estimators based on Brent’s method and to IQR with a grid search over 500
points (one endogenous regressor) and 100 × 100 points (two endogenous regressors),
which serves as a slow but very robust benchmark. Table 1 presents an overview of the
algorithms.

8.3 Results

Here, we describe the computational performance of the different procedures and the
finite sample performance of our bootstrap inference procedure. In Appendix D.1, we
further investigate the finite sample bias and root mean squared error (RMSE) of the
different methods. We find that the proposed estimation algorithms perform well and
exhibit a similar bias and RMSE. Moreover, the finite sample properties of the estimators
based on the contraction and root-finding algorithms are comparable to the profiling
estimators and IQR. This shows that the computational advantages of our algorithms
do not come at a cost in terms of the finite sample performance. Appendix D.2 presents
additional simulation evidence, demonstrating that our algorithms perform well and
remain computationally tractable with more than two endogenous regressors.22

21We have also explored algorithms based on Newton–Raphson-type root-finders. These algorithms are,
in theory, up to an order of magnitude faster than the contraction algorithm and the nested algorithms,
but, unlike the other algorithms considered here, require an approximation to the Jacobian and are not
very robust to the choice of starting values. We therefore do not report the results here.

22Specifically, we present simulation results based on the DGP used in this section, augmented with an
additional endogenous regressor, generated as D3�i = 0�8 ·Z3�i + 0�2 ·�−1(Ui), where Z3�i ∼ N(0�1).
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Table 2. Computation time, 401(k) DGP with one en-
dogenous regressor.

N Contr Brent Profil InvQR

1000 0�10 0�03 0�03 0�34
5000 0�44 0�13 0�12 2�44

10,000 0�75 0�28 0�30 6�48

Note: The table reports average computation time in seconds at
τ = 0�5 over 100 simulation repetitions based on the DGP described in
the main text. Contr: contraction algorithm; Brent: root-finding algorithm
based on Brent’s method; Profil: profiling estimator based on Brent’s
method; InvQR: inverse QR with grid search over 500 grid points. We use
2SLS estimates as starting values.

Tables 2–3 show the average computation time (in seconds) for estimating the model
with one and two endogenous variables for different sample sizes. All computations
were carried out on a standard desktop computer with a 3�2 GHz Intel Core i5 processor
and 8 GB RAM.

With one endogenous regressor, the contraction algorithm and the root-finding al-
gorithm based on Brent’s method are computationally more efficient than IQR. Specif-
ically, the root-finding algorithm based on Brent’s method is 11 to 23 times faster than
IQR and the contraction algorithm is 4 to 9 times faster. The root-finding algorithm is as
fast as the profiling estimator and about twice as fast as the contraction algorithm.23

The computational advantages of our algorithms become more pronounced with
two endogenous variables. Table 3 shows that IQR’s average computation times are
around two orders of magnitude slower than those of our preferred procedures. Specifi-
cally, the nested root-finding algorithm is 84 to 134 times faster than IQR, while the con-
traction algorithm is 149 to 308 times faster. This is as expected since, due to the use of
grids, IQRs become computationally impractical in our setting whenever the number of

Table 3. Computation time, 401(k) DGP with two en-
dogenous regressors.

N Contr NestBr SimAnn Profil InvQR

1000 0�18 0�41 3�13 0�77 55�40
5000 1�71 2�67 19�05 4�39 282�64

10,000 4�50 7�99 54�95 12�50 672�00

Note: The table reports average computation time in seconds at
τ = 0�5 over 100 simulation repetitions based on the DGP described in
the main text. Contr: contraction algorithm; NestBr: nested algorithm
based on Brent’s method; SimAnn: simulated annealing based optimiza-
tion algorithm; Profil: nested profiling estimator based on Brent’s method;
InvQR: inverse QR with grid search over 100×100 grid points. We use 2SLS
estimates as starting values.

23Note that the computational speed of the contraction algorithm depends on |ĴM |, and thus, will differ
across applications.
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Table 4. Coverage, 401(k) DGP with one endogenous
regressor.

1 − α = 0�95 1 − α= 0�9

τ Contr Brent Contr Brent

0�15 0�96 0�96 0�93 0�91
0�25 0�95 0�95 0�91 0�92
0�50 0�95 0�95 0�90 0�91
0�75 0�95 0�95 0�90 0�89
0�85 0�94 0�94 0�89 0�89

Note: Monte Carlo simulation with 1000 repetitions as described in
the main text. Contr: contraction algorithm; Brent: root-finding algorithm
based on Brent’s method. We use 2SLS estimates as starting values.

endogenous variables exceeds two or three.24 The contraction algorithm is almost twice
as fast as the nested algorithm, which, in turn, is almost twice as fast as the profiling
estimator. Finally, the minimization algorithm based on SA is about one order of mag-
nitude slower than the contraction algorithm, while still being an order of magnitude
faster than IQR.

Finally, we analyze the finite sample properties of our bootstrap inference procedure
for making inference on θD in the model with a single endogenous variable. Table 4
shows the empirical coverage probabilities of bootstrap confidence intervals based on
the contraction algorithm and the root-finding algorithm based on Brent’s method. Both
methods demonstrate an excellent performance and exhibit coverage rates that are very
close to the respective nominal levels.

9. Conclusion

The main contribution of this paper is to develop computationally convenient and easy-
to-implement estimation algorithms for IVQR models. Our key insight is that the nons-
mooth and nonconvex IVQR estimation problem can be decomposed into a sequence of
much more tractable convex QR problems, which can be solved very quickly using well-
established methods. The proposed algorithms are particularly well suited if the number
of exogenous variables is large and the number of endogenous variables is moderate as
in many empirical applications.

An interesting avenue for further research is to investigate weak identification robust
inference within the decentralized model. One may, for example, write the (rescaled)
sample fixed-point restriction as

√
N(IdX+dD − K̂)(θ) = sN(θ) + W(θ) + rN(θ), where

24Our implementation of IQR with two endogenous variables is inherently slower than the implementa-
tion with one endogenous variable, even when the number of grid points is the same. First, there is an ad-
ditional covariate in the underlying QRs (the second instrument). Second, with one endogenous variable,
we choose the grid value that minimizes the absolute value of the coefficient on the instrument. By con-
trast, with two endogenous regressors, we choose the grid point which minimizes a quadratic form based
on the inverse of the estimated QR variance covariance matrix as suggested in Chernozhukov, Hansen, and
Wüthrich (2017), which requires an additional computational step.
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sN(θ) = √
N(IdX+dD − K)(θ), W is a Gaussian process, and rN is an error that tends

to zero uniformly. This paper assumes that sN(θ∗) = 0 uniquely, and outside N−1/2-
neighborhoods of θ∗, sN(θ) diverges and dominates W. For a one-dimensional fixed-
point problem, this requires the BR map to be bounded away from the 45-degree line
outside any N−1/2-neighborhood of the fixed point. However if sN fails to dominate W

over a substantial part of the parameter space, one would end up with weak identifi-
cation.25 How to conduct robust inference in such settings is an interesting question,
which we leave for future research.

Finally, we note that, while we study the performance of the proposed algorithms
separately, our reformulation and the resulting algorithms are potentially very useful
when combined with other existing procedures. For instance, one could choose starting
values using an initial grid search over a coarse grid and then apply a fast contraction
algorithm.
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