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The discretization filter: A simple way to estimate nonlinear
state space models

Leland E. Farmer
Department of Economics, University of Virginia

Existing methods for estimating nonlinear dynamic models are either highly com-
putationally costly or rely on local approximations which often fail adequately to
capture the nonlinear features of interest. I develop a new method, the discretiza-
tion filter, for approximating the likelihood of nonlinear, non-Gaussian state space
models. I establish that the associated maximum likelihood estimator is strongly
consistent, asymptotically normal, and asymptotically efficient. Through simula-
tions, I show that the discretization filter is orders of magnitude faster than al-
ternative nonlinear techniques for the same level of approximation error in low-
dimensional settings and I provide practical guidelines for applied researchers. It
is my hope that the method’s simplicity will make the quantitative study of non-
linear models easier for and more accessible to applied researchers. I apply my
approach to estimate a New Keynesian model with a zero lower bound on the
nominal interest rate. After accounting for the zero lower bound, I find that the
slope of the Phillips Curve is 0�076, which is less than 1/3 of typical estimates from
linearized models. This suggests a strong decoupling of inflation from the output
gap and larger real effects of unanticipated changes in interest rates in post Great
Recession.
Keywords. Nonlinear filtering, discretization, regime switching, state space mod-
els, DSGE models, zero lower bound.

JEL classification. C11, C13, E40, E50.

1. Introduction

Economists increasingly use nonlinear methods to confront their theories with data.
The switch from linear to nonlinear methods is driven in part by increased computing
power, but also by a desire to understand economic phenomena that cannot easily be
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captured by linear models. Examples include models which incorporate the zero lower
bound on interest rates (ZLB), stochastic volatility, time-varying risk premia, Poisson
jumps, credit constraints, borrowing constraints, nonconvex adjustment costs, Markov-
switching dynamics, and default.

Existing methods for estimating nonlinear dynamic models are either highly com-
putationally costly or rely on local approximations which fail adequately to capture the
nonlinear features of interest. In this paper, I develop a new method, the discretization
filter, for approximating the likelihood of nonlinear, non-Gaussian state space models,
which is especially appropriate for models with low-dimensional state spaces.

The major difficulty that arises when studying nonlinear state space models is that
the likelihood cannot be evaluated recursively in closed form as it can in linear models
with the Kalman filter. The discretization filter solves this problem by constructing a
discrete-valued Markov chain that approximates the dynamics of the state variables. The
dynamics of the system are summarized by a transition matrix as opposed to an infinite
dimensional transition kernel.

When there are finitely many states, the likelihood can once again be evaluated re-
cursively in closed form with an algorithm analogous to the Kalman filter. This com-
putation involves a sequence of matrix multiplications which is fast and simple to im-
plement. The discretization filter generates an approximation to the likelihood of any
nonlinear, non-Gaussian state space model that can be used to estimate the model’s
parameters using classical or Bayesian methods.

I apply results from the statistics literature on uniformly ergodic Markov chains to es-
tablish that the associated maximum likelihood estimator is strongly consistent, asymp-
totically normal, and asymptotically efficient. I demonstrate through simulations that
the discretization filter is orders of magnitude faster than alternative nonlinear tech-
niques for the same level of approximation error in low-dimensional settings, and I pro-
vide practical guidelines for applied researchers. It is my hope that the method’s simplic-
ity will make the quantitative study of nonlinear models easier for and more accessible
to applied researchers. A limitation of the approach presented in this paper is that it is
subject to a curse of dimensionality because it relies on tensor-product integration rules.
Nonproduct integration rules such as quasi-Monte Carlo methods provide a promising
avenue to extend the discretization filter to handle high-dimensional models.

To demonstrate the applicability of my technique, I use the discretization filter to
estimate a New Keynesian dynamic stochastic general equilibrium (DSGE) model with
a zero-lower bound on nominal interest rates.1 In this model, the central bank oper-
ates monetary policy according to a Taylor rule but cannot set the short-term nominal
interest rate below zero. The model’s nonlinearity is critical for understanding the prop-
agation of shocks and the conduct of monetary policy at the ZLB, and cannot be con-
sistently estimated with linear methods. Relative to the linearized model, the Taylor rule
coefficients on inflation and the output gap are 36% larger and 75% smaller, respectively.
I find that the slope of the Phillips curve is more than 3 times smaller in the nonlinear

1This model is similar to the one studied in Aruoba, Cuba-Borda, and Schorfheide (2018).
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model, which suggests a strong decoupling of inflation from the output gap and larger
real effects of unanticipated changes in interest rates in post Great Recession data.2

The rest of the paper is organized as follows. Section 2 reviews related literature.
Section 3 explains the discretization filter and how it can be used to construct an ap-
proximation to the likelihood. Section 4 provides practical implementation advice for
applied researchers. Section 5 establishes the strong consistency, asymptotic normality,
and asymptotic efficiency of the approximate maximum likelihood estimator. Section 6
provides Monte Carlo comparisons with existing methods in the case of a stochastic
volatility model and a a linear measurement error model. In Section 7, I estimate a New
Keynesian DSGE model with a zero lower bound on nominal interest rates. Section 8
concludes.

2. Related literature

This paper is related to the literatures on the discretization of stochastic processes, filter-
ing algorithms for nonlinear state space models, statistical properties of maximum like-
lihood estimators for state space models, and the estimation of nonlinear DSGE models.

Tauchen (1986) proposed the first method for discretizing stochastic processes with
an application to first-order vector autoregressive (VAR) models. Tauchen and Hussey
(1991) developed an extension of this method using quadrature formulas; but both of
these methods fail to accurately approximate the dynamics of persistent processes (see
Kopecky and Suen (2010)). Rouwenhorst (1995) developed a method which accurately
approximates highly persistent processes. However, this method is limited to univariate
first-order Gaussian autoregressive (AR) models. Gospodinov and Lkhagvasuren (2014)
developed a method that builds on the Rouwenhorst method to better approximate
persistent Gaussian VARs by matching low order conditional moments. Most recently,
Farmer and Toda (2017) developed a method for approximating general nonlinear, non-
Gaussian first-order Markov processes by matching conditional moments using maxi-
mum entropy.

A special case of the filtering algorithm developed in this paper, referred to as the
“point-mass filter,” was first proposed by Bucy (1969) and Bucy and Senne (1971). In the
point-mass filter, the transition probabilities of the approximating process are chosen
to be proportional to the conditional density of the state vector evaluated on a grid of
evenly spaced points. In contrast, I show that any of the discretzation methods discussed
in the previous paragraph can be used to approximate the state process and often lead
to more accurate parameter estimates than the point-mass filter.

Furthermore, none of the previous papers on approximate grid-based filters con-
sider the asymptotic properties of estimators resulting from these filtering approxima-
tions. The point-mass filter has exclusively been used to estimate the hidden states of

2Previous papers such as Aruoba, Cuba-Borda, and Schorfheide (2018) and Christiano, Eichenbaum, and
Trabandt (2015) estimate linearized versions of New Keynesian models on pre-Great Recession data, and
analyze the relative contribution of shocks during the ZLB. The stark differences in parameter estimates
coming from the linearized and nonlinear models have significant implications for the study of the trans-
mission of shocks at the ZLB. The ability to quickly and efficiently estimate highly nonlinear DSGE models
is of critical importance for central banks and policy makers interested in studying the effects of monetary,
fiscal, or macroprudential policies.
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a known dynamical system. In this paper, I show that the discretization filter can also
be used to estimate the parameters of the system when they are unknown. A compre-
hensive summary of filtering methods for state space models, including the point-mass
filter, can be found in Chen (2003).

The theoretical results and proof techniques in this paper are most directly related
to the work of Douc, Moulines, and Ryden (2004) and Douc, Moulines, Olsson, and
Van Handel (2011). Douc, Moulines, and Ryden (2004) established the consistency and
asymptotic normality of the maximum likelihood estimator in autoregressive models
with a hidden Markov regime that has a compact support. Douc et al. (2011) extended
the consistency result to a setting with unbounded support. These papers build on pre-
vious work from Baum and Petrie (1966), Leroux (1992), Bickel and Ritov (1996), Bickel,
Ritov, and Ryden (1998), Bakry, Milhaud, and Vandekerkhove (1997), and Jensen and
Petersen (1999), which establish asymptotic properties of the maximum likelihood esti-
mator in several simpler state space models.

Section 7 of this paper contributes to the literature on likelihood-based estimation
of nonlinear DSGE models by estimating a New Keynesian DSGE model with a ZLB
with the discretization filter. A closely related paper by Gust, Herbst, López-Salido, and
Smith (2017) estimates a medium scale New Keynesian DSGE model with a ZLB using a
particle filter. Their model is estimated using highly optimized and parallelized Fortran
code on the Federal Reserve Board’s High Performance Computing cluster (with over 300
cores). Despite the application of this considerable computing power, it takes 10 days to
produce 50,000 draws from an MCMC algorithm. My paper and methodology are fo-
cused on producing easily implementable and generalizable MATLAB code that enables
economists to estimate interesting nonlinear DSGE models on a desktop computer.

Other related papers include Van Binsbergen, Fernández-Villaverde, Koijen, and
Rubio-Ramírez (2012), who estimate a DSGE model with recursive preferences and
stochastic volatility and Aruoba, Bocola, and Schorfheide (2017), who estimate a DSGE
model with downward nominal wage and price rigidities. Closely related methodolog-
ical papers discussing the properties and applications of the particle filter to the esti-
mation of nonlinear DSGE models are Fernández-Villaverde and Rubio-Ramírez (2005),
Fernández-Villaverde, Rubio-Ramírez, and Santos (2006), and Fernández-Villaverde and
Rubio-Ramírez (2007).

3. The discretization filter

In this section, I introduce the notation used in the remainder of the paper and provide a
brief overview of nonlinear state space models. I then explain how the state dynamics of
any nonlinear state space model can be approximated by a discrete-state Markov chain.
I show how this new state space system can be used to construct an approximation to
the maximum likelihood estimator for the parameters and filtering distributions of the
original model.

3.1 The setting

In what follows, I restrict attention to the analysis of Hidden Markov Models (HMMs).
A HMM is a special type of nonlinear state space model where the observables in any
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given time period are a function only of the state variables in that time period. However,
the results can be generalized to the case when the observation equation additionally
depends on some finite number of lags of the observables. Much of the exposition and
notation follows Douc, Moulines, and Ryden (2004).

LetXt denote the vector of hidden state variables of the state space system at time t.
I assume that {Xt}∞t=0 is a time-homogeneous, first-order,3 stationary Markov chain and
lies in a separable, compact set X ,4 equipped with a metrizable topology and associated
Borel σ-field B(X ). Let Pθ(x�A), where x ∈ X and A ∈ B(X ), be the transition kernel of
the Markov chain. I further assume that for all θ ∈Θ and x ∈ X , each conditional proba-
bility measure Pθ(x� ·) has a density qθ(·|x) with respect to a common finite dominating
measure μ on X .5

I assume that the observable sequence {Yt}∞t=1 takes values in a set Y that is sepa-
rable and metrizable by a complete metric. I assume that for t ≥ 1, Yt is conditionally
independent of {Ys}t−1

s=1 and {Xs}t−1
s=1 given Xt . Note that this excludes models where the

observation at time t depends on its own lagged values. This is purely for expositional
simplicity and all of the results can be generalized to the case whereYt depends on some
fixed, finite number of lags of itself, {Yt−1� � � � �Yt−k}, although this does complicate the
construction of the transition matrices. I also assume that the observations conditional
on any value of the state Xt = x, x ∈ X , have a density gθ(·|x) with respect to a σ-finite
measure ν on the Borel σ-field B(Y).

Define the joint process {Zt}∞t=0 ≡ {(Xt�Yt)}∞t=0 on Z ≡ X × Y� which has transition
kernelΠθ given by

Πθ(z�A)=
∫
A
gθ

(
y ′|x′)qθ(x′|x)dx′ dy ′

for any z ≡ (x� y) ∈ Z andA ∈ B(Z).
I am interested in conducting estimation and inference on the finite dimensional

parameter θ ∈ Θ by maximum likelihood. Θ is assumed to be a compact subset of Rp.
Denote the true parameter as θ∗.

A HMM is characterized by the following two equations:

Xt |Xt−1 ∼ qθ(Xt |Xt−1)� (3.1)

Yt |Xt ∼ gθ(Yt |Xt)� (3.2)

Equation (3.1) is the state equation, and it characterizes the distribution of the latent
state next period conditional on the current state. Equation (3.2) is the observation, or
measurement equation, and it characterizes the distribution of the observables condi-
tional on the current state.

3Assuming that Xt is a first-order Markov chain is not restrictive, because the state space can always be
redefined to include additional lags ofXt as new state variables. For example, ifXt follows an AR(2) process,
one can redefine the state vector to be (Xt�Xt−1)

′ and recover the first-order Markov assumption.
4Compactness of X simplifies much of the notation and proofs; however, many of the results can be

generalized to the noncompact case using techniques developed in Douc et al. (2011)
5For two measures μ and ν, μ is said to dominate ν if for allA, μ(A)= 0 implies ν(A)= 0.
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Let xt and yt denote particular realizations of the random variablesXt and Yt . Given
a sample {yt}Tt=1, the goal is to obtain estimates of the parameter vector θ and the unob-
served states {xt}Tt=1, which I will denote by θ̂T and {x̂t|t}Tt=1, respectively.6 In order to do
this, one must obtain an expression for the likelihood of the data:

LT (θ�x0)≡ pθ
(
YT1 |X0 = x0

)
� (3.3)

where YT1 ≡ (Y1� � � � �YT ), and X0 refers to the initial condition of the state. For the re-
mainder of the paper, the notation pθ without explicit introduction will refer to a gen-
eral density where the arguments and meaning will be clear from the context. Define the
corresponding log likelihood as

	T (θ�x0)≡ logpθ
(
YT1 |X0 = x0

)
� (3.4)

In the subsequent section, I show how to approximate equation (3.1) by a discrete-
valued Markov chain.

3.2 Approximating the state dynamics

The idea of discretization to alleviate computational problems in economics is not new.
One of the first instances of this is Tauchen (1986). Tauchen’s approximation, along with
several more recent approximations proposed in the literature,7 have been widely used
to solve asset pricing and DSGE models. What is new in this paper is the application
of the idea of discretization to the estimation of nonlinear, non-Gaussian state space
models.

I construct a discrete-valued, first-order Markov process {Xt�M}∞t=1, whose dynamics
mimic those of the original continuous-valued process {Xt}∞t=1. This allows me to sum-
marize the dynamics of the unobserved state by a finite-dimensional transition matrix
Pθ�M .8 Note that this is fundamentally different from forecasting the next period’s state
by taking a local approximation around the current estimate as is done in the extended
Kalman filter. My approximation method is global yet does not rely on simulation tech-
niques.

Define a discrete set of M points in X , XM ≡ {xm�M}Mm=1, associated with sets
{Am�M}Mm=1, which partition X , and define a transition matrix Pθ�M such that themm′-th
element:

Pθ�M
(
m�m′) = Pθ(Xt�M = xm′�M |Xt−1�M = xm�M) (3.5)

corresponds to the probability of transitioning from point xm�M to point xm′�M between
time t − 1 and t. The matrix Pθ�M is assumed to be the same for all t, and thus Xt�M
follows a first-order, time homogeneous,M-state Markov chain.

6The notation x̂t|t denotes the estimate of xt conditional only on information through time t. Sometimes
smoothed estimates of the unobserved state x̂t|T , incorporating all of the data, are of interest.

7See, for example, Tauchen and Hussey (1991), Rouwenhorst (1995), Adda and Cooper (2003), Flodén
(2008), Tanaka and Toda (2013), Gospodinov and Lkhagvasuren (2014), and Farmer and Toda (2017).

8This is similar to the idea proposed in Tauchen and Hussey (1991). However, there the primary focus
was on computing conditional expectations; here, it is approximating the dynamics of a state space model.
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Note that each row of the matrix Pθ�M can be interpreted as a conditional probability
distribution. Specifically, row m corresponds to the distribution of Xt�M conditional on
being at point xm�M at time t−1. It is critical that these conditional distributions be good
approximations to the true conditional distributionsXt |Xt−1 = xm�M .

Define st�M to be the state of the approximate system at time t. In particular, I will say
that the system is in state st�M =m and let ζt�M = em whenXt�M = xm�M , where em is the
mth column of the (M ×M) identity matrix. The system outlined above is characterized
by the equations:

ζt�M = P ′
θ�Mζt−1�M + ṽt�M� (3.6)

Yt |Xt�M ∼ gθ(Yt |Xt�M)� (3.7)

where ṽt�M = ζt�M − Eθ[ζt�M |ζt−1�M ] and P ′
θ�M is the transpose of the matrix Pθ�M . Equa-

tions (3.6) and (3.7) are the state and observation equations of the new approximate
model. The sequence {Yt} has the same distribution, conditional on the state Xt�M , as
the sequence {Yt} generated by the original model. However, in the approximate model,
theXt�M have been restricted to live on a discrete grid.

3.3 Evaluating the likelihood

In the previous section, I showed how to approximate any HMM by replacing the state
equation, equation (3.1), with a discrete-state Markov chain, equation (3.6). In this sec-
tion, I apply the results of Hamilton (1989) to construct an approximation to the likeli-
hood function of the HMM. Hamilton (1989) shows that when the state dynamics of a
HMM are characterized by a discrete-state Markov chain, simple prediction and updat-
ing equations exist that are analogous to the Kalman filter in the linear case. I use the
notation developed in Hamilton (1994). I review these results here and show how they
can be used to develop an approximation to the maximum likelihood estimator for θ.

Let ζ̂t�M|t = Eθ[ζt�M |Y t1] be the econometrician’s best inference about the discretized
state ζt�M conditional on time t information. Intuitively, ζ̂t�M|t is an (M × 1) vector of
probabilities where each element represents the probability of being at a particular
point in the state space at time t conditional on observations up to time t. The forecast
of the approximate state today given the previous period’s information is given by

ζ̂t�M|t−1 = Eθ
[
ζt�M |Y t−1

1

] = P ′
θ�Mζ̂t−1�M|t−1� (3.8)

Also define

ηt�M =
⎡
⎢⎣
gθ(Yt |Xt = x1�M)

���

gθ(Yt |Xt = xm�M)

⎤
⎥⎦ � (3.9)

Themth element of ηt�M is the likelihood of having observed Yt conditional on being in
statem at time t, that is, st�M =m.

Note that the marginal likelihood of Yt given Y t−1
1 is then simply given by

pθ�M
(
Yt |Y t−1

1

) = 1′(ηt�M 	 ζ̂t�M|t−1)� (3.10)
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Algorithm 1: Discretization Filter.

1 Approximate the State Dynamics: Construct a discrete grid {xm�M}Mm=1 and its
associated transition matrix Pθ�M using Algorithm 2 in Appendix B (Farmer
(2021)) or any other method appropriate for the processXt being considered.

2 Initialization: Set the initial distribution of the state ζ̂0�m|0 = πXθ�M or any arbitrary
distribution. Set t� 1.

3 Prediction: Construct the forecast of the time t state ζ̂t�M|t−1 = P ′
θ�Mζ̂t�M|t−1.

4 Updating 1: Evaluate the contemporaneous likelihood of having observed data yt
conditional on each possible value of the state, ηt�M , using equation (3.9).
Compute and save the marginal likelihood of observation yt given by equation
(3.10).

5 Updating 2: Compute the time t filtered estimate of the state ζ̂t�M|t using (3.11). If
t < T , set t� t + 1 and go to step 3. Otherwise go to step 6.

6 Likelihood: Compute the approximate likelihood of the data, 	T�M(θ), using
equation (3.12).

where 	 is element by element multiplication of conformable matrices and 1 is an (M×
1) vector of ones. The updated inference about the state at time t is

ζ̂t�M|t = ηt�M 	 ζ̂t�M|t−1

1′(ηt�M 	 ζ̂t�M|t−1)
= ηt�M 	 ζ̂t�M|t−1

pθ�M
(
Yt |Y t−1

1

) � (3.11)

By iterating these equations from period 1 to the sample size T , one can obtain estimates

of the filtering distributions {ζ̂t�M|t}Tt=1 and the parameters θ̂T�M by maximizing the log

likelihood of the discretized system

	T�M(θ)=
T∑
t=1

logpθ�M
(
Yt |Y t−1

1

)
� (3.12)

Alternatively, given a prior distribution for the paramter vector θ, Bayesian methods can

be used to sample from its posterior distribution.

Algorithm 1 summarizes the procedure for constructing the discrete approximation

to the likelihood and the filtering distributions. This can then be embedded in either a

classical or Bayesian procedure for performing likelihood-based estimation.
Note that the parameter estimates θ̂T�M and the log-likelihood function 	T�M(θ) are

indexed by the number of discrete pointsM in addition to the sample size T to indicate

that the estimates will depend on exactly how the space is discretized. I have omitted

the explicit dependence of the likelihood function on the distribution of the initial state

x0�M . As part of the results in Section 5, I will show why this initial condition is irrelevant

for the asymptotic properties of θ̂T�M .
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4. Recommendations for applied researchers

In this section, I provide recommendations for how to select the grid points of the ap-
proximate finite-state Markov chain and how to construct the transition matrix for the
discretization filter.

4.1 Choosing the number of grid points

The asymptotic theory I developed in Section 5 shows that if the Farmer and Toda (2017)
method with a trapezoidal quadrature rule is used to construct the transition matrix, the
discretization error of the likelihood function is of the order TM−2/d . While this is only
a rate condition, I use it to recommend a rule of thumb choice for the number of points
M used to construct the discretization. Setting this ratio equal to a constant and solving
forM , one gets the rule of thumb

M = cTd/2 (4.1)

where the constant c is a nuisance parameter. For example, if the dimension d of the
state space is 1, the rule says to choose a number of points proportional to the square
root of the sample size. If d = 2, then the rule recommends choosing the number of
points equal to the sample size. I investigate the effect of choosing different values of
c on the accuracy of the approximation in Section 6. Figure 1 plots the rule-of-thumb
choice for M for state spaces of dimensions 1–4, for sample sizes up to T = 100 and
c = 1.

The asymptotic analysis implies that M should be chosen to be as large as possible.
However, for sufficiently large computational problems, it may not be possible to choose
a large number forM . An applied researcher faces a tradeoff between computation time
and the accuracy of the approximation, which I will elaborate on in Section 6. The rule

Figure 1. Rule of thumb choice forM .
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of thumb proposed above can be thought of as a lower bound on the number of points
to choose in order to retain validity of confidence intervals constructed for parameters
using a normal approximation.

4.2 Selecting the grid points

When establishing my theoretical results, I assumed that the state space is compact. This
is a convenient theoretical device that makes the proofs cleaner and more intuitive; but
I conjecture that it is not necessary for my main results.9 In general, practitioners specify
state space models that take values in unbounded spaces. In this section, I address how
to choose the support of the discretized probability measure when the state space is
unbounded.

Consider the case where the number of discretization points,M , has been fixed and
the goal is to choose the support of the discrete approximation, XM . In order for the dis-
cretized system to be a good approximation to the original model, the boundary points
should be chosen to bracket the underlying state vector with high probability. This is
analogous to picking boundary points from the tails of the ergodic distribution.

When the state follows a Gaussian VAR(1), a closed-form expression for the ergodic
distribution is available. Gospodinov and Lkhagvasuren (2014) provided a method to
discretize Gaussian VAR(1)s that is robust to high levels of persistence. They use mix-
tures of Rouwenhorst (1995) approximations to match conditional moments as closely
as possible. For more general time series models, a closed-form expression for the er-
godic distribution rarely exists.

Even when no expression for the unconditional distribution exists, it is often pos-
sible to compute the unconditional mean and standard deviation of the process. In
this case, I recommend choosing a grid centered at the unconditional mean μx cover-
ing

√
M − 1 unconditional standard deviations σx of the process on either side. That is,

choose {xm�M}Mm=1 to beM evenly spaced points over the interval [μx − √
M − 1σx�μx +√

M − 1σx].10 In instances where discretization methods other than Rouwenhorst are
used, I find that a 3 or 4 unconditional standard deviations typically suffice to provide
an accurate approximation. In practice, selecting the width of the grid requires some
experimentation on the part of the researcher.

If the computation of unconditional moments is infeasible, I propose simulating a
path of the state and discarding a fixed fraction from the beginning as burn in. If the
simulated sample and burn-in periods are sufficiently large, the remaining points can
be treated as representative draws from the ergodic distribution. One can then estimate
unconditional moments of the simulated process and use the method outlined above
by replacing the population parameters μx and σx with their estimated counterparts.
Alternatively, one can use empirical quantiles as the discretization points.

9The assumption of uniform ergodicity can be relaxed to geometric ergodicity, where the mixing rate of
the Markov chain depends on the initial distribution. Under suitable restrictions on the initial distribution,
consistency can still be established using the techniques in Douc et al. (2011).

10This is the way of constructing the grid employed in the Rouwenhorst (1995) and is needed to guaran-
tee that the approximate process exactly matches first and second conditional and unconditional moments.
It is also suggested for some applications in Farmer and Toda (2017).
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Consider the case when r = 1, that is, the state vector is one-dimensional. Suppose
one simulates S points from the state equation with Sbi used as burn in. Denote this sim-
ulated path as {xs}Ss=1. Then, to construct a grid that covers the state with approximately
1 − α probability, select

xm�M = Q̂S
(
α

2
+ m− 1

M
(1 − α)

)
form= 1� � � � �M�

where Q̂S : (0�1)→ R is the empirical quantile function of the sample {xs}Ss=Sbi , defined
as

Q̂S(p)=
{

infx ∈ R : p≤ 1
S − Sbi

S∑
s=Sbi

1{xs ≤ x}
}
�

Selecting the points in this way has the desirable property that roughly the same num-
ber of realizations of the state will fall between each pair of points.11 By choosing α ar-
bitrarily close to 1, it is possible to ensure that one has covered the ergodic set with any
desired degree of confidence.12 This method is also robust to skewness and fat tails in
the stationary distribution.

While the simulation procedure outlined above is capable of handling very general
models, it will introduce simulation error and increase the computational burden of the
estimation. It is desirable to use prior knowledge of the particular model to help inform
the choice of discretization whenever possible.13

4.3 Constructing the transition matrix

I recommend two ways of constructing the transition matrix for the discretization filter
that are applicable to the widest range of economic models. However, there is no unique
way to construct the transition matrix.14

First, I outline a way to extend the original method proposed by Tauchen (1986) to
the nonlinear, non-Gaussian case. Create a partition of the state space {Am}Mm=1, where
eachAm is associated with discretization point xm�M for allm= 1� � � � �M (this is equiva-
lent to intervals in the one-dimensional case). Then define

Pθ�M
(
m�m′) =

∫
Am′

qθ(x|Xt−1 = xm�M)μ(dx)� (4.2)

11There is no unique way to define quantile functions in the multivariate case. However, one simple way
to achieve the same goal is to take the univariate empirical quantiles covering 1 − α

d probability for each
dimension.

12Of course, a smaller α will require a larger number of data points for the same level of confidence in
the approximation.

13Another possibility is to construct an ε-distinguishable set as proposed by Maliar and Maliar (2015),
although this is subject to the same criticisms about introducing simulation.

14In addition to these two approaches, several others have been proposed in the literature: Tauchen and
Hussey (1991), Rouwenhorst (1995), Adda and Cooper (2003), Flodén (2008), and Gospodinov and Lkhag-
vasuren (2014). However, all of these with the exception of Tauchen and Hussey (1991) only apply to linear
autoregressive processes.
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Intuitively, there are two layers of approximation in this expression. First, I am assuming
that if Xt−1 is in region Am it is close to the point xm�M in the sense that the conditional
distribution qθ(Xt |Xt−1) can be well approximated by qθ(Xt |Xt−1 = xm�M). Second, I am
assuming that the probability of transitioning to region Am′ from point xm�M is similar
to the conditional density qθ(Xt = xm′�M |Xt−1 = xm�M) over the setAm′ .

A limitation of the application of the Tauchen (1986) approach is the difficulty it en-
counters in evaluating the integrals needed to construct the transition matrix. In gen-
eral, the Tauchen (1986) method will only work well in practice when the Am are hy-
perrectangles, and the transition density is easy to evaluate. Furthermore, there are no
known results on the rate of weak convergence of the ergodic distribution of the approx-
imate Markov chain to that of the underlying continuous process.

Second, I construct the transition matrix as in Farmer and Toda (2017). Their method
finds the discrete distribution which is “closest” to a coarse approximation of the orig-
inal continuous distribution in terms of Kullback–Leibler distance. This discrete distri-
bution is chosen to match a set of conditional moments of the underlying continuous
distribution.15

My Monte Carlo results in Section 6 demonstrate that when the primary aim is esti-
mation of the parameters, very coarse discretizations are adequate. This is in line with
my theoretical results which show that the estimates are consistent independently of
the rate at which M grows. The discretization filter has the potential to scale to higher
dimensional problems by exploiting sparse grid quadrature methods (e.g., Smolyak
grids), quasi-Monte Carlo methods, or the more recently proposed ε-distinguishable set
method in Maliar and Maliar (2015). I am pursuing this extension in ongoing research.

A final point related to computation is that constructing the transition matrix is eas-
ily parallelizable. Constructing each row of the transition matrix involves constructing
a discrete approximation of a continuous distribution. This is independent across rows,
and thus can be easily parallelized to reduce the computational burden for largeM . Con-
structing the transition matrix is by far the most computationally expensive step of the
discretization filter. While I do not employ parallelization in either my Monte Carlo ex-
amples or empirical estimation, parallelization will likely provide significant speed im-
provements over the fully iterative algorithm in larger scale applications.

5. Asymptotic properties of the maximum likelihood estimator

In this section, I establish strong consistency, asymptotic normality, and asymptotic ef-
ficiency of my proposed estimator. I consider joint asymptotics in both the sample size
T and the number of discrete points M . I show that the accuracy of my approximation

15A special case of the discretization filter, known as the point mass filter, has been discussed at length
in the computer science literature. The elements of the transition matrix are chosen to be proportional to
the one-step-ahead density evaluated at the discretization points, that is, Pθ�M(m�m′) ∼ p(xm′�M |xm�M).
However, since the primary aim in the computer science literature is to filter the states, the grid is chosen
to be very fine. Tensor grid product approximations quickly become intractable in higher dimensions, and
for this reason the point-mass filter is infrequently used. See Chen (2003) for a comprehensive survey of the
properties and applications of filtering techniques.
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is governed to first order by the proximity of the infinite history of filtering distribu-
tions of the approximate and true chainsXt�M |Y t−∞ andXt |Y t−∞. The distance between
these distributions is proportional to h∗(M), where h∗(M) is related to the approxi-
mation error between the approximate and true one-step-ahead conditional distribu-
tions of Xt . In what follows, double limits involving M and T should be interpreted as
T → ∞ and M → ∞ as a function of T , M(T). Strong consistency simply requires that
T → ∞ and M → ∞. Asymptotic normality and asymptotic efficiency further require
that T × h∗(M)→ 0 asM → ∞ and T → ∞, that is, thatM → ∞ “fast enough.”

A theoretical contribution of my paper is to establish a rate of convergence of the
ergodic distribution of the approximate discrete chain to the true ergodic distribution.
This result represents a new contribution to the literature on discrete approximations of
Markov chains with continuous valued states. All intermediate results and proofs can be
found in Appendix E in the replication file (Farmer (2021)).

5.1 Preliminaries and assumptions

Define the notation Pθ, Eθ, and pθ to denote probabilities, expectations, and densities
evaluated under the assumption that the initial stateX0 is drawn from its ergodic distri-
bution πXθ , or analogouslyX0�M from πXθ�M in the discrete case.

Before continuing, it is useful to define the extension of the transition kernel Pθ�M to
X . For x ∈ X andA ∈ B(X ), let

Pθ�M(x�A)≡
M∑
m=1

M∑
m′=1

Pθ�M
(
m�m′)1{x ∈Am�M}1{xm′�M ∈A}�

Similarly, define the extension of the ergodic measure πXθ�M to X . ForA ∈ B(X ), let

πXθ�M(A)≡
M∑
m=1

πXθ�M(m)1{xm�M ∈A}�

Lastly, I define the limit asM → ∞ of these objects in the natural way:

Pθ�∞(x�A)≡ lim
M→∞

M∑
m=1

M∑
m′=1

Pθ�M
(
m�m′)1{x ∈Am�M}1{xm′�M ∈A}

and

πXθ�∞(A)≡ lim
M→∞

M∑
m=1

πXθ�M(m)1{xm�M ∈A}�

I will impose assumptions such that these limiting objects are well-defined. For the re-
mainder of the section, I will use both the versions of Pθ�M and πXθ�M , defined over X and
XM , interchangeably and the meaning will be clear from the context.

I now list and discuss my basic assumptions. Assumptions that overlap with Douc,
Moulines, and Ryden (2004) are labeled with an A, and assumptions that are new to
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this paper are labeled with a B. Assumptions labeled A and B are paired by number, for
example, (A1) and (B1).

(A1) (a) 0<σ− ≡ infθ∈Θ infx�x′∈X qθ(x′|x) and σ+ ≡ supθ∈Θ supx�x′∈X qθ(x′|x) <∞.

(b) For all y ′ ∈ Y , 0< infθ∈Θ
∫
X gθ(y

′|x)dx and supθ∈Θ
∫
X gθ(y

′|x)dx <∞.

(B1) Q−+ ≡ infθ∈Θ infM∈Z+ infm�m′�m′′�m′′′ Pθ�M(m�m
′)

Pθ�M(m′′�m′′′) > 0.

Assumption (A1)(a) implies that there is a positive probability that the state variable
can move from any part of the state space to any other part of the state space. This means
that the state space X of the Markov chain {Xt} is what is known as 1-small or petite.
This further implies that for all θ ∈ Θ, {Xt} has a unique invariant measure πXθ and is
uniformly ergodic (see Meyn and Tweedie (1993) for a proof).

Assumption (B1) guarantees that the discrete process {Xt�M} has a unique invari-
ant distribution πXθ�M and is uniformly ergodic for every value M <∞. Additionally it is
needed so that the bound on the mixing rate ofXt�M is independent ofM and θ. This will
be satisfied for any stochastic process satisfying (A1)(a) that is approximated using the
methods reviewed in Section 4.3.16 Note that while all elements of the transition matrix
Pθ�M converge to 0 individually as M → ∞, the limits of the ratios of these elements are
still well-defined.

(A2) For all θ ∈Θ, the transition kernel Πθ is positive Harris recurrent and aperiodic
with invariant distribution πθ.

This assumption guarantees that the original joint Markov process {Zt} is itself uni-
formly ergodic. Assumption (A2) implies that for any initial measure λ,

lim
t→∞

∥∥λΠ(t)
θ −πθ

∥∥
TV = 0� (5.1)

where ‖ · ‖TV is the total variation norm, defined for any two probability measures μ1
and μ2 as

‖μ1 −μ2‖TV = sup
A

∣∣μ1(A)−μ2(A)
∣∣

and Π(t)
θ is the tth iterate of the transition kernel Πθ. In words, for any initial measure

of the joint process {Zt}, the probability of being in any measurable set A ∈ B(Z) ap-
proaches the ergodic probability of being in that set uniformly over all measurable sets
A as t → ∞. This convergence is also independent of the initial measure λ. Developing
a bound on this rate of convergence will be critical for the coming developments.

Lastly, assume that:

(A3) b+ ≡ supθ∈Θ supy1�x
gθ(y1|x) < ∞ and Eθ∗(| logb−(y1)|) < ∞, where b−(y1) ≡

infθ∈Θ
∫
X gθ(y1|x)μ(dx).

16An instance of where this would be violated is in the case of a stochastic process with bounded shocks.
For example, an AR(1) process with bounded shocks cannot travel to any point in the state space from any
other point in the state space. Therefore, some elements of the transition matrix Pθ�M would be exactly 0
for finiteM , violating assumption (B1).
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(B3) Eθ∗(| log c−(y1)|) < ∞, where c−(y1) ≡ infθ∈Θ infM∈Z+ inf1≤m≤M
∑M
m′=1 Pθ�M(m�

m′)gθ(y1|xm′�M).

Assumptions (A3) and (B3) are additional boundedness conditions involving the ob-
servation density gθ which will be necessary to establish the existence of certain limits.
Additional assumptions are introduced and explained as needed.

5.2 Consistency

The proof of consistency can be broken down into two main parts. The first is to show
that the approximation to the likelihood function implied by the discretization filter,
properly normalized, converges to a well-defined asymptotic criterion function 	M(θ),
for fixedM , as the sample size T → ∞. It is important that this convergence be uniform
with respect to the parameter θ ∈ Θ, the initial condition x0 ∈ XM , and the number of
discrete points M ∈ Z

+. This step relies largely on the analysis in Douc, Moulines, and
Ryden (2004), with the additional requirement that the conditions be strengthened so
that the convergence is uniform with respect to the number of discrete points M used
to construct the approximation. This will be a consequence of the uniform ergodicity
of the filtering distributions {Xt�M |Y t1}∞M=1, which follows from the uniform ergodicity of
the discrete Markov chains {Xt�M}∞M=1. The proof of this first part, which relies on results
for a fixedM , is detailed in Lemmas 1 through 3.

The second part, which is new to this paper, is to show that this approximate limiting
criterion function 	M(θ), which is defined for any M , converges to the true limiting cri-
terion function 	(θ) as the number of points used in the approximation M → ∞. I will
show that this holds for any discretization method whose one-step-ahead conditional
distributions Xt�M |Xt−1�M = x converge in distribution to the one-step-ahead condi-
tional distributions of the original continuous processXt |Xt−1 = x asM → ∞. The proof
of this second part, which makes arguments for M → ∞, is detailed in Propositions 1
and 2 and Lemmas 4 and 5. These results and their proofs can be found in Appendix A
and Appendix D, respectively, available in the Online Supplementary Material and in the
replication file (Farmer (2021)).

Together, these two pieces will imply that T−1	T�M(θ) converges uniformly to 	(θ)
as T�M → ∞. Under some additional regularity conditions, this will imply that the es-
timator θ̂T�M converges to the true parameter θ∗ almost surely as T�M → ∞, given in
Theorem 5.1.

Theorem 5.1. Assume (A1)–(A5), (B1)–(B4), and (BT). Then, for any sequence of initial
points x0�M ∈ XM , θ̂T�M�x0�M → θ∗, Pθ∗ -a.s. as T → ∞ andM → ∞.

This is a powerful result. It states that the maximum likelihood estimator is not only
consistent but strongly consistent. In addition, the estimator is strongly consistent in-
dependently of the rate at which the number of pointsM grows.



56 Leland E. Farmer Quantitative Economics 12 (2021)

5.3 Asymptotic normality

Next, I turn to the asymptotic distribution of the maximum likelihood estimator. In or-
der to establish asymptotic normality, I will need additional assumptions regarding the
smoothness and boundedness of first and second derivatives of the likelihood function.

Let ∇θ and ∇2
θ be the gradient and the Hessian operator with respect to the parameter

θ, respectively. Assume there exists a positive real δ such that onG≡ {θ ∈Θ : |θ−θ∗|< δ},
the following assumptions hold:

(A6) For all x�x′ ∈ X and y ∈ Y , the functions θ �→ qθ(x�x
′) and θ �→ gθ(y

′|x′) are twice
continuously differentiable onG.

(A7) (a) supθ∈G supx�x′ ‖∇θ logqθ(x�x′)‖ < ∞ and supθ∈G supx�x′ ‖∇2
θ logqθ(x�x′)‖ <

∞.

(b) Eθ∗ [supθ∈G supx ‖∇θ loggθ(Y1|x)‖2] < ∞ and Eθ∗ [supθ∈G supx ‖∇2
θ loggθ(Y1|

x)‖]<∞.

(A8) (a) For ν-almost all y ′ ∈ Y� there exists a function fy ′ :X → R
+ ∈L1(μ) such that

supθ∈G gθ(y ′|x)≤ fy ′(x).

(b) For μ-almost allX ∈ X , there exist functions f 1
x : Y →R

+ and f 2
x : Y →R

+ in
L1(ν) such that ‖∇θgθ(y ′|x)‖ ≤ f 1

x (y
′) and ‖∇2

θgθ(y
′|x)‖ ≤ f 2

x (y
′) for all θ ∈G.

Instead of restablishing asymptotic normality of my proposed estimator using the
techniques in Douc, Moulines, and Ryden (2004), I use Theorem 7 from their paper. I re-
produce the theorem here for completeness.

Theorem 5.2 (Theorem 7 from Douc, Moulines, and Ryden (2004)). Assume that θ̃T�x0 is
an estimator satisfying 	T (θ̃T�x0�x0)≥ supθ∈Θ 	T (θ�x0)−RT and assumptions (A1)–(A8)
hold. Then the following are true:

(i) If RT = op(T) (with P = Pθ∗ ), then θ̃T�x0 is consistent.

(ii) If RT = Op(1), then T 1/2(θ̃T�x0 − θ∗)= Op(1), that is, the sequence {θ̃T�x0} is T 1/2-
consistent under Pθ∗ .

(iii) If RT = op(1), then T 1/2(θ̃T�x0 − θ∗)→N(0� I(θ∗)−1), Pθ∗ -weakly as T → ∞.

I derive an explicit expression for RT as a function of M and T and provide condi-
tions under which my proposed estimator satisfies condition (iii) of Theorem 2, which
corresponds to asymptotic normality. Note that the bounds I have derived to establish
consistency are not sufficient to establish asymptotic normality of my proposed estima-
tor. I can only establish that condition (ii) of Theorem 3 is satisfied using the determin-
istic bounds applied thus far. To establish conditions under which (iii) is also satisfied, I
use an Azuma–Hoeffding inequality derived in Douc et al. (2011). Using this new bound,
I am able to state my second main result, asymptotic normality.
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Theorem 5.3. Assume (A1)–(A8), (B1)–(B4), (BT), and that I(θ∗) is positive definite.
Then for any sequence of initial points x0�M ∈ XM ,

√
T

(
θ̂T�M�x0�M − θ∗) →N

(
0� I

(
θ∗)−1)

Pθ∗ -weakly as T → ∞,M → ∞, and T × h∗(M)→ 0.

Note that this result is actually stronger than just asymptotic normality. Theorem 5.3
establishes that my proposed estimator and the infeasible maximum likelihood esti-
mator are asymptotically equivalent. That is, my estimator asymptotically achieves the
Cramér–Rao lower bound.

5.4 Relation to Bayesian estimation

In practice, researchers often turn to Bayesian methods for the estimation of parame-
ters. In this section, I briefly show how the results outlined in Section 4.2 lead to correct
Bayesian inference asM → ∞ for any fixed sample size T .

Let p(·) :Θ→ R denote a continuous and bounded probability density function on
Θ. Given a sample yT1 and a prior distribution over the parameters p(θ), the Bayesian
is interested in computing draws from the posterior distribution θ|YT1 = yT1 with proba-
bility density function p(θ|YT1 = yT1 ). This can be accomplished via various procedures
such as importance sampling or Markov Chain Monte Carlo (MCMC).

If the discrete approximation to the likelihood function pθ�M(YT1 ) is used in place of
the true likelihood, standard Bayesian procedures will instead produce draws from the
distribution θM |YT1 = yT1 with associated probability density function

pM
(
θ|YT1 = yT1

) ≡ pθ�M
(
YT1

)
p(θ)∫

Θ
pθ�M

(
YT1

)
p(θ)dθ

�

Proposition 1. Assume (A1)–(A3), (B1)–(B3), and (BT). For any observed sample yT1 and
any continuous and bounded prior p(·) :Θ→ R,

θM |YT1 = yT1
d→ θ|YT1 = yT1

asM → ∞.

The proof can be found in Appendix E, available in the replication file. This result
guarantees that for sufficiently largeM , samples drawn from the approximate posterior
distribution θM |YT1 = yT1 will be representative of the true posterior distribution θ|YT1 =
yT1 .

This is an asymptotic result for M → ∞, in contrast to particle filters, which pro-
vide unbiased approximations to the likelihood function for any number of particles.
While particle filters theoretically provide an unbiased approximation to the likelihood
function, the estimators can have large variances for small numbers of particles which
can lead to poor performance of algorithms like Metropolis–Hastings (see Herbst and
Schorfheide (2015) Chapter 9 for a detailed discussion).
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6. Monte Carlo evidence

6.1 Summary of results

I next consider two simulation exercises to compare the performance of the discretiza-
tion filter with existing alternatives: a stochastic volatility model and a linear state space
model with increasing dimension. I summarize the key takeaways in the next several
paragraphs and discuss the details of the stochastic volatility and increasing dimension
models in Sections 6.2 and 6.3, respectively.

For both examples that I consider, I compare the speed and accuracy of the dis-
cretization filter with a simulation-based approximation, the bootstrap particle filter.
For the stochastic volatility example, I also compare it to the auxiliary particle filter and
a linearization-based approximation, the extended Kalman filter.

The first example I consider is a stochastic volatility model. Unlike the GDP mea-
surement model, there is no closed-form recursive expression for evaluating the likeli-
hood function. Thus, I use the root mean square error of parameter estimates from the
different approximation methods to compare performance.

I find that the discretization filter achieves a similar degree of accuracy to both par-
ticle filters while being significantly faster. For a sample size of 100 observations, the
discretization filter is 101 times faster than the bootstrap particle filter. For a sample size
of 1000 observations, the discretization filter is 466 times faster than the bootstrap par-
ticle filter. The improvements in speed are even more dramatic relative to the auxiliary
particle filter.

The extended Kalman filter is significantly faster than both the discretization filter
and the particle filter. However, it fails to produce consistent estimates of the variance
parameter, because it incorrectly imposes the assumption that the distribution of the
innovations is Gaussian.

The second example I consider is a linear-Gaussian measurement error model. The
advantage of considering a linear Gaussian state space model is that the Kalman Filter
can be used to compute the true likelihood. This makes comparison across approxima-
tion methods of the accuracy of the likelihood approximation straightforward.

I find that the discretization filter is faster than the particle filter regardless of the
desired degree of accuracy for models up to dimension 2. The discretization filter and
bootstrap particle filter provide similar performance for the model of dimension 3. The
particle filter provides a better tradeoff between accuracy and speed for models of di-
mension 4, which is driven by the use of tensor-product integration rules for the dis-
cretization filter.

It is also important to highlight the fact that unlike the particle filter, the discretiza-
tion filter is deterministic, and thus does not inherit any of the additional approximation
errors associated with simulation based methods. Even for the same data and parameter
values, the particle filter produces a distribution of values for the likelihood function due
to simulation variability. The discretization filter eliminates the error associated with
simulation variability because, for a given approximation to the transition matrix, the
filtering algorithm is determinsitic.
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6.2 Stochastic volatility

In this section, I detail the performance of different estimation procedures on a stochas-
tic volatility model.17 The standard discrete time stochastic volatility model, as formu-
lated in Taylor (1982), is given by

2Xt = μ(1 − ρ)+ ρXt−1 + vt� vt ∼ i.i.d.N
(
0�σ2)� (6.1)

Yt = eXt/2wt� wt ∼ i.i.d.N(0�1)� (6.2)

Note that the measurement equation can be equivalently rewritten as

log
(
Y 2
t

) =Xt + log
(
w2
t

)
(6.3)

which leads to an additively separable state equation.18 However, this simplification
only applies to the most basic versions of the stochastic volatility model. I focus on re-
sults from the parameterization μ = −8�940, ρ = 0�9890, and σ = 0�1150, which are em-
pirical estimates of the parameters of the stochastic volatility model on daily returns
data from the DAX in Hautsch and Ou (2008). The results are not sensitive to this pa-
rameterization.

I simulate data for T = 100, 500, and 1000 periods, and compute the likelihood of the
model nine different ways: the DF using six different choices of the rule of thumb con-
stant c, the boostrap PF with adaptive resampling using 1000 particles (BPF), an auxiliary
PF with adaptive resampling using 1000 particles (APF), and the extended Kalman filter
(EKF). The APF is implemented as in Herbst and Schorfheide (2015) Chapter 8. Each
specification is simulated 1000 times and estimation is performed via maximum like-
lihood where optimization is done using MATLAB’s fmincon initialized from the true
value of θ. The random seed used to construct the particle filter approximation is fixed
for a given sample in order to make the optimization well behaved.19

Figures 2, 3, and 4 display the sampling distributions of the maximum likelihood es-
timators. The rows of each figure correspond to a particular model parameter and the
columns correspond to a particular method of approximating the likelihood. The distri-
butions are standardized by subtracting off the true parameter values and scaling by an
estimate of the Cholesky factor of the Fisher information matrix. The Fisher information
matrix is estimated by computing the negative Hessian of the log-likelihood of a sample
of 100,000 observations evaluated at the true θ using a particle filter approximation with
50,000 particles. A standard normal distribution is overlayed in black for comparison

17I verify the assumptions outlined in Section 5 for a version of the stochastic volatility model with
bounded shocks in Appendix C.

18This is the specification of the observation equation that I use in the EKF estimation. This can also
be thought of as a misspecified Kalman filter where the measurement error is incorrectly assumed to be
Gaussian.

19Note that traditional gradient based optimization methods are inapplicable to the PF without this trick
because the likelihood function is simulated, which makes it nondifferentiable; see Flury and Shephard
(2011) for a more detailed discussion.
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Figure 2. MLE sampling distributions for sample size T = 100.

with the asymptotic distribution. A vertical line is displayed at zero. All estimation using
the discretization filter uses the Rouwenhorst (1995) discretization scheme.20

Note that for small sample sizes, T = 100, there is a considerable downward bias in
the estimation of ρ and σ . That is, the optimization algorithm is picking values of ρ and
σ extremely close to 0. This bias is most severe in the EKF estimates, especially for σ .
However, this is not particularly surprising because the EKF is estimating a misspecified

Figure 3. MLE sampling distributions for sample size T = 500.

20Estimation was also performed using the Farmer and Toda (2017) method, the Tauchen (1986) method,
and the point-mass filter. The Rouwenhorst method performs the best although the relative gains of the
discretization filter are similar across all discretization methods.
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Figure 4. MLE sampling distributions for sample size T = 1000.

model, where it is treating the residual in the observation equation as a normal random
variable, even though it has a log(χ2

1) distribution.
This bias vanishes for both the DF and the PFs in the larger sample simulations and

the DF appears to produce tighter estimates of all 3 parameters, especially ρ. This is
due, at least in part, to the fact that the accuracy of the Rouwenhorst approximation is
independent of the persistence of the AR(1) process.

I also compute the root mean squared error (RMSE) and the bias of the parameter es-
timates, approximating the population expectation with an average across simulations.
In particular, for the ith component of the parameter vector, I compute:

RMSE(θ̂i)=
√
E

[
(θ̂i − θi)2

]
� (6.4)

Bias(θ̂i)= E[θi] − θi (6.5)

and report the results in Table 1.
First, consider the DF with c = 5 and its performance relative to the PF and the EKF.

The DF and the two PFs are similar in terms of RMSE and bias for T = 100; however, the
PFs generally slightly outperform the DF for T = 500 and T = 1000. There is not much
of an appreciable difference between the BPF and APF in this application. The EKF is
unambiguously the worst except for estimation of the mean parameter μ.

Next, I examine the performance of the DF for different values of the rule of thumb
constant c. For T = 100 and to a lesser extent for T = 500, the RMSE and bias actually
seem to increase for larger values of c. There are a couple of possible explanations for
this phenomenon. The first is that the asymptotic analysis in Section 5 considers the
case of a compact state space, whereas in this example as in most examples of economic
interest, the state variable resides in an unbounded space. Thus, as the discretization is
being constructed for larger values of c, the number of points is increasing, but so is
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Table 1. Accuracy of parameter estimates.

ROT constant c

Discretization Filter BPF APF EKF

1/2 1 3 5 7 10 – – –

Root Mean Squared Error

μ

T = 100 0�497 0�494 0�503 0�496 0�496 0�496 0�539 0�536 0�565
T = 500 0�395 0�396 0�389 0�389 0�389 0�389 0�421 0�408 0�441
T = 1000 0�299 0�293 0�291 0�291 0�291 0�291 0�281 0�255 0�305

ρ

T = 100 0�461 0�476 0�478 0�479 0�479 0�479 0�430 0�438 0�663
T = 500 0�063 0�070 0�070 0�070 0�070 0�070 0�032 0�024 0�203
T = 1000 0�015 0�014 0�014 0�014 0�014 0�014 0�006 0�006 0�052

σ

T = 100 0�221 0�214 0�216 0�216 0�216 0�216 0�181 0�185 0�581
T = 500 0�056 0�058 0�058 0�058 0�058 0�058 0�041 0�034 0�238
T = 1000 0�028 0�028 0�027 0�027 0�027 0�027 0�019 0�020 0�127

Bias

μ

T = 100 −0�055 −0�056 −0�056 −0�057 −0�057 −0�057 −0�049 −0�075 −0�028
T = 500 −0�034 −0�030 −0�030 −0�030 −0�030 −0�030 −0�045 −0�083 −0�026
T = 1000 −0�006 −0�006 −0�005 −0�005 −0�006 −0�005 −0�003 −0�028 −0�005

ρ

T = 100 −0�322 −0�346 −0�349 −0�351 −0�350 −0�350 −0�292 −0�300 −0�516
T = 500 −0�023 −0�024 −0�024 −0�024 −0�024 −0�024 −0�009 −0�008 −0�075
T = 1000 −0�008 −0�008 −0�008 −0�008 −0�008 −0�008 −0�002 −0�002 −0�014

σ

T = 100 0�098 0�097 0�099 0�099 0�098 0�098 0�080 0�079 0�272
T = 500 0�017 0�018 0�018 0�018 0�018 0�018 −0�000 −0�004 0�145
T = 1000 0�007 0�007 0�007 0�007 0�007 0�007 −0�003 −0�004 0�108

the domain over which the approximation is constructed. This could potentially cause
numerical issues for smaller sample sizes, because the discretization points cover large
areas of the state space which are never visited in the sample.

A second possibility is that these larger numbers are actually more consistent with
the RMSE and bias of the infeasible maximum likelihood estimator. In other words, the
misspecification caused by small values ofM is actually acting as a type of regularization
which is outperforming the maximum likelihood estimator for small sample sizes. Note
that this phenomenon is absent for larger sample sizes, and the estimates of the RMSE
and bias appear stable across all values of c.

The first panel of Table 2 displays the average simulation times for all eight specifi-
cations. The differences in computational time relative to the PFs are stark. With c = 1,
the EKF is about 4 times faster than the DF for small sample sizes and 13 times faster
for large ones. However, this is at the cost of parameter estimates which are significantly
less accurate for larger sample sizes. Furthermore, the EKF estimate of σ appears to be
significantly biased, even asymptotically, due to the misspecification of the observation
equation.

For estimates which are roughly the same accuracy for T = 100, the DF about 101
times faster than the BPF (c = 1). For T = 1000, the DF is slightly less accurate than the
BPF (and APF) while still being about 466 times faster (c = 1). These results suggest that
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Table 2. Computation times.

ROT constant c

Discretization Filter BPF APF

1/2 1 3 5 7 10 – –

Computation Time of 1 Likelihood Evaluation relative to EKF
T = 100 4�18 4�05 6�57 9�30 13�00 18�15 408�35 661�64
T = 500 6�44 8�19 22�850 44�61 80�52 119�77 2442�62 2883�08
T = 1000 8�67 12�58 47�71 128�33 189�18 310�03 5865�56 6180�33

Percentage of Likelihood Evaluation Time Spent on Discretization (vs Filtering)
T = 100 49�39 69�01 86�70 91�76 94�12 96�56 – –
T = 500 35�10 51�08 75�17 83�51 86�47 91�66 – –
T = 1000 28�74 44�36 68�05 76�28 83�92 93�29 – –

the DF is significantly closer to the EKF than a PF in terms of computational burden,
while delivering accurate parameter estimates. To give the reader a rough idea, all of
the simulations for the DF and the EKF ran in a matter of minutes to hours whereas
the most computationally burdensome PF specifications (T = 1000) took over a day to
run operating in parallel on eight cores. These reductions in computation time make
the estimation of many dynamic macroeconomic and financial models tractable. In the
case of the Aruoba, Cuba-Borda, and Schorfheide (2018) New Keynesian model, the es-
timation takes a few days running MATLAB on a standard desktop computer, whereas
estimation using a PF would likely take multiple weeks.

The second panel of Table 2 shows the average percentage of time (out of 100%)
during one likelihood evaluation the discretization filter spends on constructing the grid
and transition matrix relative to filtering the states and evaluating the likelihood. These
numbers show that the primary computational burden of the discretization filter lies
in constructing the grid points and especially the transition matrix, over 50% most of
the time. This pattern is especially pronounced for smaller sample sizes which makes
intuitive sense, but holds more weakly even for the largest sample size of T = 1000.

This analysis suggests that the computational burden lies primarily in the fixed cost
of discretization even for large sample size estimation problems. Unlike with particle fil-
ters, the discretization filter provides fast and efficient filtering of the hidden states given
a particular discretization. An interesting direction for refinement of the discretization
filter is in finding ways to compute the transition matrix less frequently or perhaps only
computing finitely many different transition matrices across parameter combinations
at the outset of the estimation.

6.3 Increasing the dimensionality

In order to study how the performance of the discretization filter scales with the dimen-
sionality of the state-space, I consider a linear state-space model where the true likeli-
hood can be evaluated using the Kalman filter. I compare the performance, in terms of
accuracy and computation time, of the discretization filter and bootstrap particle filter
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relative to the Kalman filter in a d-dimensional system of AR(1) processes with mea-

surement error:

Xi�t = ρXi�t−1 + vi�t vi�t ∼ i�i�d�N
(
0�σ2

u

)
�

Yi�t =Xi�t +wi�t� wi�t ∼ i�i�d�N
(
0�σ2

o

)

for i= 1� � � � � d, where θ= (ρ�σu�σo)′ is assumed to be common across all processes.

I choose ρ = 0�7, σu = 1, and σo = 0�1 × σu√
1−ρ2

= 0�1 × 1√
1−0�49

which is 10% of the

unconditional standard deviation of the Xi�t processes. I generate 1000 samples of 300
observations. For each sample, I evaluate the likelihood of the data at the true param-

eter vector θ using the Kalman filter (KF), the discretization filter (DF) using a tensor-

product combination of Rouwenhorst approximations, and the bootstrap particle filter

(PF). I examine the following two statistics for assessing the quality of the likelihood ap-

proximation discussed in Herbst and Schorfheide (2015)

�̂1 = ln p̂θ
(
YT1

) − lnpθ
(
YT1

)
� (6.6)

�̂2 = exp
[
ln p̂θ

(
YT1

) − lnpθ
(
YT1

)] − 1� (6.7)

where p̂θ(YT1 ) denotes the approximate likelihood computed with either the DF or the

PF, and pθ(YT1 ) denotes the true likelihood evaluated with the KF. Since the approxima-

tion to the likelihood provided by the PF is random, I use a 100 draws of the PF for every

realization of the data. I consider several choices for the number of particles N used

in the PF and for the proportionality constant used in the rule-of-thumb choice for the

number of grid pointsM in the DF proposed in (4.1).

Table 3 presents the results of the simulation exercise for the accuracy of the likeli-

hood approximations as measured by �̂1 and �̂2 and computation times. An important

distinction between the PF and the DF is that the PF approximation to the likelihood

is random. It depends on the particular path that is simulated for the particles. How-

ever, the DF approximation to the likelihood is deterministic and thus has no associated

sampling uncertainty for a given draw of the data.

For the PF, the bias and standard deviation of the approximations for a particular

realization of the data are computed as the average value and standard deviation of the

likelihood discrepancies across the 100 draws of the particles respectively. Since the DF is

deterministic, there is only one value of the bias per sample realization and the standard

deviation is zero. The means of these statistics are then computed as the means across

randomly generated samples.

To be more precise, index a draw of the data by s and a draw of the particles by g.

Define �̂PF
i�s�g as the value of discrepancy measure �̂i computed by the PF for sample s and

particle draw g. Similarly, define �̂DF
i�s as the value of discrepancy measure �̂i computed
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by the DF for sample s. Then the PF statistics are computed as

Mean Bias
(
�̂PF
i

) = 1
S

S∑
s=1

[
1
G

G∑
g=1

�̂PF
i�s�g

]
� (6.8)

Mean Var
(
�̂PF
i

) = 1
S

S∑
s=1

[
�̂PF
i�s�g − 1

G

G∑
g=1

�̂PF
i�s�g

]2

� (6.9)

For the DF, the mean bias is given by

Mean Bias
(
�̂DF
i

) = 1
S

S∑
s=1

�̂DF
i�s (6.10)

and Mean Var(�̂DF
i )= 0 for the reason explained above.

Table 3 also reports the average absolute and relative evaluation times of the likeli-
hood function across all specifications. The absolute times are reported in seconds. For
the PF, these are computed as the average across samples and particle draws. For the DF,
these are simply reported as averages across the samples. The relative times are com-
puted as the time of one evaluation of the likelihood function relative to the time it takes
for the KF.

For dimensions d = 1 and 2, the DF provides an improved tradeoff between compu-
tation time and accuracy for the log-likelihood discrepancy �̂1, where the bias is smaller
in absolute value. As examples, for d = 1 the DF with rule of thumb constant 3 provides
similar accuracy to the PF with 5000 particles while being about 56 times faster; for d = 2
the DF with rule of thumb constant 3 provides similar accuracy to the PF with 50,000
particles while being about 23 times faster. The DF and PF deliver a similar tradeoff be-
tween speed and accuracy for d = 3, although the DF maintains the advantage of being a
deterministic approximation. The PF becomes more computationally efficient for d = 4
where, for example, the DF with rule of thumb constant 2 and the PF with 50,000 particles
provide a similar approximation quality with the DF being about 18 times slower. For di-
mensions 1 and 2 in particular, the particle filter provides a better approximation to the
level of the likelihood itself, which is unsurprising given that it is an unbiased estimator
of the likelihood function. This suggests that the PF may provide more accurate samples
from a Bayesian posterior distribution when using MCMC methods in low dimensions.
The comparison is unclear in higher dimensions as both methods provide poor approx-
imations to the level of the likelihood function with mean biases of −1. A mean bias of
−1 for �̂2 signifies that the bias is too large to accurately quantify numerically because
the exponential term is 0 to machine precision.

The main reason the DF requires so many points to maintain an accurate approxi-
mation is due to the tensor-product nature of the rule being used. The computational
efficiency of the DF can be dramatically improved in applications of dimension d = 3
and above by employing nonproduct integration rules to construct the grid and transi-
tion matrix. In ongoing work, I develop an extension to the DF based on quasi-Monte
Carlo integration rules.
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7. Estimating a new Keynesian model with a ZLB

In this section, I solve and estimate a New Keynesian model with a ZLB on short-term
interest rates. I closely follow the model used in Aruoba, Cuba-Borda, and Schorfheide
(2018), a fairly standard New Keynesian model that uses Rotemberg adjustment costs
to generate nominal rigidities. However, I differ from their approach in two significant
ways.

First, I focus purely on the targeted inflation equilibrium. I do not consider multiple
equilibria. Multiple equilibria are an important topic in their own right but the primary
contribution of this paper is to provide a new estimation methodology. Furthermore,
a conclusion of the Aruoba, Cuba-Borda, and Schorfheide (2018) paper is that there
is weak to mixed evidence of a temporary switch to a deflationary regime in the U.S.
data post 2008. One of their model specifications favors a full switch to the deflationary
regime. However, the data on which they estimate their model are most consistent with
a large discount factor shock in the targeted inflation regime.

Second, I do not use a kink in the monetary policy rule to enforce the zero lower
bound. Instead, I use a smooth approximation to the kink. This is crucial because it al-
lows me to solve the model with standard perturbation methods instead of using pro-
jection methods. Since the model needs to be solved thousands of times during the esti-
mation, using projection methods would be impractical, even with the increased speed
for the evaluation of the likelihood coming from the discretization filter.

The following subsections outline the model specification and present the data, so-
lution method, and estimation results.

7.1 Model description

The model is a textbook New Keynesian model with a few small additions. For brevity,
I omit most of the derivation of the model equilibrium conditions, which can be found
in Aruoba, Cuba-Borda, and Schorfheide (2018) and the accompanying Appendix in the
Online Supplementary Material. I outline the key difference in the monetary policy rule
and present the final equilibrium conditions without derivation.

7.1.1 Monetary policy Instead of imposing that the nominal interest rate Rt must be 1
if the desired policy rate R∗

t falls below 1, I impose the smooth functional form:

Rt = gR0

(
R∗
t

)
eσRεR�t � (7.1)

where the function g is indexed by a parameter R0 which determines the steepness of
the function around 1. The function g is defined as

gR0(R)= (R− 1)+
√
(R− 1)2 + 4 × (R0 − 1)

2
+ 1� (7.2)

As R0 → 1 from the right, gR0(R)→ max{1�R}. The function g asymptotes to 1 as R∗
t →

−∞ and asymptotes to the 45 degree line as R∗
t → ∞. However, unlike the max func-

tion, g has the advantage of being a smooth, differentiable function, so we can rely on
standard perturbation methods for solving the model.
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I assume that the central bank targets inflation and the output gap with a standard
Taylor type rule of the form:

R∗
t =

[
rπ∗

(
πt

π∗

)ψ1
(
Yt

Y ∗
t

)ψ2
]1−ρR

R
ρR
t−1 (7.3)

πt is contemporaneous inflation andπ∗ is the inflation target.Yt is aggregate output and
Y ∗
t is potential output. The parameter ρR governs the degree of interest rate smoothing.

7.1.2 Equilibrium conditions The equilibrium of the model can be characterized by
five equations, along with the stochastic processes for the exogenous shocks. The con-
trol variables are consumption ct , output yt , and inflation πt . The state variables can be
split into endogenous states—lagged potential output y∗

t−1 and the lagged interest rate
Rt−1—and exogenous state variables—a discount factor shock dt , a technology shock zt ,
and a government spending (demand) shock gt .

The model produces the following equilibrium conditions:

• Consumption Euler equation

c−τt = βRtEt
[
dt+1

dt

c−τt+1

γzt+1πt+1

]
� (7.4)

• Nonlinear Phillips curve

φβEt

[
dt+1

dt
c−τt+1yt+1(πt+1 − π̄)πt+1

]

= c−τt yt

{
1
ν

(
1 −χHcτt y1/η

t

) +φ(πt − π̄)
[(

1 − 1
2ν

)
πt + π̄

2ν

]
− 1

}
� (7.5)

• Aggregate resource constraint

ct =
[

1 − φ

2
(πt − π̄)2

]
yt � (7.6)

• Monetary policy rule

Rt = gR0

([
rπ∗

(
πt

π∗

)ψ1
(
yt

y∗
t−1
zt

)αψ2
]1−ρR

R
ρR
t−1

)
eσRεR�t � (7.7)

• Potential output

y∗
t = αy∗

t−1 + (1 − α)yt − αzt� (7.8)

I focus on targeted inflation equilibria of the model, where πt = π̄ = π∗ in the steady
state.

7.2 Data

I use the four time series considered in the 4-variable output gap specification of Aruoba,
Cuba-Borda, and Schorfheide (2018) as the observables for the structural likelihood esti-
mation. These are the log of real per-capita GDP relative to potential GDP (output gap),
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the log consumption-output ratio, GDP deflator inflation, and the federal funds rate.
The details of the data construction can be found in the Appendix in the Online Supple-
mentary Material of their paper. The key methodological difference between their paper
and mine is that I choose to directly compute potential GDP from the data and feed in
the output gap directly. Aruoba, Cuba-Borda, and Schorfheide (2018) used the real per-
capita GDP series in levels and explicitly account for the trend At as an additional state
variable.

The data are quarterly and run from 1984Q1–2017Q4. This expands the original es-
timation sample of Aruoba, Cuba-Borda, and Schorfheide (2018) by 10 years, who esti-
mate a linearized model using the subsample 1984Q1–2007Q4.

7.3 Solution and estimation

Since the model no longer has a kink at the ZLB, all of the equilibrium conditions are
differentiable and standard perturbation methods can be used to solve for the policy
functions. The model has three exogenous state variables: dt , zt , and gt , and two en-
dogenous state variables: y∗

t−1 and Rt−1. Define the full state vector of the model as
xt ≡ (y∗

t−1�Rt−1� dt� zt� gt)
′.

Before proceeding, it will be useful to further reduce the set of equilibrium condi-
tions outlined above. First, I substitute (7.6) and (7.7) into (7.4). Second, I substitute (7.6)
into (7.5). This allows me to obtain expressions for the Euler equation and the Phillips
curve only in terms of output, inflation, and the state variables. Output and inflation can
be solved for using these two equations along with the equations which determine the
evolution of the state variables.

For every value of the parameters that is considered, the policy functions for output
and inflation are obtained using second-order perturbation around the targeted infla-
tion steady state.21 The remaining policy functions for ct , y∗

t , andRt are computed using
the contemporaneous equilibrium conditions. This is done to ensure that the ZLB is re-
spected in equilibrium and to reduce the computational burden of each perturbation
step.

To evaluate the likelihood of the model, I use the discretization filter with five points
for each exogenous state variable and seven points for both of the endogenous state vari-
ables. This results in a total of 53 × 72 = 6125 discretization points for the state vector.22

The dynamics of the exogenous state variables are approximated using the Rouwenhorst
method for each state variable individually. Approximating the dynamics of the endoge-
nous state variables is more complicated and requires further explanation.

There are two key issues. First and most importantly, the values of the future endoge-
nous state variables are predetermined by a continuous mapping, but must be forced to
live on a grid to allow the use of the discretization filter. Second, the unconditional dis-
tribution of the endogenous states is unavailable in closed form, which makes choosing

21Only parameter groupings which produce a stable equilibrium with positive inflation are considered.
22This is clearly smaller than the rule-of-thumb �Td/2� = �1365/2� = 215,698, and was chosen for compu-

tational feasibility reasons. Five state variables pushes the bounds of what is practical using a tensor grid
approximation. In ongoing work, I explore the ability of sparse grids to greatly increase the number of state
variables considered.
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a range for the grid points problematic. To address these problems for a particular per-
turbation solution of the model, I construct a simulation-based approximation to the
dynamics of the endogenous states.

I simulate 5500 draws of y∗
t and Rt using the first 500 as burn-in.23 Using the re-

maining 5000 draws, I compute the unconditional mean and standard deviation of each
of these two variables, for example, μR and σR�unc for Rt . I set the grid for each vari-
able to be seven equally spaced points covering

√
7 − 1 standard deviations on either

side of its unconditional mean. So for Rt , this would be seven equally spaced points
covering the interval [μR − √

6σR�unc�μR + √
6σR�unc]. All possible combinations of the

elements of the two grids for the endogenous states and the three grids for the exoge-
nous states implied by the Rouwenhorst approximation form the full set of 6125 discrete
states, (x1

t � � � � � x
6125
t )′, which will look like

⎡
⎢⎢⎢⎢⎣
x1
t

x2
t
���

x6125
t

⎤
⎥⎥⎥⎥⎦ =

⎡
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y∗�1
t−1�R

1
t−1� d

1
t � z

1
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1
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t−1�R

1
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1
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1
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2
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���
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7
t−1� d

5
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5
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5
t

⎤
⎥⎥⎥⎥⎥⎦ �

In order to compute the transition probabilities between endogenous grid points,
I first compute the values of the two endogenous state variables y∗

t and Rt implied by
their respective policy functions fy∗ and fR for every discrete state xit , i = 1� � � � �6125.
No value will coincide exactly with any of the specified grid points for the endogenous
states. There are three possibilities for the value of the policy functions for the endoge-
nous states evaluated at each xit :

1. The value is smaller than the smallest grid point. In this case, the probability of
transitioning to the smallest grid point is 1.

2. The value is larger than the largest grid point. In this case, the probability of transi-
tioning to the largest grid point is 1.

3. The value is in between two grid points. In this case, the probability of transitioning
to the surrounding two grid points is defined to be the distance between the value
and each of the two grid points, normalized so that they add to 1.

Note that the third situation results in a discretized policy function which is random.
Another possibility is to map the value of the policy function to the nearest grid point.
However, in practice, I find that the former provides a better approximation to the like-
lihood.

At this point, I have 3 (5 × 5) Rouwenhorst matrices for the exogenous states Pd , Pz ,
and Pg, and 2 (6125 × 7) transition matrices for the endogenous states Py∗ and PR. The
full transition matrix P can be computed as

P = (
Py∗ ⊗ 1′

875
) 	 (

1′
7 ⊗ PR ⊗ 1′

125
) 	 (Pd ⊗ Pz ⊗ Pg ⊗ I49)�

23Note that it is important to use the same random seed to simulate the draws across likelihood evalua-
tions. This ensures that the likelihood function remains continuous with respect to the parameters.
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where 1n is an (n × 1) vector of ones and In is the (n × n) identity matrix. The initial
distribution for filtering, ζ̂0|0, is chosen to be a (6125×1) vector with every element equal

to 1
6125 . For each observation, the measurement densities are evaluated at each of the

6125 discrete combinations of the states xit to construct ηt .
Finally, I split the parameters of the model into two sets: those that are fixed a priori,

ϑ, and those that are estimated, θ. The first set of parameters is

ϑ≡ (π̄�γ�β� ḡ� ν�η�α�R0)
′

which includes the target inflation rate, the average technology growth rate, the discount
factor, the average fraction of output dedicated to government spending, the elasticity
of substitution between intermediate goods, the labor supply elasticity, the persistence
of the output gap, and the curvature of the Taylor rule. The second set of parameters is

θ≡ (τ�κ�ψ1�ψ2�ρR�ρz�ρd�ρg�σR�σz�σd�σg�σME�gdp�σME�cy�σME�infl�σME�fedfunds)
′

which includes the coefficient of relative risk aversion, the implied slope of the lin-
earized Phillips curve, the Taylor Rule coefficients on inflation and the output gap, the
degree of interest rate smoothing, the persistence and conditional standard deviation
parameters of the exogenous shocks, and the measurement error standard deviations.

The model is estimated by MCMC using a random walk Metropolis–Hastings algo-
rithm with 3 randomly generated parameter blocks at each iteration. To initialize the al-
gorithm, I first estimate the posterior mode of the linearized model. This posterior mode
is used as the starting point and the inverse Hessian computed at this posterior mode
is used as the proposal variance–covariance matrix for the nonlinear MCMC algorithm.
The scaling of the proposal variance–covariance matrix is calibrated to generate an ac-
ceptance rate of about 30% for the MCMC algorithm. I run the algorithm to produce
70,000 draws from the posterior distribution of θ and discard the first 10,000 as burn-in.

7.4 Results

I now present the results from the MCMC estimation outlined in the previous section.
Figure 5 displays the prior and estimated posterior distributions of all parameters

in θ. The red lines are the prior densities and the blue histograms are the estimated
posterior distributions re-scaled to be comparable to the priors. The priors are identical
to those in Aruoba, Cuba-Borda, and Schorfheide (2018), except for those related to the
measurement errors.

The main thing to notice is that all of the parameters appear to be well identified,
with the only real concerns being the posterior distributions for the persistence of the
technology shock and the standard deviation of the monetary policy shock, which ex-
hibit some nonnormality and appear to be similar to the priors.

To facilitate the comparison with the results of Aruoba, Cuba-Borda, and Schorf-
heide (2018), in Table 4 I report my parameter estimates alongside theirs, and 95% cred-
ible intervals (2�5th and 97�5th percentiles of the posterior distribution). Recall that the
key differences in the estimation are the sample, the specification of the monetary policy
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Figure 5. Prior and posterior distributions of model parameters.

rule, and the order of approximation. I use a second-order perturbation approximation
rather than a linearized model, a smooth rather than a kinked Taylor rule, and I include
ten additional years of data.

A couple of key differences are worth highlighting. First, the slope of the Phillips
curve is estimated to be less than 1/3 of that in the linearized model, with a value of
0�076 compared to 0�27, which is well outside the 95% credible interval. This estimate im-
plies that a 1% change in the output gap is associated with a 0�076% contemporaneous
change in inflation rather than a 0�27% change. This corresponds to substantially higher

Table 4. Posterior estimates of model parameters.

Parameter ACS Estimates (Mean) Mean Median 95% credible interval

τ 2�28 2�33 2�32 (1�88�2�81)
κ 0�27 0�076 0�074 (0�049�0�11)
ψ1 2�55 3�47 3�45 (3�00�4�03)
ψ2 0�35 0�088 0�089 (0�030�0�13)
ρR 0�81 0�66 0�66 (0�63�0�70)
ρz 0�36 0�35 0�36 (0�15�0�48)
ρd 0�94 0�88 0�88 (0�82�0�92)
ρg 0�87 0�94 0�94 (0�90�0�96)
100σR 0�14 0�096 0�081 (0�040�0�22)
100σz 0�39 0�37 0�37 (0�31�0�47)
100σd 2�47 2�77 2�77 (2�55�3�02)
100σg 0�47 0�38 0�38 (0�28�0�47)
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price adjustment costs and thus larger real effects of unanticipated interest rate changes.
My estimate falls in the range of DSGE model estimates surveyed in Schorfheide (2008),
and is in line with the value of 0�052 found in Gust et al. (2017), who account for the ZLB.

Second, the Taylor rule parameters are significantly different. The coefficient on in-
flation is 36% larger, 3�47 compared to 2�55, while the coefficient on the output gap is
75% smaller, 0�088 compared to 0�35, implying that the monetary authority responds
more aggressively to changes in inflation and less aggressively to changes in the out-
put gap. Additionally, the degree of interest rate smoothing favored by the model is 19%
lower, 0�66 compared to 0�81.

The remaining parameter estimates are all fairly similar to the linearized model, pre-
ZLB estimates. Some mild differences are that demand shocks are estimated to be more
persistent while discount factor shocks are estimated to be less persistent.

My results are also consistent with recent work by Lindé and Trabandt (2019), who
show that the nonlinearity introduced by real price and wage-setting rigidities (in the
form of a Kimball (1995) aggregation instead of the usual Dixit and Stiglitz (1977) aggre-
gation) in conjunction with a ZLB on nominal interest rates is key to understanding the
reduced comovement between output and inflation during the Great Recession.

8. Conclusion

Existing methods for estimating nonlinear dynamic models are either highly computa-
tionally costly or rely on local approximations which fail to capture adequately the non-
linear features of interest. In this paper, I have developed a new method, the discretiza-
tion filter, for approximating the likelihood of nonlinear, non-Gaussian state space mod-
els. This approximation is simple to compute and can be used to estimate a model’s pa-
rameters quickly and accurately using classical or Bayesian methods.

I showed that the maximum likelihood estimator implied by the discretization fil-
ter is strongly consistent, asymptotically normal, and asymptotically efficient. I demon-
strated through simulations that the discretization filter is orders of magnitude faster
than alternative nonlinear techniques for the same level of approximation error in low-
dimensional settings and I provided practical guidelines for applied researchers. It is my
hope that the method’s simplicity will make the quantitative study of nonlinear models
easier for and more accessible to applied researchers.

Lastly, I used the discretization filter to estimate a New Keynesian model with a zero
lower bound on nominal interest rates. Accounting for the zero lower bound has impor-
tant implications for key parameter estimates. Compared to estimates from linearized
models, I find that the slope of the Phillips curve is more than 3 times smaller, the Tay-
lor rule coefficients on inflation and the output gap are 36% larger and 75% smaller
respectively, and the degree of interest rate smoothing is 19% lower. This suggests a
strong decoupling of inflation from the output gap and larger real effects of unantici-
pated changes in interest rates in post Great Recession data.

Accurately identifying and estimating nonlinear mechanisms in dynamic economic
models is critical for quantifying the effects of monetary, fiscal, and macroprudential



74 Leland E. Farmer Quantitative Economics 12 (2021)

policies. Going forward, I hope that economists and policymakers working with non-
linear dynamic models will consider the discretization filter a valuable addition to their
toolkit.
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