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in dynamic discrete choice models
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Eduardo Souza-Rodrigues
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Dynamic discrete choice (DDC) models are not identified nonparametrically, but
the non-identification of models does not necessarily imply the nonidentification
of counterfactuals. We derive novel results for the identification of counterfactu-
als in DDC models, such as non-additive changes in payoffs or changes to agents’
choice sets. In doing so, we propose a general framework that allows the inves-
tigation of the identification of a broad class of counterfactuals (covering virtu-
ally any counterfactual encountered in applied work). To illustrate the results, we
consider a firm entry/exit problem numerically, as well as an empirical model of
agricultural land use. In each case, we provide examples of both identified and
nonidentified counterfactuals of interest.
Keywords. Identification, dynamic discrete choice, counterfactual, welfare.

JEL classification. C14, C23, C25, C50, C61, L00, Q15.

1. Introduction

Since the seminal contributions of Rust (1994) and Magnac and Thesmar (2002), it is
well known that dynamic discrete choice (DDC) models are not identified nonparamet-
rically: several payoff functions can rationalize observed choice behavior. As a result,
researchers must impose additional restrictions to estimate DDC models, usually with
the goal of performing counterfactuals. When all models consistent with the data gen-
erate the same behavioral response in a given counterfactual, then the counterfactual is
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said to be identified. In some cases, however, different models that are consistent with
the data generate different behavioral responses in a counterfactual; then the counter-
factual is not identified. As often there is little guidance as to reasonable restrictions that
are necessary to identify the model, one may be concerned about the robustness of the
empirical findings.

A recent body of work (Aguirregabiria (2010), Aguirregabiria and Suzuki (2014),
Norets and Tang (2014), and Arcidiacono and Miller (2020)) has made valuable progress
in this area. These papers have established the identification of two important cate-
gories of counterfactuals in different classes of DDC models: counterfactual behavior is
identified when flow payoffs change additively by prespecified amounts; counterfactual
behavior is generally not identified when the state transition process changes.

This paper builds on that body of research in three respects. First, we propose a gen-
eral framework that allows us to consider counterfactuals with nonadditive changes in
payoffs or with changes to agents’ choice sets (in addition to and in combination with
the cases considered in previous studies).1 Examples include assigning the primitives
of one group of agents to those of another (e.g., assuming preferences of labor market
cohorts are equal, or firm entry costs are identical across markets) and changing payoffs
proportionally (e.g., subsidies that reduce firms’ entry/sunk costs by some percentage),
among others. Second, we investigate how and whether parametric restrictions affect
the nonidentification of counterfactuals by considering a family of parametric models
that encompasses many studies in the literature. Third, we add to existing results that fo-
cus on counterfactual behavior by considering the identification of counterfactual wel-
fare, which is often the ultimate object of interest to policy makers.

To that end, we develop a novel approach that allows us to derive the set of necessary
and sufficient conditions to identify counterfactual behavior and welfare for a broad
class of counterfactuals. We consider counterfactuals that involve almost any change in
the primitives, so our results can be used on a case-by-case basis to investigate the iden-
tification of particular policy interventions of interest. We first note that Magnac and
Thesmar’s (2002) underidentification result implies a convenient representation that di-
rectly relates counterfactual choice probabilities to a set of “free parameters”; that is, a
subset of the payoff parameters that, if known, deliver all remaining unknown parame-
ters. Based on this representation, we can determine the conditions under which coun-
terfactual behavior and welfare are identified. When such conditions are satisfied, it is
not necessary to identify all the individual structural parameters of the model to identify
the effects of policy interventions.2

Our results imply that the identification of counterfactuals can be verified directly
from data on the state transition process. In some cases, identification can be deter-
mined without even examining the data. For example, counterfactuals eliminating an
action from the choice set result in identified counterfactual behavior; counterfactuals

1We consider any (simultaneous) change in all model primitives, with the exception of nondifferentiable
changes in the payoff function (which are uncommon in practice).

2See Ichimura and Taber (2000, 2002) for direct estimation of policy impacts in the context of selection
models.
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assigning the payoff parameters from one group of agents to another are not identi-
fied, except in special cases.3 While prior studies show that prespecified additive shifts
in flow payoffs result in identified counterfactual behavior, we demonstrate that all other
counterfactual transformations of payoff functions are identified only under restrictive
conditions that require verification in the data.

Given that some counterfactuals are not identified in the nonparametric setup, it
is natural to wonder whether parametric assumptions, which are prevalent in applied
work, can help identify specific sets of counterfactuals, even when the model is not fully
identified. We find that they do, assuming of course that the parametric restrictions are
correctly specified. For instance, a number of papers have implemented a counterfac-
tual that changes the volatility or long-run mean of market states (i.e., a change in the
state transition process); while such counterfactuals are not identified in a nonpara-
metric setting, we show that most examples of these counterfactuals in the literature are
identified in the parametric setting.

In addition, we consider the identification of welfare, which is often the ultimate ob-
ject of interest to policy makers (in terms of both sign and magnitude). We find that the
identification of counterfactual behavior is necessary but not sufficient for the identifi-
cation of welfare. We also provide sufficient conditions for welfare identification.

Recognizing that static models are a special case of dynamic models, our framework
can be used to understand which counterfactuals are identified in static settings. Our
results show that, compared to dynamics, static settings do not require restrictions on
state transitions for counterfactual identification as dynamic models do. As a result, a
larger set of counterfactuals is identified in static compared to dynamic models.4

To gain intuition and explore how sensitive counterfactuals can be to model restric-
tions in practice, we turn to two applications. The first is a numerical exercise featuring
a dynamic firm entry/exit model. To identify this model, the researcher has to restrict
scrap values, entry costs, or fixed costs; this is usually accomplished by fixing one of
them to zero. Such an assumption is difficult to justify however as cost or scrap value
data are extremely rare.5 The restrictions can affect the parameter estimates and, for
nonidentified counterfactuals, alter the counterfactual predictions as well. For instance,
when fixed costs are set to zero, the estimated profit is high, which provides the incentive
to enter and stay in the market. Then, in order to match the observed choices, estimated
entry costs and scrap values must be high as well. Although the estimated model with
zero fixed costs is observationally equivalent to the true model, when we implement a
counterfactual subsidy that reduces entry costs proportionally, the predicted impact on
turnover and welfare are exaggerated in the estimated model. Specifically, as the esti-
mated entry costs and scrap values are magnified, it becomes profitable to enter and

3Sometimes eliminating an action also eliminates states (e.g., that may reflect past actions). We also
characterize this case, providing conditions that the counterfactual state transition process (across the re-
maining states) must satisfy for identification. Similarly, a counterfactual that adds an action is identified
provided that the counterfactual payoffs of the new action are a convex combination of the baseline payoffs.

4We also discuss how our results can be extended to dynamic models with continuous choices; see Sec-
tion 3.4.

5Using external information on entry costs and scrap values (specifically, new ship prices and demolition
prices), Kalouptsidi (2014) showed that the latter vary dramatically over states in the shipping industry.
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exit the market repeatedly under the entry subsidy. A similar issue arises when the scrap
value is set to zero instead. In this case, the estimated entry costs must be low (or even
negative) in order to rationalize observed entry: since the scrap value is zero, entering
is not as attractive to a forward-looking agent and so entry costs must be reduced to
provide incentives to enter. Applying the same subsidy again results in incorrect coun-
terfactual predictions (which may even go in the wrong direction).

Next, we consider the empirical relevance of our results in the context of US agri-
cultural land use. Following Scott (2013), field owners decide whether to plant crops or
not, and face uncertainty (regarding commodity prices, weather shocks, government in-
terventions, etc.) as well as switching costs between land uses (which create dynamic
incentives). To estimate the model, Scott (2013) adopted a parametric specification and
restricts the value of a subset of the switching cost parameters. As there is little guid-
ance in the literature concerning how to specify the particular values, he sets them to
zero. To evaluate the impact of these restrictions on counterfactual analysis, we bring
in additional data and augment Scott’s estimation strategy using land resale price data.
Similar to Kalouptsidi (2014), we treat farmland resale transaction prices as a measure
of agents’ value functions. The augmented estimator allows us to test Scott’s identifying
restrictions and reject them.6

We then implement two counterfactuals. First, we consider a long-run land use elas-
ticity, which measures the sensitivity of land use to a persistent change in crop re-
turns. This elasticity is an important input to the analysis of several policy interven-
tions, including agricultural subsidies and biofuel mandates (Roberts and Schlenker
(2013), Scott (2013)). The second counterfactual features an increase in the cost of re-
planting crops and resembles a fertilizer tax (higher fertilizer prices would be a likely
consequence of pricing greenhouse gas emissions, as fertilizer production is very fossil-
fuel intensive). We show that while the long-run elasticity is identified, the fertilizer tax
is not. Thus, a model estimated with our augmented estimator and a model imposing
Scott’s restrictions both predict the same long-run elasticity, but they predict different
responses to the increase in fertilizer taxes (and even responses in different directions).

Related literature

Our paper relates to several important prior studies. In addition to Rust’s (1994) and
Magnac and Thesmar’s (2002) seminal contributions, Heckman and Navarro (2007) con-
sidered the identification of a semiparametric finite horizon optimal stopping time
model that allows for a rich time series dependence on the unobservables. Heckman,
Humphries, and Veramendi (2016) then extended the work of Heckman and Navarro
(2007) by incorporating both ordered and unordered choice sets, and by decomposing
the identification of dynamic treatment effects into direct effects and continuation val-
ues. Under a conditional independence assumption on the unobservables, Bajari, Chu,
Nekipelov, and Park (2016) studied the identification of finite-horizon models with a ter-

6Relating land resale price data to the model requires another set of assumptions about land markets.
See Kalouptsidi (2014) for a full discussion of these restrictions.



Quantitative Economics 12 (2021) Identification of counterfactuals 355

minal action, while Abbring and Daljord (2020) investigated the conditions needed to
identify the discount factor. Pesendorfer and Schmidt-Dengler (2008) extended Magnac
and Thesmar’s results to dynamic games.7

Regarding the identification of counterfactuals in DDC models, Aguirregabiria
(2010) showed identification of counterfactual choice probabilities when the experi-
ment consists of adding a pre-specified amount to payoffs in a finite-horizon binary
choice model. Aguirregabiria and Suzuki (2014) and Norets and Tang (2014) extended
Aguirregabiria’s (2010) result to infinite horizon models. They both provide another im-
portant extension by showing nonidentification of behavior under changes in transition
probabilities. Arcidiacono and Miller (2020) further extended these results to multino-
mial choice models for both stationary and nonstationary environments in the presence
of long and short panel data.

We focus on infinite horizon multinomial choice models and complement the litera-
ture by (a) providing the first full set of necessary and sufficient conditions for identifica-
tion of counterfactuals involving almost any change in the model primitives, including
nonadditive changes in payoffs; (b) investigating the identification power of paramet-
ric restrictions; and (c) providing identification results for counterfactual welfare. Our
results extend to models with permanent unobserved heterogeneity, provided that con-
ditional choice probabilities and transition functions of finitely many unobserved types
are identified in a first step, as in Kasahara and Shimotsu (2009) or Hu and Shum (2012).
In a companion paper (Kalouptsidi, Scott, and Souza-Rodrigues (2017)), we consider
the identification of counterfactual behavior in dynamic games. Recently, Kalouptsidi,
Kitamura, Lima, and Souza-Rodrigues (2020) extended our results to investigate partial
identification of counterfactual outcomes of interest, along with uniformly valid infer-
ence procedures based on subsampling.8

The paper is organized as follows: Section 2 presents the dynamic discrete choice
framework and reconstructs the known results on the nonparametric underidentifica-
tion of standard DDC models. Section 3 contains our main results relating to the identi-
fication of counterfactual behavior and welfare, in both nonparametric and parametric
settings. Section 4 discusses our two applications: a numerical firm entry model and an
empirical model of agricultural land use. Section 5 concludes. The Appendix contains
all mathematical proofs; and the Online Supplemental Material (Kalouptsidi, Scott, and
Souza-Rodrigues (2021)) provides the details of the dataset and the implementation of
the empirical application.

7Recent work considers the identification of the distribution of the idiosyncratic shocks when agents
can make both discrete and continuous choices (Blevins (2014)), or in the presence of continuous states
and exclusion restrictions (Chen (2017)), or under linear-in-parameters payoff functions (Buchholz, Shum,
and Xu (2020)).

8Aguirregabiria and Suzuki (2014) provided results in the context of a monopolist entry/exit problem.
In addition to point identification, Norets and Tang (2014) relaxed the assumption that the distribution
of the idiosyncratic shocks is known by the econometrician and, as a consequence, obtain some partial
identification results. We do not cover partial identification as in Norets and Tang (2014) and in Kalouptsidi
et al. (2020), and we do not consider nonstationary settings as in Aguirregabiria (2010) and Arcidiacono and
Miller (2020).
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2. Dynamic framework

In each period t ∈ {1�2� � � �}, agent i chooses one action ait from the finite set A =
{1� � � � �A}. The per period payoff depends on the state variables (xit� εit), where xit is
observed by the econometrician and εit is not. We assume xit ∈ X = {1� � � � �X}, X <∞,
while εit = (ε1it � � � � � εAit) is i.i.d. across agents and time and has joint distribution G
that is absolutely continuous with respect to the Lebesgue measure and has full support
on R

A. The transition distribution function for (xit� εit) factors as follows:

F(xit+1� εit+1|ait� xit� εit)= F(xit+1|ait� xit)G(εit+1)�

Agents have no private information about future values of xit and εit . The per period
payoff function is given by

π(a�xit� εit)= πa(xit)+ εait �

Agent i chooses a sequence of actions to maximize the expected discounted sum of cur-
rent and future payoffs. Let V (xit� εit) denote the agent’s value function. By Bellman’s
principle of optimality,

V (xit� εit)= max
a∈A

{
πa(xit)+ εait +βE

[
V (xit+1� εit+1)|a�xit

]}
�

whereβ ∈ [0�1) is the discount factor. We define both the ex ante value function V (xit)≡∫
V (xit� εit) dG(εit), and the conditional value function

va(xit)≡ πa(xit)+βE[V (xit+1)|a�xit
]
� (1)

The agent’s optimal policy is given by the conditional choice probabilities (CCPs):

pa(xit)=
∫

1
{
va(xit)+ εait ≥ vj(xit)+ εjit � for all j ∈ A

}
dG(εit)�

where 1{·} is the indicator function. We define the vectors p(x) = [p1(x)� � � � �pA−1(x)]
and p= [p(1)� � � � �p(X)].

It is useful to note that for any (a�x) there exists a real-valued function ψa(·) derived
only fromG such that

V (x)= va(x)+ψa
(
p(x)

)
� (2)

Equation (2) states that the ex ante value function V equals the value obtained by choos-
ing a today and optimally thereafter (va) plus a correction term (ψa), because choosing
action a today is not necessarily optimal. When εit follows the extreme value distribu-
tion, ψa(p(x))= κ− lnpa(x), where κ is the Euler constant.9

9Equation (2) is shown in Arcidiacono and Miller (2011, Lemma 1). It makes use of the Hotz–Miller inver-
sion (Hotz and Miller (1993)), which, in turn, establishes that the difference of conditional value functions
is a known function of the CCPs: va(x)−vj(x)=φaj(p(x)), whereφaj(·) is again derived only fromG. When
εit follows the type I extreme value distribution, φaj(p(x)) = logpa(x) − logpj(x). Chiong, Galichon, and
Shum (2016) proposed a novel approach that can calculate ψa and φaj for a broad set of distributionsG.
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As we make extensive use of matrix notation below, we define the vectors πa�va�
V �ψa ∈R

X , which stack πa(x), va(x), V (x), and ψa(p(x)), for all x ∈ X . We often use the
notation ψa(p) to emphasize the dependence of ψa on the choice probabilities p. We
also define Fa as the transition matrix with (m�n) element equal to Pr(xit+1 = xn|xit =
xm�a). The payoff vector π ∈ R

AX stacks πa for all a ∈ A, and, similarly, F stacks (a vec-
torized version) of Fa for all a ∈ A. While we assume a finite state space, our results can
be extended to state variables with continuous support.

Nonparametric identification of payoffs

A dynamic discrete choice model consists of the primitives (A�X �β�G�F�π) that gen-
erate the endogenous objects {pa�va�V �a ∈ A}. Typically, the available data consist of
agents’ actions at different states, (ait � xit), which implies the CCPs pa(x) and the tran-
sition F can be recovered directly from the data (under standard regularity conditions).
We follow the literature and assume that the discount factorβ and the distribution of the
unobservables G are known as well.10 The objective here is to identify the payoff func-
tion π. Intuitively, π has AX parameters, and there are only (A− 1)X observed CCPs;
thus there areX free payoff parameters andX restrictions will need to be imposed (Rust
(1994), Magnac and Thesmar (2002)).

We represent the underidentification problem as follows. For all a �= J, where J ∈ A
is some reference action, πa can be represented as an affine transformation of πJ :

πa =AaπJ + ba(p)� (3)

where

Aa = (I −βFa)(I −βFJ)−1� (4)

ba(p) =AaψJ(p)−ψa(p)� (5)

and I is a (comformable) identity matrix.11 In the logit model, ba(p)= lnpa −Aa lnpJ ,
where lnpa is theX × 1 vector with elements lnpa(x). To simplify notation, we omit the
dependence of bothAa and ba(p) on the transition probabilities F .

One can compute Aa and ba directly from the data (ait � xit) for all a �= J. Equations
(3)–(5) therefore explicitly lay out how we might estimate the payoff function if we are

10Norets and Tang (2014) have considered the problem of identifying π when G is unknown. Blevins
(2014), Chen (2017), and Buchholz, Shum, and Xu (2020) considered identification of G under different
model assumptions. Magnac and Thesmar (2002) and Abbring and Daljord (2020) investigated sufficient
conditions for identification of the discount factor. It is straightforward to combine assumptions that iden-
tify β andG with the results we present in the current paper.

11To see why, fix the vector πJ ∈R
X . Then

πa = va −βFaV = V −ψa −βFaV = (I −βFa)V −ψa�
where for a = J, we have V = (I − βFJ)

−1(πJ + ψJ). After substituting for V , we obtain the result. As an
aside, note that (I −βFJ) is invertible because FJ is a stochastic matrix, and hence the largest eigenvalue is
smaller than or equal to one. The eigenvalues of (I −βFJ) are given by 1 −βγ, where γ are the eigenvalues
of FJ . Because β< 1 and γ ≤ 1, we have 1 −βγ > 0.
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willing to fix the payoffs of one action at all states a priori (e.g., πJ = 0). However, this
is not the only way to obtain identification: We simply need to add X extra restrictions.
Other common possibilities involve reducing the number of payoff function parame-
ters to be estimated using parametric assumptions and/or exclusions restrictions. As
long as the extra assumptions add X linearly independent restrictions to the (A− 1)X
restrictions expressed by (3), π will be uniquely determined. Further, whichever extra
restrictions are imposed, they are equivalent to stipulating the payoffs of a reference ac-
tion; that is, if π∗

J is the vector of payoffs for the reference action identified by some set
of restrictions and (3), then that set of restrictions is equivalent to stipulating πJ = π∗

J a
priori.

It is worth noting that in static models, where β= 0 and/or Fa = FJ for all a, J, equa-
tion (3) simplifies to πa −πJ = ba, which becomes the standard logistic regression if the
shocks ε follow the type I extreme value distribution. As discussed later, all our results
apply to static models as well.

For some results, it will be useful to represent (3) for all actions a �= J as

π−J =A−JπJ + b−J� (6)

where π−J stacks πa for all a �= J; and the matrix A−J and the vector b−J are defined
similarly. The underidentification problem is therefore represented by the free parame-
ter πJ .

Remark 1 (Unobserved Heterogeneity). In the presence of unobserved heterogene-
ity, equation (6) holds for each unobserved type. The nature of the underidentification
problem is therefore the same after type-specific CCPs and state transitions are identi-
fied (e.g., following the strategy proposed by Kasahara and Shimotsu (2009) or Hu and
Shum (2012)).

3. Identification of counterfactuals

This section presents our main results on the identification of counterfactuals. We be-
gin with a taxonomy of counterfactuals (Section 3.1); we then provide the necessary and
sufficient conditions for identification of counterfactual behavior (Section 3.2); next, we
investigate several special cases of practical interest (Section 3.3); we then provide some
intuition for the results, and discuss briefly the implications for static models and con-
tinuous choice models (Section 3.4); we also analyze the identification of counterfactual
behavior under parametric restrictions (Section 3.5); finally, we investigate counterfac-
tual welfare (Section 3.6).12

12For dynamic games, we can always treat the problem of solving for an individual player’s best response
(holding the opponent’s strategy fixed) as a single-agent problem. Our identification results can therefore
be applied to investigate identification of counterfactual best responses in dynamic games. A full analysis
naturally requires strategic considerations and the possibility of multiple equilibria. See Kalouptsidi, Scott,
and Souza-Rodrigues (2017) for discussion of how strategic interactions makes the identification of coun-
terfactuals in dynamic games particularly difficult.



Quantitative Economics 12 (2021) Identification of counterfactuals 359

3.1 Taxonomy of counterfactuals

A counterfactual is defined by the tuple {Ã� X̃ � β̃� G̃�hs�h}. The sets Ã = {1� � � � � Ã} and
X̃ = {1� � � � � X̃} denote the new set of actions and states, respectively. The new discount
factor is β̃, and the new distribution of the idiosyncratic shocks is G̃.13 The function
hs : RA×X2 →R

Ã×X̃2
transforms the transition probability F into F̃ . Finally, the function

h : RA×X →R
Ã×X̃ transforms the payoff function π into the counterfactual payoff π̃, so

that π̃ = h(π), where h(π) ≡ [h1(π)� � � � �hÃ(π)], with ha(π) = ha(π1� � � � �πA) for each
a ∈ Ã. Below, we discuss a number of special cases encountered in applied work.

Affine payoff counterfactuals In affine payoff counterfactuals, the payoff π̃(a�x) at an
action-state pair (a�x) is obtained as the sum of a scalar g(a�x) and a linear combination
of all baseline payoffs, so that

π̃ = Hπ + g� (7)

where H ∈R
ÃX̃×AX and g is a ÃX̃ × 1 vector. It is helpful to write this in a block-matrix

equivalent form:

π̃ =
⎡⎢⎣H11 H12 · · · H1A

���
���

���
���

HÃ1 HÃ2 · · · HÃA

⎤⎥⎦
⎡⎢⎣π1
���

πA

⎤⎥⎦+
⎡⎢⎣g1
���

gÃ

⎤⎥⎦ � (8)

where the submatricesHaj have dimension X̃ ×X for each pair a ∈ Ã and j ∈ A.
When the counterfactual does not change the set of actions and states (i.e., Ã = A

and X̃ = X ), H is a square matrix. When further, π̃a depends solely on πa, H is block-
diagonal and for all a ∈ A,

π̃a =Haaπa + ga� (9)

We call these “action diagonal counterfactuals.” Below, we contrast three simple special
cases of (9) that are common in applications: “prespecified additive changes,” “propor-
tional changes,” and “changes in types.”

Prespecified additive changes This counterfactual takes Haa as the identity matrix for
all a (i.e., H = I), so that π̃a = πa + ga. For instance, Keane and Wolpin (1997) inves-
tigated a hypothetical college tuition subsidy. Schiraldi (2011) and Wei and Li (2014)
studied automobile scrappage subsidies that depend on the car’s model and age. Du-
flo, Hanna, and Ryan (2012) implemented optimal bonus incentives for teachers in rural
India, where the bonus depends on the number of classes the teachers attend.

“Prespecified additive changes” have been considered by Aguirregabiria (2010),
Aguirregabiria and Suzuki (2014), Norets and Tang (2014), and Arcidiacono and Miller
(2020). Note that g is not allowed to depend on π, so the researcher must be able to

13As previously mentioned, the discount factor is typically assumed known. We allow however for
changes in β for completeness. When β is identified under further restrictions (Magnac and Thesmar
(2002), Abbring and Daljord (2020)), one may be interested in investigating behavior when the discount fac-
tor takes different values. For instance, Conlon (2012) studied the evolution of the LCD TV industry when
consumers are myopic in the counterfactual experiment (i.e., β̃= 0).



360 Kalouptsidi, Scott, and Souza-Rodrigues Quantitative Economics 12 (2021)

specify g before estimating the model. Therefore, it is not possible to represent an arbi-
trary counterfactual π̃ = h(π) by an “additive changes” in practice; this would require
setting g = h(π)− π. In other words, payoffs must be changed by amounts that can be
specified without estimating the model.

Proportional changes In this case, H is diagonal and g= 0. The counterfactual imposes
percentage changes on original payoffs, that is, π̃a(x)= λa(x)πa(x). A common example
involves entry subsidies represented by percentage changes on entry/sunk costs: for in-
stance, Das, Roberts, and Tybout (2007) studied firms’ exporting decisions; Varela (2018)
studied supermarket entry; Lin (2015) investigated entry and quality investment in the
nursing home industry; and Igami (2017) studied innovation in the hard drive indus-
try.14

Changes in types In this case, the primitives of one type of agents are replaced by those
of another, where types can be broadly defined to include markets or regions. For in-
stance, Keane and Wolpin (2010) replaced the primitives of minorities by those of white
women to investigate the racial-gap in labor markets. Eckstein and Lifshitz (2011) sub-
stituted the preference/costs parameters of the 1955’s cohort by those of other cohorts to
study the evolution of labor market conditions. Ryan (2012) replaced the entry costs post
the Clean Air Act Amendment (CAAA) by those before the CAAA in the cement industry.
Dunne, Klimek, Roberts, and Xu (2013) substituted entry costs in Health Professional
Shortage Areas (HPSA) by those in the non-HPSA for dentists and chiropractors.

To represent such a counterfactual, we can explicitly add a time-invariant state, de-
noted by s, the type, so that the payoff is written πa(x� s). For example, if there are two
types, s ∈ {s1� s2}, a counterfactual in which the payoff of type s1 is replaced by that of
type s2 is represented by [

π̃a(s1)

π̃a(s2)

]
=
[

0 I

0 I

][
πa(s1)

πa(s2)

]
� (10)

where πa(s) ∈ R
X and π̃a(s) ∈ R

X̃ , for each type s. Note that Haa is not diagonal in this
case.

Changes in choice sets and state space Eliminating an action j leads to Ã = A − {j}. In
this case, π̃ satisfies (8) withHaa = I andHak = 0 for a ∈ Ã and k ∈ A, a �= k. For instance,
ifA= 3 and we drop action j = 3, (8) becomes

[
π̃1

π̃2

]
=
[
I 0 0
0 I 0

]⎡⎢⎣π1

π2

π3

⎤⎥⎦ �
Rust and Phelan (1997) eliminated social security in a retirement decision model.
Gilleskie (1998) restricted access to medical care in the first days of illness. Crawford

14To be precise, many of these applications involve proportional changes in a component of the payoff
function, for example, in fixed or sunk costs rather than in the whole profit function. We discuss this in
Section 3.5.
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and Shum (2005) did not allow patients to switch medications to study the impact of
experimentation. Keane and Wolpin (2010) eliminated a welfare program. Keane and
Merlo (2010) eliminated the option of private jobs for politicians who leave congress.
Note that in some cases, changing the set of actions also changes the set of states (e.g.,
when xt = at−1 as in many entry models).

A counterfactual that adds a new action j can also be represented by (8): take Ã =
A∪ {j} and letHaa = I and Hak = 0 for a �= k� j. Note that adding an action also requires
specifying its payoff π̃j , the new transition matrix F̃j , the (extended) joint distribution of
the unobserved shocks G̃, and possibly new states. Rosenzweig and Wolpin (1993), for
example, added an insurance option for farmers in rural India.

Changes in transitions Finally, this counterfactual is represented by a function hs that
transforms F to F̃ ; it may involve changes in the long-run mean or volatility of market-
level variables. This is the second type of counterfactual that has been considered in the
literature (Aguirregabiria and Suzuki (2014), Norets and Tang (2014), Arcidiacono and
Miller (2020)). To give some examples of this counterfactual, Hendel and Nevo (2006)
studied consumers’ long-run responsiveness to prices using supermarket scanner data.
Collard-Wexler (2013) explored the effects of demand volatility in the ready-mix concrete
industry. Kalouptsidi (2014) investigated the impact of time to build on industry fluctua-
tions for the case of the shipping industry. Chan, Hamilton, and Papageorge (2016) eval-
uated the value, and the impact on risky behavior, of an HIV treatment breakthrough
that affects the likelihood of HIV infection.

3.2 Identification of counterfactual behavior: The general case

We now present our main theorem, which provides a general framework to investigate
identification of counterfactual behavior; then we turn to the special cases and provide
some intuition for the results. The starting point is equation (3). This relationship is con-
venient for two reasons. First, it does not depend on continuation values. Second, the
CCP vector generated by the model primitives is the unique vector that satisfies (3).15

The counterfactual {Ã� X̃ � β̃� G̃�hs�h} determines a new set of primitives (Ã� X̃ � β̃�
G̃� F̃� π̃), with F̃ = hs(F) and π̃ = h(π), which in turn leads to a new optimal behavior:
the counterfactual CCP, denoted by p̃. The counterfactual counterpart to (3) for any a ∈
Ã, with a �= J, is

π̃a = Ãaπ̃J + b̃a(p̃)� (11)

where

Ãa = (I − β̃F̃a)(I − β̃F̃J)−1�

b̃a(p̃) = Ãaψ̃J(p̃)− ψ̃a(p̃)�
the functions ψ̃J and ψ̃a depend on the new distribution G̃, and we take without loss of
generality a reference action J that belongs to both A and Ã.

15Note that a unique CCP vector p is indeed guaranteed from (3): since the Bellman is a contraction
mapping, V is unique; from (1) so are va, and thus so is p.
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It is clear from (3) and (11) that p̃ is a function of the free parameter πJ . Because the
lack of identification of the model is represented by this free parameter, the counterfac-
tual CCP p̃ is identified if and only if it does not depend on πJ . To determine whether or
not this is the case, we apply the implicit function theorem to (11).

Before presenting the general case, we consider a binary choice example to fix ideas.
Take Ã = A, X̃ = X , β̃= β, G̃=G, and assume π̃a is action diagonal so that π̃a = ha(πa).
Take J = 2, and rewrite (11) as

h1(π1)= Ã1h2(π2)+ b̃1(p̃)� (12)

The implicit function theorem allows us to locally solve (12) with respect to p̃ provided
the matrix

∂

∂p̃

[
h1(π1)− Ã1h2(π2)− b̃1(p̃)

]
is invertible. We prove this matrix is indeed invertible in the general case (see Lemma 1
below). Then it follows from the implicit function theorem that p̃ does not depend on
the free parameter π2 if and only if

∂

∂π2

[
h1(π1)− Ã1h2(π2)− b̃1(p̃)

]= 0�

Because π1 =A1π2 + b1(p) from (3), the above equation simplifies to

∂h1(π1)

∂π1
A1 − Ã1

∂h2(π2)

∂π2
= 0� (13)

This equality depends on the (known) counterfactual transformation {hs�h} and on the
data, F , through A1 and Ã1. So, in practice, one only needs to verify whether (13) holds
for the particular combination {hs�h} of interest.

Next, to facilitate the passage to the general case, rearrange the equality above in
matrix form as follows: [

∂h1(π1)

∂π1
− Ã1

∂h2(π2)

∂π2

][
A1

I

]
= 0

or

[
I −Ã1

]⎡⎢⎢⎣
∂h1(π)

∂π1

∂h1(π)

∂π2
∂h2(π)

∂π1

∂h2(π)

∂π2

⎤⎥⎥⎦
[
A1

I

]
= 0�

where, in this example, ∂h1(π)
∂π2

= ∂h2(π)
∂π1

= 0. Using the property of the Kronecker product
vec(ABC)= (C ′ ⊗A) vec(B), our condition becomes([

A′
1 I

]
⊗
[
I −Ã1

])
vec

(∇h(π))= 0�

where ∇h(π) is the matrix with elements ∂ha(π)
∂πj

for a� j = 1�2. So, to identify the coun-

terfactual CCPs, vec(∇h(π)) must lie in the nullspace of a matrix determined byA1 and
Ã1.
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Now, moving from the binary to the general model, take (11) together with π̃a =
ha(π) and stack all πa for a �= J to obtain

h−J(π)= Ã−JhJ(π)+ b̃−J(p̃)� (14)

where h−J(π) stacks ha(π) for all a ∈ Ã except for J, and the matrix Ã−J and vector
b̃−J(p̃) are defined similarly. The next lemma guarantees that the implicit function the-
orem can be applied to (14).

Lemma 1. The function b̃−J(·) is continuously differentiable and its Jacobian is every-
where invertible.

We state our main theorem below. vecbr(C) rearranges the blocks of matrix C into a
block column by stacking the block rows ofC; the symbol � denotes the block Kronecker
product.16

Theorem 1. Consider the counterfactual transformation {Ã� X̃ � β̃� G̃�hs�h} and suppose
h is differentiable. The counterfactual conditional choice probabilities p̃ are identified if
and only if for all π satisfying (6),

Q(A−J� Ã−J)× vecbr
(∇h(π))= 0� (15)

where

Q(A−J� Ã−J)=
[[
A′

−J I
]
� I� −

[
A′

−J I
]
� Ã−J

]
�

The matrix Q(A−J� Ã−J) has dimension (Ã− 1)X̃X × (ÃX̃)(AX), while vecbr(∇h(π))
has dimension (ÃX̃)(AX)× 1.

Theorem 1 holds that counterfactual CCPs p̃ are identified if and only if the Jacobian
matrix of h is restricted to lie in the nullspace of a matrix defined by A−J and Ã−J . So
model primitives, data and counterfactual transformations have to interact with each
other in a specific way to obtain identification of counterfactual CCPs.17

Equation (15) is the minimal set of sufficient conditions that applied researchers
need to verify to secure identification of counterfactual behavior. For instance, for “ac-

16The block Kronecker product, �, of two partitioned matricesB andC is defined by (Koning, Neudecker,
and Wansbeek (1991)):

B�C =

⎡⎢⎢⎣
B⊗C11 � � � B⊗C1b

���
� � �

���

B⊗Cc1 � � � B⊗Ccb

⎤⎥⎥⎦ �
Note that at the entry level, Kronecker rather than ordinary products are employed.

17Theorem 1 requires only that h is differentiable—this is a mild restriction typically satisfied in prac-
tice. Although the implicit function theorem involves local conditions, equation (15) must be satisfied for
all payoffs that rationalize observed choice probabilities; that is, for all π satisfying (6). Note also that the
choice of the reference action J does not affect whether or not (15) is satisfied.
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tion diagonal” counterfactuals, that is, π̃a = ha(πa), equation (15) is substantially sim-
plified: p̃ is identified if and only if for all π satisfying (6) and all a ∈ Ã, a �= J,

∂ha

∂πa
Aa − Ãa ∂hJ

∂πJ
= 0� (16)

This implies that it is particularly difficult to identify counterfactual behavior when pay-
offs change nonlinearly, since equation (16) must be satisfied for all admissible pay-
offs π.18

It is also worth noting that adding a known vector to π̃ (e.g., π̃ = h(π)+ g) does not
affect the Jacobian matrix of h, and so whether p̃ is identified or not does not depend
on vector g. Similarly, changes to the distribution of the idiosyncratic shocks G do not
affect whether equation (15) holds and so do not prevent the identification of p̃.

Remark 2 (Unobserved Heterogeneity). Theorem 1 can be extended to incorporate un-
observed heterogeneity. Following the discussion in Remark 1, we note that after finitely
many type-specific conditional choice probabilities and transition functions are identi-
fied (Kasahara and Shimotsu (2009), Hu and Shum (2012)), equation (15) can be verified
for each unobserved type.

Example: Rust’s bus engine replacement problem Rust (1987) investigated the optimal
renewal problem of replacing a bus’s engine, trading-off aging, and replacement costs.
The choice set is A = {replace�keep}; the state variable, x, is the bus mileage which
evolves stochastically and is renewed upon replacement; and the payoff function is

π(a�x)=
{

−φ(x)− c(0) if a= replace�

−c(x) if a= keep�

whereφ(x) is the cost of replacing an engine and c(x) is the operating cost at mileage x.
In principle, replacement costs may reflect labor costs of rebuilding an old engine, or
the price of a new engine minus scrap values that may depend on the old engine’s resale
prices. In both cases, replacement costs may potentially vary with the mileage on the
(old) engine. To identify the model, Rust (1987) adopted an exclusion restriction (i.e.,
state-invariant replacement costsφ(x)=φ) and sets operating cost at x= 0 to zero (i.e.,
c(0)= 0). This is sufficient to identify payoffs.

In the counterfactual analysis, Rust varies the level of replacement costs and obtains
the corresponding (long run) replacement choice probabilities, or a demand curve for
engine replacement. One way to represent his counterfactual is to consider counterfac-
tual payoffs as π̃(replace�x)= −(1 + λ)φ(x)− c(0), for various levels of λ, where λ is a
parameter capturing the shift in replacement costs. Equivalently,

π̃(replace�x)= π(replace�x)+ λ(π(replace�x)−π(keep�0)
)
�

18One family of counterfactuals that satisfies (16) is a class of periodic functions satisfying ∂h(By+c)
∂y =

∂h(y)
∂y , for some matrix B and vector c.
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Each value of λ corresponds to one point along the demand curve for engine replace-
ment. This representation is appropriate, for instance, if replacement costs depend on
labor costs and the counterfactual of interest involves increasing wages. Note that the
counterfactual does not affect π(keep�x), nor β or F . In Appendix A, we show that The-
orem 1 implies that this counterfactual is not identified. Showing this for a particular
specification requires only a simple calculation evaluating equation (15).19

Interpreted this way, Rust’s counterfactual falls within the class of affine payoff trans-
formations, a class of counterfactuals for which equation (15) is simplified. As we show
below, we can derive more intuitive conditions for the identification of such counterfac-
tuals.

3.3 Identification of counterfactual behavior: Special cases

In this section, we discuss several special cases of interest following the taxonomy pre-
sented in Section 3.1. Corollary 1 shows how the conditions of Theorem 1 simplify when
the payoff transformation h(·) is affine, that is, π̃ = Hπ + g, or π̃a = ∑

j∈AHajπj + ga.
The affine case is prevalent in applied work.

Corollary 1 (“Affine Payoff” Counterfactual). Assume π̃ = Hπ + g.

(i) The counterfactual CCP p̃ is identified if and only if for all a ∈ Ã, a �= J,∑
l∈A�l �=J

(Hal − ÃaHJl)Al +HaJ − ÃaHJJ = 0� (17)

(ii) Further, if the counterfactual is “action diagonal,” π̃a =Haaπa + ga, equation (17)
becomes, for all a ∈ Ã,

HaaAa − ÃaHJJ = 0� (18)

Recalling thatAa = (I −βFa)(I −βFJ)−1, and noting that the transition matrices Fa
can be estimated, it is clear that conditions (17) and (18) can be easily verified from the
data. The next set of results make direct use of Corollary 1.

Changes in payoffs We now consider counterfactuals that only change agents’ payoff
functions, holding fixed the remaining primitives. As already mentioned, previous work

19Formally, π̃ = Hπ, where H is not block-diagonal:

H =
[
(1 + λ)I [−λ1�0]

0 I

]
�

where I is the identity matrix and 1 is a vector of ones. To evaluate equation (15), consider a sim-
ple version of the model in which a = replace, J = keep, and where the state space is simply X =
{new�old} with deterministic transitions. Then Q(A−J� Ã−J) = [Areplace ⊗ I� I ⊗ I�A′

replace ⊗Areplace� I ⊗
Areplace]. Finally, with β = 0�99 and λ = 0�1 (representing a 10% increase in replacement costs), we obtain
‖Q(A−J� Ã−J) vec(∇h(π))‖ = 1�89, where ‖ · ‖ is the matrix 2-norm. Equation (15) is violated, implying the
counterfactual is not identified.
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has shown that one particular case yields identified counterfactual behavior: “prespeci-
fied additive changes,” which are of the form π̃(a�x)= π(a�x)+ g(a�x) (Aguirregabiria
(2010), Aguirregabiria and Suzuki (2014)). Norets and Tang (2014) also proved identi-
fication when π̃ = λπ + g, where λ is a scalar. The identification of p̃ for this class of
counterfactuals is an immediate implication of Corollary 1. Note that in this case, we
haveHaa = λI for all a, and so equation (18) is clearly satisfied.

Following the taxonomy, we now consider “proportional changes” counterfactuals.
For this class, recall that we take π̃a(x) = λa(x)πa(x), or, compactly, π̃a = Haaπa, with
Haa diagonal.

Proposition 1 (“Proportional Changes”). Consider π̃a =Haaπa withHaa diagonal. As-
sume Ã = A, X̃ = X , β̃ = β, G̃ = G, and F̃ = F . Then, to identify p̃ it is necessary that
Haa =Hjj , for all a� j ∈ A.

Assume the matrices Haa are identical for all a, and denote them by H. Suppose fur-
ther thatH has d distinct diagonal elements λ1� � � � � λd , each occurring n1� � � � � nd times so
that H can be written as H = diag(λ1In1� � � � � λdInd ). The following statements are equiv-
alent:

(i) p̃ is identified.

(ii) Aa is block diagonal with diagonal blocks, (Aa)i, of comformable sizes n1� � � � � nd .

(iii) Let (Fa)ij be the ni × nj submatrix of Fa that comforms with H = diag(λ1In1� � � � �

λdInd ). For all a ∈ A and i �= j, the block partitions of Fa and FJ satisfy

(Fa)ij = (Aa)i(FJ)ij� (19)

where (Aa)i ≡ (I −β(Fa)ii)(I −β(FJ)ii)−1.

The necessary conditions to identify p̃ in the case of “proportional changes” are
restrictive. For one, if we change the payoff of action a in state x by λ(x), π̃(a�x) =
λ(x)π(a�x), then it is necessary to change the payoff of any other action a in state x
by exactly the same proportion λ(x). Furthermore, identification requires special con-
ditions on the Aa matrices (part ii), which are equivalent to special conditions on the
transition process F (part iii). In particular, an implication of the proposition is that, if
all diagonal elements ofH are pairwise distinct, then identification of p̃ requires Fa = FJ
for all a ∈ A. This condition however will not be satisfied in any dynamic model of inter-
est.20

Another set of payoff counterfactuals is the “changes in types.” We prove the follow-
ing proposition for two types and two actions for notational simplicity; the extension to
multiple types and actions is straightforward.

Proposition 2 (“Changes in Types”). Suppose the payoff is πa(x� s), where s is a time-
invariant state (type) that takes two values, s ∈ {s1� s2}, and that there are two actions
A = {a�J}. Suppose also that Ã = A, X̃ = X , β̃= β, G̃=G, and F̃ = F .

20In general, if a diagonal element ofH is unique, that is, ni = 1 for some i, identification requires that the
i-row of Fa and FJ are identical. That is, conditional on state xi, the transition probabilities do not depend
on the action.
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(i) If the counterfactual replaces the payoff of type s1 by that of s2 for one of the actions,
then p̃ is not identified.

(ii) If the counterfactual replaces the payoff s1 by that of s2 for all actions, then p̃ is
identified if and only if (I −βFs1a )(I −βFs1J )−1 = (I −βFs2a )(I −βFs2J )−1, where Fsa
is the transition matrix corresponding to type s.

Proposition 2 results in nonidentification if payoffs of a subset of actions are re-
placed; and requires strong restrictions on transition probabilities if payoffs at all ac-
tions are replaced (much like the “proportional changes” case). It is worth noting that if
the types have the same transitions (Fs1a = F

s2
a ), the condition is satisfied and the coun-

terfactual is identified.
Propositions 1 and 2 express specific and verifiable restrictions on the transition pro-

cess that must hold for the identification of counterfactual behavior. A natural ques-
tion then is whether some transformations of payoffs—and which—can be said to be
identified for any transition process. In other words, when can we say a counterfactual
transformation of payoffs is identified without having to estimate or specify the specific
transition process? In such a case, the researcher can establish identification ex ante,
regardless of the data at hand. Our next result holds that only a limited set of payoff
transformations can be said to be identified without verifying the restrictions on the
transition process.

Proposition 3. Assume Ã = A, X̃ = X , β̃ = β, G̃ =G, F̃ = F , and π̃ = Hπ + g. Coun-
terfactual behavior p̃ is identified without restrictions on the transition process F (i.e.,
counterfactual behavior is identified for every transition F) if and only if:

(i) H = H1 +H2, where H1 = λI, λ is a scalar, and H2 has identical rows;

(ii) or, equivalently, the transformation of payoffs can be expressed in the following
form for all a ∈ A and x ∈ X :

π̃a(x)= λπa(x)+L(π)+ ga(x)� (20)

whereL(·) is the scalar-valued function given byL(π)=∑
j∈A

∑
x∈X ρjxπj(x), and

the vector [ρ11� � � � � ρAX ] corresponds to one row of H2.21

Equation (20) shows that only the following changes are identified regardless of the
transition process:

1. Prespecified additive changes ga(x) which may depend arbitrarily on actions and
states but does not depend on the baseline payoff function.

2. Multiplication of baseline payoffs by a scalar λ, which does not depend on actions
or states. For λ > 0, this resembles a change in the scale of the payoff function.22

21To connect parts (i) and (ii), note that π̃ = Hπ + g= H1π +H2π + g, and that H2π is a constant vector
because H2 has identical rows. So, H2π corresponds to L(π)1, where 1 is a vector of ones.

22Strictly speaking, multiplication of π by a positive scalar is not equivalent to a scale normalization
of the whole utility function, π + ε, because the distribution of the idiosyncratic shocks ε is fixed. More
formally, π̃ = λπ for λ > 0 is equivalent to multiplying the variance of the idiosyncratic shocks by λ−2.
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3. Addition of a scalar-valued function L(π), which does not depend on actions or
states. This corresponds to a change in the level of the payoff function.23

Proposition 3 states that the only meaningful counterfactual transformations of pay-
offs that can be said to be identified with no restrictions on the state transition process
are (1) prespecified additive changes and (2) changes in the level and scale of the pay-
off function. As described above, different versions of the “if” direction of Proposition 3
have been proved in the literature. Our result shows that any other counterfactual trans-
formations of payoffs are identified only under restrictions on the state transition pro-
cesses that require verification in the data. Theorem 1 provides the conditions the tran-
sition process must satisfy most generally; Corollary 1 and Propositions 1 and 2 provide
simpler conditions for certain classes of payoff transformations.

Changes in choice sets and state space Following the taxonomy, we now consider a
counterfactual that adds an option to agent’s choice set. This counterfactual naturally
requires prespecifying π̃j and F̃j for the new choice j (as well as the joint distribution of
the idiosyncratic shocks G̃).

Proposition 4 (“Add an Action” Counterfactual). Suppose Ã = A ∪ {j}, where j is the
new action. Assume X̃ = X , β̃= β, F̃ = F , π̃a = πa for all a ∈ A, and

π̃j =
∑
a∈A

Hjaπa + gj�

Let 1 be anX × 1 vector of ones. Then p̃ is identified if and only if
∑
a∈AHja1 = 1, and

F̃j =
∑
a∈A

HjaFa +β−1
(
I −

∑
a∈A

Hja

)
�

In words, to obtain identification it is necessary that the payoff of the new ac-
tion j is a “convex combination” of existing payoffs, and the new transition matrix is
an “affine” combination of existing transitions. This is reminiscent of predicting con-
sumers’ choices when a new good is introduced in a static differentiated product de-
mand framework. Predicting the demand for the new good requires that the attributes
of the new good are a combination of the attributes of existing goods in the market. The
same applies in the dynamic context; here we additionally need restrictions on the tran-
sitions in order to predict behavior when a new choice is available.

Consider next a counterfactual that eliminates one action (extensions to eliminating
more actions are straightforward).

Proposition 5 (“Eliminate an Action” Counterfactual). Suppose Ã = A− {j}, where j is
the action to be eliminated. If X̃ = X , β̃= β, F̃a = Fa, and π̃a = πa for all a ∈ Ã, then p̃ is
identified.

23Note that a shift in the level of payoffs by the same number L for every action and state does not affect
agents’ incentives.
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Here, the key to identification is that transitions do not change.24 However, elimina-
tion of an action often implies elimination of some states as well (e.g., when xt = at−1 as
in many entry models), which necessarily changes transitions. In that case, identifica-
tion depends on how the probability mass is reallocated from X into the remainder set of
states X̃ . Lemma A2 in Appendix A provides the necessary and sufficient conditions for
identification in this case. Below, we consider a special case that is common in applied
work. Decompose the state variables as x= (k�w), where kt = at−1, and w is an exoge-
nous state (i.e., its evolution does not depend on choices a). Formally, Fa = Fw ⊗ Fka ,
where Fw is the transition matrix for w, Fka is the transition for k, and ⊗ denotes the
Kronecker product. The firm entry/exit problem presented in Section 4 satisfies these
restrictions. The counterfactual CCP is indeed identified in this case.

Proposition 6 (“Eliminate an Action and States” Counterfactual). Suppose Ã = A−{j},
where j is the action to be eliminated. Without loss of generality, let the set of states be
X = {1� � � � � x�x+ 1� � � � �X} and X̃ = {1� � � � � x}. Assume π̃a =Haaπa withHaa = [Ix�0] for
all a ∈ Ã, where Ix is the x× x identity matrix. Suppose x= (w�k) with transition matrix
Fa = Fw ⊗ Fka and kt = at−1. Then the counterfactual CCP p̃ is identified.

Changes in transitions For completeness, we mention briefly another existing result,
first proven by Aguirregabiria and Suzuki (2014) and Norets and Tang (2014), regarding
counterfactuals that only change the state transitions. Specifically, when the only prim-
itive that changes in the counterfactual is the transition process, F̃ �= F , then counter-
factual behavior is identified only under restrictive conditions on these transitions. In
our notation, the necessary and sufficient condition isAa = Ãa, for all a ∈ Ã, a �= J.25 In
Section 3.5, we discuss how (correctly specified) parametric assumptions on the payoff
function can lead to less restrictive requirements on transitions for the identification of
this class of counterfactuals.

3.4 Some intuition

Intuitively, the reason payoffs are not identified in a DDC model is twofold. First, al-
though we can identify the difference in continuation values va − vJ from the observed
choice probabilities (Hotz and Miller (1993)), the discrete choice nature of the data does
not allow us to separate va from vJ . (This feature is shared by static discrete choice mod-
els as well.) Second, we also cannot separate the two components of va(x) nonparamet-
rically, that is,π(a�x) andE[V (x′)|a�x], since they both depend on the same arguments.

To obtain some intuition for why some counterfactuals are identified while others
are not, take a simple example of a binary choice, A = {a�J} and consider the counter-
factual π̃a =Haaπa + ga, for all a, with Ã = A, X̃ = X , β̃= β, and G̃=G. Next, note that

24Note that eliminating action j is not equivalent to a prespecified additive change with gj = −∞ be-
cause the Blackwell sufficient conditions for a contraction are not satisfied in the corresponding Bellman
equation.

25That is an implication of equation (18) in Corollary 1. Note that identification of a counterfactual that
only changes the discount factor, β̃ �= β, requires the same condition: Aa = Ãa, for all a �= J, but with Ãa =
(I − β̃Fa)(I − β̃FJ)−1.
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by rearranging our main equation (3), we obtain

(I −βFa)−1πa − (I −βFJ)−1πJ = (I −βFa)−1ba(p)�

The left-hand side is the difference of the expected discounted present value obtained by
always choosing a versus always choosing J. This difference is known, as the right-hand
side is known.

For the counterfactual scenario, rearrange the equivalent counterfactual equation
(11) as above. Assuming the counterfactual is identified (i.e., HaaAa = ÃaHJJ ), it is easy
to show that

Haa(I −βFa)
[
(I −βFa)−1πa − (I −βFJ)−1πJ

]+ (ga − ÃagJ)= b̃a(p̃)�

In words, the counterfactual CCP p̃ depends on π only through the difference in present
values: (I − βFa)

−1πa − (I − βFJ)
−1πJ . All other terms of the left-hand side, as well as

the function b̃a, are known. So, to calculate p̃, it is not necessary to identify the payoff
function π.

To make the argument more transparent, consider the “additive changes” counter-
factual. The left-hand side now becomes the sum of two terms: (I − βFa)

−1πa − (I −
βFJ)

−1πJ and (I−βFa)−1ga−(I−βFJ)−1gJ . Both terms are known, and thus the change
in the choice probabilities is also known. There is no need to reoptimize agents’ dynamic
behavior in the counterfactual scenario. This is possible only because the counterfactual
difference (I− β̃F̃a)−1π̃a− (I− β̃F̃J)−1π̃J is a known function of the observed difference
(I −βFa)−1πa − (I −βFJ)−1πJ .

When the equality HaaAa = ÃaHJJ is not satisfied, the counterfactual difference in
continuation values depends directly on π. It is no longer sufficient to know the ob-
served differences (I−βFa)−1πa− (I−βFJ)−1πJ and, therefore, we cannot identify the
counterfactual behavior, at least not without additional restrictions.

Before investigating the role of additional restrictions in the next section, we discuss
briefly some implications for static discrete choice models and dynamic models with
continuous choices.

Remark 3 (Static vs. Dynamic Models). Our framework can be used to understand
which counterfactuals are identified in a static setting, and how that compares to dy-
namic problems. To be precise, a static model can be characterized by either agents
being myopic (i.e., β = 0), or by state transitions not affected by agents’ choices (i.e.,
Fa = FJ , for all a), or both. In such cases, it is clear from the discussion above that
counterfactual behavior is identified when it depends on π only through the difference
πa − πJ . This is intuitive as static models can only recover differences in flow payoffs
from the data. Counterfactual behavior is not identified when it depends directly on π,
that is, when payoff levels matter.

An alternative way to see this is to note that whenβ= 0 or Fa = FJ hold for all a, both
in the baseline and in the counterfactual scenarios, thenAa = Ãa = I, for all a. This im-
plies that condition (18) in Corollary 1 simplifies to Haa = HJJ , for all a. This in turn
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means that the “additive changes,” the “eliminating actions,” and the “changes in tran-
sitions” counterfactuals are all identified: equation (18) is satisfied trivially in all these
cases (since Haa = I for all a). On the other hand, “proportional changes” and “adding
actions” are counterfactuals that are not trivially identified. Much like in dynamic mod-
els, “proportional changes” are not identified when we multiply different payoffs by dif-
ferent amounts; “adding actions” is not identified when the payoff of the new action is
not a convex combination of the payoffs of existing choices. That is because payoff levels
matter for both cases. In contrast to dynamic models though, while these two counter-
factuals require restrictions in how payoffs are changed, they do not demand restrictions
on state transitions for identification.26 In sum, not all counterfactuals of interest are
identified in static models, but they demand fewer restrictions for identification when
compared to dynamic models and so a larger number of cases are identified in static
models.

Remark 4 (Discrete vs. Continuous Choices). While we do not investigate formally the
identification of counterfactuals for dynamic models with continuous choices, our ap-
proach suggests that the same issues apply to that class of models. Intuitively, just like
in a discrete choice setting, where the econometrician can only recover differences in
payoffs, in a continuous choice setting, we can only recover the derivative of payoffs.
Consistent with this, Blevins (2014) has shown that nonparametric identification of dy-
namic models with continuous actions and states requires location restrictions on flow
payoffs (in the same manner as in the class of nonseparable models studied by Matzkin
(2003)). When cardinal properties of the payoff function matter for the counterfactual,
location restrictions necessary to identify the model may prevent the identification of
counterfactual behavior, even when actions and states are continuous.

3.5 Identification of counterfactual behavior under parametric restrictions

More often than not, applied work relies on parametric restrictions. We thus consider
identification of counterfactuals under a specific parametric model that encompasses
many applied models in the literature.

We decompose the state space into two components, x = (k�w), where k ∈ K =
{1� � � � �K} are controlled states (i.e., their evolution is affected by agents’ choices), and
w ∈ W = {1� � � � �W } are exogenous (e.g., market-level states), withK andW finite. There-
fore,

F
(
x′|a�x)= Fk(k′|a�k)Fw(w′|w)� (21)

and the transition matrix Fa is written as Fa = Fw ⊗ Fka , where ⊗ denotes the Kronecker
product. In addition, we assume the following parametric payoff is true:

π(a�k�w)= θ0(a�k)+Z(a�w)′θ1(a�k)� (22)

26In static models, “proportional changes” satisfy condition (ii) in Proposition 1 trivially, and “adding
actions” does not require the new state transition to be a combination of existing state transitions (see
Proposition 4).
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where Z(a�w) is a known function of actions and states w (e.g., observed measures of
variable profits or returns) and θ0(a�k) is interpreted as a fixed cost component. For
instance, in the firm entry/exit problem considered in Section 4.1, Z(a�w)′θ1(a�k) rep-
resents variable profits which may be either directly observed or a flexible function of
observables such as market size and input prices, while θ0(a�k) denotes entry/exit/fixed
cost depending on the action and state.

Proposition 7 provides sufficient conditions for the identification of this parametric
model. For notational simplicity, we focus on a binary choice with A = {a�J} and assume
Z(a�w) is scalar. The proposition also holds in the more general case of Fw(w′|w�a) and
multivariate Z(a�w).

Proposition 7. Assume (21) and (22) hold. Let

Da = (I −βFa)−1�

Za = [
Za(1)Ik� � � � �Za(W )Ik

]′
�

and similarly for DJ and ZJ . Ik is the identity matrix of size K and e′w = [0�0� � � � � Ik�0�
� � � �0] with Ik in the w position. Suppose W ≥ 3 and there exist w, w̃, w such that the
matrix [(

e′w − e′̃w
)
DaZa

(
e′̃w − e′w

)
DJZJ(

e′w − e′w
)
DaZa

(
e′w − e′w

)
DJZJ

]
(23)

is invertible. Then the true parameters [θ1(a�k)�θ1(J�k)] are identified, but [θ0(a�k)�

θ0(J�k)] are not identified.

Intuitively, the “slope” coefficients θ1 are identified provided there is “sufficient vari-
ation” in w (guaranteed by the invertibility of matrix (23)). This requires w to signifi-
cantly change the conditional expected values of Za and ZJ (naturally, it is necessary
that Za �= ZJ).27 The “intercept” parameters θ0, however, are not identified. To identify
this vector, we have to add K linearly independent restrictions to the model, much as
we have to imposeX linearly independent restrictions in the nonparametric setting.

Counterfactuals In addition to the counterfactuals discussed in Section 3.1, one may
be interested in changes in either θ0, that is,

π̃(a�k�w)= h0
[
θ0(a�k)

]+Z(a�w)′θ1(a�k); (24)

or in Z′θ1, that is,

π̃(a�k�w)= θ0(a�k)+ h1
[
Z(a�w)′θ1(a�k)

]
� (25)

27Note that e′wDaZa is the expected discounted value of Z when action a is always chosen conditional
on observing state w today.
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These counterfactuals allow for changes in how the flow payoff responds to some state
(k�w), or to the outcome variable Z.

We show that transformations in Z′θ1 result in identified counterfactuals, while
transformations in θ0(a�k) may not. Indeed, since θ1(a�k) is identified, a counterfac-
tual that changesZ′θ1 resembles a “prespecified additive change,” which is an identified
counterfactual (see Section 3.3). In contrast, since θ0(a�k) is not identified, one needs
to follow our analysis of counterfactuals for nonparametric payoffs to establish whether
a particular counterfactual is identified or not.

To illustrate, we consider affine action-diagonal counterfactuals as an example. In
particular, let

θ̃0(a)=H0(a)θ0(a) (26)

for a = 1� � � � � J, θ0(a) is obtained by stacking θ0(a�k) for all k, and H0(a) is a K × K

matrix. Extending to a more general (differentiable) function of θ0 is straightforward.

Proposition 8 (Parametric Model). Assume Ã = A, X̃ = X , β̃= β, and that the condi-
tions of Proposition 7 hold:

(i) p̃ is identified when the counterfactual only changes the term Z(a�w)′θ1(a�k) of
π(a�k�w) as in (25).

(ii) p̃ is identified under the affine action diagonal counterfactual (26) if and only if
for all a �= J

H0(a)A
k
a −AkaH0(J)= 0�

whereAka = (I −βFka )(I −βFkJ )−1.

(iii) p̃ is identified when the counterfactual only changes the transition Fka if and only
ifAka = Ãka , a �= J, where Ãka = (I −βF̃ka )(I −βF̃kJ )−1.

(iv) p̃ is identified when the counterfactual changes the transition Fw.

In a nonparametric setting, changes in the transition process generically result in
nonidentified counterfactual behavior (in the sense that the necessary conditions are
bound to be restrictive). However, Proposition 8 shows that the intuition from the non-
parametric setting does not necessarily carry over to parametric models. When a coun-
terfactual changes the transition process for state variables that are part of the identified
component of the payoff function, counterfactual behavior is identified. For instance,
the response to a change in the volatility of demand shocks in the firm entry/exit ex-
ample is identified. Even though Aguirregabiria and Suzuki (2014) and Norets and Tang
(2014) have explored changes in transitions in the nonparametric context, most im-
plementations of these counterfactuals in practice are done in the parametric context
(Hendel and Nevo (2006), Collard-Wexler (2013)) and so based on our results, are in fact
identified if the parametric model is correctly specified.
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3.6 Identification of counterfactual welfare

In this section, we discuss the identification of counterfactual welfare and provide the
minimal set of sufficient conditions for identification. For simplicity, we only consider
affine action-diagonal counterfactuals; that is, Ã = A, X̃ = X , β̃= β, and π̃a =Haaπa +
ga, all a. Extensions to more general cases are straightforward, but at the cost of sub-
stantially more cumbersome notation. The feature of interest here is the value function
difference �V = Ṽ − V , where Ṽ is the counterfactual value function.

Proposition 9 (Welfare). Assume Ã = A, X̃ = X , β̃= β, and π̃a =Haaπa + ga, for all a.
The welfare difference �V is identified if, for all a �= J,

HaaAa − ÃaHJJ = 0�

and

HJJ = (I −βF̃J)(I −βFJ)−1� (27)

Proposition 9 shows that identification of p̃ (which is implied by the proposition’s
first condition) is not sufficient to identify �V ; we also need (27). The second condition
is satisfied, for instance, when the counterfactual transformation does not affect option
J: HJJ = I and F̃J = FJ . For “proportional changes” counterfactuals the two conditions
are satisfied only when all matrices Haa equal the identity matrix; that is, π̃ = π, which
is equivalent to saying that �V is not identified. On a positive note, an immediate im-
plication of Proposition 9 is that the welfare impact of “additive changes” is identified.
Therefore, “additive changes” are robust to nonidentification of the model primitives:
both p̃ and �V are identified.28

Finally, the next corollary considers identification of �V for the parametric model of
Section 3.5. As expected, identification is guaranteed when counterfactuals changeZ′θ1

and/or Fw.

Corollary 2 (Welfare, Parametric Model). Assume the conditions of Proposition 7 hold.
Suppose Ã = A, X̃ = X , β̃= β, and θ̃0(a)=H0(a)θ0(a). The welfare difference �V is iden-
tified if, for all a �= J,

H0(a)A
k
a − ÃkaH0(J)= 0�

and

H0(J)= (
I −βF̃kJ

)(
I −βFkJ

)−1
�

Furthermore, ifH0(a)= I and F̃ka = Fka for all a, then �V is identified for any counterfac-
tual transformation on Z(a�w)′θ1(a�k) and Fw.

28Proposition 9 is an immediate consequence of Lemma A5 in the Appendix, which provides the full set
of necessary and sufficient conditions to identify �V .
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4. Applied examples

4.1 Numerical example: Firm entry and exit problem

This section illustrates some of our theoretical results using a firm entry/exit problem;
the model adopts the parameterization of Section 3.5 and has been commonly used
in the literature (Das, Roberts, and Tybout (2007), Aguirregabiria and Suzuki (2014),
Lin (2015), Igami (2017), Varela (2018)). Consider a firm deciding between two actions:
whether to be active (a = 1) or inactive (a = 0) in a market, so that A = {0�1}. Let the
state variables be x= (k�w), where k is the lagged chosen action, andw is an exogenous
shock determining variable operating profits, π(w). The flow payoff is

π(a�k�w)=
{
k× sv if a= 0 (inactive)�

k(π(w)− fc)− (1 − k)ec if a= 1 (active)�

where sv is the scrap value, fc is the fixed cost, and ec is the entry cost.29 Note that the
payoff when a = 0 and k = 0 (i.e., when the firm was and remains inactive) is set equal
to zero.

We assume that w follows a first-order Markov process, and can take three values:
high, medium, or low, w ∈ {wH�wM�wL}. Variable profits π(w) are determined by static
profit maximization. We assume the econometrician knows (or estimates): (a) the true
CCP, Pr(active|k�w); (b) the transition Pr(wt+1|wt); and (c) the variable profits π(w),
which can be recovered “offline,” using price and quantity data.30

First, we solve the true model, obtain the baseline CCP, and recover π. Typically, re-
searchers identify the model by setting either sv = 0 or fc = 0. As previously discussed,
there is little guidance to justify these assumptions because cost or scrap value data are
extremely rare (e.g., see Kalouptsidi (2014)). We estimate the model twice to compare
the different sets of restrictions. Under the first restriction that scrap values are equal to
zero (sv = 0), identification of π follows directly from equation (3), πa =AaπJ + ba(p):
in this case, note that the payoff πJ for J = inactive is equal to zero for all states (k�w),
and thus (3) directly deliversπa for a= active. Under the alternative restriction that fixed
costs are equal to zero (fc = 0), we can recover the remaining elements of π by adding
π(active�1�w)= π(w) to the system described by (3).

29The model falls within the parametric framework of Section 3.5, with θ0(0�0) = 0, θ0(1�0) = −ec,
θ0(0�1) = sv, and θ0(1�1) = −fc. Variable profits, π(w), are assumed known/estimated outside of the dy-
namic problem using price and quantity data, one may then take Z(a�w)= π(w) and θ1(a�k)= 1. Alterna-
tively, one might assume a reduced form profit function π(w)=w′γ, in whichZ(a�w)=w and θ1(a�k)= γ,
with γ identified under sufficient variation on w.

30We assume the firm faces the (residual) inverse demand curve Pt =wt−ηQt and has constant marginal
cost c, so that π(wt;η�c)= (wt − c)2/4η. The idiosyncratic shocks εit follow a type 1 extreme value distribu-
tion. We ignore sampling variation for simplicity and set: c = 11, η= 1�5, w= (20�17�12), β= 0�95, fc = 5�5,
sv = 10, ec = 9, while the transition matrix for w is

F(wt+1|wt)=
⎡⎣0�4 0�35 0�25

0�3 0�4 0�3
0�2 0�2 0�6

⎤⎦ �
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Table 1. Numerical example—True vs. estimated profits.

Estimated Profit Estimated Profit

States: (k�w) True Profit Scrap Value = 0 Fixed Cost = 0

a= inactive
π(a�k= 0�wH)= 0 0 0 0
π(a�k= 0�wM)= 0 0 0 0
π(a�k= 0�wL)= 0 0 0 0
π(a�k= 1�wH)= sv 10 0 120
π(a�k= 1�wM)= sv 10 0 120
π(a�k= 1�wL)= sv 10 0 120

a= active
π(a�k= 0�wH)= −ec −9 0�5 −113�5
π(a�k= 0�wM)= −ec −9 0�5 −113�5
π(a�k= 0�wL)= −ec −9 0�5 −113�5
π(a�k= 1�wH)= π(wH)− fc 8 7�5 13�5
π(a�k= 1�wM)= π(wM)− fc 0�5 0 6
π(a�k= 1�wL)= π(wL)− fc −5�33 −5�83 0�167

Table 1 presents the true and the two estimated payoff functions. Note that under the
first restriction (sv = 0) the estimated entry costs have the wrong sign. This is because
if there is no scrap value gained upon exiting, entering the market becomes less attrac-
tive and entry costs must become low (in fact, negative) to explain the observed entry
patterns. Under the second restriction (fc = 0), both the estimated entry costs and scrap
values are considerably larger than their true values. To see why, consider an active firm
(k = 1). Fixing fc = 0 implies higher profits when active, which gives incentives to stay
more often in the market. Therefore, the estimated scrap value must increase in order to
provide incentives to exit and match the observed exit rate. Similarly, when the firm is
out (k= 0), increasing profits when active provides incentives to enter. Entry costs must
then increase to compensate for this incentive and explain the observed entry rate.

Next, given the recovered payoffs, we implement four counterfactuals and compare
the true and the inferred counterfactual CCPs and welfare. In the first two, the govern-
ment provides subsidies to encourage entry. Counterfactual 1 is an additive subsidy that
reduces entry costs: π̃(active�0�w)= π(active�0�w)+ g1. Counterfactual 2 is a propor-
tional subsidy: π̃(active�0�w) = H1π(active�0�w).31 As shown in Section 3, while the
counterfactual CCPs and welfare are identified in the first case, they are not identi-
fied in the second case. Specifically, counterfactual behavior corresponding to “additive
changes” (the first case) depends on the difference in present values of always choosing
a= 0 versus a= 1 (i.e., (I−βF1)

−1π1 − (I−βF0)
−1π0) plus the present value of the sub-

sidies (i.e., (I − βF1)
−1g1). The difference in present values is itself identified from the

data, and the present value of the subsidies is known by the researcher (since g1 is pre-
specified), implying identification of the counterfactual CCPs (see Section 3.4). In con-

31We choose the additive and proportional subsides so that the true counterfactual CCP and welfare are
the same. As π(active�0�w) = −ec, and the true ec = 9, we set g1 = 0�9 and H1 = 0�9, so that in both cases
the true counterfactual entry cost becomes π̃(active�0�w)= −8�1.



Quantitative Economics 12 (2021) Identification of counterfactuals 377

Table 2. Counterfactuals 1 and 2—Additive and proportional entry subsidies.

Estimated CF Estimated CF

States: (k�w) Baseline True CF Scrap Value = 0 Fixed cost = 0

CF1: π̃0 = π0, π̃1 = π1 + g1
CCP: Pr(active|x)
(k= 0�wH) 93�61% 94�95% 94�95% 94�95%
(k= 0�wM) 87�48% 90�27% 90�27% 90�27%
(k= 0�wL) 72�99% 80�33% 80�33% 80�33%
(k= 1�wH) 99�99% 99�99% 99�99% 99�99%
(k= 1�wM) 80�91% 69�59% 69�59% 69�59%
(k= 1�wL) 0�48% 0�29% 0�29% 0�29%

Welfare: Ṽ − V
(k= 0�wH) – 5�420 5�420 5�420
(k= 0�wM) – 5�445 5�445 5�445
(k= 0�wL) – 5�539 5�539 5�539
(k= 1�wH) – 4�535 4�535 4�535
(k= 1�wM) – 4�727 4�727 4�727
(k= 1�wL) – 5�219 5�219 5�219

CF2: π̃0 = π0, π̃1 =H1π1
CCP: Pr(active|x)
(k= 0�wH) 93�61% 94�95% 93�53% 99�87%
(k= 0� dM) 87�48% 90�27% 87�31% 99�84%
(k= 0� dL) 72�99% 80�33% 72�53% 99�81%
(k= 1� dH) 99�99% 99�99% 99�99% 90�59%
(k= 1�wM) 80�91% 69�59% 81�44% 0�44%
(k= 1�wL) 0�48% 0�29% 0�49% 0�00%

Welfare: Ṽ − V
(k= 0�wH) – 5�420 −0�289 88�255
(k= 0�wM) – 5�445 −0�290 88�829
(k= 0�wL) – 5�539 −0�295 89�756
(k= 1�wH) – 4�535 −0�239 77�068
(k= 1�wM) – 4�727 −0�248 82�836
(k= 1�wL) – 5�219 −0�278 84�802

trast, “proportional changes” (the second case) require knowledge of baseline payoffs
in levels, except in special cases unlikely to be satisfied in practice. Indeed, the current
example does not satisfy these special conditions and hence counterfactual CCP and
welfare are not identified here (see Propositions 1 and 9).

Table 2 presents the results from counterfactuals 1 and 2 for the true model and the
two estimated models. In both counterfactuals, the true counterfactual probability of
entering increases because of the subsidy; and the probability of staying in the market
decreases because it is cheaper to reenter in the future. So, the firm enters and exits more
often in the true counterfactual. The entry subsidies also increase the value of the firm
in all states.

In counterfactual 1 (additive subsidy), as expected, the counterfactual CCPs and wel-
fare are identical in the true model and under both estimated models. Thus, when the
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counterfactual is identified, it does not matter what restrictions the researcher chooses
when estimating the model. In contrast, counterfactual 2 (proportional subsidy) results
in very different outcomes under the two restrictions. When we set sv = 0, the changes in
the CCPs are all in the wrong direction: while the true entry probability increases relative
to the baseline, the predicted counterfactual entry probability decreases. Similarly, the
counterfactual exit probability decreases in the true model, while it increases in the es-
timated model. Welfare also has the wrong sign in all states. This is a direct consequence
of the fact that the estimated entry cost under this restriction has the wrong sign: in the
true model, multiplying π(active�0�w) by H1 represents a subsidy, but in the estimated
model, it becomes a tax. This illustrates the importance of the identifying restrictions in
driving conclusions, especially when the researcher does not know the sign of the true
parameter. When instead we restrict fc = 0, since the estimated entry costs and scrap
values are magnified, it is profitable to enter and exit the market repeatedly when the
entry cost is reduced in the counterfactual. Predicted turnover and welfare are therefore
excessive.

Counterfactual 3 changes the transition process Pr(wt+1|wt). As discussed previ-
ously, changes in the transition process generically result in nonidentified counterfac-
tual behavior. However, counterfactual behavior and welfare are identified in the present
case due to the parametric restrictions (Proposition 8 and Corollary 2). To see why, recall
that when counterfactual behavior depends on baseline payoffs only through the (iden-
tified) difference in present values of always choosing a= 0 versus a= 1, then the coun-
terfactual is identified. Here, the new CCP depends on this baseline difference in present
values plus the change in present values of variable profits π̄(w) that results from chang-
ing Pr(wt+1|wt). This second quantity is known not just because π̄(w) is known, but be-
cause the evolution of the exogenous states w is known in both the baseline and the
counterfactual scenarios. Counterfactual behavior (and also welfare) are therefore iden-
tified, and the top panel of Table 3 confirms the results.32

Finally, counterfactual 4 implements a “change in types” experiment. In particular,
we add a second market with different parameter values: market 2 is more profitable
than market 1 both through lower entry costs and higher variable profits. We identify
the parameters for market 2 as before and perform a counterfactual that substitutes the
entry cost of market 1 by the estimated entry cost of market 2.33

The bottom panel of Table 3 presents the results. Similar to counterfactual 2,
turnover increases in the true counterfactual compared to the baseline; and again, the
two identifying restrictions generate very different outcomes. This is expected given
Proposition 2. Under the first restriction (sv = 0), counterfactual CCPs and welfare are all

32We set P̃r(w′|w) = 1/3, for all (w′�w). Aguirregabiria and Suzuki (2014) also implemented a change in
transitions in a similar model. But they consider a change in Fka , that is, a change in the transition of states
that enter the nonidentified part of payoffs. As expected, their counterfactual is not identified. Similar to
our counterfactual 2 under the restriction sv = 0, they obtained counterfactual predictions in the wrong
direction.

33For market 2, we set: c2 = 9, η2 = 1�7, w2 = (18�15�11), fc2 = 3, sv2 = 8, ec2 = 6. The discount factor
and transition matrix in market 2 is the same as in market 1. The estimated profit under the first restriction
(sv2 = 0) is ec2 = 1�6, π2(active�1�w) = (8�52�1�89�−2�82); and under the second restriction (fc2 = 0) is:
ec2 = −63, sv2 = 68, π2(active�1�w)= (11�91�5�29�0�59).
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Table 3. Counterfactuals 3 and 4—Change in F(wt+1/wt) and change markets’ entry costs.

Estimated CF Estimated CF

States: (k�w) Baseline True CF Scrap Value = 0 Fixed cost = 0

CF3: π̃0 = π0, π̃1 = π1, F̃w �= Fw
CCP: Pr(active|x)
(k= 0�wH) 93�61% 86�97% 86�97% 86�97%
(k= 0�wM) 87�48% 86�97% 86�97% 86�97%
(k= 0�wL) 72�99% 86�97% 86�97% 86�97%
(k= 1�wH) 99�99% 99�99% 99�99% 99�99%
(k= 1�wM) 80�91% 80�19% 80�19% 80�19%
(k= 1�wL) 0�48% 1�17% 1�17% 1�17%

Welfare: Ṽ − V
(k= 0�wH) – 0�542 0�542 0�542
(k= 0�wM) – 1�347 1�347 1�347
(k= 0�wL) – 2�530 2�530 2�530
(k= 1�wH) – 0�468 0�468 0�468
(k= 1�wM) – 1�350 1�350 1�350
(k= 1�wL) – 1�808 1�808 1�808

CF4: π̃1
0 = π2

0 , π̃1
1 = π1

1
CCP: Pr(active|x)
(k= 0�wH) 93�61% 97�28% 95�22% 100�00%
(k= 0�wM) 87�48% 95�08% 90�83% 100�00%
(k= 0�wL) 72�99% 91�44% 81�74% 100�00%
(k= 1�wH) 99�99% 99�95% 99�99% 0%
(k= 1�wM) 80�91% 36�86% 66�67% 0%
(k= 1�wL) 0�48% 0�09% 0�02% 0%

Welfare: Ṽ − V
(k= 0�wH) – 19�778 6�684 482�861
(k= 0�wM) – 19�883 6�715 483�667
(k= 0�wL) – 20�198 6�831 484�849
(k= 1�wH) – 16�816 5�602 449�773
(k= 1�wM) – 17�752 5�846 457�934
(k= 1�wL) – 19�044 6�438 459�999

in the right direction, even though the estimated entry costs have the wrong sign in both
markets. This happens because replacing the entry cost of market 1 by that of market 2
amounts to an increase in entry costs in the restricted model. However, even though the
CCP moves in the right direction, the magnitude is bound to be wrong and turnover un-
der this restriction is not as large as the true counterfactual turnover. Under the second
identifying restriction (fc = 0), turnover and welfare are again exaggerated, to the point
that counterfactual choice probabilities are (numerically close to) either zero or one.

4.2 Empirical example: Agricultural land use model

In this section, we explore the impact of identifying restrictions on counterfactuals using
actual data on agricultural land use. We estimate a dynamic model of farmers’ planting
choices and perform two counterfactuals of interest: the long-run land use elasticity and
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a fertilizer tax. We emphasize the impact of identifying restrictions on counterfactuals
and relegate the details of the estimation methodology to the Online Supplemental Ma-
terial (Section C).

Empirical model Each year, field owners decide whether to plant crops or not; that is,
A = {c�nc}, where c stands for “crops” and nc stands for “no crops” (e.g., pasture, hay,
nonmanaged land). Fields are indexed by i and counties are indexed by m. We partition
the state ximt into:

1. time-invariant field and county characteristics, sim, for example, slope, soil com-
position;

2. number of years since field was last in crops, kimt ∈ K = {0�1� � � � �K}; and

3. aggregate state, wmt (e.g., input and output prices, government policies).

Per period payoffs are specified as in (22) so that

π(a�k� s�w)= θ0(a�k� s)+ θ1Z(a�w)�

where θ0(a�k� s) captures switching costs between land uses andZ(a�w) are observable
measures of returns. The dependence of θ0 on k is what creates dynamic incentives for
landowners. The action of “no crops” leaves the land idle, slowly reverting it to natural
vegetation, rough terrain, etc. The farmer needs to clear the land in order to convert to
crop and start planting. The costs of switching to crop may be rising as the terrain gets
rougher. At the same time, however, there may be benefits to switching, for example,
planting crops may be more profitable after the land is left fallow for a year. In summary,
we expect θ0(a�k� s) to differ across actions and states.

The transition of state variables follows the decomposition (21), F(k′�w′|a�x) =
Fk(k′|a�k)Fw(w′|w), so that farmers do not affect the evolution of the aggregate state
w; this implies that farmers are small (price takers) and that there are no externalities
across fields. The transition rule of k is

k′(a�k)=
{

0 if a= c (crops)�

min{k+ 1�K} if a= nc (no crops)

so that if “no crop” is chosen, the field state since last crop increases by one, up to K,
while if “crop” is chosen, the field state is reset to zero. Planting crops is therefore a “re-
newal” action. We return to the market state w below. Finally, note that the type s is
time-invariant.

Data First, we employ high-resolution annual land use data in the United States from
the Cropland Data Layer (CDL) database. We then merge the CDL with an extensive
dataset of land transactions obtained from DataQuick (which includes information
on price, acreage, field address, and other characteristics). Then we incorporate de-
tailed data from NASA’s Shuttle Radar Topography Mission database (with fine topo-
graphical information on altitude, slope, and aspect); the Global Agro-Ecological Zones
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dataset (with information on soil categories and on protected land); and various public
databases on agricultural production and costs from the USDA. The final dataset goes
from 2010 to 2013 for 515 counties and from 2008 to 2013 for 132 counties.

Further details about the construction of the dataset, as well as some summary
statistics, are presented in the Online Supplemental Material, Section B. Here, we only
emphasize that land use exhibits substantial persistence. The average proportion of
cropland in the sample is 15%; the probability of keeping the land in crop is about 85%,
while the probability of switching to crops after two years as noncrop is quite small:
1.6%. Finally, the proportion of fields that switch back to crops after one year as “no
crop” ranges from 27% to 43% on average depending on the year, which suggests some
farmers enjoy benefits from leaving land fallow for a year.

Estimation Our estimation strategy mostly follows Scott (2013); we augment this land
use model to allow for unobserved market states by the econometrician. In other words,
we allow for the aggregate state variablew to have an unobserved component. This may
be important as the econometrician may not be able to capture the entire information
set of the land owner (commodity prices, government policy, etc.). See the Online Sup-
plemental Material (Section C) for details.34

The parameters of interest are θ1 and θ0(a�k� s), for all a, k, s. The slope θ1 is identi-
fied provided there is sufficient variation in Z(a�w); switching costs between land uses,
θ0(a�k� s), on the other hand are not identified (Proposition 7). Thus, additional restric-
tions are required to obtain these costs parameters. The sensitivity of certain counter-
factuals to identifying restrictions on payoffs calls out for some means to assess the ac-
curacy of these restrictions. To do so, we present and compare two estimators.

First, we estimate the model using the observed data on farmers’ actions and states,
following Scott (2013). We call this the “CCP estimator.” Naturally, in this case we need
some identifying restrictions, and as in Scott (2013), we impose θ0(nocrop�k� s)= 0 for
all k and s. These K restrictions (for each field type s) suffice to identify the remain-
ing switching cost parameters. Specifically, farmers’ payoffs for a = nocrop are known
under these restrictions, since π(nocrop�k� s�w) = θ1Z(nocrop�w). Identification of
θ0(crop�k� s) now follows directly from (3): given that π(nocrop�k�w) is known for all
states (k�w), equation (3) directly delivers π(crop�k�w), implying that θ0(crop�k� s) is
identified. However, as is common in applied work, there is little guidance to specify
the particular values that θ0(nocrop�k� s) should take. To evaluate the impact of these
restrictions in this real-data setup, we bring in additional data, namely, the land resale
prices.

Our second estimator makes use of resale prices to avoid the restrictions θ0(nocrop�
k� s)= 0. We call it the “V-CCP estimator.” We assume that the resale prices provide direct
information on the value function V .35 Clearly, if V is known, so are the payoffs: if V is

34In a previous version of this paper (see NBER Working Paper 21527) we discuss identification of DDC
models with unobserved states. This material is now part of Kalouptsidi, Scott, and Souza-Rodrigues (2020),
where we provide the details of a general setup with unobserved market states and characterize the identi-
fication of payoffs.

35There are numerous ways to model resale markets, and different models may imply different mappings
between transaction prices and agents’ value function. Here, we essentially consider the simplest possible
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known at all states, we can recover the conditional value functions va from equation (2),

that is, va = V − ψa. Then πa can be retrieved from the definition of va, (1), and since

θ1 is identified, we can obtain θ0. As explained in the Online Supplemental Material,

our estimator is designed so that the only role of the resale price data is to avoid the

identifying restrictions θ0(nocrop�k� s)= 0 for all k, s. By construction of the estimator,

θ1 is the same as that of the CCP estimator.

Section C of the Online Supplemental Material explains both estimators in detail.

Here, we only emphasize that the CCP estimator imposes restrictions on θ0(a�k� s) for

identification, while the “V-CCP” estimator replaces these a priori restrictions with more

data-driven restrictions.

Parameter estimates Table 4 presents the estimated parameters using the CCP and V-

CCP estimators. For brevity, we only present the average of the ratio θ0(a�k� s)/θ1 across

field types s, where we divide by θ1 so that the parameters can be interpreted in dollars

per acre; θ0(a�k) denotes the average of θ0(a�k� s) across s. We set K = 2 due to data

Table 4. Empirical results.

Estimator: CCP V-CCP

θ̄0(crop�0)/θ1 −721�93 −1228�9
(−1350�−542) (−2700�−804)

θ̄0(crop�1)/θ1 −2584�4 −1119�4
(−5500�−1740) (−4020�−284)

θ̄0(crop�2)/θ1 −5070�8 −4530�4
(−11,060�−3340) (−10,037�−2940)

θ̄0(nocrop�0)/θ1 0 −2380�3
(−4050�−1900)

θ̄0(nocrop�1)/θ1 0 470�05
(−777�829)

θ̄0(nocrop�2)/θ1 0 −454�58
(−1240�−229)

θ−1
1 734�08 734�08

(358�1110) (358�1110)

Note: θ0 values are means across all fields in the sample, divided
by θ1 so that their units are in dollars. 95% confidence intervals in
parentheses. Note that θ1 is proportional to the standard deviation of
idiosyncratic shocks, when the payoff function is measured in dollars.

setting: in a world with a large number of homogeneous agents, a resale transaction price must equal the
value of the asset. A similar approach is adopted in Kalouptsidi (2014, 2018). To address concerns that trans-
acted fields may be selected, we compare the transacted fields (in DataQuick) to all US fields (in the CDL)
in Table B2 of the Online Supplemental Material. Overall, the two sets of fields look similar. We also explore
whether land use changes upon resale and find no such evidence (see Table C3 in the Online Supplemental
Material).
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limitations and because after 2 years out of crops there are very few conversions back to
crops in the data.36

The mean switching cost parameters from the CCP estimator are all negative and
increase in magnitude with k. One may interpret this as follows: when k= 0, crops were
planted in the previous year. According to the estimates, preparing the land to replant
crops costs on average $722/acre. When k = 1, the land was not used for crops in the
previous year. In this case, it costs more to plant crops than when k = 0. Conversion
costs when k = 2 are even larger. Of course, this interpretation hinges on the assump-
tion that θ0(nocrop�k� s)= 0 for all k, s. As is typical in switching cost models, estimated
switching costs are large in order to explain the observed persistence in choices; unob-
served heterogeneity—which is beyond the scope of this paper—can alleviate this issue
(see Scott (2013)).

The estimated parameters of the V-CCP estimator do not impose θ0(nocrop�k�
s) = 0. When k = 0, switching out of crops is now expensive on average (not zero any-
more). In fact, we test the joint hypothesis θ0(nocrop�k)= 0, for all k, and we reject it.
This is reasonable because the “no crops” option incorporates, in addition to fallow land,
pasture, hay, and other land uses. While staying out of crops for one year may be the re-
sult of the decision to leave land fallow, staying out of crops for longer periods reflects
other land usages (since land will likely not stay idle forever) with their associated prepa-
ration costs. Furthermore, the estimated value of θ0(crop�k� s) is also affected when we
drop the restriction. Indeed, the absolute value of the estimated θ0(crop�0) is now larger
than the absolute value of θ0(crop�1). This reflects the benefits of leaving land fallow for
one year (i.e., smaller replanting costs). This potential benefit is not apparent when we
restrict θ0(nocrop�k� s). Given that the probability of planting crops after one year of
fallow is lower than the probability of planting crops after crops in the data (in most
counties), in order to rationalize the choice probabilities, the restricted model (impos-
ing θ0(nocrop�k� s)= 0) must assign higher costs to crops after fallow than after crops.
We view this as an appealing feature of the V-CCP model—it is arguably not plausible
that leaving land out of crops for one year would increase the costs of planting crops in
the following year dramatically.37

Counterfactuals We implement two counterfactuals: the long-run elasticity (LRE) of
land use and an increase in the costs of replanting crops.

The LRE measures the long-run sensitivity of land use to an (exogenous) change in
crop returns, Z(c�w). As previously mentioned, the LRE is an important input to evalu-
ate several policy interventions, including agricultural subsidies and biofuel mandates
(Roberts and Schlenker (2013), Scott (2013)). We compare the share of cropland in the

36We weight observations as in Scott (2013) and cluster standard errors by year. We construct the con-
fidence intervals for θ0(a�k)/θ1 by sampling from the estimated asymptotic distribution of (θ̂0� θ̂1). The
details of the first stage estimator are in the Online Supplemental Material.

37One could also argue that it is not plausible that staying out of crops for only 2 years would lead to
dramatically higher costs of planting crops. However, as mentioned previously, we observe very few fields
in the data with field state k= 2 which have not been out of crops for longer than two years; that is, fields
which have been out of crops for at least 2 years have typically been out of crops for a long time.
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Table 5. Policy counterfactuals.

Estimator: CCP V-CCP

Long-run elasticity 0�57 0�57
Fertilizer tax 0�32 −0�16

Note: The long-run elasticity is a 10% arc elas-
ticity. The fertilizer tax statistic is the percentage
change in long-run cropland.

steady-state obtained when Z(c�w) is held fixed at their average recent levels and when
Z(c�w) is held fixed at 10% higher levels. The LRE is defined as the arc elasticity between
the total acreage in the two steady states.38

As shown in Table 5, the CCP and V-CCP estimators give exactly the same LRE. This
is no coincidence. By Proposition 7, the slope parameter θ1 is identified and by Propo-
sition 8(i), a counterfactual that changes only the identified part of payoffs is also iden-
tified. Intuitively, because θ1 is identified, a counterfactual that changes θ1Z(c�w) by
10% resembles a “prespecified additive change,” which is an identified counterfactual.
Therefore, the LRE is not affected by identifying restrictions on θ0, and the only differ-
ence between the CCP estimator and the V-CCP estimator is that the latter relies on land
values to identify the profit function while the former relies on a priori restrictions. Since
the counterfactual of interest is identified, it does not matter which restrictions are im-
posed when estimating the model parameters.

The second counterfactual increases the crop replanting costs as

θ̃0(crop�0� s)= θ0(crop�0� s)+ λ(θ0(crop�1� s)− θ0(crop�0� s)
)
�

The difference θ0(crop�1� s)− θ0(crop�0� s) captures the benefits of leaving land out of
crops for a year. One such benefit is to allow soil nutrient levels to recover, reducing the
need for fertilizer inputs. When it is difficult to measure the fertilizer saved by leaving
land fallow, one can use the switching cost parameters to implement a counterfactual
that resembles a fertilizer tax. A motivation for this type of counterfactual is that higher
fertilizer prices would be a likely consequence of pricing greenhouse gas emissions, as
fertilizer production is very fossil-fuel intensive. Here, we impose λ= 0�1. So, this exer-
cise changes the costs of replanting crops in a way that reflects 10% of the benefits of
leaving land out of crops for one year.

In terms of identification, the counterfactual choice probabilities here depend on
the baseline model parameters in levels, not just on payoff differences that can be re-

38See Scott (2013) for a formal definition and further discussion. The LREs estimated here are higher
than those found in Scott (2013) (although not significantly so). We find that this is largely due to our dif-
ferent sample combined with the absence of unobserved heterogeneity: when Scott’s estimation strategy is
applied to our sample of counties ignoring unobserved heterogeneity, LREs are very similar to those pre-
sented here.



Quantitative Economics 12 (2021) Identification of counterfactuals 385

covered directly from the data, as shown in Section 3.4. As such, one should expect this
counterfactual to be sensitive to model identifying restrictions. Indeed, by Proposition
8(ii), the counterfactual choice probability is not identified here.39

As shown in Table 5, the identifying restrictions do matter when it comes to this
counterfactual. The CCP estimator leads to a 32% increase in cropland, while the V-CCP
estimator predicts a decrease in cropland, as expected. In other words, the CCP esti-
mator errs in predicting not just the magnitude, but also the sign of the change in crop
acreage. The reason behind this is that the CCP estimator cannot capture the benefits
from leaving land fallow (on average), and thus interprets this counterfactual as a sub-
sidy rather than a tax.

To summarize, when we only change the identifying restrictions (i.e., moving from
the CCP to the V-CCP estimator), the LRE does not change, as it involves only a trans-
formation of the identified component of the profit function. However, the land use
pattern in the second counterfactual, which involves a transformation of the noniden-
tified part of payoffs, is substantially altered when we modify the identifying restric-
tions.

5. Conclusion

This paper studies the identification of counterfactuals in dynamic discrete choice mod-
els. We provide the set of necessary and sufficient conditions that determine whether
counterfactual behavior and welfare are identified for a broad class of counterfactuals
of interest, including nonadditive changes in payoffs or changes to agents’ choice sets.
We also investigate the identification power of parametric restrictions. For a large class
of interventions, the identification conditions are straightforward to verify in practice.

We investigate relevant counterfactuals in two applied examples (a firm’s entry/exit
decisions and a farmer’s land use decisions). The results call for caution while leaving
room for optimism: although counterfactual behavior and welfare can be sensitive to
identifying restrictions imposed on the model, there exists important classes of coun-
terfactuals that are robust to such restrictions.

Appendix A: Proofs

Appendix A summarizes the proofs of the claims given in the main body of the paper.
The subsections here correspond to the main paper’s sections.

39Formally, θ0(a) is a 3×1 vector (omitting s in the notation to simplify), and we take θ̃0(a)=H0(a)θ0(a),
withH0(nocrop)= I, and

H0(crop)=
⎡⎣1 − λ λ 0

0 1 0
0 0 1

⎤⎦ �
These matrices do not satisfy the identification condition in Proposition 8(ii).
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A.1 Identification of counterfactual behavior: The general case

A.1.1 Proof of Lemma 1 To prove Lemma 1, we make use of Lemma A1 below. Assume
without loss of generality that J =A. Define

∂φ−J
∂p

=

⎡⎢⎢⎢⎢⎣
�11 �12 · · · �1�A−1

�21 �22 · · · �2�A−1
���

���
���

���

�A−1�1 �A−1�2 � � � �A−1�A−1

⎤⎥⎥⎥⎥⎦≡��

where �ij are the X ×X matrices with elements ∂φiJ(p(x))
∂pj(x′) , with x�x′ ∈ X for each i� j =

1� � � � �A− 1, and φij(p(x))= vi(x)− vj(x) (by the Hotz and Miller’s inversion; see Hotz

and Miller (1993)). Note that each �ij is diagonal because ∂φiJ(p(x))
∂pj(x′) = 0 when x �= x′.

Next, define the diagonal matrices, Pa, with diagonal element i, pa(xi) for a =
1� � � � �A− 1; and let P = [P1�P2� � � � �PA−1].
Lemma A1. The Arcidiacono–Miller function ψJ(p) is continuously differentiable with
derivative:

∂ψJ
∂p

= P��

Proof. First note that

ψJ
(
p(x)

)=
∫

max
k∈A

{
φkJ

(
p(x)

)+ εk
}
dG(ε)�

by equation (2) and the Hotz–Miller inversion.
Because φjJ(p(x)) is a continuously differentiable function, as shown by Hotz and

Miller (1993), so is ψJ(p(x)). For x �= x′, ∂ψJ(p(x))∂pa(x′) = 0 for all a, because ∂φkJ(p(x))
∂pa(x′) = 0 for

all k. For x= x′, apply the chain rule and obtain

∂ψJ
(
p(x)

)
∂pa(x)

=
∫

∂

∂pa(x)

[
max
k∈A

{
φkJ

(
p(x)

)+ εk
}]
dG(ε)

=
J−1∑
j=1

∫
1
{
j = arg max

k∈A
{
φkJ

(
p(x)

)+ εk
}}
dG(ε)

∂φjJ
(
p(x)

)
∂pa(x)

=
J−1∑
j=1

pj(x)
∂φjJ

(
p(x)

)
∂pa(x)

�

Note that
∂ψJ
∂p

= [Ψ1� � � � �ΨJ−1]�

whereΨa is theX ×X diagonal matrix with elements ∂ψJ(p(x))
∂pa(x)

, x ∈ X , for a= 1� � � � J− 1.
Hence,

∂ψJ
∂p

= [P1�P2� � � � �PJ−1]��
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To simplify notation, consider the function b−J , instead of b̃−J . Recall the definition
of b−J(p) : R(A−1)X → R

(A−1)X in Section 2. Because ψa =ψJ −φaJ , we have

b−J(p)=
⎡⎢⎣ A1 − I

���

AJ−1 − I

⎤⎥⎦ψJ(p)+φ−J(p)= AψJ(p)+φ−J(p)�

where A has dimension (A − 1)X × X and ψJ(p) is a column vector with entries
ψJ(p(x)), x ∈ X , and φ−J(p) is an (A− 1)X-valued function with elements φaJ(p(x)).
Because both functions ψJ(p) and φ−J(p) are differentiable, by Lemma A1 we have

∂b−J
∂p

= A
∂ψJ
∂p

+ ∂φ−J
∂p

= [AP + I]��

Note that, by the Hotz–Miller inversion, all block-matrices �ij of � are invertible.

Further, the blocks are all linearly independent, so � is invertible as well. Thus [ ∂b−J(p)
∂p ]

will be invertible if [AP + I] is. Using the identity det(I + AB) = det(I + BA) and the
property

∑
a Pa = I, we obtain

det(AP + I)= det

(
I +

J−1∑
a=1

Pa(Aa − I)
)

= det

(
PJ +

J−1∑
a=1

PaAa

)
�

ButAa = (I −βFa)(I −βFJ)−1 and, therefore,

det(AP + I) = det

(
PJ +

J−1∑
a=1

Pa(I −βFa)(I −βFJ)−1

)

= det

(
PJ(I −βFJ)+

J−1∑
a=1

Pa(I −βFa)
)

det
(
(I −βFJ)−1)

= det

(
J∑
a=1

Pa(I −βFa)
)

det
(
(I −βFJ)−1)

= det

(
I −β

J∑
a=1

PaFa

)
det

(
(I −βFJ)−1)�

Note that
∑J
a=1 PaFa is a stochastic matrix, since all its elements are nonnegative and(

J∑
a=1

PaFa

)
1 =

J∑
a=1

Pa1 =
(

J∑
a=1

Pa

)
1 = 1�

where 1 is a X × 1 vector of ones. Thus, det(I − β
∑J
a=1 PaFa) is nonzero and

det(AP + I) �= 0.
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A.1.2 Proof of Theorem 1 Assume without loss of generality that action J =A belongs
to both sets A and Ã. The implicit function theorem allows us to locally solve (14) with
respect to p̃ provided the matrix

∂

∂p̃

[
h−J(π)− Ã−JhJ(π)− b̃−J(p̃)

]= − ∂

∂p̃
b̃−J(p̃)

is invertible; this is proved in Lemma 1.40

The vector p̃ does not depend on the free parameter πJ if and only if

∂

∂πJ

[
ha(π1�π2� � � � �πJ)− ÃahJ(π1�π2� ldots�πJ)− b̃a(p̃)

]= 0

for all a ∈ Ã, with a �= J, and all π satisfying (6). But, the above yields∑
l∈A�l �=J

∂ha

∂πl

∂πl
∂πJ

+ ∂ha

∂πJ
= Ãa

( ∑
l∈A�l �=J

∂hJ
∂πl

∂πl
∂πJ

+ ∂hJ
∂πJ

)
�

where, for each a ∈ Ã and l ∈ A, the matrix [ ∂ha∂πl
] has dimension X̃ ×X ; while Ãa is an

X̃ × X̃ matrix. Using (3),∑
l∈A�l �=J

∂ha

∂πl
Al + ∂ha

∂πJ
= Ãa

( ∑
l∈A�l �=J

∂hJ
∂πl

Al + ∂hJ
∂πJ

)
(A1)

or, [
∂ha

∂π1

∂ha

∂π2
· · · ∂ha

∂πJ

][
A−J
I

]
= Ãa

[
∂hJ
∂π1

∂hJ
∂π2

· · · ∂hJ
∂πJ

][
A−J
I

]
�

For a ∈ Ã, define the X̃ ×AX matrix (recall J =A)

∇ha(π)=
[
∂ha

∂π1

∂ha

∂π2
· · · ∂ha

∂πJ

]
�

Then, stacking the above expressions for all a ∈ Ã, with a �= J, we obtain

∇h−J(π)
[
A−J
I

]
= Ã−J∇hJ(π)

[
A−J
I

]
�

Now apply the property vecbr(BCA′)= (A�B) vecbr(C) to obtain([
A′

−J I
]
� I

)
vecbr

(∇h−J(π)
)−

([
A′

−J I
]
� Ã−J

)
vecbr

(∇hJ(π)) = 0�

[[
A′

−J I
]
� I� −

[
A′

−J I
]
� Ã−J

]
︸ ︷︷ ︸

(Ã−1)X̃X×(ÃX̃)(AX)

[
vecbr

(∇h−J(π)
)

vecbr
(∇hJ(π))

]
︸ ︷︷ ︸

(ÃX̃)(AX)×1

= 0�

40Because π ∈ R
A×X , the set of payoffs that satisfies (6) is an open linear manifold. Therefore, for any

point π in this manifold, there exists a neighborhood for which the implicit function theorem is valid.
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which is (15). Note that [A′
−J I] is an X ×AX matrix, while ([A′

−J I] � I) is an (Ã −
1)X̃X×(Ã−1)AX̃X matrix. Similarly, ([A′

−J I]�Ã−J) is an (Ã−1)X̃X×AX̃X matrix,
and Ã−J is an (Ã− 1)X̃ × X̃ matrix.41

A.1.3 Proof of the bus engine replacement example in Section 3.2 Let a = 1 if replace,
and a= 2 if keep. Then

π̃ =
[
(1 + λ)I −λ[1�0]

0 I

]
π�

where 1 is a vector of ones and 0 is a matrix with zeros. Let J = 2. By equation (17) in
Corollary 1, p̃ is identified if and only if

(H11 − Ã1H21)A1 +H12 − Ã1H22 = 0

or (1 + λ)IA1 − λ[1�0] −A1 = 0, which implies λA1 = λ[1�0]. This implies A1 is nonin-
vertible, which is a contradiction.

A.2 Identification of counterfactual behavior: Special cases

A.2.1 Proof of Corollary 1 Because ∂ha
∂πl

=Hal, equation (A1) in the proof of Theorem 1
becomes ∑

l �=J
HalAl +HaJ = Ãa

(∑
l �=J

HJlAl +HJJ
)
�

In the “action diagonal” case, Hal =HJl = 0 for all a�J �= l, and the condition simplifies
to

HaaAa = ÃaHJJ�
A.2.2 Proof of Proposition 1 Equation (18) implies Haa =AaHJJA

−1
a , for all a �= J. So

allHaa must be similar. Diagonal similar matrices are equal to each other, which implies
Haa =Hjj ≡H, for all a and j.

LetAa be partitioned comformably withH:

Aa =
⎡⎢⎣(Aa)11 · · · (Aa)1d

���
���

���

(Aa)d1 · · · (Aa)dd

⎤⎥⎦ �
Then HAa −AaH = 0 implies that for all i �= j, (λi − λj)(Aa)ij = 0, and since λi �= λj , it
must be (Aa)ij = 0 and Aa is block-diagonal. This proves the equivalence of statements
(i) and (ii).

We next prove that statement (ii) implies statement (iii). Suppose Aa is block-
diagonal. ThenAa(I −βFJ)= (I −βFa), or

I −Aa = β(Fa −AaFJ)� (A2)

41With abuse of notation, the identity matrix in [A′
−J I] is an X ×X matrix, while the identity matrix

after � in ([A′
−J I]� I) is (Ã− 1)X̃ × (Ã− 1)X̃ .
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The left-hand side is block diagonal and its (i� j) block is equal to zero. Therefore,

0 = (Fa)ij −
∑
k

(Aa)ik(FJ)kj�

SinceAa is block-diagonal, (Aa)ik = 0 for i �= k, and thus (Fa)ij = (Aa)ii(FJ)ij . Moreover,
if we equate the diagonal blocks in (A2), we have

I − (Aa)ii = β
(
(Fa)ii − (Aa)ii(FJ)ii

)
and (Aa)ii(FJ)ii = (AaFJ)ii, since Aa is block-diagonal. Rearranging, we establish the
claim.

Finally, we show the reverse. Consider the first block-row ofAa, a1 = [(Aa)11 (Aa)12

· · · (Aa)1d]. Let e1 = [I 0 · · ·0]. Then a1 = e1Aa = e1(I − βFa)(I − βFJ)
−1. But e1(I −

βFa)= [I −β(Fa)11 · · · I −β(Fa)1d] and statement (iii) implies that

e1(I −βFa)= [
(Aa)11

(
I −β(FJ)11

) · · · (Aa)11(I −β(FJ)1d)
]= (Aa)11e1(I −βFJ)�

Therefore,

a1 = e1Aa = (Aa)11e1(I −βFJ)(I −βFJ)−1 = (Aa)11e1 = [
(Aa)11 0 · · ·0

]
�

We conclude that (Aa)1j = 0 for j �= 1. The same argument applied to all block-rows
shows thatAa is block diagonal with block entries given by (Aa)i.

A.2.3 Proof of Proposition 2 Suppose the counterfactual replaces the payoff of type s1
by that of s2 for action J only. Then:Haa = I and

HJJ =
[

0 I

0 I

]
� (A3)

From Corollary 1 for affine counterfactuals, identification requires that, HaaAa =
AaHJJ . We partitionAa comformably withHJJ , that is,

Aa =
[
A11 A12

A21 A22

]
�

The identification condition then leads toA11 =A21 = 0 withA12,A22 arbitrary.
But in the case of time-invariant types, Aa is block diagonal, as it is not possible

to transit from one type to the other (i.e., Aii = (I − βF
si
a )(I − βF

si
J )

−1, for i = 1�2 and
A12 =A21 = 0). Invertibility of Aa implies that the diagonal blocks are invertible as well
and, therefore, the counterfactual is not identified.

Next, suppose the counterfactual replaces the payoff of type s1 by that of s2 for all
actions. Then,Haa =HJJ and both are given by (A3).

Therefore, identification requiresHA=AH, or,A21 = 0 andA11 +A12 =A22,A21 +
A22 =A22. Given the form ofAa,A21 = 0 is automatically satisfied, whileA12 = 0 implies
that identification requiresA22 =A11 andA22 arbitrary.
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A.2.4 Proof of Proposition 3 The equivalence of statements (i) and (ii) and the suf-
ficiency part are obvious. Next, we prove necessity. Assume π̃ = Hπ + g. We prove the
statement in three steps. First, we show that all off-diagonal submatricesHaj , a �= j, must
have identical rows. Second, we show that, when J ≥ 3, the off-diagonal blocks in col-
umn a of H must be identical to each other; that is,Hja =Hla =Ha, for any combination
of j �= l �= a. Finally, we show that all diagonal blocks must be of the form Haa = λI +Ha

for any choice a, for some scalar λ.
(a) By Corollary 1, equation (17) must hold for all a �= J and for any arbitrary pro-

cess F . Take an action a �= J and post-multiply (17) by (I −βFJ). We get∑
l∈A�l �=J

(Hal −AaHJl)(I −βFl)+HaJ(I −βFJ)−AaHJJ(I −βFJ)= 0�

Take FJ = I (this is allowable), thenAa = (I −βFa)(1 −β)−1 for all l �= J, and∑
l∈A�l �=J

[(
Hal − (1 −β)−1(I −βFa)HJl

)
(I −βFl)

]+ (1 −β)HaJ − (I −βFa)HJJ = 0�

Rearranging, we get∑
l∈A�l �=J

[
Hal − (1 −β)−1HJl + (1 −β)HaJ −HJJ

]+ [
(1 −β)−1βHJl −βHal

]
Fl

+ Fa
[
(1 −β)−1βHJl +βHJJ

]− Fa
[
(1 −β)−1β2HJl

]
Fl = 0�

This equals

A + BFa + FaC + FaDFa = 0� (A4)

where

A =
∑

l∈A�l �=J

[
Hal − (1 −β)−1HJl + (1 −β)HaJ −HJJ

]
+

∑
l∈A�l �=a�J

[
(1 −β)−1βHJl −βHal

]
Fl�

B = (1 −β)−1βHJa −βHaa�
C =

∑
l∈A�l �=J

[
(1 −β)−1βHJl +βHJJ

]−
∑

l∈A�l �=a�J

[
(1 −β)−1β2HJl

]
Fl�

D = −(1 −β)−1β2HJa

with Fa ≥ 0 and Fa1 = 1, where 1 is a vector of ones. Fix FJ and Fl for l �= a. The left-
hand side of equation (A4) can be viewed as a quadratic function in Fa. If this identity
is satisfied for all Fa ≥ 0, then all derivatives of the quadratic function with respect to Fa
must be equal to zero.

Let the columns of Fa be

Fa =
[
f1 f2 · · · fn−1 1 −

n−1∑
i

fi

]
�



392 Kalouptsidi, Scott, and Souza-Rodrigues Quantitative Economics 12 (2021)

where n is the number of columns (note that n=X). We first take the second derivative,

and so we focus on the term FaDFa. For j �= n, the (i� j) entry is

(FaDFa)i�j =
∑
l�k

fikdlkfkj =
∑
l�k

dlkfikfkj�

Isolate the last entry and substitute in

(FaDFa)i�j =
∑
l �=n�k

dlkfikfkj +
∑
k

dlkfinfkj =
∑
l �=n�k

dlkfikfkj +
(

1 −
n−1∑
m

fm

)∑
k

dnkfkj

=
∑
l �=n�k

fikfkj(dlk − dnk)

and, therefore, we must have

dlk = dnk� for all k� l �= n�

Consider now j = n. Then

(FaDFa)i�n =
∑
l�k

fikdlkfkn

=
∑
l �=n�k

fikdlk

(
1 −

n−1∑
m=1

fkm

)
+
∑
k

(
1 −

n−1∑
l=1

fil

)
dlk

(
1 −

n−1∑
m=1

fkm

)

=
∑
k�l�m

filfkm(dnk − dlk)

which already holds. We conclude that D has identical rows, which impliesHJa also has

identical rows. Because this argument holds for any a �= J, and because the choice of

J is arbitrary, each off-diagonal submatrix Haj must have identical rows for any pair of

actions a and j.

The following facts will be useful below. First, note thatAa1 = 1 for any a, since

Aa1 = (I −βFa)(I −βFJ)−11 = (I −βFa)
∞∑
n=0

βnFnJ 1 = 1
1 −β(I −βFa)1

= 1
1 −β(1 −βFa1)= 1

1 −β(1 −β)1 = 1�

Given that, take any two actions� j and l, and letHjl = [ρ1jl1� � � � � ρXjl1]. Then

AaHjl =Aa[ρ1jl1� � � � � ρXjl1] = [ρ1jlAa1� � � � � ρXjlAa1] =Hjl�
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(b) Next, consider the case J ≥ 3, and take j �= a�J. Return to equation (17). Rearrange
it and isolate the terms involving j:

(Haj −AaHJj)(I −βFj) =AaHJJ(I −βFJ)−HaJ(I −βFJ)
−

∑
l∈A�l �=j�J

(Hal −AaHJl)(I −βFl)�

Fix FJ and Fl, for all l �= j� J, and view this as a function of Fj . The right-hand side does
not depend on Fj , and the term (Haj −AaHJj) on the left-hand side is fixed. We need
the equality to hold for any Fj . Because (I − βFj) is full rank, the only way this equality
can be satisfied for all choices of Fj is for

Haj −AaHJj = 0�

We have shown thatAaHjl =Hjl for any pair of actions j and l. We therefore obtain

Haj =HJj�

The argument holds for any combination of j �= a �= J. Take the block-column j of H,
then all off-diagonal blocks in column j are identical to each other (in addition to having
identical rows each). Denote the off-diagonal matrices in the block-column j byHj ; that
is,Hj =Haj , for all pairs a �= j.

(c) Now, return to the case J ≥ 2. We investigate the block-diagonal terms of H. Again,
take (17) for a �= J,

(Haa −AaHJa)Aa +
∑

l∈A�l �=a�J
(Hal −AaHJl)Al +HaJ −AaHJJ = 0�

Given that all off-diagonal terms Hal, for all pairs a �= l, must satisfy Hal −AaHJl = 0,
equation (17) simplifies to

(Haa −AaHJa)Aa +HaJ −AaHJJ = 0�

In addition, for all pairs a �= l, we have thatHal =Hl, which implies

(Haa −Ha)Aa −Aa(HJJ −HJ)= 0�

Furthermore, if we take Fa = FJ (this is allowable), we get

(Haa −Ha)= (HJJ −HJ)�

If we take FJ = I instead, we get

(Haa −Ha)(I −βFa)− (I −βFa)(HJJ −HJ)= 0�

Rearranging, we obtain

(Haa −Ha)Fa = Fa(Haa −Ha)�
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So, (Haa −Ha) and Fa must commute, where Fa is an arbitrary (stochastic) matrix. This
implies (Haa −Ha)must be of the form

(Haa −Ha)= λI�
for all a, where λ is a constant. Finally, note that, for H with diagonal blocks Haa = λI +
Ha, and off-diagonal blocksHaj =Hj , we obtain

π̃ = Hπ + g= λπ +
[∑
j∈A

Hjπj

]
1 + g�

where all rows of
∑
j∈AHjπj are identical and, therefore, all elements of the vector

[∑j∈AHjπj]1 are the same.

A.2.5 Proof of Proposition 4 Suppose A = {1�2� � � � �A}. Without loss of generality,
take the reference action to be J = 1 and suppose action j = A + 1 is new, so that
Ã = {1�2� � � � �A+1}. Assume X̃ = X , F̃a = Fa, and π̃ = Hπ+g, with π̃a = πa for all a ∈ A,
and

π̃j =
A∑
a=1

Hjaπa + gj�

The identification condition (17) becomesAa = Ãa, for a= 2� � � � �A, and

Hj1 +
A∑
a=2

HjaAa = Ãj� (A5)

for j = A + 1, since Hal = 0 and Haa = I for all a� l �= j. The first set of restrictions are
satisfied, since transitions are unaffected. Now, post-multiply (A5) by (I − βF1) = (I −
βF̃1) to obtain

Hj1(I −βF1)+
A∑
a=2

Hja(I −βFa)= I −βF̃j

or

F̃j =
A∑
a=1

HjaFa +β−1

(
I −

A∑
a=1

Hja

)
�

Since transitions are stochastic matrices, we have that F̃j1 = 1, so that

1 =
A∑
a=1

Hja1 +β−1

(
1 −

A∑
a=1

Hja1

)

or
∑A
a=1Hja1 = 1.

A.2.6 Proof of Proposition 5 If X̃ = X , F̃a = Fa, and π̃a = πa for all a ∈ Ã, then Haa = I

andHak = 0 for a ∈ Ã and k ∈ A, a �= k, and so (17) becomesAa = Ãa for all a ∈ Ã, which
is satisfied because F̃a = Fa for all a.
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A.2.7 Proof of Proposition 6 The proof relies on the following lemma.

Lemma A2. Set the reference action to be J = 1 and suppose action A is eliminated. Sup-
pose further that the first m states are maintained and the remaining X −m are elimi-
nated. The counterfactual is specified by

π̃a =
[
Im 0

]
πa� (A6)

We partition the transition matrix as follows:

Fa =
[
F̂a fa
ga qa

]
� (A7)

where F̂a is them×m top left submatrix of Fa, corresponding to the maintained states; fa
has dimension m× (X −m); ga is (X −m)×m; and qa is (X −m)× (X −m). Counter-
factual transitions adjust the maintained states as follows:

F̃a = F̂a + far� (A8)

where r is a (X −m)×m matrix such that r1 = 1, to secure that F̃a is a stochastic matrix.
The counterfactual is identified if and only if

(I −βF̂a)−1fa = (I −βF̂1)
−1f1 (A9)

or fa = Âaf1, where Âa = (I −βF̂a)(I −βF̂1)
−1.

Proof. The identification condition is HaaAa = ÃaHaa or Haa(I − βFa) = ÃaHaa(I −
βF1). Combining (A6) and (A7), we obtain[

I −βF̂a −βfa
]

=
[
Ãa(I −βF̂1) −βÃaf1

]
or

I −βF̂a = Ãa(I −βF̂1) (A10)

and

fa = Ãaf1�

We show that (A10) is redundant when (A8) holds. Indeed, (A10) is written I − Ãa =
β(F̂a − ÃaF̂1), while by definition, I − Ãa = β(F̃a − ÃaF̃1). Thus, F̂a − ÃaF̂1 = F̃a− ÃaF̃1
and using (A8), F̂a−ÃaF̂1 = F̂a+far−Ãa(F̂a+far), or far = Ãaf1r, which holds because
of (A10).

Next, we return to Proposition 6. Assume x= (k�w), then

Fa = Fka ⊗ Fw =
⎡⎢⎣f

a
11F

w fa12F
w · · · f a1KF

w

���
��� · · · ���

f aK1F
w faK2F

w · · · f aKKF
w

⎤⎥⎦ �
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where f aij = Pr(k′ = j|k = i� a) are the elements of Fka . Because kt = at−1, Fa is a matrix

with zeros except in the ath block-column. The ath block-column is a block-vector with

blocks Fw. If action a = A is eliminated from A = {1�2� � � � �A}, then for all a �= A, we

have fa = 0, where fa is defined in (A7). Because fJ = 0 as well, condition (A9) in Lemma

A2 is trivially satisfied.

A.3 Identification of counterfactual behavior under parametric restrictions

A.3.1 Proof of Proposition 7 We make use of two lemmas. Lemma A3 provides suffi-

cient conditions for the identification of parametric models with linear-in-parameters

payoff functions.

Lemma A3. If πa(x) satisfies

πa(x;θ)= πa(x)θ� (A11)

where θ is a finite dimensional parameter. The parameter θ is identified provided

rank[π−J −A−JπJ] = dim(θ), where π−J = [π1� � � � �πJ−1�πJ+1� � � � �πA].

Proof. Equation (A11) implies π−J = π−Jθ. Then (6) becomes [π−J −A−JπJ]θ= b−J .

So, if the rank of the matrix [π−J−A−JπJ] equals dim(θ), then θ is uniquely determined.

Next, Lemma A4 provides results that are used to prove Proposition 7.

Lemma A4. LetDa = [I−β(Fw⊗Fka )]−1, where I is the identity matrix of sizeKW ×KW .

Let Ik be the identity matrix of sizeK, and 1 be the block vector

1 =
⎡⎢⎣Ik���
Ik

⎤⎥⎦
of sizeKW ×K. Finally, letAka = (Ik−βFka )(Ik−βFkJ )−1. The following properties hold:

(i) D−1
a 1 = (I −β(Fw ⊗ Fka ))1 = 1(Ik −βFka ).

(ii) Da1 = (I −β(Fw ⊗ Fka ))−11 = 1(Ik −βFka )−1.

(iii) Aa1 = 1Aka .

Statements (ii) and (iii) state that the sum of block entries on each block row ofDa and

Aa is constant for all block rows.
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Proof. (i) Since Fw is a stochastic matrix, its rows sum to 1:
∑
j f
w
ij = 1, where fwij is the

(i� j) element of Fw. By the definition of the Kronecker product,

(
Fw ⊗ Fka

)
1 =

⎡⎢⎣ f
w
11F

k
a fw12F

k
a · · · fw1W F

k
a

���
��� · · · ���

fwW 1F
k
a fwW 2F

k
a · · · fwWW F

k
a

⎤⎥⎦
⎡⎢⎣Ik���
Ik

⎤⎥⎦=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(∑
j

fw1j

)
Fka

���(∑
j

fwWj

)
Fka

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 1Fka �

Thus, (I −β(Fw ⊗ Fka ))1 = 1(Ik −βFka ).
(ii) Let n be a nonnegative integer. Then, (Fw)n is a stochastic matrix with rows sum-

ming to 1. Therefore, (
Fw ⊗ Fka

)n = (
Fw

)n ⊗ (
Fka

)n
and following the proof of (i), we obtain (Fw ⊗ Fka )n1 = 1(Fka )

n. Now,

Da1 =
∞∑
n=0

βn
(
Fw ⊗ Fka

)n1 = 1
∞∑
n=0

βn
(
Fka

)n = 1
(
Ik −βFka

)−1
�

(iii) The proof is a direct consequence of (i) and (ii). Indeed,

Aa1 = (
I −β(Fw ⊗ Fka

))
DJ1 = (

I −β(Fw ⊗ Fka
))

1
(
Ik −βFkJ

)−1

= 1
(
Ik −βFka

)(
Ik −βFkJ

)−1 = 1Aka�

We now prove Proposition 7; we focus on the binary choice {a�J} for notational sim-
plicity, but the general case is obtained in the same fashion. Let θ be the vector of 4K
unknown parameters (e.g., θa0 = [θ0(a�1)� � � � � θ0(a�K)]′),

θ=

⎡⎢⎢⎢⎢⎣
θa0
θJ0
θa1
θJ1

⎤⎥⎥⎥⎥⎦ �
The parametric form of interest is linear in the parameters; stacking the payoffs for

a given w and all k we have

πa(w)= [
Ik�0k�Za(w)Ik�0k

]
θ

and

πJ(w)= [
0k� Ik�0k�ZJ(w)Ik

]
θ�

Collecting πa(w) for all w, we get πa = πaθ, where

πa =
⎡⎢⎣Ik 0k Za(1)Ik 0k
���

���
���

���

Ik 0k Za(W )Ik 0k

⎤⎥⎦ (A12)



398 Kalouptsidi, Scott, and Souza-Rodrigues Quantitative Economics 12 (2021)

and similarly for πJ . In Lemma A3, we showed that identification hinges on the matrix
(πa −AaπJ). This matrix equals:

πa −AaπJ =
[
1� −Aa1� Za� −AaZJ

]
� (A13)

where Za = [Za(1)Ik� � � � �Za(W )Ik]′ (the same for ZJ).
It follows from Lemma A4 that the first two block columns of (A13) consist of iden-

tical blocks each (the first block column has elements Ik, and the second, −Aka ). As a
consequence, the respective block parameters θa0 , θJ0 , are not identified unless extra re-
strictions are imposed.42 The remaining parameters, θa1 , θJ1 , are identified as follows.

Consider (πa −AaπJ)θ= ba, or using (A13):

1θa0 − 1Akaθ
J
0 +Zaθa1 − [

I −β(Fw ⊗ Fka
)][
I −β(Fw ⊗ FkJ

)]−1
ZJθ

J
1 = ba�

Left-multiplying both sides byDa = [I−β(Fw ⊗Fka )]−1 and using Lemma A4, we obtain

1
(
Ik −βFka

)−1
θa0 − 1

(
Ik −βFkJ

)−1
θJ0 +DaZaθa1 −DJZJθJ1 =Daba�

Take the w block row of the above:(
Ik −βFka

)−1
θa0 − (

Ik −βFkJ
)−1
θJ0 + e′wDaZaθa1 − e′wDJZJθJ1 = e′wDaba� (A14)

where e′w = [0�0� � � � � Ik�0� � � � �0] with Ik in the w position. Since W ≥ 3, take two other
distinct block rows corresponding to w̃, w and difference both from the above to obtain
the parameter θa1 , θJ1 .

A.3.2 Proof of Proposition 8 (i) Consider the counterfactual payoff π̃(a�k�w) =
θ0(a�k)+ h1[Z′(a�w)θ1(a�k)]. Since the term Z′(a�w)θ1(a�k) is known for all (a�k�w),
we can write this as an “additive changes” as follows: π̃(a�k�w)= π(a�k�w)+ g, where
g= h1[Z′(a�w)θ1(a�k)] −Z′(a�w)θ1(a�k) is known.

(ii) Consider the counterfactual

π̃(a�w)=H0(a)θ0(a)+Z′(a�w)θ1(a)

for a= 1� � � � � J, where we stack θ0(a�k) and θ1(a�k) for all k andH0(a) is aK×K matrix.
From the proof of Proposition 7, equation (A14), we know that for anyw, thew block row
of (3) is(

Ik −βFka
)−1
θa0 − (

Ik −βFkJ
)−1
θJ0 + e′wDaZaθa1 − e′wDJZJθJ1 = e′wDaba(p)�

The corresponding w block row for the counterfactual scenario is(
Ik −βFka

)−1
H0(a)θ

a
0 − (

Ik −βFkJ
)−1
H0(J)θ

J
0 + e′wDaZaθa1 − e′wDJZJθJ1 = e′wDaba(p̃)�

Lack of identification of θ0 is represented by the free parameter θJ0 . Using (A14), we
prove the claim.

42In the multiple choice one block column is a linear combination of the remaining (J−1) corresponding

to θ0; therefore we need to fix θJ0 for one action J to identify θ−J
0 .
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(iii) From item (ii) above, it is clear that when Fka changes, p̃ is identified if and only
if for all a �= J,Aka = Ãka .

(iv) When F̃w �= Fw and F̃ka = Fka , the equalityAka = Ãka trivially holds.

A.4 Identification of counterfactual welfare

A.4.1 Proof of Proposition 9 Proposition 9 is a direct consequence of Lemma A5 below.

Lemma A5. Assume Ã = A, X̃ = X , β̃ = β, and let ha(πa) = Haaπa + ga, all a. Let C =
H−JA−J − Ã−JHJJ and D = (I − βF̃J)(I − βFJ)

−1 −HJJ . Then �V is identified if and
only if

P̃[C − ÃD] =D� (A15)

where the matrices Ã and P̃ are defined as in Lemma 1 (but based on Ãa and p̃).

Proof. We know that

V = (I −βFJ)−1(πJ +ψJ(p)
)

and similarly for Ṽ

Ṽ = (I −βF̃J)−1(hJ(πJ)+ψJ(p̃)
)
�

Then

∂�V

∂πJ
= (I −βF̃J)−1

(
HJJ + ∂ψJ(p̃)

∂p̃

∂p̃

∂πJ

)
− (I −βFJ)−1�

Therefore, ∂�V∂πJ = 0 if and only if

∂ψJ(p̃)

∂p̃

∂p̃

∂πJ
=D� (A16)

From Lemma A1, we know that

∂ψJ
∂p̃

= P̃�̃�

where P̃ and �̃ are the counterfactual counterpart of P and � defined in Lemma A1. By
the implicit function theorem, we know that

∂p̃

∂πJ
=
[
∂b̃−J(p̃)
∂p̃

]−1
(H−JA−J − Ã−JHJJ)�

and, by Lemma 1, [
∂b̃−J(p̃)
∂p̃

]−1
= �̃−1(ÃP̃ + I)−1�

Thus (A16) becomes

P̃(ÃP̃ + I)−1C =D� (A17)
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Note that43

(ÃP̃ + I)−1 = I − Ã(I + P̃Ã)−1P̃�

DefineM = (I + P̃Ã). Then

P̃(ÃP̃ + I)−1 = P̃ − P̃ÃM−1P̃ = P̃ − (M − I)M−1P̃ =M−1P̃�

Then (A17) becomes M−1P̃C =D, or P̃C =MD= (I + P̃Ã)D, or P̃(C − ÃD)=D, which
is (A15).

A.4.2 Proof of Corollary 2 Lack of identification of θ0 is represented by the free param-
eter θJ0 . So, applying the same argument as in Lemma A5, but differentiating �V with
respect to θJ0 , we prove the claim.
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