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Bounds on treatment effects in regression discontinuity designs
with a manipulated running variable
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The key assumption in regression discontinuity analysis is that the distribution
of potential outcomes varies smoothly with the running variable around the cut-
off. In many empirical contexts, however, this assumption is not credible; and the
running variable is said to be manipulated in this case. In this paper, we show that
while causal effects are not point identified under manipulation, one can derive
sharp bounds under a general model that covers a wide range of empirical pat-
terns. The extent of manipulation, which determines the width of the bounds, is
inferred from the data in our setup. Our approach therefore does not require mak-
ing a binary decision regarding whether manipulation occurs or not, and can be
used to deliver manipulation-robust inference in settings where manipulation is
conceivable, but not obvious from the data. We use our methods to study the dis-
incentive effect of unemployment insurance on (formal) reemployment in Brazil,
and show that our bounds remain informative, despite the fact that manipulation
has a sizable effect on our estimates of causal parameters.

Keywords. Regression discontinuity, manipulation, bounds, partial identifica-
tion, unemployment insurance.

JEL classification. C14, C21, J65.

1. Introduction

In a regression discontinuity (RD) design, treatment assignment is determined by
whether a special covariate, the running variable, falls to the left or the right of a fixed
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cutoff value. The treatment’s average causal effect among units at the cutoff is then iden-
tified by what effectively amounts to a comparison of the average outcomes (and treat-
ment probabilities, in the case of a fuzzy design) of units in small neighborhoods on
either side of the cutoff. The key assumption for the validity of such an analysis is that
the distribution of units’ potential outcomes varies continuously with the running vari-
able around the cutoff, because this ensures that the only systematic difference between
units that are close to but on different sides of the cutoff is their treatment assignment.

Continuity of the potential outcome distribution given the running variable, how-
ever, may not be a credible assumption in many empirical settings where the running
variable is not exogenously determined. Consider, for instance, studying the effect of a
program that offers financial aid to students who score above a certain threshold on a
test. Since the program affects incentives, it likely affects the running variable, that is,
test scores. This fact alone does not invalidate the key identifying assumption for an
RD analysis, and published empirical papers in which the running variable is not ex-
ogenous abound in the literature (e.g., Solis (2017)). Problems arise in such settings if,
for instance, students whose score came up short bargain with their teacher for extra
points, or teachers might proactively give extra points to certain students with scores
below the threshold. If the potential outcomes of students who become eligible for fi-
nancial aid through such channels differ from those of the overall student population
close to the cutoff, a conventional RD analysis is generally biased.1

Using now standard terminology, we refer to all setups in which such violations oc-
cur as RD designs with a manipulated running variable.2 The practical importance of
this issue is widely recognized in the literature. Following McCrary (2008), who argued
that a jump in the density of the running variable at the cutoff is a strong indication
of manipulation, it has become common empirical practice to test for the presence of
such a jump. If the corresponding null hypothesis is not rejected, researchers typically
proceed with their RD analysis under the assumption that continuity of the potential
outcome distribution is satisfied. In contrast, the cutoff is often no longer used for infer-
ence on treatment effects if the null hypothesis is rejected.3 This practice is problematic
for at least two reasons. First, a non-rejection may not be due to the absence of manipu-
lation but to a lack of statistical power, for example, due to a small sample size. Units just
to the left and right of the cutoff could still differ in their unobservable characteristics in

1Evidence for violations of the continuity condition on the distribution of potential outcomes has been
documented in many contexts. See, among many others, Urquiola and Verhoogen (2009), Camacho and
Conover (2011), Scott-Clayton (2011), Card and Giuliano (2014), or Dee, Dobbie, Jacob, and Rockoff (2019).

2This terminology is not unproblematic, as it can be understood as suggesting that observational units
are engaging in a form of wrongdoing. While this might be the case in some settings, there could also be
other actors within the respective institutional contexts that are violating rules, and manipulated running
variables can even occur if no rules are violated at all.

3Some studies also rely on ad hoc “fixes.” For instance, a “doughnut-hole” approach is sometimes used
in the existing literature to estimate causal parameters in cases of potential manipulation. This method
excludes observations around the cutoff somewhat heuristically, and then relies on extrapolation outside
the range of the remaining data to recover estimates of treatment effects at the cutoff for a population
of units that may or may not be actually observed at the cutoff under any circumstances. As we discuss
below, this approach is problematic in several ways and goes against the spirit of the usual RD identification
argument.
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this case, and estimates ignoring this possibility may be severely biased. Second, even if
one correctly rejects the null hypothesis of no manipulation, the extent of the problem
may be modest, and the data may remain informative. In this paper, we propose a sys-
tematic approach to dealing with the issue of potentially manipulated running variables
in RD designs, which addresses both of these concerns.

We begin by laying out a simple yet general model that posits the existence of two
unobservable types of units: always-assigned units, for which the realization of the
running variable is always on one side of the cutoff (normalized to be the right side);
and potentially-assigned units, for which the standard assumptions of an RD design
are valid. The standard RD framework is a special case of our model in which always-
assigned units are absent. This setup is able to capture a wide range of empirical scenar-
ios of manipulation by appropriately assigning the two labels to specific groups of units.
The only substantial requirement is that manipulation of the running variable occurs
through a form of “one-sided” selection.

We then pursue a partial identification approach (e.g., Manski (2003, 2009)) that
avoids making a binary decision about whether the RD design is affected by manipu-
lation (i.e., whether always-assigned units are present). Instead, we let the data decide
about the extent and “worst case” impact of the issue. This line of reasoning leads to
bounds on causal parameters in two steps. First, we use the magnitude of the discon-
tinuity in the density of the running variable at the cutoff to identify the proportion of
always-assigned units among all units close to the cutoff. Second, we use this informa-
tion to bound treatment effects by finding those “worst case” scenarios in which the
distribution of outcomes among always-assigned units takes its “highest” and “lowest”
feasible value (in a stochastic dominance sense). For sharp RD designs, the bounds are
simply obtained by trimming the tails of the outcome distribution among units just to
the right of the cutoff.4 For fuzzy RD designs, the bounds are more elaborate in struc-
ture due to the various shape restrictions implied by our model. As extensions of our
main results, we show that the bounds can be sharpened by using covariate information,
or by imposing further assumptions about the behavior of economic agents. We also
show that one can identify the distribution of covariates among always-assigned and
potentially-assigned units at the cutoff, which is helpful to characterize these groups.

To implement our identification results in practice, we describe computationally
convenient sample analogue estimators of our bounds, and confidence intervals for
the causal parameters of interest based on recent methods from the literature on set
inference (e.g., Imbens and Manski (2004), Stoye (2009), Andrews and Soares (2010)).
Software packages that implement our methods in R and Stata are available on the au-
thors’ websites. Our confidence intervals provide reliable inference on treatment effects
in cases where manipulation clearly occurs. However, they are also valid in applications
where it seems unclear whether the standard RD assumptions are satisfied, and we rec-
ommend their use in such settings in order to ensure that inference is robust against the
possibility of manipulation.

4This result shares similarities with that of Horowitz and Manski (1995) or Lee (2009); and some applied
papers have used heuristic arguments to arrive at some version of this strategy (e.g., Card, Dobkin, and
Maestas (2009), Sallee (2011), Anderson and Magruder (2012), Schmieder, von Wachter, and Bender (2012)).
Our contribution with regard to the sharp design is thus mainly to formalize this approach.
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Last, we illustrate the use of our approach through a study of the effect of unemploy-
ment insurance (UI) around an eligibility cutoff in Brazil. We find significant evidence
of manipulation and selection at the cutoff, and our bounds imply that the magnitude
of naïve RD estimates may be heavily affected by selection. Nevertheless, we are able to
infer that UI takeup increases the covered UI duration by at least 35�4 days or at least
0�236 month per month of potential UI duration. This estimate is almost twice as large
as estimates around another discontinuity, and thus for another group of workers, in
Brazil (Gerard and Gonzaga (2016)). Behavioral responses to UI benefits are thus rela-
tively large in our sample.

The rest of the paper is organized as follows. Section 2 introduces our general frame-
work for RD designs with a manipulated running variable. Section 3 contains our main
partial identification results, and Section 4 discusses estimation and inference. Section 5
presents our empirical application. Section 6 concludes. Proofs and additional mate-
rial can be found in appendices and the Supplemental Material (Gerard, Rokkanen, and
Rothe (2020)). Throughout the paper, we use the notation that g(c+) = limx↓c g(x) and
g(c−)= limx↑c g(x) for a generic function g(·). We also follow the convention that when-
ever we take a limit we implicitly assume that this limit exists and is finite. Similarly,
whenever an expectation or some other moment of a random variable is taken, it is im-
plicitly assumed that the corresponding object exists and is finite.

2. Model and parameters of interest

In this section, we introduce a general model for RD designs in which manipulation
possibly occurs, discuss its applicability, and clarify the interpretation of the parameters
of interest.

2.1 Model

The general structure of the data is the same as in conventional RD designs in our setup.
We observe independent data points (Xi�Yi�Di), i = 1� � � � � n, where Xi is the running
variable, Yi is the outcome of interest, and Di is the actual treatment status, with Di = 1
if unit i receives the treatment, and Di = 0 otherwise. Units are assigned to the treatment
group if Xi ≥ c for some fixed cutoff value c. Our RD design is said to be sharp if Di =
I(Xi ≥ c), and said to be fuzzy otherwise.

The main structural feature of our model is that the population under study can be
partitioned into two groups with membership indicated by an unobservable dummy
variable Mi ∈ {0�1}. In a sense made precise below, units with Mi = 0, which we call
potentially-assigned, behave as prescribed by a standard RD framework, while units with
Mi = 1, which we call always-assigned, are only restricted to have realization of the run-
ning variable on one side of the cutoff (which we normalize to be the right side with-
out loss of generality). Potentially-assigned units also have potential outcomes Yi(d), for
d ∈ {0�1}, corresponding to the outcome unit i would have experienced had it received
treatment d; and potential treatment states Di(x), for x ∈ supp(Xi), corresponding to the
treatment status unit i would have experienced if the value x had been used to deter-
mine its treatment assignment. For potentially-assigned units we thus have Yi = Yi(Di)
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and Di = Di(Xi), respectively, and we also put D+
i = Di(c

+) and D−
i = Di(c

−). Always-
assigned units are not even required to have potential outcomes and treatment states.
Manipulation then exists in this setup by definition whenever always-assigned units ex-
ist in the population. The exact behavior of the units is restricted through the following
three assumptions.

Assumption 1. (i) P(D = 1|X = c+�M = 0) > P(D = 1|X = c−�M = 0); (ii) P(D+ ≥
D−|X = c�M = 0) = 1; (iii) P(Y(d) ≤ y|D+ = d1�D− = d0�X = x�M = 0), E(Y(d)|D+ =
d1�D− = d0�X = x�M = 0), and P(D+ = d1�D− = d0|X = x�M = 0) are continuous in x

at c for d�d0� d1 ∈ {0�1} and all y; (iv) FX|M=0(x) is differentiable in x at c, and the deriva-
tive is strictly positive.

This assumption implies that the standard conditions from the RD literature are sat-
isfied among potentially-assigned units.5 Assumptions 1(i)–(iii) impose, respectively, a
nonzero first stage, a monotonicity or “no defiers” condition, and a key continuity con-
dition which requires the distributions of potential outcomes and potential treatment
states to be the same on both sides of the cutoff. Note that Assumptions 1(i)–(iii) simplify
to the condition that E(Y(d)|X = x�M = 0) is continuous in x at c for d ∈ {0�1} for the
special case of a sharp RD design. Assumption 1(iv) ensures that there are potentially-
assigned units close to the cutoff on either side, which is crucial for any identification
argument based on comparing units just to the left and right of the cutoff.

Assumption 2. The derivative of FX|M=0(x) is continuous in x at c.

This is a weak regularity condition on the distribution of the running variable among
potentially-assigned units. Together with Assumption 1(iv), it implies that the density
of Xi among potentially-assigned units is smooth and strictly positive over some open
neighborhood of c. Continuity of the running variable’s density around the cutoff is a
reasonable condition in applications, and is generally considered to be an indication for
the absence of manipulation in the applied literature (Lee (2008), McCrary (2008)).

Assumption 3. (i) P(X ≥ c|M = 1) = 1, (ii) FX|M=1(x) is right-differentiable in x at c.

Assumption 3 is the only restriction we impose on always-assigned units. Its first part
implies that the running variable only takes on values to the right of the cutoff among
these units. This (local) one-sided manipulation assumption is key for the identification
argument in the next section as it allows us to identify the proportion of always-assigned
units among all units close to the cutoff. The second part rules out that the running
variable is exactly equal to the cutoff value for some (or all) always-assigned units. If
this was the case, one could easily identify the units who are problematic for the validity

5We formalize the notion of an RD design in terms of continuity conditions on the distributions of po-
tential outcomes and treatment states as in Frandsen, Frölich, and Melly (2012), Dong (2018), or Bertanha
and Imbens (forthcoming). This leads to the same identification results as directly imposing the local in-
dependence condition that the treatment effect is independent of the treatment status conditional on the
running variable near the cutoff, as in Hahn, Todd, and Van der Klaauw (2001).
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of the RD design through their value of the running variable, and simply remove them
from the analysis. Finally, together with Assumption 2, Assumption 3 also implies that
the running variable is continuously distributed in the full population, with a density
that is potentially discontinuous at c.

2.2 Discussion

Our model is able to capture a wide range of empirical scenarios in which validity of the
standard RD design could be achieved by excluding a group of problematic units just to
the right of the cutoff from the data. As an example, suppose students need to achieve
a certain test score in order to be admitted to a prestigious school. The test is taken by
all students, even those who do not plan to attend the prestigious school (e.g., because
tuition is too high), and those who would be admitted even if their score falls below
the cutoff (e.g., because of legacy admissions). After a preliminary round of grading, the
teacher decides to “bump up” the scores of those students below the admission cutoff
to some value above the cutoff if she believes that the student would highly benefit from
attending the prestigious school. We then only observe the final score assigned by the
teacher.

In such a scenario, there is manipulation as long as the teacher’s decision to “bump
up” students is related to their potential outcomes. Students whom the teacher believes
would highly benefit from attending the prestigious school are always-assigned: their
final test score is always above the cutoff, either because they were “bumped up,” or be-
cause they already scored above the cutoff in the preliminary round of grading. All other
students are potentially-assigned. Moreover, in this scenario, the RD design is likely
fuzzy for both groups, in the sense that we can expect to see treated and untreated units
among the potentially-assigned (below and above the cutoff) and the always-assigned
ones (above the cutoff).

Through similar reasoning, one can fit a wide range of settings into our model, in-
cluding settings in which no agent engages in any form of wrongdoing, by assigning the
labels of always-assigned and potentially-assigned appropriately to specific groups of
units. We illustrate this point in more detail in Section D of the Supplemental Material.

2.3 Parameter of interest

We focus on causal effects among potentially-assigned units as our parameter of interest
in this paper. Specifically, we study identification of

Γ = E
(
Y(1)−Y(0)|X = c�D+ >D−�M = 0

)
�

which can be understood as the local average treatment effect for the subgroup of
potentially-assigned “compliers,” who receive the treatment if and only if their value
of the running variable Xi is above the cutoff (Imbens and Angrist (1994)). It is the nat-
ural analogue to the full population local average treatment effect E(Y(1) − Y(0)|X =
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c�D+ >D−) typically considered in RD design without manipulation, in that both cap-
ture the causal effect for units for which the RD design is valid.6

The parameter Γ also retains a notion of policy relevance similar to the parameter
of interest in setups without manipulation. Specifically, it represents the causal effect
for units whose treatment status would change following marginal changes in the level
of the cutoff. This can be illustrated using the example from the previous subsection. If
the admission cutoff for the prestigious school increases, the teacher might still “bump
up” the scores of students she believes would highly benefit from attending. Treatment
assignment might thus only change for potentially-assigned “complier” students, whose
effect is measured by Γ .

One should note that Γ is the causal effects for a population that is actually observed
at the cutoff, and not some hypothetical population that one would observe at the cut-
off under some circumstances. In particular, our approach does not require assuming
the existence of a hypothetical “true” value of the running variable that one would sup-
posedly observe if one could, for instance, “close” the institutional channel that causes
manipulation. It also avoids making assumptions about how such a “true” value and the
observed value of the running variable are related. We see this as an advantage relative
to “doughnut-hole” RD designs, for example, which are sometimes used in applications
where manipulation is a concern.7

3. Identification

In this section, we derive our main results regarding the identification of Γ . We first state
some preliminary results, then consider the relatively simple case of a sharp RD design,
before finally analyzing the general case of a fuzzy RD design. Proofs are given in Ap-
pendix A. We also give an overview of a number of extensions to our main identification
results (e.g., quantile treatment effects), which are collected in Section C of the Supple-
mental Material. To present the results, it will be useful to have the following shorthand
notation to categorize various types of units:

C0 = {
D+ >D−�M = 0

}
� potentially-assigned compliers;

A0 = {
D+ =D− = 1�M = 0

}
� potentially-assigned always-takers;

N0 = {
D+ =D− = 0�M = 0

}
� potentially-assigned never-takers;

6Since our model imposes hardly any restrictions on the behavior of always-assigned units, it is not pos-
sible to derive meaningful conclusions about the causal effect of the treatment on them from observable
quantities.

7Doughnut-hole RD designs exclude observations around the cutoff and extrapolate trends estimated
outside of the excluded range to the cutoff. The result is commonly interpreted as a causal effect for a pop-
ulation that would be observed at the cutoff if the distribution of potential outcomes there would follow its
trend from outside the excluded range. This hypothetical population is often considered to be the one that
would be observed in a counterfactual in which the channel leading to a manipulated running variable was
“closed.” This interpretation requires strong assumptions regarding how manipulation occurs, and statis-
tical assumptions implying that extrapolation biases are small. No such assumptions are required in our
case.
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T1 = {D= 1�M = 1}� always-assigned treated units;
U1 = {D= 0�M = 1}� always-assigned untreated units�

3.1 Preliminaries

Since it is not possible to determine whether a specific unit is of the always-assigned
or the potentially-assigned type, Γ is generally not point identified under manipula-
tion of the running variable. We therefore derive sharp lower and upper bounds on
this parameter for both sharp and fuzzy RD designs. Our general strategy is to first ob-
tain sharp lower and upper bounds, in a first-order stochastic dominance sense, on
the CDFs FY(d)|X=c�C0 for d ∈ {0�1}. That is, we derive CDFs FU

d and FL
d that are feasi-

ble candidates for FY(d)|X=c�C0 in the sense that they are compatible with our assump-
tions and the population distribution of observable quantities, and that are such that
FU
d � FY(d)|X=c�C0 � FL

d , where � denotes first-order stochastic dominance. Once these
CDF bounds have been obtained, it follows from Stoye (2010, Lemma 1) that sharp upper
and lower bounds on Γ are given, respectively, by

Γ U ≡
∫

y dFU
1 (y)−

∫
y dFL

0 (y) and Γ L ≡
∫

y dFL
1 (y)−

∫
y dFU

0 (y)�

An advantage of this approach is that, given bounds on the CDFs of potential outcomes,
it is straightforward to consider quantile treatment effects as well. For notational conve-
nience, all results in this section are stated for the case of a continuously distributed out-
come variable; we extend our results to outcomes whose distribution has mass points in
Section C of the Supplemental Materials.

Our analysis repeatedly uses an important intermediate quantity, the proportion of
always-assigned units among all units just to the right of the cutoff, which we denote by

τ ≡ P
(
M = 1|X = c+)

�

While we cannot observe or infer the type of any given unit, under our assumptions we
can point identify τ from the size of the discontinuity in the density fX of the observed
running variable at the cutoff. We formally state this insight in the following lemma.

Lemma 1. If Assumptions 1–3 hold, then τ = 1 − fX(c−)/fX(c+) is point identified.

3.2 Sharp RD designs

In a sharp RD design, every unit receives the treatment if and only if its value of the
running variable is to the right of the cutoff. Since every unit just to the left of the cutoff
is potentially-assigned, the distribution of Y in this subpopulation coincides with the
distribution of Y(0) among potentially-assigned compliers (C0) at the cutoff:

FY(0)|X=c�C0(y) = FY |X=c−(y)�

To bound Γ , we therefore only need to bound the distribution of Y(1) among
potentially-assigned compliers at the cutoff. Information about Y(1) is only contained
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in the subpopulation of treated units, which contains potentially-assigned compli-
ers and always-assigned treated units (C0 and T1). Sharpness of the RD design then
implies that P(T1|X = c+) = τ. Since this quantity is point identified by Lemma 1,
we proceed analogously to Horowitz and Manski (1995) or Lee (2009) to obtain a
bound on FY(1)|X=c�C0(y). In particular, a sharp upper bound on FY(1)|X=c�C0(y), in
a first-order stochastic dominance sense, is obtained by truncating the distribution
FY |X=c+(y) below its τ-quantile. A sharp lower bound is obtained analogously by trun-
cating FY |X=c+(y) above its (1 − τ)-quantile. That is, the bounds on FY(1)|X=c�C0(y) are
given, respectively, by

FU
1�SRD(y) = FY |X=c+�Y≥QY |X=c+ (τ)(y) and FL

1�SRD(y) = FY |X=c+�Y≤QY |X=c+ (1−τ)(y)�

These bounds correspond to the “extreme” scenarios in which the proportion 1 − τ of
units just to the right of the cutoff with either the highest or the lowest outcomes are
the potentially-assigned units. These bounds are sharp because both “extreme” scenar-
ios are empirically feasible. The following theorem translates these findings into explicit
bounds on Γ .

Theorem 1. Suppose Assumptions 1–3 hold, that P(D+ >D−)= 1, and that FY |X=c+(y)
is continuous in y. Then sharp lower and upper bounds on Γ are given by

Γ L
SRD = E

(
Y |X = c+�Y ≤QY |X=c+(1 − τ)

) − E
(
Y |X = c−)

and

Γ U
SRD = E

(
Y |X = c+�Y ≥QY |X=c+(τ)

) − E
(
Y |X = c−)

�

respectively.

3.3 Fuzzy RD designs

In a fuzzy RD design with a manipulated running variable, the population of potentially-
assigned units might contain always-takers and never-takers in addition to compliers,
and always-assigned untreated units might exist in addtion to treated ones. As shown
in Table 1, there are thus five different types of units and four possible combinations
of treatment assignments and treatment decisions that are relevant for our analysis. To
derive bounds on the distributions of the two potential outcomes among potentially-
assigned compliers (C0) at the cutoff, we begin by introducing the following notation
for the proportion of always-assigned units among those units with treatment status
d ∈ {0�1} just to the right of the cutoff:

τd ≡ P
(
M = 1|X = c+�D= d

)
� d ∈ {0�1}�

We then proceed in three steps. In Steps 1 and 2, we obtain bounds on the distribution
of potential outcomes under treatment and non-treatment, respectively, for the hypo-
thetical case in which the true values of τ1 and τ0 are known. In Step 3, we then derive
our final bounds on Γ , given that the true values of τ1 and τ0 are in fact unknown.
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Table 1. Allocation of units’ types in the fuzzy
RD design.

Subset of population Types of units present

X = c+, D = 1 C0, A0, T1
X = c−, D = 1 A0
X = c+, D = 0 N0, U1
X = c−, D = 0 C0, N0

Note: See Section 2.1 for a definition of units’ types.

Step 1: Distribution of potential outcome under treatment

We begin by considering bounds on FY(1)|X=c�C0 . Information about the distribution of
Y(1) is only contained in the data on treated units. From Table 1, we see that the sub-
population of treated units just to the left of the cutoff consists exclusively of potentially-
assigned always-takers (A0). The CDF FY(1)|X=c�A0 is therefore point identified:

FY(1)|X=c�A0(y) = FY |X=c−�D=1(y)�

Using simple algebra, we find that the proportion of A0 units among treated units just
to the right of the cutoff, which we denote by κ1, is point identified as well:

κ1 ≡ P
(
A0|X = c+�D= 1

) = (1 − τ) · E
(
D|X = c−)

E
(
D|X = c+) �

To simplify the notation, we also define

G(y) ≡ FY(1)|X=c�C0∪T1(y)�

It then follows from the law of total probability that this CDF is also point identified:8

G(y) = 1
1 − κ1

(
FY |X=c+�D=1(y)− κ1FY |X=c−�D=1(y)

)
�

The CDF FY(1)|X=c�C0 can now be bounded sharply by considering the two “extreme”
scenarios in which potentially-assigned compliers (C0) are those units just to the right
of the cutoff in the subpopulation C0 ∪T1 with either the highest or the lowest outcomes.
The share of C0 units in this subpopulation is

P
(
C0|X = c+�C0 ∪ T1

) = 1 − τ1

1 − κ1
�

Given knowledge of τ1, we therefore obtain a sharp upper bound on FY(1)|X=c�C0 , in
a first-order stochastic dominance sense, by truncating the distribution G below its
τ1/(1 −κ1) quantile. Analogously, we obtain a sharp lower bound by truncating G above

8The quantity on the right-hand side of the following equation is guaranteed to be a proper CDF in our
model. If that were not to be the case empirically, this would mean that our model is rejected by the data.
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its 1 − τ1/(1 − κ1) quantile. With some algebra, these bounds on FY(1)|X=c�C0 given
knowledge of (τ1� τ0) can be written, respectively, as

FU
1�FRD(y� τ1� τ0)= (1 − κ1) ·G(y)− τ1

1 − κ1 − τ1
· I

{
y ≥G−1

(
τ1

1 − κ1

)}
and

FL
1�FRD(y� τ1� τ0)= (1 − κ1) ·G(y)

τ1
· I

{
y ≤G−1

(
1 − τ1

1 − κ1

)}
�

Step 2: Distribution of potential outcome under non-treatment

Next, we consider bounds on FY(0)|X=c�C0 . Information about the distribution of Y(0)
is only contained in the data on untreated units. From Table 1, we see that untreated
potentially-assigned compliers (C0) are never observed in isolation just to the left of the
cutoff, but only together with potentially-assigned never-takers (N0). Given knowledge
of τ0, the share of the latter type of units, which we denote by κ0 · (1 − τ0), is point iden-
tified:

P
(
N0|X = c−�D= 0

) = κ0 · (1 − τ0)� κ0 = 1
1 − τ

· 1 − E
(
D|X = c+)

1 − E
(
D|X = c−) �

If we were to use only information from untreated units just to the left of the cutoff,
we could therefore obtain lower and upper bounds on FY(0)|X=c�C0(y) by truncating the
distribution FY |X=c−�D=0(y) below its κ0 · (1 − τ0) quantile and above its 1 − κ0 · (1 − τ0)

quantile, respectively. However, such bounds are generally not sharp. This is because
they correspond to “extreme” scenarios in which potentially-assigned never-takers (N0)
have either the highest or the lowest outcomes among untreated units just to the left
of the cutoff. By Assumption 1, however, the CDF FY(0)|X=x�N0(y) varies continuously
in x around the cutoff, and thus these two “extreme” scenarios might be at odds with
the distribution of outcomes that we observe among untreated units just to the right of
the cutoff. Indeed, from Table 1, we see that the subpopulation of untreated units just
to the right of the cutoff also contains potentially-assigned never-takers, together with
always-assigned untreated units (U1), and their share in this subpopulation is

P
(
N0|X = c+�D= 0

) = 1 − τ0�

We can thus write the density fY(0)|X=c�N0(y) in two different ways using information
from either side of the cutoff (assuming κ0 > 0 and τ0 < 1):

fY(0)|X=c�N0(y) = fY |X=c−�D=0(y)− (
1 − κ0 · (1 − τ0)

)
fY(0)|X=c�C0(y)

κ0 · (1 − τ0)
and (3.1)

fY(0)|X=c�N0(y) = fY |X=c+�D=0(y)− τ0fY(0)|X=c�U1(y)

1 − τ0
� (3.2)

To be compatible with the distribution of Y among untreated units on either side of the
cutoff, any feasible candidate for fY(0)|X=c�N0(y) thus has to be such that

fY(0)|X=c�N0(y) ≤ s(y� τ0)
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for all y ∈R, where

s(y� τ0) ≡ 1
1 − τ0

· min
{

1
κ0

· fY |X=c−�D=0(y)� fY |X=c+�D=0(y)

}
�

This is because otherwise one of the density functions fY(0)|X=c�C0(y) or fY(0)|X=c�U1(y)

would have to take a negative value in order for equations (3.1)–(3.2) to be satisfied. The
most “extreme” feasible candidates for FY(0)|X=c�N0(y), which put as much probability
mass as possible to one of the tail regions of the support of the outcome variable, are
then given by

FU
Y(0)|X=c�N0

(y) =
∫ y

−∞
s(t� τ0)I

{
t ≥ qU(τ0)

}
dt and

FL
Y(0)|X=c�N0

(y) =
∫ y

−∞
s(t� τ0)I

{
t ≤ qL(τ0)

}
dt�

respectively, where qU(τ0) and qL(τ0) are constants such that∫ ∞

qU(τ0)
s(t� τ0)dt =

∫ qL(τ0)

−∞
s(t� τ0)dt = 1� (3.3)

We illustrate this construction in Figure 1. The “extreme” candidates for FY(0)|X=c�N0(y)

directly correspond to “extreme” candidates for the density fY(0)|X=c�C0(y) through the
relationship (3.1), which in turn yields the following sharp upper and lower bounds, in
a first-order stochastic dominance sense, on the CDF FY(0)|X=c�C0 given knowledge of
(τ1� τ0):

FU
0�FRD(y� τ1� τ0) = FY |X=c−�D=0(y)− κ0 · (1 − τ0)F

L
Y(0)|X=c�N0

(y)

1 − κ0 · (1 − τ0)
and

FL
0�FRD(y� τ1� τ0) = FY |X=c−�D=0(y)− κ0 · (1 − τ0)F

U
Y(0)|X=c�N0

(y)

1 − κ0 · (1 − τ0)
�

If the envelope function s(·� τ0) is a proper density, these two bounds coincide, and the
CDF FY(0)|X=c�C0 is point identified. There are two main scenarios in which this would
be the case. First, there exist no untreated always-assigned units just to the right of the
cutoff, and thus τ0 = 0. Second, there exist no untreated units of any type just to the right
of the cutoff, and thus E(D|X = c+)= 1.

Step 3: Bounds on parameter of interest

The analysis in Steps 1 and 2 shows that if we knew the values of τ1 and τ0, sharp upper
and lower bounds on the local average treatment effect Γ would be given by

Γ U
FRD(τ1� τ0)≡

∫
y dFU

1�FRD(y� τ1� τ0)−
∫

y dFL
0�FRD(y� τ1� τ0) and

Γ L
FRD(τ1� τ0)≡

∫
y dFL

1�FRD(y� τ1� τ0)−
∫

y dFU
0�FRD(y� τ1� τ0)�

(3.4)
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Figure 1. Illustration of the construction of our upper and lower bounds for FY(0)|X=c�N0 . The
solid and dotted lines represent the graph of the functions fY |X=c−�D=0(y)/((1 − τ0)κ0) and
fY |X=c+�D=0(y)/(1 − τ0), respectively. The function s(y� τ0) is the pointwise minimum of these
two functions. The upper contours of the shaded areas (1) and (2) then correspond to the densi-
ties of FL

Y(0)|X=c�N0
and FU

Y(0)|X=c�N0
, respectively, as the constants qL(τ0) and qU(τ0) are chosen

such that the surface of the shaded areas is equal to 1. Note that it is not necessarily the case that
qL(τ0) < qU(τ0).

respectively. However, these bounds are not directly feasible, as the population values
of τ1 and τ0 are generally unknown. Nevertheless, the two values can be shown to be
partially identified. To see this, note that there are four logical restrictions on the range
of their plausible values. First, since τ1 and τ0 are probabilities, it has to be the case that

(τ1� τ0) ∈ [0�1]2� (3.5)

Second, by the law of total probability, it must hold that

τ = τ1 · E
(
D|X = c+) + τ0 · (1 − E

(
D|X = c+))

� (3.6)

Third, our monotonicity condition in Assumption 1(i) implies that

E
(
D|X = c+) · 1 − τ1

1 − τ
> E

(
D|X = c−)

� (3.7)

Note that this condition can be equivalently stated as τ1 < 1 − κ1, and ensures that the
CDF G in Step 1 is truncated at a proper quantile level. Finally, requiring the terms
qU(τ0) and qL(τ0), defined in (3.3), to be well-defined implies that∫

s(y� τ0)dy ≥ 1� (3.8)

These four conditions exhaust the informational content of our model regarding the
possible values of (τ1� τ0). Therefore, the set T of candidates that satisfy these four re-
strictions, formally given by

T ≡ {
(τ1� τ0) : conditions (3.5)–(3.8) are satisfied

}
�
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is the sharp identified set for (τ1� τ0). Using this result, we can now find sharp bounds
on Γ by finding those values of (τ1� τ0) ∈ T that lead to the most extreme values of the
quantities defined in (3.4).9 These bounds on Γ are sharp because they are based on
assigning “worst case” distributions of the potential outcomes to each of the six groups
mentioned in Table 1 that satisfy our assumptions and are compatible with the distribu-
tion of observables.

Theorem 2. Suppose that Assumptions 1–3 hold, and that FY |X=c+�D=d(y) and
FY |X=c−�D=d(y) are continuous in y for d ∈ {0�1}. Then sharp lower and upper bounds
on Γ are given by

Γ L
FRD = inf

(t1�t0)∈T
Γ L

FRD(t1� t0) and Γ U
FRD = sup

(t1�t0)∈T
Γ U

FRD(t1� t0)�

respectively.

3.4 Additional results

We present here a brief overview of a number of extensions to our main identification
results; for the sake of brevity, details are relegated to Section C of the Supplemental
Material.

Quantile treatment effects Quantile treatment effects can be an attractive alternative
to average effects in applications because they are less sensitive to variation in the outer
tails of the outcome distribution. Since our identification results for Γ are based on first-
order stochastic dominance bounds on the respective conditional CDF of potential out-
comes, they are straightforward to extend to quantile counterparts of these parameters,
such as Ψ(u) ≡ QY(1)|X=c−�D+>D−(u) − QY(0)|X=c−�D+>D−(u), where u ∈ (0�1) is some
quantile level.

Non-continuously distributed outcomes Theorems 1 and 2 are stated for the special
case of a continuously distributed outcome variable. This is for simplicity only, and our
results immediately generalize to the case of a discrete outcome variable, which occurs
frequently in empirical applications. Discrete outcomes do not pose any conceptual
challenges, but some care needs to be taken when defining truncated distributions.

Behavioral assumptions In some applications, it seems plausible that the probabil-
ity of actually receiving the treatment conditional on being eligible should be relatively
high in some appropriate sense for always-assigned units. For instance, if manipulation
results from some units making a conscious effort to locate to the right of the cutoff,
they will likely want to receive the treatment conditional on being eligible. This could
be modeled, for example, by assuming that always-assigned units are more likely to be
treated than potentially-assigned ones, or by assuming that all always-assigned units
are treated. We show that imposing assumptions of this kind can narrow the bounds in
Theorem 2 by shrinking the set T .

9Note that under the model in Section 2.1, the set T has to be non-empty. If that were not to be the case
empirically, this would mean that our model is rejected by the data.



Quantitative Economics 11 (2020) RD designs with manipulated running variable 853

Covariates Following arguments similar to those in Lee (2009), covariates that are mea-
sured prior to treatment assignment can also be used to narrow the bounds in Theo-
rem 1 and 2. The idea is that, if the outcome distribution or the proportion of always-
assigned units just to the right of the cutoff changes with the covariates, trimming units
based on their position in the outcome distribution conditional on the covariates leads
to units with less extreme values in the overall outcome distribution being trimmed.
Additionally, we show that one can also identify the distribution of covariates among
always-assigned and potentially-assigned units. This could be useful for targeting poli-
cies aimed at mitigating manipulation, for instance.

4. Estimation and inference

While our main focus in this paper is on deriving identification results for causal effects
in RD designs with a manipulated running variable, this section also discusses some
methods for estimation and inference, based on the results in Section 3.10

4.1 Estimation of the bounds

We describe the construction of our final estimates of the bounds on Γ for the general
case of a fuzzy RD design. Bounds for the sharp case can be obtained in a more simple
fashion. First, note that the set T is a straight line in the unit square, and can therefore
be represented in terms of the location of the endpoints of the line:

T = {(
η1(t)�η0(t)

) : t ∈ [0�1]} with ηd(t) = τLd + t · (τUd − τLd
)

for d ∈ {0�1}, where

τL1 = max
{

0�1 − 1 − τ

g+
}
�

τU1 = min

{
1 − (1 − τ) · g−

g+ �

τ − max
{

0�1 −
∫

s̃(y)dy

}(
1 − g+)

g+

}
�

τU0 = min
{

1�
τ

1 − g+
}
� τL0 = max

{
0� τ − (1 − τ) · (g+ − g−)

1 − g+ �1 −
∫

s̃(y)dy

}
�

with s̃(y) = min{fY |X=c−�D=0(y)/κ0� fY |X=c+�D=0(y)}, g+ = E(Di|Xi = c+), and g− =
E(Di|Xi = c−). Dropping the “FRD” subscript to simplify the notation, the bounds on
Γ from Theorem 2 can then be written as

Γ L = inf
t∈[0�1]

Γ L
(
η1(t)�η0(t)

)
and Γ U = sup

t∈[0�1]
Γ U

(
η1(t)�η0(t)

)
�

This expression is convenient because it makes the area over which optimization takes
place free of unknown quantities that have to be estimated.

10Our approach uses a number of different techniques that are well-understood individually, but whose
combination requires a tedious theoretical analysis. We therefore do not present any formal results here.
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With this notation, estimates of our bounds on Γ can be obtained through a “plug-
in” approach that replaces unknown population quantities with suitable sample coun-
terparts. Specifically, our estimates of the lower and upper bounds on Γ are then given,
respectively, by

Γ̂ L = inf
t∈[0�1]

Γ̂ L
(
η̂1(t)� η̂0(t)

)
and Γ̂ U = sup

t∈[0�1]
Γ̂ U

(
η̂1(t)� η̂0(t)

)
�

where our software package uses grid search to solve these two optimization problems.
Here,

Γ̂ U(t1� t0) =
∫

y dF̂U
1 (y� t1� t0)−

∫
y dF̂L

0 (y� t1� t0)�

Γ̂ L(t1� t0) =
∫

y dF̂L
1 (y� t1� t0)−

∫
y dF̂U

0 (y� t1� t0);

the function F̂
j
d(y� t1� t0) is a sample analogue estimator of the function F

j
d�FRD(y� t1� t0)

for d ∈ {0�1}; and η̂d(t) is a sample analogue estimator of the function ηd(t) introduced
above. The precise definition of these estimates is given in Appendix B. Following the re-
cent RD literature, we focus on flexible nonparametric methods, and in particular, local
polynomial smoothing (Fan and Gijbels (1996)), for their construction.

4.2 Inference

In order to quantify sampling uncertainty about Γ , we construct confidence intervals
that are “manipulation-robust” in the sense that they are valid irrespective of the true
value of τ. Such a construction involves a number of complications that we describe in
this subsection. We focus again on the general case of a fuzzy RD design in Theorem 2,
as the procedure works analogously for the sharp case.

The first conceptual complication is due to the presence of an optimization op-
erator in the definition of the bounds.11 We address this as follows. Suppose that for
every t ∈ [0�1], we had a 1 − α confidence interval CFRD

1−α (t) for Γ that was valid if the
true value of (τ1� τ0) was equal to (η1(t)�η0(t)). Then the intersection-union principle
(Berger (1982)) implies that CFRD

1−α = ⋃
t∈[0�1] CFRD

1−α (t) is a 1 − α confidence interval for Γ .
That is, a candidate value for Γ is outside of CFRD

1−α if and only if it is outside of CFRD
1−α (t)

for all t ∈ [0�1]. Both the “fixed t” and the overall confidence interval have level 1 − α:
there is no need for an adjustment to account for the fact that we are implicitly testing a
continuum of hypotheses.

We are thus left with the problem of constructing a “fixed t” confidence inter-
val, which is our second main complication. If the estimates Γ̂ L(η̂1(t)� η̂0(t)) and
Γ̂ U(η̂1(t)� η̂0(t)) were jointly asymptotically normal irrespective of the true value of τ,
one could use the approach proposed by Imbens and Manski (2004) and Stoye (2009)

11Our problem differs from the one in Chernozhukov, Lee, and Rosen (2013), who studied inference on
intersection bounds of the form [supv θ(v)� infv θ(v)]. It is more accurately described as an example of union
bounds, as the role of the inf and the sup operator in the definition of the identified set is reversed.
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for this purpose. However, our bound estimates are only jointly asymptotically normal
(under appropriate regularity conditions) if τ > 0. For τ = 0, their limiting distribution
is non-Gaussian, as the estimated level of manipulation τ̂ = max{0�1 − f̂−/f̂+}, formally
defined in Appendix B, fails to be asymptotically normal.12 A Gaussian approximation
to the distribution of the “fixed t” estimates is thus typically poor in finite samples if τ
is not well-separated from zero, and the standard bootstrap is unable to fix this issue
(Andrews (2000)).

We therefore propose an approach similar to moment selection in the moment
inequality literature (e.g., Andrews and Soares (2010), Andrews and Barwick (2012)).
Roughly speaking, we estimate the limiting distribution of the estimated bounds for a
level of manipulation that is “tilted” away from zero, with the amount of tilting van-
ishing if τ̂ is very large relative to its standard error. Since τ determines the extent to
which certain distributions are trimmed, the estimated bounds Γ̂ L(η̂1(t)� η̂0(t)) and
Γ̂ U(η̂1(t)� η̂0(t)) are stochastically increasing in τ. By potentially “tilting” the value of τ
away from zero, we simultaneously guarantee asymptotic normality of the bounds esti-
mates and correct coverage of the corresponding confidence interval. For convenience,
we construct such a confidence interval CFRD

1−α via the bootstrap; the formal algorithm is
described in Appendix B.

4.3 “Fixed τ” inference

The confidence interval construction above takes a deliberately agnostic view about the
true value of τ. This view can be overly pessimistic in certain contexts. Suppose that a re-
searcher strongly believes that manipulation is either fully absent or at least of negligible
magnitude in a particular setting, and that this belief is confirmed by a point estimate
of τ that is close to zero. Now, if the corresponding standard error is large, the confi-
dence interval CFRD

1−α can be rather wide, as the data by themselves do not rule out a high
level of manipulation. In such a scenario, the researcher could consider an alternative
confidence interval for Γ that is computed under the assumption that the value of τ is
known to be some specific τ∗ ≥ 0. Such an interval C1−α(τ

∗) can be calculated through a
modified bootstrap algorithm described in Appendix B. For τ∗ = 0, this algorithm yields
the usual “no manipulation” confidence interval, and generally C1−α(τ

∗) widens as τ∗
increases.

To see how this is useful, suppose that the researcher’s main goal is testing the hy-
pothesis that Γ = 0 against the alternative that Γ �= 0. Remember that Γ corresponds to
the usual “no manipulation” RD parameter if τ = 0 (i.e., always-assigned units are ab-
sent). The researcher can plot the upper and lower boundary of C1−α(τ

∗) as a function of
τ∗, and check graphically for which levels of manipulation the value of 0 is contained in
the confidence interval. The largest value of τ∗ for which 0 /∈ C1−α(τ

∗) is then called the
breakdown point of the null hypothesis that Γ = 0 (cf. Horowitz and Manski (1995), Mas-
ten and Poirier (2020)). For example, suppose that 0 /∈ C1−α(0), but that 0 ∈ C1−α(τ

∗) for

12Under standard regularity conditions
√
nh(̂τ − τ)

d→ max{0�Z} if τ = 0, where Z is a Gaussian random
variable with mean zero.
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τ∗ ≥ 0�1. Then the researcher can report that in his preferred “no manipulation” spec-
ification, the null hypothesis Γ = 0 is rejected at the critical level α, and that at least a
10% level of manipulation around the cutoff would be needed to reverse this result. The
researcher can then argue why such a high value of τ is implausible in her setting, even
if it is not formally rejected by the data. We believe that such an exercise is a useful ro-
bustness check for every RD study, including those in which manipulation is generally
not believed to be an issue.

5. Empirical application

In this section, we apply the methods developed above to bound treatment effects of
unemployment insurance (UI) on (formal) reemployment around an eligibility cutoff in
Brazil.

UI programs often feature discontinuities in the level or duration of potential UI
benefits based on the value of some running variable, such as age at layoff or the num-
ber of months of employment prior to layoff. RD designs are thus natural empirical
strategies to estimate this effect. At the same time, the possibility of manipulation of
the running variable is a common concern in the UI context (e.g., Card, Chetty, and We-
ber (2007), Schmieder, von Wachter, and Bender (2012)). For instance, the net value of a
match (compared to the outside option) may decrease once workers are eligible for UI,
leading to more separations (see, e.g., Feldstein (1976)).13 Our key identifying assump-
tion (“one-sided manipulation”) is likely to apply in this context, as displaced workers
are likely to have a weak preference for being eligible for UI benefits (they always have
the choice to not take up UI). Moreover, in most countries (the US being a notable excep-
tion), employers have no incentive to lay off their workers before they become eligible
for UI as UI benefits are not experience-rated.

The setting of our application is also interesting in itself. UI programs have been
adopted in a number of developing countries. Yet, the existing evidence for countries
with high informality remains limited. One reason is that the concern of manipulation
around discontinuities in potential UI benefits may be more severe in these countries,
complicating the estimation of treatment effects. The costs of being formally laid off
when eligible for UI may be relatively lower for some workers if they can work informally
while drawing UI benefits.

5.1 Institutional details, data, and sample selection

Our empirical exercise focuses on an eligibility cutoff in the Brazilian UI program. In the
interest of space, we present the institutional details and the data succinctly. For more
details, see Gerard and Gonzaga (2016), who studied other aspects of the Brazilian UI
program.

13The manipulation in our application may also be due to other types of behaviors that likely fit under
our general model in Section 2: some workers may provoke their layoff or ask their employer to report their
quit as a layoff once they are eligible for UI (Hopenhayn and Nicolini (2009)), workers laid off with a value
of the running variable to the left of the cutoff may lobby their employers to lay them off on a later date, etc.
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Institutional details In Brazil, a worker who is reported as involuntarily laid off from
a private-sector formal job is eligible for UI under two conditions. First, she must have
at least six months of continuous job tenure at layoff. Second, there must be at least 16
months between the date of her layoff and the date of the last layoff after which she
applied for and drew UI benefits. We focus on the eligibility cutoff created by the sec-
ond condition. The 16-month cutoff is more arbitrary and thus less likely to coincide
with other possible discontinuities.14 Workers who satisfy the two conditions can with-
draw monthly UI payments after a 30-day waiting period and until they are formally
reemployed or exhaust their potential UI duration. The potential UI duration is equal to
three, four, or five months of UI benefits if workers accumulated more than 6, 12, or 24
months of formal employment in the 36 months prior to layoff, respectively. The benefit
level depends on workers’ average wage in the three months prior to layoff. The replace-
ment rate is 100% at the bottom of the wage distribution but is already down to 60% for
a worker who earned three times the minimum wage (see Section E in the Supplemental
Material for the full schedule). Finally, UI benefits are not experience-rated in Brazil.

Data Our empirical analysis relies on two administrative data sets. The first one is a
longitudinal matched employee-employer data set covering by law the universe of for-
mal employees. Every year, firms must report all workers formally employed at some
point during the previous calendar year. The data include information on wage, tenure,
age, gender, education, and sector of activity. The data also include hiring and separa-
tion dates, as well as the reason for separation. The second data set is the registry of all UI
payments. Individuals can be matched in both data sets as they are identified through
the same ID number. Combining the data sets (we have both from 2002 to 2010), we can
study the effect of UI on the time it takes for displaced formal workers to find a new for-
mal job. Gerard and Gonzaga (2016) showed that it is the relevant outcome to study in
order to measure the efficiency cost from the usual moral hazard of UI in a context of
high informality.

Sample selection Our sample of analysis is constructed as follows. First, we consider
all workers, between 18 and 55 years old, who lost a private-sector full-time formal job
between 2004 and 2008. We start in 2004 to identify workers who were displaced from
another formal job about 16 months earlier. We end in 2008 to observe two years after
layoff for all workers. Second, we keep workers who had more than six months of job
tenure at layoff (the other eligibility condition). Third, we restrict attention to workers
for whom the difference between the layoff date and the date of their previous layoff fell
within 50 days of the 16-month eligibility cutoff. Finally, we limit the sample to workers
who exhausted their UI benefits after the previous layoff such that the change in eligibil-
ity at the 16-month cutoff is sharp.15 Our sample ultimately consists of 169,575 workers

14For instance, six months of job tenure may be a salient milestone for evaluating employees’ perfor-
mance. Gerard and Gonzaga (2016) showed evidence of manipulation around the six-month cutoff as well.
This has been confirmed recently by Carvalho, Corbi, and Narita (forthcoming).

15Workers who find a new formal job before exhausting their benefits are entitled to draw the remaining
benefits after a new layoff, even if it occurs before the 16-month cutoff. To implement this restriction, we
select workers who drew the maximum number of benefits after the previous layoff (about 40% of cases)



858 Gerard, Rokkanen, and Rothe Quantitative Economics 11 (2020)

with a relatively high attachment to the formal labor force, high turnover rate, and high
ability to find a new formal job rapidly.16 These are not the characteristics of the average
displaced formal employee or UI taker in Brazil, but characteristics of workers for whom
the 16-month cutoff may be binding.

5.2 Graphical evidence

Figure 2 displays some patterns in our data. Observations are aggregated by day between
the layoff date and the 16-month cutoff. Panels A and B provide some evidence of po-
tential manipulation of the running variable. The density of the running variable and the
average statutory UI replacement rate (statutory UI benefit/wage) appear to increase at
the cutoff, highlighting the possibility of selection at the cutoff.17 Panel C suggests that
workers were partially aware of the eligibility rule. The share of workers applying for UI
benefits jumps at the cutoff. Panel D shows that the eligibility rule was enforced. The
share of workers drawing some UI benefits is close to zero to the left of the cutoff, but
takeup jumps to 72% at the cutoff. Eligible workers drew on average 3�02 months of UI
benefits (panel E); UI takers thus drew on average 3�02/0�72 = 4�19 months of UI bene-
fits. Finally, panel F shows that the average duration without a formal job (censored at
two years) jumps from about 220 days to about 280 days at the cutoff. The average du-
ration is high on both sides of the cutoff because the distribution of this variable has a
long upper tail: about 15% of workers remain without a formal job two years after layoff
(see the full distribution in Section E in the Supplemental Material).

5.3 Estimates

The discontinuity in average duration without a formal job in Figure 2 could be due to a
treatment effect, but also to a selection bias. Workers on each side of the cutoff may have
different potential outcomes in the presence of manipulation. Our methods allow us to
bound treatment effects, despite the possibility of selection effects. We present results
from using our methods in Table 2 for an edge kernel (Cheng, Fan, and Marron (1997))
and a bandwidth of 30 days around the cutoff.18 For bounds in the fuzzy RD case that
involve numerical optimization, we use a grid search to look for the infimum and supre-
mum using 51 values for t ∈ [0�1]. Confidence intervals are based on 500 bootstrap sam-
ples.19

because we measure the number of UI benefits a worker is eligible for imprecisely in the data. We also drop
workers previously laid off after the 28th of a month. Otherwise, there is bunching in the layoff density at
the 16-month cutoff even in the absence of manipulation (because February has only 28 days).

16They were previously eligible for five months of UI, so they accumulated 24 months of formal employ-
ment within a 36-month window. They were laid off again within 16 months and had at least six months of
continuous tenure at layoff, so they found a job relatively quickly after their previous layoff (50% of workers
eligible for five months of UI benefits remain without a formal job one year after layoff).

17The replacement rate in panel B is calculated for all workers, including those who are not eligible for
UI, based on their wage at layoff and the UI benefit schedule.

18We do not have theoretical results on the optimal bandwidth for the estimation of our bounds. Our
estimates are similar if we use bandwidths of 10 or 50 days around the cutoff (available upon request).

19Due to the censoring of the outcome variable, we use identification results for non-continuously dis-
tributed outcomes described in Section C in the Supplemental Material.



Quantitative Economics 11 (2020) RD designs with manipulated running variable 859

Figure 2. Graphical evidence for our empirical application. Notes: The figure displays the mean
of different variables on each side of the cutoff by day between the layoff and eligibility dates,
and local linear regressions on each side of the cutoff using an edge kernel and a bandwidth of
30 days. The figure is based on a sample of 169,575 displaced formal workers whose layoff date
fell within 50 days of the eligibility date.

Panel A reports estimates of key inputs for our bounds. First, the increase in the den-
sity documented in panel A of Figure 2 is estimated to reach 6�4% and to be statistically
different from zero at conventional levels.20 This implies that always-assigned units ac-

20The increase in the average statutory UI replacement rate in panel B of Figure 2 is also statistically
different from zero at conventional levels (see Section E in the Supplemental Material), highlighting the
possibility of selection.
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count for τ = 6�4% of observations just to the right of the cutoff. The value of τ appears
well-separated from zero, so the safeguards that ensure uniform validity of the confi-
dence intervals for our bounds in case of small and imprecisely estimated values of τ are
of no practical importance here. Second, UI takeup is estimated to increase by 70�6%-
points at the cutoff.

Panels B–D then report the results from two types of exercises. First, we consider a
sharp RD design (SRD), in which UI eligibility is defined as the treatment. The causal
effect on the outcome can be interpreted as an intention-to-treat (ITT) parameter in
this case. Second, we consider the fuzzy RD design (FRD) with UI takeup as the treat-
ment. In each case, we display both naïve RD estimates that assume no manipulation
and estimates of our bounds for the treatment effects. We present results for the average
effect on the duration without a formal job censored at 6 and 24 months after layoff in
panels B and C, respectively. The 6-month duration proxies for the covered UI duration
(up to 5 months after a 30-day waiting period); Gerard and Gonzaga (2016) showed that
the increase in the covered duration caused by changes in benefits is the main source
of efficiency cost for UI programs. Considering both the 6-month and 24-month dura-
tions allows us to illustrate how our bounds for average treatment effects are affected
by long tails in the distribution of the outcome variable. Relatedly, we present results for
the estimated effects at the median using the outcome censored at 24 months after layoff
in panel D, which allows us to illustrate the usefulness of looking at quantile treatment
effects, as these are rather insensitive to long tails.

Naïve RD estimates that assume no manipulation yield an average increase in the
duration without a formal job from UI eligibility (SRD) of 29�4 and 61�9 days for censor-
ing points of 6 and 24 months, respectively. The corresponding figures are 41�6 and 87�7
days for the effect of UI takeup (FRD). For the duration censored at 24 months, naïve
treatment effects at the median are larger, at 86 days (SRD) and 99 days (FRD). The me-
dian worker is reemployed within a year, and is thus more likely to respond to UI given
the short potential UI duration.

A few points are useful to highlight for the behavior of our bounds in this appli-
cation. First, the bounds for the average treatment effects among potentially-assigned
units (Γ ) are relatively tight for the duration without a formal job censored at 6 months
after layoff. The lower bounds, in particular, are close to the naïve RD estimates, with
point estimates of 26�4 days (SRD) and 35�7 days (FRD). Second, the bounds for the aver-
age treatment effects become wider on both sides of the naïve estimates when we con-
sider higher censoring points. This difference comes from the fact that the distribution
of the outcome becomes more dispersed and has less probability mass at the censoring
point when we increase the censoring threshold. Third, bounds for quantile treatment
effects, which are less sensitive to tails of the outcome distribution, can be tighter than
bounds on average treatment effects in these cases. When we censor the outcome at 24
months, we obtain bounds for the average treatment effect between 31�4 and 80�9 days,
but between 75 and 98 days for the treatment effect at the median (SRD; the bounds are
also tighter in the FRD case).

Finally, we illustrate the alternative strategy for inference that we recommend when
researchers have strong beliefs that manipulation is unlikely in their setting. After all,
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Table 2. Estimated treatment effects of UI on the duration without a formal job.

Estimate 95% CI

A. Basic inputs
Share of always-assigned workers 0�064 [0�038;0�089]
Increase in UI takeup at the cutoff 0�706 [0�697;0�714]
B. Average effect: Duration without a formal job censored at 6 months
ITT/SRD: Ignoring manipulation 29�4 [27�6;31�2]
ITT/SRD: Bounds for Γ [26�4;38�7] [24�6;42�3]
LATE/FRD: Ignoring manipulation 41�6 [39�2;44�0]
LATE/FRD: Bounds for Γ [35�7;51�3] [33�4;55�1]
C. Average effect: Duration without a formal job censored at 24 months
ITT/SRD: Ignoring manipulation 61�9 [55�7;68�1]
ITT/SRD: Bounds for Γ [31�4;80�9] [18�9;89�6]
LATE/FRD: Ignoring manipulation 87�7 [79�1;96�2]
LATE/FRD: Bounds for Γ [47�2;108�1] [30�5;118�5]
D. Median effect: Duration without a formal job censored at 24 months
ITT/SRD: Ignoring manipulation 86 [80�8;91�2]
ITT/SRD: Bounds for Γ [75;98] [68�9;105�4]
LATE/FRD: Ignoring manipulation 99 [91�0;107�0]
LATE/FRD: Bounds for Γ [70;119] [56�3;128�5]

Note: Total number of observations within our bandwidth of 30 days around the cutoff: 102,791 displaced formal workers.
Confidence intervals have nominal level of 95% and are based on 500 bootstrap samples.

it is not obvious from Figure 2 that there is manipulation in our data. Figure 3 displays
point estimates and confidence intervals for our bounds in the fuzzy RD case for various
fixed levels of the extent of manipulation (hypothetical values of τ). Panel A shows that
inference on the average treatment effect can be quite sensitive to the extent of manipu-
lation. The width of the confidence intervals doubles when we assume a small degree of
manipulation (τ = 0�025) rather than no manipulation. This illustrates the importance
of taking into account the possibility of manipulation even when the McCrary (2008) test
fails to reject the null hypothesis of no manipulation. The width of the confidence inter-
vals grows quickly with larger degrees of manipulation. Panel B shows that inference on
quantile treatment effects is less sensitive to the extent of manipulation. Inference may
remain meaningful, even for large degrees of manipulation, illustrating the usefulness
of looking at quantile treatment effects.

In sum, we find significant evidence of manipulation at the cutoff, and our bounds
imply that the magnitude of naïve RD estimates may be heavily affected by selection.
Nevertheless, we can still draw useful conclusions from this empirical exercise. For in-
stance, we estimate a lower bound for the effect of UI takeup on the duration covered
by UI (i.e., the outcome censored at 6 months) to be around 35�7 days. This corresponds
to an increase of at least 35�7/(5 · 30) = 0�238 month per month of potential UI dura-
tion (given a maximum potential UI duration of 5 months). In comparison, Gerard and
Gonzaga (2016) found an increase of only 0�126 month in the covered UI duration per
additional month of potential UI duration among UI takers. Behavioral responses to UI
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Figure 3. Fixed-manipulation inference for our empirical application. Notes: The figure dis-
plays point estimates of our bounds and confidence intervals for the respective parameter of
interest under fixed levels of the degree of manipulation. We consider LATE/FRD estimates for
the average treatment effect and the quantile treatment effect at the 50th percentile for the out-
come censored at 24 months. The solid vertical line (resp. dashed vertical lines) corresponds to
our point estimate (resp. confidence interval) for the extent of manipulation (see Table 2).

benefits are thus relatively large in our setting, which is consistent with the composition
of our sample (high attachment to the formal labor force, high turnover rate, and high
ability to find a new formal job rapidly).

6. Conclusions

In this paper, we propose a partial identification approach to deal with the issue of po-
tentially manipulated running variables in RD designs. We show that while the data are
unable to uniquely pin down treatment effects if a running variable is subject to manip-
ulation, they are generally still informative in the sense that they imply bounds on the
value of causal parameters in both sharp and fuzzy RD designs. Our main contribution
is to derive and explicitly characterize these bounds. We also propose methods to es-
timate our bounds in practice, and discuss how to construct confidence intervals. The
approach is illustrated with an application to the Brazilian UI program. We recommend
the use of our approach in applications irrespective of the outcome of McCrary’s (2008)
test for manipulation. Software packages that implement our methods in R and Stata are
available on our websites.

Appendix A: Proofs

A.1 Proof of Lemma 1

Since the density of the running variable is continuous around the cutoff among
potentially-assigned units by Assumption 2, we have that fX|M=0(c

−) = fX|M=0(c
+), and

therefore fX(c+) = (1 − P(M = 1))fX|M=0(c
−) + P(M = 1)fX|M=1(c

+). Since there are
no always-assigned units below the cutoff by Assumption 3, we have fX|M=1(x) = 0 for
x < c, and thus fX(c−) = (1 − P(M = 1))fX|M=0(c

−). Hence (fX(c+)− fX(c−))/fX(c+) =
fX|M=1(c

+)P(M = 1)/fX(c+) = τ, where the last equality follows from Bayes’s theorem.
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A.2 Proof of Theorem 1

The result is a minor variation of results in Horowitz and Manski (1995) and Lee (2009).

A.3 Proof of Theorem 2

It follows from the arguments presented in the main body of the paper that the bounds
on Γ given knowledge (τ1� τ0), formally stated in equation (3.4), are valid and sharp. That
is, any value of Γ outside of these bounds is clearly incompatible with the distribution
of (Y�D�X); and every value within the bounds is feasible. Moreover, it is clear that any
value of (τ1� τ0) /∈ T is incompatible with the distribution of observable quantities. It
thus remains to be shown that any point (τ1� τ0) ∈ T is compatible with our model and
the observed joint distribution of the data.

To show this, we proceed by constructing for any (τ1� τ0) ∈ T the distribution of
a random vector (Ỹ (1)� Ỹ (0)� D̃+� D̃−� M̃� X̃) in such a way that the assumptions of
our model are satisfied, and that the distribution of (Ỹ � D̃� X̃), where D̃ = D̃+

I(X̃ ≥
c) + D̃−

I(X̃ < c) and Ỹ = Ỹ (D̃), for X̃ ∈ (c − ε� c + ε) for some ε > 0, is the same as
that of (Y�D�X) for X ∈ (c − ε� c + ε). Note that it suffices to restrict attention to an
ε-neighborhood around the cutoff because our model has no implications for the dis-
tribution of observables outside of that range. Also note that our construction defines
the notion of potential treatment states and potential outcomes for always-assigned
units. This is not a concern because our model does not require such notions to be well-
defined, but does not rule out that case either.

We now construct a distribution of (Ỹ (1)� Ỹ (0)� D̃+� D̃−� M̃� X̃) for X̃ ∈ (c− ε� c+ ε).
For x ∈ (c − ε� c + ε), let

fX̃(x) = fX(x) and P(M̃ = 1|X̃ = x) =
{

1 − fX
(
c−)

/fX(x) if x≥ c�

0 if x < c�

Moreover, let

P
(
D̃− = 0� D̃+ = 1|X̃ = x�M̃ = 0

) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

P(D = 1|X = x) · 1 − τ1

1 − τ
− P

(
D= 1|X = c−)

if x≥ c�

P
(
D= 1|X = c+) · 1 − τ1

1 − τ
− P(D= 1|X = x)

if x < c�

P
(
D̃− = 1� D̃+ = 1|X̃ = x�M̃ = 0

) =
{

P
(
D= 1|X = c−)

if x ≥ c�

P(D = 1|X = x) if x < c�

P
(
D̃− = 0� D̃+ = 0|X̃ = x�M̃ = 0

) = 1 − P
(
D̃− = 0� D̃+ = 1|X̃ = x�M̃ = 0

)
− P

(
D̃− = 1� D̃+ = 1|X̃ = x�M̃ = 0

)
�

P
(
D̃− = 1� D̃+ = 0|X̃ = x�M̃ = 0

) = 0�
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and

P
(
D̃− = 0� D̃+ = 1|X̃ = x�M̃ = 1

) =
⎧⎨⎩P(D= 1|X = x) · τ1

τ
− h(x) if x≥ c�

P
(
D = 1|X = c+) · τ1

τ
− h

(
c+)

if x < c�

P
(
D̃− = 1� D̃+ = 1|X̃ = x�M̃ = 1

) =
{
h(x) if x ≥ c�

h
(
c+)

if x < c�

P
(
D̃− = 0� D̃+ = 0|X̃ = x�M̃ = 1

) = 1 − P
(
D̃− = 0� D̃+ = 1|X̃ = x�M̃ = 1

)
− P

(
D̃− = 1� D̃+ = 1|X̃ = x�M̃ = 1

)
�

P
(
D̃− = 1� D̃+ = 0|X̃ = x�M̃ = 1

) = 0�

where h(·) is an arbitrary continuous function satisfying that 0 ≤ h(x) ≤ P(D = 1|X =
x) · τ1/τ. With these choices, the implied distribution of (D̃� X̃)|X̃ ∈ (c − ε� c + ε) is the
same as that of (D�X)|X ∈ (c − ε� c + ε) for every (τ1� τ0) ∈ T . It thus remains to be
shown that one can construct a distribution of (Ỹ (1)� Ỹ (0)) given (D̃+� D̃−� X̃� M̃) that
is compatible with our assumptions, and such that the distribution of Ỹ given (D̃� X̃)

for X̃ ∈ (c − ε� c + ε) is the same as the distribution of Y given (D�X) for X ∈ (c − ε� c +
ε) for every (τ1� τ0) ∈ T . But this is possible by setting (Ỹ (1)� Ỹ (0)) as independent of
(D̃+� D̃−� X̃� M̃), and then assigning one of the respective extreme distributions derived
in the main body of the text to the respective marginals. This completes our proof.

Appendix B: Additional notation for estimation and inference

In this section, we give further details on the construction of the estimators and con-
fidence intervals described in the main body of the paper. To simplify the exposition,
we use the same polynomial order p, bandwidth h, and kernel function K(·) in all
intermediate estimation steps in this paper. We also use the notation that πp(x) =
(1/0!�x/1!�x2/2!� � � � � xp/p!)′ and Kh(x) = K(x/h)/h for any x ∈ R, and define the
(p + 1)-vector e1 = (1�0� � � � �0)′. The data are an independent sample {(Yi�Di�Xi)� i =
1� � � � � n} of size n.

Following the result in Lemma 1, estimating τ requires estimates of the right and
left limits of the density at the cutoff. There are a number of nonparametric estimators
that can be used to estimate densities at boundary points; see, for example, Lejeune and
Sarda (1992), Jones (1993), Cheng (1997), or Cattaneo, Jansson, and Ma (forthcoming).
Here we use a minor variation of the procedure in Cheng (1997), which also forms the
basis for the McCrary (2008) test, and estimate fX(c+) and fX(c−) by

f̂+ = e′
1 argmin
β∈Rp+1

n∑
i=1

(
f̂ (Xi)−πp(Xi − c)′β

)2
Kh(Xi − c)I{Xi ≥ c} and

f̂− = e′
1 argmin
β∈Rp+1

n∑
i=1

(
f̂ (Xi)−πp(Xi − c)′β

)2
Kh(Xi − c)I{Xi < c}�
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respectively, where f̂ (Xi) = (1/n)
∑n

j=1 Kh(Xj − Xi). Since by assumption the propor-
tion of always-assigned units among units just to the right of the cutoff has to be non-
negative, our estimate of τ is then given by

τ̂ = max{̃τ�0}� with τ̃ = 1 − f̂−/f̂+�

Local polynomial regression estimates of g+ = E(Di|Xi = c+) and g− = E(Di|Xi =
c−), the conditional treatment probabilities on either side of the cutoff, are given by

ĝ+ = e′
1 argmin
β∈Rp+1

n∑
i=1

(
Di −πp(Xi − c)′β

)2
Kh(Xi − c)I{Xi ≥ c} and

ĝ− = e′
1 argmin
β∈Rp+1

n∑
i=1

(
Di −πp(Xi − c)′β

)2
Kh(Xi − c)I{Xi < c}�

respectively (Fan and Gijbels (1996)). The conditional CDFs FY |X=c+�D=d(y) and
FY |X=c−�D=d(y) are estimated by

F̂Y |X=c+�D=d(y)= e′
1 argmin
β∈Rp+1

n∑
i=1

(
I{Yi ≤ y} −πp(Xi − c)′β

)2
Kh(Xi − c)I{Xi ≥ c} and

F̂Y |X=c−�D=d(y)= e′
1 argmin
β∈Rp+1

n∑
i=1

(
I{Yi ≤ y} −πp(Xi − c)′β

)2
Kh(Xi − c)I{Xi < c}�

respectively, which for every y ∈ R corresponds to a local polynomial regression with
I{Yi ≤ y} as the dependent variable (Hall, Wolff, and Yao (1999)). We then estimate the
conditional p.d.f.s fY |X=c+�D=d(y) and fY |X=c−�D=d(y) by

f̂Y |X=c+�D=d(y) = e′
1 argmin
β∈Rp+1

n∑
i=1

(
Kh(Yi − y)−πp(Xi − c)′β

)2
Kh(Xi − c)I{Xi ≥ c} and

f̂Y |X=c−�D=d(y) = e′
1 argmin
β∈Rp+1

n∑
i=1

(
Kh(Yi − y)−πp(Xi − c)′β

)2
Kh(Xi − c)I{Xi < c}�

respectively, which for every y ∈ R corresponds to a local polynomial regression with
Kh(Yi − y) as the dependent variable (Fan, Yao, and Tong (1996)).

Next, we put

F̂U
1 (y� t1� t0) = (1 − κ̂1)Ĝ(y)− t1

1 − κ̂1 − t1
· I

{
y ≥ Ĝ−1

(
t1

1 − κ̂1

)}
�

F̂U
0 (y� t1� t0) = F̂Y |X=c−�D=0(y)− κ̂0 · (1 − t0)F̂

L
Y(0)|X=c�N0

(y� t0)

1 − κ̂0 · (1 − t0)
�

and define the functions F̂L
1 and F̂L

0 analogously. We use the notation that

Ĝ(y) = F̂Y |X=c+�D=1(y)− κ̂1F̂Y |X=c−�D=1(y)

1 − κ̂1
�
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F̂L
Y(0)|X=c�N0

(y� t0)=
∫ y

−∞
ŝ(u� t0)I

{
u ≥ q̂L(t0)

}
du�

ŝ(y� t0)= min
{
f̂Y |X=c−�D=0(y)/̂κ0� f̂Y |X=c+�D=0(y)

}
1 − t0

�

κ̂1 = (1 − τ̂)ĝ−

ĝ+ � κ̂0 = 1 − ĝ+

(1 − τ̂)
(
1 − ĝ−) �

with q̂L(t0) the value that satisfies
∫ q̂L(t0)
−∞ ŝ(y� t0)dy = 1. Finally, we define the functions

η̂d(t) = τ̂Ld + t · (̂τUd − τ̂Ld
)
� d ∈ {0�1}�

where, for j ∈ {U�L} and d ∈ {0�1}, the term τ̂
j
d is the obvious sample analogue estimator

of the point τjd introduced above.
We now introduce notation and details regarding the construction of confidence in-

tervals. The confidence interval CFRD
1−α is constructed using a bootstrap distribution under

which the bootstrap analogue of τ̃ = 1 − f̂−/f̂+ is centered around max{̂τ�κnσ̂τ̃}, where
σ̂τ̃ is the standard error of τ̃, and κn is a sequence of constants that slowly tends to infin-
ity. Following much of the moment inequality literature, we choose κn = log(n)1/2. The
algorithm for our bootstrap is as follows:

1. Generate bootstrap samples {Yi�b�Di�b�Xi�b}ni=1, b = 1� � � � �B by sampling with re-
placement from the original data {Yi�Di�Xi}ni=1; for some large integer B.

2. Calculate τ̃∗
b = 1 − f̂−

b /f̂+
b , and put σ̂τ̃ as the sample standard deviation of {̃τ∗

b}Bb=1.

3. Calculate τ̃b = τ̃∗
b − τ̃ + max{̂τ�κnσ̂τ̃} and τ̂b = max{̃τb�0}.

4. For j ∈ {U�L}, calculate Γ̂ j(η̂1(t)� η̂0(t)) using the redefined estimate τ̂b from
the previous step, and put σ̂j(t) as the sample standard deviation of {Γ̂ j(η̂1(t)�

η̂0(t)}Bb=1.

Now define Γ̂ L∗(t) and Γ̂ U∗(t) exactly as Γ̂ L(η̂1(t)� η̂0(t)) and Γ̂ U(η̂1(t)� η̂0(t)), with
the exception that τ̂∗ = max{̃τ�κnσ̂τ̃} is used instead of τ̂. Following Imbens and Man-
ski (2004) and Stoye (2009), our “fixed t” confidence interval for Γ with level 1 −α is then
given by

CFRD
1−α (t) = [

Γ̂ L∗(t)− rα(t) · σ̂L(t)� Γ̂ U∗(t)+ rα(t) · σ̂U(t)
]
�

where rα(t) is the value that solves the equation

�

(
rα(t)+ Γ̂ U∗(t)− Γ̂ L∗(t)

max
{
σ̂L(t)� σ̂U(t)

})
−�

(−rα(t)
) = 1 − α�

and �(·) is the CDF of the standard normal distribution. The final intersection-union
confidence interval for Γ is then given by

CFRD
1−α =

[
inf

t∈[0�1]
(
Γ̂ L(t)− rα(t) · σ̂L(t)

)
� sup
t∈[0�1]

(
Γ̂ U(t)+ rα(t) · σ̂U(t)

)]
�
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Note that this construction does not account for discontinuities in the limiting dis-
tribution of the “fixed t” estimates at those values of τ under which one of the various
max and min operators in the definition of the function ηd(·) becomes binding. We ex-
pect this to have only minor importance in practice, and therefore do not include any
“safeguards” against such cases into our procedure. Our construction also implicitly as-
sumes that the two functions involved in the definition of the term s(y� τ0) cross at a
finite number of points. If that was not the case, the presence of the max operator would
generate a bias, which could be removed using techniques analogous to those in Ander-
son, Linton, and Whang (2012).

The confidence interval C1−α(τ
∗) can be calculated through the following modified

bootstrap algorithm:

1. For τ∗ ∈ [0�1] and t ∈ [0�1], define Γ̂ L(τ∗� t) and Γ̂ U(τ∗� t) exactly as Γ̂ L(η̂1(t)�

η̂0(t)) and Γ̂ U(η̂1(t)� η̂0(t)), with the exception that τ∗ is used instead of τ̂.

2. Generate bootstrap samples {Yi�b�Di�b�Xi�b}ni=1, b = 1� � � � �B by sampling with re-
placement from the original data {Yi�Di�Xi}ni=1; for some large integer B.

3. For j ∈ {U�L}, calculate Γ̂
j
b (τ

∗� t), and put σ̂j(τ∗� t) as the sample standard devia-

tion of {Γ̂ j
b (τ

∗� t)}Bb=1.

4. Compute the 1 − α confidence interval CFRD
1−α (τ

∗) as[
inf

t∈[0�1]
(
Γ̂ L

(
τ∗� t

) − rα
(
τ∗� t

) · σ̂L
(
τ∗� t

))
� sup
t∈[0�1]

(
Γ̂ U

(
τ∗� t

) + rα
(
τ∗� t

) · σ̂U
(
τ∗� t

))]
�

where rα(τ
∗� t) is the value that solves the equation

�

(
rα

(
τ∗� t

) + Γ̂ U
(
τ∗� t

) − Γ̂ L
(
τ∗� t

)
max

{
σ̂L

(
τ∗� t

)
� σ̂U

(
τ∗� t

)})
−�

(−rα
(
τ∗� t

)) = 1 − α�

For τ∗ = 0, this algorithm yields the usual “no manipulation” confidence interval, and
generally C1−α(τ

∗) becomes wider as τ∗ increases.
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