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This paper studies the joint dynamics of U.S. inflation and a term structure of

average inflation predictions taken from the Survey of Professional Forecasters

(SPF). We estimate these joint dynamics by combining an unobserved compo-

nents (UC) model of inflation and a sticky-information forecast mechanism. The

UC model decomposes inflation into trend and gap components, and innovations

to trend and gap inflation are affected by stochastic volatility. A novelty of our

model is to allow for time-variation in inflation-gap persistence as well as in the

frequency of forecast updating under sticky information. The model is estimated

with sequential Monte Carlo methods that include a particle learning filter and

a Rao–Blackwellized particle smoother. Based on data from 1968Q4 to 2018Q3,

estimates show that (i) longer horizon average SPF inflation predictions inform

estimates of trend inflation; (ii) inflation gap persistence is countercyclical before

the Volcker disinflation and acyclical afterwards; (iii) by 1990 sticky-information

inflation forecast updating is less frequent than it was earlier in the sample; and

(iv) the drop in the frequency of the sticky-information forecast updating occurs at

the same time persistent shocks become less important for explaining movements

in inflation. Our findings support the view that stickiness in survey forecasts is not

invariant to the inflation process.

Keywords. Inflation, sticky information, professional forecasts, unobserved

components, stochastic volatility, time-varying parameters, Bayesian, particle fil-

ter.

JEL classification. C11, C32, E31.

Elmar Mertens: elmar.mertens@bundesbank.de
James M. Nason: jmnason@ncsu.edu
We thank Gregor Smith for several conversations that motivated this paper. We also received valuable com-
ments from three anonymous referees, Todd Clark, Patrick Conway, Drew Creal, Bill Dupor, Andrew Filardo,
Monica Jain, Alejandro Justiniano, and Wolfgang Lemke and suggestions from colleagues and participants
at numerous seminars and conferences. Jim Nason thanks the Jenkins Family Economics Fund at North
Carolina State University for financial support. The views herein are those of the authors and do not repre-
sent the views of the Deutsche Bundesbank or the Eurosystem. Replication material and additional results
are available at https://github.com/elmarmertens/MertensNasonQEstickyinformation.

© 2020 The Authors. Licensed under the Creative Commons Attribution-NonCommercial License 4.0.
Available at http://qeconomics.org. https://doi.org/10.3982/QE980

http://qeconomics.org/
mailto:elmar.mertens@bundesbank.de
mailto:jmnason@ncsu.edu
https://github.com/elmarmertens/MertensNasonQEstickyinformation
https://creativecommons.org/licenses/by-nc/4.0/legalcode
http://qeconomics.org
https://doi.org/10.3982/QE980
http://crossmark.crossref.org/dialog/?doi=10.3982%2FQE980&domain=pdf&date_stamp=2020-11-20


1486 Mertens and Nason Quantitative Economics 11 (2020)

1. Introduction

Central banks pay particular attention to inflation expectations. For example, Bernanke
(2007) argued that well-anchored inflation expectations are necessary for a central bank
to stabilize inflation. A reason for the concern is that inflation expectations express pri-
vate agents’ beliefs about the underlying factors driving observed inflation dynamics.
A problem is central bank policy makers lack direct knowledge of these latent factors.
Instead, they have to infer the causes of inflation dynamics from other sources.

Surveys of professional forecasts are valuable sources of information about the path
of future inflation. Among others, Faust and Wright (2013) and Ang, Bekaert, and Wei
(2007) recognized surveys of professional forecasts yield predictions of inflation that of-
ten dominate model-based out of sample forecasts. The inflation forecasting literature
also documents that there is time-variation in the long-run mean of inflation around
which “good” forecasts should be centered; see, for example, Stock and Watson (2007)
and Faust and Wright (2013). In particular, Faust and Wright stressed the value of survey
expectations in tracking low-frequency variation in inflation, also known as movements
in “trend inflation.” In contrast, measures of real activity (i.e., output and unemploy-
ment rate gaps) have been found to give only weak signals for inflation forecasting over
above and beyond the information contained in survey forecasts.1

Notwithstanding the merits of surveys of professional forecasts to predict inflation,
these forecasts are known to be biased and inefficient. Coibion and Gorodnichenko
(2012, 2015) showed predictable survey forecast errors to be consistent with the sticky-
information framework of Mankiw and Reis (2002) and models of noisy information or
rational inattention as in Woodford (2003), Sims (2003) and Mackowiak and Wiederholt
(2009). Conveniently, sticky and noisy information models yield a partial adjustment
equation that relates the current survey forecast to a weighted average of the previous
period’s survey forecast and the current rational-expectations forecast.2 We call this par-
tial adjustment equation the “sticky-information law of motion of inflation forecasts”
and its partial adjustment coefficient, which reflects the sluggishness of survey forecasts
in updating toward rational expectations, the “sticky-information weight.”3

Our paper studies the joint dynamics of realized inflation and inflation predictions
collected from the Survey of Professional Forecasters (SPF). The SPF offers a particu-
lar long time series of survey responses, which allows us to document time variation
in survey stickiness in connection with long-running changes in the inflation process.
We model the average survey response as a sticky-information (SI) forecast to account
for predictable forecast errors in the SPF. We combine the SI law of motion for survey
forecasts with a time-series model that generates rational-expectations (RE) forecasts of
inflation as inputs for the SI updating equation. Among the voluminous literature that

1Stock and Watson (1999, 2009) found a diminished role for activity-based forecasts of inflation, at least,
since the mid 1980s. Their results are confirmed by, among others, Atkeson and Ohanian (2001), Hansen,
Lunde, and Nason (2011), and Faust and Wright (2013).

2Coibion and Gorodnichenko (2012, 2015) derived the partial adjustment equation by aggregating indi-
vidual survey responses across participants, and the resulting law of motion pertains to the cross-sectional
average of survey responses.

3We do not further distinguish between the underlying sticky- or noisy-information models.
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studies the dynamics of inflation and survey forecasts, our paper is closest to Kozicki
and Tinsley (2012), and Henzel (2013)—who model survey forecasts as RE—as well as
Mertens (2016), and Nason and Smith (forthcoming)—who allow surveys to differ from
RE forecasts.

A particular innovation of our paper is stochastic drift in the sticky-information
weight. Drift in stickiness captures changes in the sensitivity of survey forecasts to in-
coming data, which could arise, for example, due to time-varying attention levels. We
use our model to ask whether the sticky-information weight has been changing over
time, and whether this change appears related to changes in the inflation process, no-
tably its persistence. Indeed, we find important changes in forecast stickiness that coin-
cide with changes in inflation persistence over the post-war sample.4 Persistence means
that inflation is predictable, and we find that stickiness has risen when the resulting in-
efficiency in SI forecasts has been relatively small. These results are consistent with the
evidence of Croushore (2010) who reports that the predictability of survey errors tends
to be episodic and hard to exploit in real time.

The SI law of motion of inflation forecasts takes RE inflation forecasts as inputs.
While we can abstract from the fundamental determinants of inflation, a good mech-
anism for generating RE forecasts is required. We use a version of the Stock and Watson
(2007) unobserved components (UC) model of inflation as the source of RE forecasts.
Canonical features of the Stock–Watson (SW-)UC model are a decomposition into trend
and gap components, random-walk dynamics of the trend, and stochastic volatility in
innovations to trend and gap inflation. Stock and Watson (2007) documented important
time-variation in inflation in U.S. post-war data. In their UC model, time-varying per-
sistence is captured via changes in the relative importance of the stochastic volatilities
attributed to trend and gap shocks. In subsequent work, Cogley, Primiceri, and Sargent
(2010) highlighted further time-variation in gap persistence, while Stock and Watson
(2016) found that highly transitory shocks account for a large share of quarterly changes
in inflation since 2000.

We build on these results with a UC representation of inflation as the sum of a trend
and two gap components. The inflation gap is modeled as the sum of a persistent cyclical
component and an irregular component that captures highly transitory shocks to infla-
tion as well as measurement error. The cyclical component is modeled as an AR(1), and
its autoregressive coefficient is labeled the “inflation gap persistence parameter.” Good-
friend and King (2005) and Meltzer (2014) contended that movements in inflation at the
business cycle frequencies changed after the 1980s. We estimate models with static and
drifting inflation gap persistence to evaluate their claims.

The combination of our SW-UC model, the SI law of motion of inflation forecasts,
and the term structure of average SPF inflation predictions yields a nonlinear state
space model. We consider four different specifications of the model; all feature stochas-
tic volatility in trend and gap inflation, but the models differ in whether there is drift

4Stickiness characterizes the extent to which SI forecasts represent smoothed RE forecasts. In contrast,
inflation persistence characterizes serial correlation in inflation. By one measure, persistence is the time
needed for inflation to revert to trend (or steady state) in response to a shock.
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in the sticky-information weight, the gap persistence coefficient, or both. The latent fac-
tors of the inflation process are well identified by conditioning our estimates on the term
structure of SPF predictions in addition to inflation data.

An important contribution is our strategy for estimating the four nonlinear state
space models. We employ the particle learning filter proposed by Carvalho, Johannes,
Lopes, and Polson (2010) and a Rao–Blackwellized particle smoother developed by Lind-
sten, Bunch, Särkkä, Schön, and Godsill (2016) for this task.5 Particle learning allows us
to update parameter estimates over the course of the sample. Inflation forecasts gener-
ated by particle learning mimic the real-time environment of the SPF. The particle learn-
ing filter and Rao–Blackwellized particle smoother are state of the art sequential Monte
Carlo (SMC) methods that are new to empirical macroeconomics.6

The state space models are estimated on GNP/GDP deflator inflation and the aver-
age SPF nowcast and 1-, 2-, 3-, and 4-quarter ahead inflation predictions. The sample
runs from 1969Q1 to 2018Q3.7

We report strong evidence in favor of the state space model in which the inflation
gap persistence parameter and sticky-information weight drift. Estimates of this state
space model show (i) the 4-quarter ahead average SPF inflation prediction improves the
efficiency of estimates of trend inflation, (ii) comovement in the inflation gap persis-
tence parameter and the business cycle shifts from countercyclical before the Volcker
disinflation to no comovement after 1984, (iii) the frequency of sticky-information infla-
tion forecast updating falls from less than two quarters on average pre-1990 to about 3
to 5 quarters on average post-1990, except during the 2007–2009 recession, and (iv) this
change in the sticky-information weight lines up with a fall in the share of the variation
of inflation explained by persistent shocks to trend and gap inflation.

Our results are useful for monetary policy makers and researchers. Estimates of our
the state space model favored by the data display an inverse relationship between the
frequency of sticky-information inflation forecast updating and the importance of per-
sistent shocks to explain fluctuations in inflation. Our findings support the view that
stickiness in survey forecasts is not invariant to the inflation process, and by extension,
also not to the underlying monetary policy strategy. In particular, our results suggest that
anchored expectations of inflation are coincident with infrequent updating of sticky-
information forecasts of inflation. Leeper and Zha (2003) cautioned policy makers to
avoid actions that cause persistent shifts in private-sector expectations. In a similar vein,
our results suggest that central banks should guard against policies that lead the public
to anticipate persistent variations in inflation.

5Our state space models can be Rao–Blackwellized because a subset of states are linear and Gaussian,
given the nonlinear states. A good introduction to Rao–Blackwellization of particle filters is Creal (2012).
Lopes and Tsay (2011) discussed the role of Rao–Blackwellization in particle learning filters.

6A recent example is Ascari, Bonomolo, and Lopes (2019). They estimate a small new Keynesian model
with a particle learning filter, but do not utilize a particle smoother.

7Our goal is to study the impact of changing inflation dynamics on the beliefs of sticky-information fore-
casters at the quarterly frequency. This motivates us to employ a sample that includes the inflation spike
and trough of the 1973–1975 recession and the inflation surge of the late 1970s, which are absent from the
CPI-SPF, PCE-SPF, and Blue Chip Economic Indicators samples. See Nason and Smith (forthcoming) and
our Online Supplementary Appendix (Mertens and Nason (2020)) for estimates obtained from data that
omit the experience of the 1970s.



Quantitative Economics 11 (2020) Inflation and professional forecast dynamics 1489

The structure of the paper follows. Section 2 builds a state space model in the ob-
servables of realized inflation and h-step ahead average SPF inflation predictions. We
sketch the SMC methods used to estimate the state space models in Section 3. Results
appear in Sections 4 and 5. Section 6 offers our conclusions.

2. Statistical and econometric models

Our paper considers a family of state space models that combine a statistical model of
inflation and an economic model of forecast updating under sticky information. Infla-
tion dynamics are represented by our extension of the SW-UC model. The economic
model is the SI law of motion of inflation forecasts. Here, we describe a baseline version
of our state space models, labeled M0, where the sticky-information weight is drifting,
but the inflation gap persistence parameter is static. Alternative choices for which pa-
rameters are drifting or static are considered in Section 4 and in the Online Supplemen-
tary Appendix.

2.1 A Stock and Watson UC model of inflation

Stock and Watson (2007, 2016), Grassi and Proietti (2010), Creal (2012), Shephard (2015),
Cogley and Sargent (2015), and Mertens (2016) estimated versions of the SW-UC model
that decompose realized inflation, πt , into trend inflation, τt , and gap inflation, π̃t .
These SW-UC models are nonlinear because stochastic volatility (SV) affects innova-
tions to trend and gap. We enrich the SW-UC model by splitting the inflation gap into
a persistent part, εt , that has stationary AR(1) dynamics, and a noise part ζπ�t . For par-
simony, we endow the persistent, but not the irregular gap component, with stochastic
volatility:

πt = τt + π̃t � (1)

π̃t = εt + σζ�πζπ�t� ζπ�t ∼ N (0�1)� (2)

τt+1 = τt + ςη�t+1ηt� ηt ∼ N (0�1)� (3)

εt+1 = θεt + ςυ�t+1υt� υt ∼ N (0�1)� |θ|< 1� (4)

ln ς2
��t+1 = ln ς2

��t + σ�ξ��t+1� ξ��t+1 ∼ N (0�1)� � = η�υ� (5)

where ςη�t , and ςυ�t denote stochastic volatility in the innovation ηt of τt , and stochas-
tic volatility in the innovation υt of εt . Equations (1) and (2) decompose πt into τt , εt ,
and ζπ�t . The random walk (3) describes the dynamics of τt , which also represents the
Beveridge–Nelson trend of inflation in this model.8 Persistence in εt is created with sta-
tionary AR(1) dynamics in equation (4) by restricting the static inflation gap persis-
tence parameter θ ∈ (−1�1). Equation (5) is a random walk in log-variances, ln ς2

η�t+1

and ln ς2
υ�t+1, that generates SV in trend and gap inflation. We assume all shocks, ζπ�t , ηt ,

υt , ξη�t , and ξυ�t are mutually and serially uncorrelated.

8The relationship between UC models and the trend concept of Beveridge and Nelson (1981) is dis-
cussed, among others, by Watson (1986) and Morley, Nelson, and Zivot (2003); also see Nelson (2008).
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2.2 The sticky-information prediction mechanism of inflation

Coibion and Gorodnichenko (2015) adapted the partial equilibrium model of sticky in-
formation by Mankiw and Reis (2002) to a setup in which agents’ current forecast is
their lagged sticky-information forecasts at static probability λ and with probability 1−λ

their rational-expectations forecasts. Averaging across forecasters gives the h-step ahead
sticky-information inflation prediction at time t, Ftπt+h, and the static probability λ is
the sticky-information weight. Hence, Ftπt+h = λFt−1πt+h + (1 − λ)Etπt+h, which is a
weighted average of the own lag, Ft−1πt+h, and a rational-expectations inflation fore-
cast, Etπt+h, λ ∈ (0�1), and h = 1� � � � �H. In this environment, the sticky-information
weight governs the average frequency, 1/(1 − λ), at which Ftπt+h is updated.

We innovate on a static sticky-information weight by investing λ with drift. An ex-
ogenous and bounded random walk drives time-variation in the sticky-information
weight, where λt ∈ (0�1) for all dates t. We interpret λt as summarizing beliefs the sticky-
information forecaster holds about the underlying dynamics of inflation.

The sticky-information-SPF block is built around the SI law of motion of inflation
forecasts with λt , its random walk, and a term structure of average SPF inflation pre-
dictions. The term structure links the average SPF participant’s h-step ahead inflation
predictions, πSPF

t�t+h, to Ftπt+h plus a classical measurement error, ζh�t . These elements
form the system of equations

πSPF
t�t+h = Ftπt+h + σζ�hζh�t� ζh�t ∼ N (0�1)� (6)

Ftπt+h = λtFt−1πt+h + (1 − λt)Etπt+h� h= 1� � � � �H� (7)

λt+1 = λt + σκκt� κt ∼ N (0�1) s.t. λt+1 ∈ (0�1)� (8)

where h belongs to the set of positive integers, h ∈ Z
+, and λt+1 follows a bounded ran-

dom walk with shocks drawn from a truncated normal that guarantees λt+1 ∈ (0�1).9

Equations (6)–(8) define the sticky-information prediction mechanism. Changes in
λt and other state variables produce movements Ftπt+h that create fluctuations in the
observed term structure of SPF inflation predictions, πSPF

t�t+h. The SPF term structure (6)

includes measurement errors, ζh�t , to capture deviations between πSPF
t�t+h and the sticky-

information term structure of inflation, Ftπt+h, for h = 1� � � � �H. The SI law of motion
(7) generates updates of Ftπt+h, for all h subject to drift in λt that is described by the
random walk (8).

Updates of Ftπt+h rely, in part, on Etπt+h. We assume the average SPF participant
computes Etπt+h using the SW-UC model of equations (1)–(5), where Et{·} conditions
on the history of πt , ςη�t , and ςυ�t . Hence, the average SPF respondent knows the state
variables of the SW-UC, τt , εt , ςη�t , and ςυ�t . Nonetheless, we treat our SW-UC model as
characterizing reduced-form inflation dynamics. While the SW-UC model is silent about
the economic forces that may determine inflation—which, for example, might include
an activity gap as in a Phillips curve—it has been shown to characterize the inflation
process well, in particular for forecasting, as shown, among others, by Stock and Watson
(2007, 2016), and Faust and Wright (2013).

9The innovations to λt+1 are drawn from κt ∼ T N (0�1;−λt/σκ� (1 − λt)/σκ). T N (μ�σ2;x�x) denotes a
truncated normal with support between x and x, and mean and variance parameters μ and σ2.
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2.3 A joint state space model of inflation and SPF forecasts

This section presents our baseline state space model, M0. It is built on our SW-UC
model of inflation, the SI law of motion of inflation forecasts, and a term structure of
average SPF inflation predictions. Our SW-UC model yields a term structure of rational-
expectations inflation forecasts. This term structure has a two factor representation
driven by τt and εt . Similarly, we have sticky-information trend and persistent gap in-
flation, Ftτt and Ftεt , that are the factors of the term structure of sticky-information in-
flation forecasts.10 The Online Supplemental Appendix shows that using a conjecture
and verify procedure lets us construct state equations for Ftτt and Ftεt that are driven
by own lags and lags of τt and εt . The sticky-information states Ftτt and Ftεt elimi-
nate Ftπt+h in the term structure equation (6) of πSPF

t�t+h. The upshot is the term struc-
ture of rational-expectations inflation forecast places cross-equation restrictions on the
rational-expectations and sticky-information state equations and the term structure of
average SPF inflation predictions. The cross-equation restrictions show M0 is built on
internally consistent rational expectations, sticky information, and average SPF infla-
tion forecasts. The laws of motion of Ftτt and Ftεt also depend crucially on the linearity
of Etπt+h with respect to τt and εt and the linearity of Ftπt+h with respect to Ftτt and
Ftεt .

In our approach, the inflation process is characterized independently from the
sticky-information prediction mechanism, which allows us to derive a simple recursive
representation for the joint evolution of inflation and sticky-information forecasts. We
begin with a state space representation of the SW-UC model. Rewrite the observation
equation (1) as

πt = δXXt + σζ�πζπ�t� (9)

where δX = [1 1] and Xt = [τt εt]′. Stack the random walk (3) of τt+1 on top of equation
(4), which is the AR(1) of εt+1, to create the state equations of our SW-UC model

Xt+1 =ΘΘΘXt +ΥΥΥ t+1Wt � (10)

where ΘΘΘ = [ 1 0
0 θ

]
, Wt = [ηt

υt

]
, ΥΥΥ t+1 = [ ςη�t+1 0

0 ςυ�t+1

]
, and ln ς2

η�t+1 and ln ς2
υ�t+1, are random

walks as described by equation (5).
The SI law of motion (7) suggests a law of motion for the sticky-information states,

FtXt+1 = λtFt−1Xt+1 + (1 − λt)EtXt+1, where FtXt = [Ftτt Ftεt]′. We verify this conjec-
ture in the Online Supplementary Appendix and generate the following recursive law of
motion for the sticky-information forecast states:

Ft+1Xt+1 = λt+1ΘΘΘFtXt + (1 − λt+1)ΘΘΘXt + (1 − λt+1)ΥΥΥ t+1Wt � (11)

The sticky-information state equations (11) inherits cross-equation restrictions from the
SW-UC model’s rational-expectations term structure of inflation forecasts in form of the
transition and impulse matrices, ΘΘΘ and ΥΥΥ t+1 known from (10). In addition, as shown in

10Only the persistent gap component, εt matters for forecasting. For brevity, we will, hence, refer to εt
simply as the gap component in this context.
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the Online Supplementary Appendix, we can construct sticky-information forecasts for
any horizon h> 0 as Ftπt+h = δX FtXt+h with FtXt+h =ΘΘΘhFtXt .11

The state equations of M0 are formed by stacking the state equations (10) of Xt+1 on
top of the sticky-information state equations (11)

St+1 =AAAt+1St +BBBt+1Wt � (12)

where St = [ Xt

FtXt

]
, AAAt+1 = [ ΘΘΘ 02×2

(1−λt+1)ΘΘΘ λt+1ΘΘΘ

]
, BBBt+1 = [ ΥΥΥ t+1

(1−λt+1)ΥΥΥ t+1

]
. Drift in the sticky-

information weight and the stochastic volatilities creates nonlinearities in (12). How-
ever, the dynamics of St are linear conditional on a realization of

Vt = [ςη�t ςυ�t λt]′�
Accordingly, we will refer to St and Vt as linear and nonlinear states of the model. The
state equations for the nonlinear states are given by (5) and (8). The parameter vector of
the model is Ψ = [σ2

η σ2
υ σ2

ζ�π σ2
ζ�1 σ

2
ζ�2 σ

2
ζ�4 σ

2
ζ�5 σ

2
κ θ]′.

We construct the observation equations of M0 using the observation equation
(9) of our SW-UC model, SPF measurement equation (6), and rational-expectations
and sticky-information term structures of inflation forecasts. These equations and
term structures eliminate Ftπt+h from the SPF term structure (6) giving us πSPF

t�t+h =
δXΘΘΘhFtXt +σζ�hζh�t . Place these SPF term structure equations beneath the observation
equation (9) of our SW-UC model to produce the observation equations of M0:

Yt = CCCSt +DDDUt � (13)

where

Yt =

⎡⎢⎢⎢⎢⎣
πt

πSPF
t�t+1
���

πSPF
t�t+H

⎤⎥⎥⎥⎥⎦ � CCC =

⎡⎢⎢⎢⎢⎣
δX 01×2

01×2 δXΘΘΘ
���

���

01×2 δXΘΘΘH

⎤⎥⎥⎥⎥⎦ � DDD =

⎡⎢⎢⎢⎢⎣
σζ�π 0 � � � 0

0 σζ�1 � � � 0

0 0
� � � 0

0 0 � � � σζ�H

⎤⎥⎥⎥⎥⎦ �

Ut = [ζπ�t ζ1�t � � � ζH�t]′� and ΩΩΩU =DDDDDD′�

The observation equations (13) show the data, Yt , are linear in St in M0 with cross-
equation restrictions imposed on the sticky-information forecasts that are inherited
from the SW-UC model’s rational-expectations inflation forecasts.

2.4 Identification of the state space model

Identification of our baseline state space model, M0, depends on term structures of
rational-expectations and sticky-information inflation forecasts. The linear states, τt , εt ,
Ftτt , and Ftεt , are identified on (i) a two-factor term structure of rational-expectations
inflation forecasts produced by our SW-UC model, Etπt+h = δXΘΘΘhXt , for h = 1� � � � �H

11The sticky-information version of the broader inflation gap, π̃t defined in (2), follows as Ft π̃t = Ftεt +
σζ�π�Ftζπ�t with Ftεt given by (11), and Ftζπ�t = λtζπ�t , since ζπ�t is serially uncorrelated.
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and (ii) across the same forecast horizons, the term structure of average SPF inflation
predictions, πSPF

t�t+h = δXΘΘΘhFtXt + σζ�hζh�t , that also has a two-factor representation.
The state equations (12) imply that these factors, Ftτt and Ftεt , are each driven by a
MA(∞) of τt and εt , respectively, where the MA coefficients reflect θ and the history of
λt . Hence, information in the term structure of average SPF inflation predictions aids in
identifying the level and slope of the term structures of rational-expectations and sticky-
information inflation forecasts.

We use τt , Ftτt , εt , Ftεt , and restrictions embedded in equations (12)–(13) of M0

to identify λt and θ. Intuition for the identification is developed by fixing the sticky-
information weight, λt = λ. This assumption recovers the error correction mecha-
nism, Ftτt − τt = λ(Ft−1τt−1 − τt−1) − ληt , and common feature regression, Ftεt − εt =
λθ(Ft−1εt−1 −εt−1)−λυt , from the associated state space model.12 The error correction
mechanism identifies λ as its slope coefficient, which rests on the common trend re-
striction that cointegration places on Ftτt and τt . Once λ is known, θ is identified in the
common feature regression because Ftεt and εt share a common cycle.13

The Online Supplementary Appendix provides a more detailed analysis of the iden-
tification issue, based on results in Harvey (1991) and Komunjer and Ng (2011).

3. Econometric methods

This section summarizes the SMC filtering and smoothing algorithms used to estimate
our state space models. Although we illustrate the problems of particle filtering and
learning in the context of our baseline model M0, our description here is fairly generic
and applies also to other model variants that are presented in Section 4. Our state space
models differ in whether the sticky-information weight, λt , or the gap-persistence pa-
rameter, θ (or both), are treated as drifting or static. All model variants have the same
linear states (as described in Section 2) and include stochastic volatilities among the
nonlinear states. A more detailed account of our SMC methods is provided in the Online
Supplementary Appendix.

We estimate states and static parameters of our state space models with SMC meth-
ods proposed by Carvalho et al. (2010) and refined by Lopes and Tsay (2011).14 This class

12Grant and Thomas (1999) argued weak forms of forecast efficiency demand that survey errors are
stationary and independent of whether surveys provide optimal and efficient predictions of inflation. An
equivalent restriction is surveys of inflation forecasts and realized inflation cointegrate. Kozicki and Tinsley
(2012), Mertens (2016), and Nason and Smith (forthcoming) applied this restriction to generate estimates
of trend inflation from samples of realized inflation and surveys of inflation forecasts.

13Jain (2019) used forecast revisions to identify predictability of individual SPF inflation forecasts. Ap-
plying Jain’s approach to our state space model, and neglecting measurement error, sets θ = (Ftπt+h+2 −
Ftπt+h)/(Ftπt+h+1 − Ftπt+h). Given θ, the level and slope of the term structure of sticky-information infla-
tion forecasts are identified by Ftπt+h and two adjacent forecasts. Krane (2011) used a similar approach, but
identifies permanent and transitory components in revisions to the term structure of Blue Chip forecasts.

14A state space model can be estimated by wrapping a Markov chain Monte Carlo (MCMC) sampler
around a particle filter. Andrieu, Doucet, and Holenstein (2010) gave particle MCMC (PMCMC) theoretical
foundations. Schorfheide, Song, and Yaron (2018) put a PMCMC sampler into practice. A PMCMC algo-
rithm can engender large computational costs because it runs a simulation inside a simulation.
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of SMC methods is known as particle learning. Particle learning jointly filters the states,
St and Vt , and static parameters, Ψ , of a state space model for every date t = 1� � � � �T .
The result is a sequence of filtered estimates of states and parameters that condition
only on time t information, which mimics the real-time character of the SPF data.

When a state space model is nonlinear and/or non-Gaussian, direct sampling from
the posterior distribution of the states is often impossible. A particle filter builds on the
idea of sequential importance sampling, where inference is based on simulating pro-
posed sequences for the states, which are then weighted by their likelihood ratios be-
tween target and proposal distribution. Particle filtering provides inference about la-
tent states for given parameter values. Carvalho et al. (2010) combined inference on the
states with online estimation of a model’s parameters in a particle learning filter.

Particle learning relies on sufficient statistics to efficiently construct the posterior of
a state space model. Sufficient statistics are tied to prior beliefs about the state space
model and its dynamic structure. We place priors on Ψ that are conjugate. Conjugate
priors yield analytic solutions that serve as laws of motion to update sufficient statistics
of Ψ , which are coefficients of its priors. Filtered estimates of Ψ are drawn from particle
streams of the sufficient statistics. The result is an online process that learns about Ψ by
moving through the sample date by date.

Carvalho et al. (2010) advised, if feasible, to Rao–Blackwellize a state space model.
Rao–Blackwellization exploits the conditionally linear and Gaussian dynamics of St ,
given Vt and Ψ . (Hence, we refer to St and Vt as the “linear” and “nonlinear” states.)
For a Rao–Blackwellized state space model, the Kalman filter analytically marginalizes
out St and tracks its sufficient statistics while inference about the nonlinear states is still
left to importance sampling methods. The use of analytic inference steps over Monte
Carlo methods, wherever possible, lowers the sampling error of the particle learning fil-
ter, thus improving its efficiency.

We estimate the smoothed states of our Rao–Blackwellized state space models using
an algorithm created by Lindsten et al. (2016). Their smoothing algorithm accounts for
Rao–Blackwellization of a state space model by first forward filtering (i.e., using a parti-
cle learning filter) of all the states, backward smoothing of the nonlinear states, and for-
ward smoothing of the linear states. We revise the Rao–Blackwellized particle smoother
to marginalize out the sample uncertainty induced by estimating the static parameters
with the particle learning filter.

3.1 Particle filters and particle learning

Here, we illustrate the problems of particle filtering and learning in the context of
our baseline model M0. Later in this section, we describe how to compute a model’s
marginal data density from output of the particle learning filter, and the construction of
smoothed estimates of the model’s states.

A Rao–Blackwellized bootstrap filter For known parameters values Ψ , the state and ob-
servation equations of our model yield a recursive nonlinear state space model of the
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following form:15

Yt ∼ p(Yt |St �Vt;Ψ)�

St �Vt ∼ p(St �Vt |St−1�Vt−1;Ψ) (14)

= p(St � |Vt �St−1;Ψ) ·p(Vt |Vt−1;Ψ) (15)

Importantly, p(St � |Vt �St−1;Ψ) and p(Yt |St �Vt;Ψ) are joint normals and the state tran-
sition density can be factorized as in (15), which gives the model a conditionally linear
structure.

In general, a particle filter approximates the posterior density of the states with a fi-
nite set of M realizations for the states, {S(i)

t �V(i)
t }Mi=1, that are also known as “particles,”

and a set of importance sampling weights w(i)
t ∈ (0�1), i = 1� � � � �M .16 A simple, albeit

brute force method is the bootstrap filter, which sequentially generates proposals for
the states from their prior in (14).17 Given such a set of proposed particles, the weights
are constructed from each particle’s likelihood w(i)

t ∝ p(Yt |S(i)
t �V(i)

t ;Ψ). However, the
bootstrap filter is not an efficient SMC method. In general, the bootstrapped proposals
neglect information from the data about high-likelihood regions for the states; to rem-
edy this defect, we wrap our inference inside an auxiliary particle filter described further
below. Moreover, bootstrapping proposals for nonlinear and linear states ignores con-
ditional linearity of our state space model.

Rao–Blackwellization recognizes that inference about the linear states can be per-
formed with standard Kalman filtering formulas when conditioning on a given history
of the non-linear states. Chen and Liu (2000) combined such Rao–Blackwellization for
the linear states with sequential importance sampling of the nonlinear states to repre-
sent the joint posterior of linear and nonlinear states with a mixture of Kalman filters.

The conditional linearity of the state space implies that, conditional on particle i’s
history of the nonlinear states, V t�(i), the posterior of St is a multivariate normal that is
fully characterized by two sufficient statistics:

S(i)
t|t = E

(
St |Y t;V t�(i)�Ψ

)
and Σ(i)

t|t = Var
(
St |Y t;V t�(i)�Ψ

)
�

The Kalman filter provides recursions for S(i)
t|t and Σ

(i)
t|t as well as the prediction error

decomposition of the likelihood, p(Y t |V(i)
t ;Ψ); as described below, the latter matters for

calculating the importance weights of the particles. Details are provided in the Online
Supplementary Appendix.

Rao–Blackwellization lowers sampling error in the particle learning filter by mar-
ginalizing out St analytically with the Kalman filter. While Rao–Blackwellization can be
applied to the linear states, we generate proposals for the nonlinear states from their
prior shown in (15). However, in contrast to a simple bootstrap as outlined above, our
proposals are adapted to the observed data, Y t , by use of an auxiliary particle filtering
step that is described next.

15State and measurement equations of M0 are given by (5), (8), (12), and (13).
16Y t denotes the history of observations Y t = {Y1�Y2� � � � �Yt}.
17Originally proposed by Gordon, Salmond, and Smith (1993), the bootstrap filter combines sequential

importance sampling and resampling with replacement to consistently estimate the states.
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Proposal densities, resampling, and propagation SMC methods need a proposal den-
sity to create a particle stream of the states that is not “too far” from the true posterior.
We focus our discussion on proposals for the nonlinear states, Vt since the linear states
will be Rao–Blackwellized.

Bootstrap proposals of Vt for the ith particle could be generated by drawing from
p(Vt |V(i)

t−1;Ψ). An alternative is the auxiliary particle filter (APF) of Pitt and Shephard
(1999, 2001) that seeks to adapt the proposal to the data, Y t , for greater efficiency. We
follow Carvalho et al. (2010), and embed ideas from the APF in a particle learning filter.
Before turning to the specifics of online parameter estimation with particle learning, we
outline the APF elements of the filter.

Ideally, we would like to draw proposals from p(Vt |Yt �S(i)
t−1|t−1�Σ

(i)
t−1|t−1�V

(i)
t−1;Ψ).

However, in our case, it is not possible to draw directly from such a fully adapted pro-
posal density, due to the nolinearities induced by Vt into the model. Instead, we com-
bine bootstrap proposals with a two-stage weighting scheme, described among others
by Pitt, dos Santos Silva, Giordani, and Kohn (2012) that refines the original APF of Pitt
and Shephard (1999).18

The APF two-stage scheme seeks to reweigh the time t − 1 particle swarm toward
higher-likelihood regions at t before propagating the particles. Specifically, consider the
filtering problem at t based on a swarm of particles inherited from time t−1 with impor-
tance weights proportional to w(i)

t−1 for i = 1� � � � �M . The two-stage scheme consists of a

first set of weights, w(i)
t|t−1, that reflects the product of W (i)

t−1 and the time t likelihood of

each particle obtained under the assumption that V (i)
t would remain identical to V (i)

t−1.19

The time t − 1 particles, V (i)
t−1, S(i)

t−1|t−1, and Σ
(i)
t−1|t−1 are then resampled in proportion

to w
(i)
t|t−1 before propagating the nonlinear states with draws from p(Vt |V(i)

t−1;Ψ). Condi-

tioning the first-stage weights w(i)
t−1|t on Yt seeks to propagate time t particles that carry

greater weight in the likelihood, which yields potentially more efficient estimates of the
states.20

The final step computes a second set of weights, denoted w(i)
t , that reflects the ra-

tio of likelihoods attained by each particle i before and after the propagation step. The
normalized second-stage weights W (i)

t = w
(i)
t /

∑
i w

(i)
t serve as importance weights to

calculate estimates of the nonlinear states Vt|t = ∑
i W

(i)
t V(i)

t and other objects of inter-
est. As described further below, the two-stage weights, w(i)

t−1|t and w(i)
t , are involved in

calculating the model’s marginal data density.

18The key refinement is to omit the second resampling step of Pitt and Shephard (1999), which would
otherwise increase Monte Carlo error. Similar versions of such second-generation APF are presented,
among others, by Johansen and Doucet (2008) and Herbst and Schorfheide (2016).

19Given the random-walk properties of the nonlinear states, our first-stage assumption of unchanged
Vt corresponds to Pitt and Shephard’s proposal to propagate first-stage particles according to their median
predictions.

20Resampling before propagation of the states mitigates particle degeneracy by conditioning w(i)
t−1|t on

Yt . Particle degeneracy occurs when a few particles carry most of the weight at future filtering steps. The
result is unevenly distributed weights implying inadequate coverage of regions of high likelihood, which
the APF aims to fix. However, Johansen and Doucet (2008) and Herbst and Schorfheide (2016) noted the
efficacy of the APF rests on the initial proposal having fatter tails than the target.
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Parameter inference with particle learning We embed Rao–Blackwellization and APF
steps in a particle learning filter.21 A naive approach to online estimation would be to
include an initial set of proposals for the static parameters in the particle stream. How-
ever, absent a propagation equation for the static parameters, successive resampling of
the particles of Ψ would collapse the stream onto only a few particles. The result would
be a poor approximation of the posterior of Ψ .

Particle learning solves the problem of particle degeneracy by tracking each particle’s
posterior distribution for Ψ instead of a mere proposal for its realized value.22 Track-
ing posteriors for Ψ is tractable when the distribution can be represented by sufficient
statistics, which is feasible in the case of conjugate priors. To that end, we place conju-
gate priors on the static parameters.

Since the priors of the static parameters are conjugate, the posterior distributions are
analytic; moreover, priors and posteriors are represented by a common set of sufficient
statistics. This insight suggests laws of motion for parameters of the posterior distribu-
tions in terms of updating equations for their sufficient statistics. For example, given an
inverse-gamma prior for the volatility of shocks to trend SV, σ2

η ∼ IG(α(i)
t−1/2�β(i)

η�t−1/2),
its posterior distribution is also an inverse gamma with updated scale and shape param-
eters α(i)

t = α(i)
t−1 + 1 and β(i)

η�t = β(i)
η�t−1 +� ln ς2�(i)

η�t .
All told, similar to Rao–Blackwellization of St , we represent the posterior distribution

of Ψ by a vector of sufficient statistics, denoted �. At a given point in time t, the ith par-
ticle tracks sufficient statistics for posterior of the parameters, denoted �

(i)
t , alongside

S(i)
t|t , Σ(i)

t|t , V(i)
t . In response to new data, � gets updated analytically as illustrated above,

and the particle learning filter tracks a system of such updating equations for the suffi-
cient statistics: �(i)

t = f (�(i)
t−1�V

(i)
t �V(i)

t−1�S
(i)
t �Y t ), where S(i)

t ∼ N (S(i)
t|t �Σ

(i)
t|t ), and further

details provided in the Online Supplementary Appendix.
The conditional posterior for the parameters obtained at date t, represented by

�
(i)
t , becomes the prior for parameter inference at time t + 1. Subsequent to propagat-

ing the sufficient statistics to �
(i)
t , we draw M particles of the static parameters from

Ψ(i) ∼ p(Ψ |�(i)
t+1). These particle draws, Ψ(i), are then used by the Rao–Blackwellized

APF outlined above to filter the t + 1 states. As a result, the particle learning filter gener-
ates posteriors of the states that fully reflect parameter uncertainty.

3.2 Estimating the marginal data density

The likelihood of our state space models is computed in the particle learning filter. The
marginal data density (MDD), p(Yt ), is based on techniques described by Pitt et al.
(2012, Appendix A.2). They compute the time t contributions to the MDD of a state space

21Early examples of particle learning are Liu and West (2001), Djuric and Miguez (2002), Fearnhead
(2002), and Storvik (2002). Särkkä (2013) has a useful summary of particle learning. Our particle learning
filter is grounded in algorithm 7 of Lopes and Tsay (2011).

22The relevant posteriors for Ψ are conditional on each particle’s history of the states. For brevity, we will
henceforth refer to these posteriors without explicit reference to this conditionality.
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model using the cloud of first- and second-stage weights, {w(i)
t−1|t �w

(i)
t }Mi=1 as follows:

p
(
Yt |Y t−1) =

[
1
M

M∑
i=1

w
(i)
t

]
M∑
i=1

w
(i)
t−1|t � (16)

In Section 4, we employ MDDs constructed from equation (16) to assess our baseline

state space model against three alternative state space models.

3.3 A Rao–Blackwellized particle smoother

Rao–Blackwellization is not costless. Conditionally, linear states create problems for

particle smoothing algorithms that merge forward filtering with backward simulation

of particles drawn from p(St �Vt |YT �Ψ) as, for example, in Godsill, Doucet, and West

(2004). This class of particle smoothers is known as forward-filtering with backward-

simulation (FFBS).23 A FFBS algorithm is a recursive decomposition of the posterior of

the smoothed states that rely on Markovian state dynamics. However, this decomposi-

tion is unsuited for a conditionally linear state space model, when Rao–Blackwellization

of the linear states has been applied in the filtering step. The problem is that after

marginalizing out St , the posterior of Vt is not Markovian anymore.

Lindsten et al. (2016) proposed a Rao–Blackwellized particle smoother to solve the

problem. Their particle smoother extends the FFBS procedures of Godsill, Doucet, and

West (2004) to a Rao–Blackwellized state space model by forward filtering of the linear

and nonlinear states, backward smoothing of the nonlinear states, and forward smooth-

ing of the linear states conditional on the smoothed nonlinear states. Hence, Lindsten

et al. (2016) call their algorithm a forward-backward-forward smoother.

We assign the initial forward filtering step of the Lindsten et al. (2016) particle

smoother to our Rao–Blackwellized particle learning filter. This produces the joint pos-

terior of St and Vt , p(St �Vt |Y t �Ψ), for a given realization of the parameter vector Ψ . Af-

ter summarizing the approach of Lindsten et al. (2016) for generating smoothed draws

of the states for a given parameter vector, we describe how we integrate out uncertainty

over the parameter vector.

The backward smoothing step rests on the decomposition of the target density of the

nonlinear states, p(VT |YT �Ψ), into p(V t |V t+1�YT �Ψ)p(V t+1:T |YT �Ψ). However, Lind-

sten et al. (2016) initialize their Rao–Blackwellized particle smoother at date T by sam-

pling from the filtered nonlinear states, {V(i)
T }Mi=1, to obtain smoothed nonlinear states,

{Ṽ(i)
T }Mi=1. The factorization of p(VT |YT �Ψ) is useful in smoothing backwards because

p(V t |V t+1�YT �Ψ) has information about the probabilities needed to draw {Ṽ(i)
t }Mi=1 from

{V(i)
t }Mi=1. Since p(V t |V t+1�YT �Ψ) is expensive to compute, Lindsten et al. (2016) pro-

23Godsill, Doucet, and West (2004) is a classic example of a particle smoother built on FFBS methods.
Carvalho et al. (2010) and Lopes and Tsay (2011) apply FFBS methods to particle learning filters.
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posed a simulator to backward filter the nonlinear states.24 The simulator relies on the
decomposition p(V t |V t+1�YT �Ψ)∝ p(Y t+1:T �V t+1:T |V t �Y t �Ψ)p(V t |Y t �Ψ)

The third step of the Rao–Blackwellized particle smoother runs the Kalman filter
forward to generate smoothed estimates of St and Σt by drawing from p(St |Ṽ t �Y t �Ψ).
These are the sufficient statistics of S̃t employed in simulations to approximate the pre-
dictive density p(Y t+1:T �V t+1:T |V t �Y t �Ψ). Although p(V t |Ṽ t+1�YT �Ψ) does not condi-
tion on S̃t , its estimates are needed to compute the probability of sampling Ṽ t:T .

Finally, given the ability to draw smoothed trajectories VT and ST conditional on
parameters we integrate out uncertainty over the parameter vector according to

p
(
VT �ST |YT

) =
∫
Ψ
p

(
VT �ST |YT �Ψ

)
p

(
Ψ |YT

)
dΨ�

where we use draws of Ψ obtained from the particle learning filter in repeated calls to
the smoother of Lindsten et al. (2016). Further details are described in the Online Sup-
plmentary Appendix.

4. The model space, priors, data, and estimates

This section presents our alternative state space models, priors, data sources, and es-
timates from the state space models. The different models are evaluated based on the
first implied by the marginal data density. We present estimates of filtered and smoothed
states, and static parameters for the state space model favored by the data and select al-
ternatives. A more exhaustive set of results can be found in the Online Supplementary
Appendix.

4.1 The model space

We evaluate our baseline state space model, M0, against three alternative specification.
The alternative models differ in whether the inflation gap persistence parameter or the
sticky-information weight (or both) are static or drifting, and the Online Supplemen-
tary Appendix derives the resulting state and observation equations for each model vari-
ant.25 All four models feature stochastic volatility in trend and gap inflation.

The first alternative state space model, M1, fixes the inflation gap persistence pa-
rameter and sticky-information weight, θt = θ and λt = λ. Letting both parameters drift
defines the second alternative state space model, M2. Drift in the inflation gap persis-
tence parameter evolves as a bounded random walk θt+1 = θt +σφφt , where innovations
are drawn from a truncated normal, φt ∼ T N (0�1; (−1 − θt)/σφ� (1 − θt)/σφ) to ensure
that θt remains inside the unit circle. The third alternative state space model, M3, holds
λ fixed while the inflation gap persistence parameter drifts, θt .

24The Kalman filter creates an exact predictive density (up to a normalizing constant). However, comput-
ing the density involves running the Kalman filter across M particle streams while iterating it forward from
the start of the sample to date T . These calculations are computationally costly, which motivate Lindsten
et al. (2016) to approximate the predictive density with simulated sufficient statistics.

25We thank the editor and referees for suggesting the model space be expanded as shown in Table 1.
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Table 1. List of baseline and alternative
state space models.

λ

θ Time-Varying Constant

Constant M0 M1
Time-varying M2 M3

Our alternative state space models imply different compositions of the param-
eter vector, Ψ , and the vector of nonlinear states, Vt , which are henceforth distin-
guished as Ψi and Vi�t for i = 0�1�2�3. The baseline model has three nonlinear states
in V0�t = [ςη�t ςυ�t λt]′. For M1, stochastic volatilities are the only nonlinear states,
V1�t = [ςη�t ςυ�t]′. For M2 and M3, the nonlinear state vectors are V2�t = [ςη�t ςυ�t θtλt]′
and V3�t = [ςη�t ςυ�t θt]′. The Online Supplementary Appendix provides further details.

4.2 Priors and initial conditions

This section describes our priors on the static parameters of M0, M1, M2, and M3. Re-
strictions on the state space models imply the static parameter vectors Ψ0, Ψ1, Ψ2, and
Ψ3 differ, but the state space models share many static parameters in common. For ex-
ample, replace σ2

κ with λ in M1 to produce Ψ1 = [σ2
η σ2

υ σ2
ζ�π σ2

ζ�1 σ2
ζ�2 σ2

ζ�3 σ2
ζ�4 σ2

ζ�5 λ θ]′
that otherwise is identical to Ψ0 = [σ2

η σ2
υ σ2

ζ�π σ2
ζ�1 σ2

ζ�2 σ2
ζ�3 σ2

ζ�4 σ2
ζ�5 σ2

κ θ]′. Drifting
inflation gap persistence parameter and sticky-information weight in M2 yield Ψ2 =
[σ2

η σ2
υ σ2

ζ�π σ2
ζ�1 σ2

ζ�2 σ2
ζ�3 σ2

ζ�4 σ2
ζ�5 σ2

κ σ2
φ]′ that equals Ψ0 up to substituting σ2

φ for θ. Fi-
nally, swap drift in the sticky-information weight for drift in the inflation gap persistence
parameter in M3 to set Ψ3 = [σ2

η σ2
υ σ2

ζ�π σ2
ζ�1 σ

2
ζ�2 σ

2
ζ�3 σ

2
ζ�4 σ

2
ζ�5 λ σ2

φ]′.
We posit priors for the static volatility parameters and initial conditions of θt , λt , St ,

and Vk�t , k = 0�1�2�and 3. The scale volatility parameters on the stochastic volatilities,
random walks of θt and λt , and measurement errors are given inverse gamma (IG) pri-
ors. Table 2 reports the scale and shape parameters, α� and β�, of the IG priors along
with the implied prior means, 5% and 95% quantiles.

Several features of our priors are worth discussing. First, we center the priors of
σ2
η and σ2

υ around the fixed coefficient values used by Stock and Watson (2007). Next,
the prior mean of 0�01 assigned to σ2

κ is smaller reflecting the bounded support of λt .
Nonetheless, this prior admits substantial variation in λt between the bounds of zero
and one when estimating M0 and M2. For similar reasons, the prior for the volatility
of shocks to inflation gap persistence, σ2

φ, in M2 and M3, has been centered around a

value of 0�01. Second, our priors on σ2
η and σ2

υ deliver quantiles that exhibit greater vari-

ation compared with σ2
φ and σ2

κ. Third, the quantiles of σ2
ζ�π�σ

2
ζ�1� � � � �σ

2
ζ�5 depict our

belief that the irregular component of πt and measurement errors in πSPF
t�t+h are volatile.

Table 3 lists our priors for the cases where inflation gap persistence, θ, or the sticky-
information weight, λ are static parameters. The priors obey θ ∈ (−1�1) and λ ∈ (0�1).
For M0, and M1, we endow θ with a truncated standard normal prior. This prior has 5%
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Table 2. Priors on the scale volatility parameters.

Quantiles

Scale Volatility on Innovation to α� β� Mean 5% 95%

Trend inflation SV, ln ςη�t+1: σ2
η 3�0 0�04 0�04 [0�005�0�114]

Gap inflation SV, ln ςυ�t+1: σ2
υ 3�0 0�04 0�04 [0�005�0�114]

TVP-AR1 coefficient, θt+1: σ2
φ 3�0 0�01 0�01 [0�001�0�028]

Sticky-information weight, λt+1: σ2
κ 3�0 0�01 0�01 [0�001�0�028]

Irregular noise component in πt : σ2
ζ�π 20�0 1�80 0�10 [0�057�0�166]

Measurement error on πSPF
t�t+h: σ2

ζ�h 20�0 1�80 0�10 [0�057�0�166]

Note: Priors on the static volatility parameters are σ2
� ∼ IG(α�/2�β�/2), where � = η�υ�κ�ζπ�and ζh for h = 1� � � � �5. For

α� > 2, the mean of the IG distribution is β�/(α� − 1). The priors for σ2
φ and σ2

κ listed above apply only for models where θ and

λ (or both) are drifting parameters.

and 95% quantiles at −0�87 and 0�87. For M1, and M3, the beta prior for λ has shape pa-
rameters of unity and is thus equivalent to the uniform distribution on the unit interval.
In essence, we have noninformative priors over θ and λ.

Priors on the initial conditions of the linear and nonlinear states appear in Table 4.
The left side of the table lists priors on the initial conditions of the linear states, τ0, ε0,
F0τ0, and F0ε0. Initial conditions on the stochastic volatilities, ln ς2

η�0 and ln ς2
υ�0, drifting

sticky-information weight, λ0, and drifting inflation gap parameter, θ0, are found on the
right side of the Table 4. We draw τ0 and F0τ0 from normal priors. The prior means are
2%, which is about the mean of GNP deflator inflation on a 1958Q1 to 1967Q4 training
sample. A variance of 1002 yields an approximately flat prior over the relevant range of
values for τ0 and F0τ0 in post-war U.S. data. The joint prior of ε0 and F0ε0 is drawn from
the ergodic bivariate normal distribution N (02×1�ΣΣΣε�0) as implied by the particle draws
for initial levels of the nonlinear states; see the notes to Table 4.

The last column of Table 4 display our priors on initial conditions of the nonlinear
states. We endow priors of ln ς2

υ�0 and ln ς2
η�0 with normal distributions. Prior means are

calibrated to pre-1968 inflation data similar to Stock and Watson (2007). Large variances
reflect prior uncertainty about ln ς2

υ�0 and ln ς2
η�0. Table 4 also shows that the priors on

the initial conditions for θ0 and λ0 are fairly uninformative.

Table 3. Priors on static-parameter versions θ and λ.

Quantiles

Distribution Mean STD 5% 95%

Gap inflation AR(1): θ T N (0�1;−1�1) 0�0 1�0 [−0�87�0�87]
Sticky-information weight: λ Beta(1�1) 0�5 – [0�05�0�95]

Note: The above-listed priors pertain to versions of our state space models where θ or λ (or both) are static parameters.
T N (0�1;−1�1) represents a truncated standard normal, with support limited values inside the unit circle and Beta(1�1) is the
beta distribution with shape parameters of unity.
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Table 4. Priors on initial conditions of the linear and nonlinear
states.

Linear States Nonlinear States

τ0 ∼ N (2�0�100�02) ln ς2
η�0 ∼ lnN (ln 0�2 − 5�0�10�0)

F0τ0 ∼ N (2�0�100�02) ln ς2
υ�0 ∼ lnN (ln 0�4 − 5�0�10�0)

ε0 ∼ N (0�0�σ2
ε0
) θ0 ∼ T N (0�0�1�0;θ0 ∈ (−1�1))

F0ε0 ∼ N (0�0�σ2
F0ε0

) λ0 ∼ T N (0�5�1�0;λ0 ∈ (0�1))

Note: The priors on ε0 and F0ε0 are drawn jointly from N (02×1�ΣΣΣ
(i)
ε�0), where σ2

ε0
and

σ2
F0ε0

are the diagonal elements of

ΣΣΣ
(i)
ε�0 =

∞∑
j=0

⎡⎣ θ
(i)
0 0(

1 − λ
(i)
0

)
θ
(i)
0 λ

(i)
0 θ

(i)
0

⎤⎦j ⎡⎣ ς
2�(i)
υ�0 λ

(i)
0 ς

2�(i)
υ�0

λ
(i)
0 ς

2�(i)
υ�0 λ

2�(i)
0 ς

2�(i)
υ�0

⎤⎦⎡⎣ θ
(i)
0

(
1 − λ

(i)
0

)
θ
(i)
0

0 λ
(i)
0 θ

(i)
0

⎤⎦j

�

and θ
(i)
0 , λ(i)0 , and ς

2�(i)
υ�0 are the ith particle draws from priors on the associated initial condi-

tions. For models where θt and λt , respectively, are static parameters, prior draws for these
parameters appear in place of these initial values.

4.3 The data

The data are real-time realized inflation, πt , and average SPF nowcast and 1-, 2-, 3-, and
4-quarter ahead forecasts. We obtain the data from the Real-Time Data Set for Macroe-
conomists (RTDSM) that is made available by the Federal Reserve Bank (FRB) of
Philadelphia.

During each quarter t, the SPF collects inflation predictions from its respondents
without full knowledge of πt . At time t, the available real-time data for inflation typically
reflects data releases that contain only observations through quarter t − 1. We comply
with this timing protocol by assuming that SPF forecasts collected in the middle of quar-
ter t are formed conditional on information available at the end of quarter t − 1, and
denote the h step ahead SPF forecast collected at t by πSPF

t−1�t+h. All told, our data set

comprises readings on πt and πSPF
t�t+h for h= 1�2�3�4�5.

The SPF provides forecasts for several inflation measures, including PCE and CPI
data as well as the GNP/GDP deflator.26 However, only for the latter, there is forecast data
extending back to the Great Inflation years of the 1970s.27 We use inflation predictions
and realizations based on the GNP/GDP deflator from 1968Q4 to 2018Q3.28

26The SPF measured the price level of output with the implicit GNP deflator before 1992Q1. From 1992Q1
to 1996Q4, the implicit GDP deflator played this role. It was replaced by the chain weighted GDP deflator
beginning in 1997Q1.

27The Online Supplementary Appendix provides complementary results obtained from CPI forecasts
collected by the SPF since 1981. Similar to what is reported here, we find a significant up-tick in the sticki-
ness parameter λt by the mid-1990s, when using a state space model where λt is time-varying. However, the
shorter data does not allow anymore to conclusively distinguish between the different state space models
listed in Table 1 above.

28There are missing observations for πSPF
t�t+5 during 1969, 1970, and 1974, which are accommodated by

modified observation equations in each model as needed.



Quantitative Economics 11 (2020) Inflation and professional forecast dynamics 1503

Figure 1. Realized inflation and SPF predictions. Note: Data from 1968Q4 to 2018Q3. Vertical
gray bands denote NBER dated recessions.

Our measure of realized inflation is based on second-release data for the GNP/GDP
deflator.29 The RTDSM compiles the second-release data of the GNP/GDP deflator in
growth rates. We convert the annualized growth rate, Gt = 100((Pt/Pt−1)

4 − 1), into con-
tinuously compounded growth rates using πt = ln(1+Gt/100). The SPF solicits forecasts
for the GDP/GNP deflator in levels. We convert these price levels into expected growth
rates by differencing the logs of the level forecasts.30

Figure 1 displays πt and the average SPF predictions. The data has several interesting
features. First, Figure 1 shows πt is more volatile than the average SPF inflation predic-
tions. Second, the average SPF inflation predictions are smoother and more centered
on πt as h increases. For example, Figure 1(a) shows the average SPF inflation nowcast,
πSPF
t�t+1, moving with πt , during the inflation spikes of the 1973–1975 recession and the

double dip recessions of the early 1980s. However, the spikes in the average SPF in-
flation predictions around these recessions are inversely related to h as illustrated in
Figure 1(b) for the case of h = 5. Even after the Volcker disinflation, which had ended
by 1986 according to Meltzer (2014, p. 1209), πt continued to strongly fluctuate around
πSPF
t�t+5, though less persistently than before.

4.4 Posterior estimates of the static parameters and model fit

Table 5 lists moments of the posterior distributions for the parameters of our four state
space models for the full data sample from 1968Q4 through 2018Q3. The reported mo-
ments are the posterior median and 90% uncertainty bands (i.e., 5 and 95% quantiles)
that are displayed in brackets. Log MDDs are reported at the bottom of Table 5. Each
state space model has been estimated with M = 100,000 particles.

29Second-release data for 1995Q3 are unavailable because of a federal government shutdown. We fill in
the missing observations with the corresponding third-release data collected by the RTDSM.

30As is common in the literature evaluating SPF forecasts, the procedure constructing average inflation
predictions from SPF price-level predictions ignores Jensen-inequality effects that result from the conver-
sion of level forecasts into log differences; see, for example, Aruoba (2018).
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Table 5. Parameter estimates and log MDDs of the state space models.

Models

Parameter M0 M1 M2 M3

Variances of shocks to SV processes
σ2
η (Trend SV) 0�037 0�051 0�020 0�018

[0�026�0�048] [0�036�0�150] [0�015�0�028] [0�013�0�027]
σ2
υ (Gap SV) 0�006 0�232 0�045 0�036

[0�005�0�009] [0�026�0�329] [0�021�0�074] [0�026�0�052]
Persistence of inflation gap

θ 0�758 0�707 – –
[0�663�0�854] [0�635�0�780]

σ2
φ – – 0�001 0�003

[0�001�0�001] [0�002�0�004]
Forecast stickiness

λ – 0�307 – 0�324
[0�175�0�373] [0�268�0�383]

σ2
κ 0�005 – 0�008 –

[0�004�0�007] [0�005�0�010]
Measurement error variances

σ2
ζ�π 0�517 0�778 0�612 0�486

[0�429�0�621] [0�644�0�939] [0�519�0�723] [0�403�0�592]
σ2
ζ�1 0�113 0�008 0�101 0�136

[0�096�0�135] [0�007�0�010] [0�085�0�122] [0�116�0�161]
σ2
ζ�2 0�042 0�008 0�042 0�042

[0�035�0�051] [0�007�0�010] [0�036�0�051] [0�035�0�051]
σ2
ζ�3 0�044 0�008 0�044 0�043

[0�037�0�052] [0�007�0�010] [0�037�0�053] [0�036�0�051]
σ2
ζ�4 0�047 0�008 0�044 0�050

[0�040�0�055] [0�007�0�010] [0�037�0�054] [0�041�0�060]
σ2
ζ�5 0�063 0�008 0�066 0�059

[0�054�0�075] [0�007�0�010] [0�054�0�079] [0�049�0�074]
ln MDD(Mi|YT ) −528�964 −535�401 −520�613 −527�144

(0�421) (0�486) (0�349) (0�394)

Note: The table contains posterior moments and log MDDs for the state space models M0 , M1 ,
M2 , and M3 based on M = 100,000 particles and the full data sample from 1968Q4 through 2018Q3.
The main entry for every static parameter reports its posterior median with 5 and 95% quantiles in
brackets below. Log MDDs for model i are denoted ln MDD(Mi |YT ) and computed using equa-
tion (16). The reported values are the average estimates obtained from 250 repetitions of the particle
learning filter, and the associated numerical standard errors appear in parentheses below each esti-
mate.

Estimates of the static parameters differ in several ways. As shown in Table 5, esti-
mates of σ2

η and σ2
υ, the variances of shocks to SV, are more diverse across the four state

space models than estimates of the other static parameters. The shock variance of trend
SV, σ2

η, is estimated to be relatively small in the cases of M2 and M3, where gap persis-
tence θt is time-varying. In contrast, M1, where both λ and θ are constant, is responsible
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for relatively high posterior medians of σ2
η and σ2

υ, with corresponding estimates from
M0 falling in between these cases. This suggests that SV in trend and gap inflation has to
adjust more when gap persistence, θt = θ, and forecast stickiness, λt = λ are held fixed.
In particular, variations in trend SV seem to soak up changes in inflation dynamics oth-
erwise captured by time-varying gap persistence.

In addition, the M1 case, when λ and θ are held fixed, produces the largest posterior
median estimate for the variability of the irregular component of inflation, σ2

ζ�π , and
the smallest posterior median estimates of measurement error variances in the survey
equations, σ2

ζ�1� � � � �σ
2
ζ�5. The reason is a greater share of the variation in πt is loaded

onto the irregular component, while estimates of trend and persistent gap inflation are
more closely aligned with SPF inflation predictions than current inflation. Otherwise,
the static parameter estimates are broadly similar across models.

The log MDDs of M0, M1, M2, and M3, reported at the bottom of Table 5, are esti-
mated using equation (16). We average over 250 repetitions of the particle learning filter
to calculate the log MDDs. Uncertainty over the log MDDs resulting from the SMC ap-
proximation is measured using the numerical standard errors of the log MDD estimates
computed on the 250 repetitions. Our use of numerical standard errors for gauging the
uncertainty of simulation-based estimates is grounded in the work of Geweke (1989);
see also Fuentes-Albero and Melosi (2013), and Herbst and Schorfheide (2014) for appli-
cations in the context of log MDD estimates. Table 5 shows that the difference between
the log MDD associated with M0 and the other three alternatives is always greater than
6�5, which, in the language of Kass and Raftery (1995), constitutes very strong evidence
in favor of M2. Moreover, the numerical standard errors of the log MDD estimates are
thwarted by these differences in the log MDD. Hence, our discussion is centered on es-
timates produced using M2.31

Figure 2 plots particle learning filter estimates of the scale volatility parameters σ2
η,

σ2
υ, σ2

φ, and σ2
κ of M2. Paths of these estimates appear in Figures 2(a), 2(b), 2(c), and 2(d)

along with 68% and 90% uncertainty bands in dark and light shades. The plots show
estimates of σ2

η, σ2
φ, and σ2

κ that cease to change much, if at all, after 1983. The exception

is σ2
υ. In Figure 2(b), the static scale volatility of ln ς2

υ�t in M2 drifts up during the sample
and especially after 1983. Between 1983 and the end of the sample, σ2

υ almost doubles
in size from about 0�025 in 1983Q1 to 0�045 at 2018Q3 while its 90% uncertainty bands
are widest running from 0�02 to 0�15 after the 2007–2009 recession.

4.5 Trend and gap inflation

Estimates of trend and gap inflation produced by M2 are shown in Figure 3. Figure 3(a)
compares realized inflation, πt , the 4-quarter ahead average SPF inflation prediction,
πSPF
t�t+5, and filtered estimates of RE trend inflation, τt|t .

Figure 3(a) gives evidence of the role πSPF
t�t+5 has in estimating trend inflation. Before

the Volcker disinflation, πSPF
t�t+1 often deviates substantially from τt|t . This relationship is

31Estimates of M0, M1, and M3 are in the Online Supplementary Appendix. There, we also present
broadly similar estimates from model specifications that omit the irregular component, ζπ�t , from the pro-
cess for πt . However, these specifications are not favored by the data in terms of log MDDs.
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Figure 2. Particle learning filter estimates of static parameters. Note: Posterior quantiles of par-
ticle-learning paths of several static parameters of the state space model M2 based on data from
1968Q4 through 2018Q3. In each panel, the solid line depicts the posterior median while the
dark and light shaded areas correspond to 68% and 90% uncertainty bands, respectively. Dotted
vertical lines denote NBER recession peaks and troughs.

reversed mostly from the end of the Volcker disinflation to 2018Q3. The spread between
πSPF
t�t+5 and τt|t is smaller during the 1973–1975 recession, the double-dip recessions of the

early 1980s, and the Volcker disinflation. From 1990 to the end of the sample, πSPF
t�t+5 fluc-

tuates around τt|t . This suggests that estimates of trend inflation rely on the 4-quarter
ahead average SPF inflation prediction.

Mechanically, our model’s measurement equations (13) link longer-horizon SI fore-
casts closely to the SI trend.32 In addition, our model implies a close link between SI and
RE trend, with their difference evolving as a stable AR(1) process, whose persistence
and innovation variance scales with the sticky-information weight:

(Ftτt − τt) = λt(Ft−1τt−1 − τt−1)− λtση�tηt−1�

32As noted by Kozicki and Tinsley (2012) in the context of modeling RE forecasts, for h → ∞, the UC
model equates survey predictions with the SI trend plus measurement error.
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Figure 3. Estimates of trend and gap inflation. Note: Filtered estimates obtained from model
M2 using data from 1968Q4 to 2018Q3. Light gray shaded areas in panel (a) represent 68% un-
certain bands around estimates of filtered RE trend inflation, τt|t . Panel (b) depicts filtered es-
timates of RE and SI gap inflation, π̃t|t and Ft|t π̃t . In both panels, vertical dotted bands denote
NBER dated recessions.

Evidently, when stickiness, λt , is low, differences between SI and RE trend are small and
not persistent. Moreover, the smaller trend SV, ση�t , the smaller the differences between
RE and SI trend. Strikingly, estimates of SI trend inflation, Ft|tτt , reported in the Online
Supplementary Appendix, are nearly identical to the RE trend, τt|t , throughout the en-
tire sample. Estimates of λt and ση�t , presented further below, account for the closeness
between SI and RE trend with low stickiness during the first-half of the sample, and low
trend SV during the second-half of the sample.

Not surprisingly, realized inflation displays more variability than trend inflation in
Figure 3(a). During the first oil price shock, πt is a third or more greater than τt|t . How-
ever, trend inflation explains much of the persistent increases in πt during the late 1970s
and early 1980s. With the onset of the Volcker disinflation, πt tracks persistently below
trend inflation until the late 1990s, and then again after the Great Recession of 2007–
2009.

Figure 3(b) displays estimates of RE and SI versions of the inflation gap, π̃t in (2),
which is the sum of the persistent and noisy gap components. Both gap measures rise
from about −2% in 1968Q4 to almost 4% in 1970. The 1973–1975 recession sees the
largest spikes in gap inflation reaching 9% or more before falling to about −2�5% by
1976. Between the Volcker disinflation and the end of the 1980s, gap inflation is negative
and mostly below −2�0%.

During the 1970s and 1980s, RE and SI inflation gaps track each other quite closely.
Starting with the 1990s, however, both measures begin to markedly differ. SI gap infla-
tion becomes noticeably smoother than its RE counterpart, and hovers mostly near zero.
In contrast, RE gap inflation is more volatile but without much persistence. Toward the
end of the Great Recession in 2009, both gap measures move again more in tandem as
they drop persistently for a few quarters.
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Our estimates of the linear states are a counterpoint to studies that find either trend
or gap inflation to dominate movements in realized inflation. Stock and Watson (2007)
presented estimates of trend inflation that largely track realized inflation while Cogley
and Sbordone (2008) reported estimates of trend inflation that are smooth and point
to the dominance of gap inflation in explaining realized inflation. Figure 3 shows that
conditioning estimates of M2 on average SPF inflation predictions produces estimates
of trend and gap inflation that fall somewhere between these polar cases. For example,
most of the inflation spike around the 1973–1975 recession is attributed to gap inflation
by M2. However, by the late 1970s and 1980 recession, trend inflation accounts for a
larger share of the surge in realized inflation.

We attribute these differences with other studies mainly to two factors: First, per-
sistence in gap inflation allows the model to identify persistent, but nonpermanent
changes in inflation as gap rather than trend inflation. Second, the assumed cointegra-
tion between realized inflation and the observed term-structure of SPF forecasts pro-
vides a clearer signal about trend inflation.

We can also infer the beliefs the average SPF respondent has about the future path of
realized inflation. For example, SI gap inflation is negative for most of the 1980s, while
trend inflation remained fairly elevated. These estimates suggest the average SPF partic-
ipant anticipated the Volcker disinflation would only produce a transitory drop in real-
ized inflation, which is consistent with Goodfriend and King (2005) and Meltzer (2014,
p. 1131). They argue households, firms, and investors expected the Volcker disinflation
would only produce a transitory decline in inflation after 1984. Similarly, trend inflation
is fairly unchanged after 2007, and mostly above πt , indicating the average member of
the SPF expected realized inflation to eventually rise back to the pre-crisis trend.

4.6 Stochastic volatility in trend and gap inflation

The state space model M2 yields estimates of filtered stochastic volatilities, ςη�t|t and
ςυ�t|t , that appear in Figure 4; smoothed estimates are presented in the Online Supplen-
tary Appendix. Overall, estimated volatilities of trend shocks, ςη�t|t are often smaller than
their counterparts for gap shocks, ςυ�t|t . The largest peaks in ςη�t|t occur in 1978 and 1980,
as shown on Figure 4(a) while ςυ�t|t is dominated by spikes in 1975–1976 and 1978 shown
in Figure 4(b). Another revealing feature of these figures is that ςη�t|t and ςυ�t|t often rise
during or after a NBER recessions.

Our estimates of trend and gap inflation stochastic volatilities differ somewhat from
Grassi and Proietti (2010), Stock and Watson (2007, 2016), among others. These authors
report trend stochastic volatility dominates inflation gap stochastic volatility from the
1970s well into the late 1990s. In contrast, Figure 4 attributes the jumps in inflation
volatility during the 1970s, 1980s, and 1990 in good part to increases in the volatility of
transitory shocks rather than mostly reflecting volatility in trend inflation. This suggests
that our approach to estimating the inflation gap persistence parameter has a substan-
tial impact on estimates of the trend volatilities affecting the innovations to trend and
gap inflation.
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Figure 4. Stochastic volatility in trend and gap inflation. Note: Filtered estimates obtained from
model M2 using data from 1968Q4 to 2018Q3. Dotted lines represent medians, solid thin lines
are lower and upper bounds on 90% uncertainty bands. Vertical dotted bands denote NBER
dated recessions.

4.7 Drifting inflation gap persistence and sticky-information updating

This section presents evidence to illustrate why the data prefers M2. By comparing es-
timates of θt and λt to estimates of θ and λ gleaned from M1 and M0, we argue coun-
tercyclical movements of the drifting persistence parameter of the inflation gap before
the Volcker disinflation combined with upward drift in the sticky-information weight
post-1990 explains why the data favors M2 over the other state space models.

Figures 5(a) and 5(b) begins the discussion with two different kinds of estimates of
the inflation gap persistence parameter and sticky-information weight. These figures
contain dot–dash lines that are filtered estimates of the drifting inflation gap persis-
tence parameter and sticky-information weight, θt|t and λt|t , of M2. Applying our parti-
cle learning filter to M1 produces paths of θ and λ that are the solid lines in Figures 5(a)
and 5(b). The paths of θ and λ are surrounded by 90% uncertainty bands denoted by
thin dot–dash lines while the light gray shading represent 90% uncertainty bands of θt|t
and λt|t .

The estimates of M1 indicate the path of θ shifts from countercyclical to acyclical
comovement with the NBER dated recessions by the early 1980s. Figure 5(a) depicts the
path of θ peaking at more than 0�8 during the 1969–1970 and 1973–1975 recessions while
dropping almost to zero in 1972 and early 1973. From 1976 to the end of the sample, this
path often wobbles, but is never less than 0�6 or greater than 0�8. The 90% uncertainty
bands for the path of θ are narrow for most of the sample.

Figure 5(a) also shows that by 1980 θt|t experiences a similar change in its comove-
ment with the business cycle. During the 1969–1970 and 1973–1975 recessions, θt|t
peaks. In the expansions that follow these recessions, there are troughs in θt|t that are
near zero in 1972 and 1977. There is a third peak in θt|t that almost reaches one (its upper
bound) in 1979. Subsequently, θt|t falls to near 0�7 at the start of the 1981–1982 recession
and fluctuates between 0�65 and 0�85 for the rest of the sample. Hence, θt|t is counter-
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Figure 5. Gap persistence and sticky-information weight under M1 vs. M2. Note: Comparison
of estimates obtained from models M1 (PLE paths of static parameters) and M2 (filtered esti-
mates of time-varying parameters) based on data from 1968Q4 to 2018Q3. The light gray shaded
areas and dash–dotted lines areas depict 90% uncertainty bands around median estimates of
static and drifting parameter versions of θ and λ produced by the two models. The vertical dot-
ted bands denote NBER dated recessions.

cyclical pre-1980 and acyclical post-1980. The sampling uncertainty surrounding θt|t is
widest after the 1973–1975 recession and during the 1981–1982 recession.

The shift in the behavior of inflation gap persistence over the business cycle is con-
sistent with Meltzer (2014, p. 1006 and p. 1207). He contends that Fed monetary policy
became more concerned with inflation control since the Volcker disinflation, thus caus-
ing less persistent swings in inflation than during the 1970s. Our estimates of the infla-
tion gap persistence parameter in M1 and M2 indicates the average member of the SPF
agrees with Meltzer.

The sticky-information weights produced by estimating M2 and M1 are found in
Figure 5(b). These estimates show the paths of λt|t and λ deviate after 1988. During the
first half of the sample, λ and λt|t are close and always less than a half. The path of λ con-
tinues to show that sticky-information forecast were updated quite frequently until the
end of the sample. Strikingly, λt|t begins to increase after 1988. By 1995, the frequency of
sticky-information inflation forecast updating is about three quarters on average. This
holds for the rest of the sample with one exception. Between 2009 and 2014, λt|t follows a
V-shaped path. The frequency of sticky-information inflation forecast updating approx-
imates rational expectations in 2009, but bounces back to the pre-recession frequency
of sticky-information inflation forecast updating by 2014.

Filtered estimates of the drifting inflation gap persistence parameter and sticky-
information weight provide evidence for the preference of the data for M2. Figure 5
presents two kinds of evidence. One piece of evidence is the countercyclical behavior of
θt|t pre-Volcker disinflation and not after in Figure 5(a). Next, the drop in the frequency
of sticky-information inflation forecast updating occurs about the same time estimates
of rational-expectations and sticky-information trend inflation shown in Figure 3(c) and
of filtered and smoothed stochastic volatilities plotted in Figure 4 also are falling.
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Figure 5(b) displays 90% uncertainty bands of λt|t that are almost always wider than
the 90% uncertainty bands of the path of λ. The sampling uncertainty around λt|t maps
into an average frequency of sticky-information inflation forecast updating that runs
from one to 10 quarters on average after 1990. The exception is the 2007–2009 recession
when the 90% uncertainty bands of λt|t narrow to between near zero and 0�4. However,
as argued below, the width of these bands hides significant changes in λt over time.

Figure 6 reports filtered and smoothed estimates of the drifting sticky-information
weight, λt , extracted from M2. Over the first-half of the sample, estimates of λt are fairly
low and remain below 0�5 until the late 1980s. With the end of the Volcker disinflation, es-
timates of λt begin to rise markedly and move mostly around 0�6, except for a brief drop
in the recession of 2008. The 90% uncertainty bands of λt|t and λt|T shown in Figure 6(a)
are very wide except for several NBER dated recessions. However, as argued next, these
bands reflect mostly uncertainty about the location, not the contours, of the estimated
trajectories for λt .

To better assess the significance of changes in λt since the beginning of the sam-
ple, Figure 6(b) plots accumulated changes, λt|T − λ1|T , with dark and light gray areas
representing 68% and 90% uncertainty bands.33 The figure shows 68% and 90% uncer-
tainty bands of λt|T − λt|T that are tight compared with the uncertainty bands of λt|T in
Figure 6(a). Strikingly, only from the 1973–1975 recession to about 1986 do these uncer-
tainty bands cover zero except.

Estimates of the accumulated changes in the frequency of sticky-information infla-
tion forecast updating, shown in Figure 6(b), are near zero from 1973 to 1988, but begin

Figure 6. Time-variation in the sticky-information weight. Note: Estimates obtained from
model M2 based on data from 1968Q4 to 2018Q3. Panel (a) displays filtered and smoothed esti-
mates, surrounded by 90% bands. Panel (b) displays the change in smoothed estimates of the SI
weight since the start of the sample, λt|T − λ1|T , surrounded by 68% (dark gray) and 90% (light
gray) uncertainty bands. Vertical dotted bands denote NBER dated recessions.

33Smoothed estimates, λt|T , reflect the same conditioning set irregardless of t. The changes in λt are thus
computed only based on smoothed estimates, since those provide us with joint uncertainty bands for λt|T
and λ1|T that allow for proper measurement of the uncertainty around their difference.
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to increase significantly in the early 1990s and reach a plateau by 1995. This plateau is
roughly maintained until λt|T − λ1|T takes a V-shaped plunge during the 2007–2009 re-
cession that is followed by a snap back to pre-recession levels by 2014. In Section 5, we
juxtapose these estimates of upward drift in the SI weight after the Volcker disinflation,
with estimates of a concurrent decline in inflation persistence.

Our estimates of an upward drift in survey forecast stickiness coincides with an in-
creased anchoring of inflation expectations.34 Notably, the rise in forecast stickiness
peaks in the mid 1990s, around the time the Fed started to engage in a policy of “op-
portunistic disinflation,” according to Meyer (1996) and Orphanides and Wilcox (2002).
More broadly, the stickiness of inflation forecasts seems to have been unaffected by
the episodes of “considerable” and “extended” policies, of the Greenspan and Bernanke
Feds, and the host of unconventional post-2007 policies employed by the Bernanke and
Yellen Feds. Interest rates are needed to evaluate the impact of monetary policy on in-
flation dynamics as studied, for example, by Leeper and Zha (2003). However, a possible
speculation is that the extent to which these policies served to keep inflation expecta-
tions anchored also mitigated any incentive of survey expectations to become less sticky
during these otherwise eventful episodes.

5. Uncertainty, persistence, and forecast stickiness

Up to this point, we have documented significant time-variation in forecast stickiness, as
measured by the frequency of sticky-information forecast updating, λt . Among others,
we find a noticeable drop in forecast stickiness around the 2007–2009 recession. Coibion
and Gorodnichenko (2015) report broadly similar evidence of time variation in λt and
point to recessions and the decline in macroeconomic volatility since the mid 1980s, also
known as the Great Moderation, as proximate causes of forecast stickiness. This section
complements their analysis by juxtaposing our estimates of λt with characteristics of the
inflation process implied by our state space models.

We focus on two metrics characterizing the inflation process that should matter for
forecasters. One metric is the mean squared error of the forecast (MSE). The second is
the share of forecast error variance (FEV) attributable to nonpersistent shocks. We ar-
gue this forecast-error-variance share is a suitable proxy for inflation persistence. The
estimates of stickiness, the MSE, and the variance share of nonpersistent shocks shown
below are constructed from the posterior distribution of M2. The priors of M2 view
time-variation in stickiness as unrelated to the underlying dynamics of inflation. Recall
that, for parsimony and not to impose a specific form of state dependence on inflation
forecast stickiness, we assume λt is driven by an exogenous shock. Nevertheless, as doc-
umented below, there is a striking resemblance between time-variation in estimates of
inflation stickiness and the importance of persistent shocks in accounting for the MSE
of inflation.

34Anchored inflation expectations imply a relatively low variability of long-run forecasts; by this met-
ric, U.S. inflation became (re)anchored since the late 1980s as noted noted by Bernanke (2007), Stock and
Watson (2007), Mertens (2016), Nason and Smith (forthcoming) and others.
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Coibion and Gorodnichenko (2015) used the MSE of the sticky-information fore-
caster’s h-step ahead prediction at a given date t as the dependent variable in their re-
gression analysis to evaluate forecast stickiness.35 The MSE of a sticky-information fore-
cast, denoted SI-MSE, can be decomposed into the sum of squared bias and forecast
error variance

SI-MSEt�h ≡ Et
{
(πt+h − Ftπt+h)

2} = (Etπt+h − Ftπt+h)
2 + Vartπt+h� (17)

The decomposition of equation (17) is the source of what is shown in Figure 7(a). The
figure depicts time variation in the SI-MSE defined in equation (17) for h = 1 and the
contributions from squared bias and forecast error variance over time.

We produce the results shown in Figure 7 from smoothed estimates of M2 to com-
pute rational expectations and sticky-information forecasts as well the MSEs. This con-
ditioning implies our estimates of MSE correspond to E{Et (πt+h − Ftπt+h)

2|YT } rather
than E{(πt+h − Ftπt+h)

2|YT }. The conditional moments Et{·} and Vart (·) are evaluated
from the perspective of a forecaster who knows the current level of inflation, its decom-
position into trend, and persistent and irregular gap components, the stochastic volatil-
ities, and static parameters. This approach is intended to capture the potentially richer
information set of SPF respondents, relative to the econometrician, that drives forecast
updating. (See the Online Supplementary Material for computational details.)

Figure 7(a) displays sizable variation in the SI-MSE over the entire sample. In line
with Stock and Watson (2007) and Clark, McCracken, and Mertens (2019), uncertainty
around inflation forecasts is greatest during the 1970s. The SI-MSE peaks around the
1973–1975 recession and remains elevated for the remainder of the 1970s. From the on-
set of the Volcker disinflation, forecast uncertainty, as measured by the SI-MSE, is mostly
declining until the end of the sample. We obtain similar results for longer forecast hori-
zons.

Considering the relative contributions of bias and forecast error variance, the SI-
MSE is dominated by forecast error variance with squared bias playing only a minor
role. Strikingly, extended periods of large biases (in absolute value) are rare throughout
the sample. Moreover, squared bias becomes negligible since the late 1990s, which is
when our filtered and smoothed estimates of λt increase to 0�6 or more. This evidence
is consistent with the notion that the frequency of sticky-information inflation forecast
updating may not have risen by accident, but rather reflects an evaluation of costs and
benefits of forecast updating, as suggested, for example, by the theories and models of
Sims (2003) and Mackowiak and Wiederholt (2009).

To support the hypothesis that variations in forecast stickiness may be related to
changes in the inflation process, we consider a counterfactual experiment that takes as
given our estimates of trend and gap components of the inflation process. We construct
hypothetical SI forecasts of inflation that are based on the SI law of motion (7), but fix λ

to a moderately high value of 0�6, roughly in line with our estimates of λt for the second-
half of the sample.

35Absent a specific model of the sticky-information forecaster’s loss function, squared errors are only
a proxy for actual losses. Squared errors are a natural starting point for assessing the forecast errors of a
sticky-information forecaster, since they are minimized by the rational-expectations benchmark.
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Figure 7. Forecast stickiness and the contribution of persistent shocks to inflation. Note:
Panel (a) depicts the SI-MSE and its two components, forecast-error variance (FEV), and squared
bias, as defined in equation (17) for h = 1. In addition, the panel also displays a counterfac-
tual sticky-information MSE obtained from a sequence of SI forecasts constructed using λ = 0�6.
Panel (b) compares the forecast error variance share of inflation at different horizons due to
noise, as defined in (18), against smoothed estimates of the sticky-information weight, λt|T , of
M2. Vertical dotted bands denote NBER dated recessions.

The resulting counterfactual SI-MSE for one-step ahead SI forecasts is shown in Fig-
ure 7(a).36 The upshot is that if inflation forecast stickiness had been that high during
the late 1970s, forecast bias would have been substantially higher than it actually was.
This bias would have been about as high as the forecast-error variance associated with
the optimal rational-expectations inflation forecast displayed in the same figure. This
stands in contrast to the actual and counterfactual bias during the second-half of the
sample, which are fairly small, even though both reflect elevated levels of inflation fore-
cast stickiness. All told, the estimated increase in forecast stickiness occurs at a time
when a lower frequency of SI forecast updating produces little difference between SI and

36By construction, actual and counterfactual SI-MSE differ only in their squared-bias components, and
the implied counterfactual squared bias can be read off the figure as the difference between the forecast
error variance and the counterfactual SI-MSE.
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RE inflation forecasts. We document the relatively benign consequences of stickiness for
forecast performance further in the Online Supplementary Appendix.

A key concern for forecasting is the importance of persistent shocks in the inflation
process. In our state space models, inflation is the sum of three components: trend, and
persistent, and irregular gaps. As described in Section 2, optimal rational-expectations
inflation forecasts are linear combinations of the trend, τt , and the persistent gap com-
ponent, εt , since the irregular gap component is serially uncorrelated noise. Greater
volatility in the shocks to τt and εt increases the variability of optimal RE forecasts.
Stochastic volatility causes the share of forecast error variance explained by each shock
to vary over time. We contend that when shocks to τt and εt account for a larger share of
variations in πt a sticky-information forecaster has a greater incentive to update more
frequently. As a result, forecast stickiness should be positively related to the share of fore-
cast error variance due to the serially uncorrelated irregular component. For an h-step
ahead forecast, this variance share is given by

FEV-share-noiset�h = σ2
ζ�π

Vartπt+h
= σ2

ζ�π

Vartτt+h + Vartεt+h + σ2
ζ�π

� (18)

Indeed, as Figure 7(b) shows, the shares of h-step ahead forecast error variances due
to the noise component mirrors variations in our smoothed estimates of the sticky-
information weight, λt|T , for h = 1�2� � � � �5.37 While λt|T suggests low levels of sticky in-
formation during the latter half of the 1970s and the Volcker disinflation, the stickiness
of inflation forecast updating has risen since 1990 and remained high except for a brief
dip during the 2007–2009 recession. During the first half of the sample, the share of fore-
cast error variance due to the noise component in inflation was relatively low. As shown
in Figure 7(b), this share increases at the same time as the Volcker disinflation takes hold
and remains high for most of the remaining sample. The exception is a brief drop in the
noise share during the 2007–2009 recession, that is also mirrored by an even more pro-
nounced dip in λt|T . In contrast, total forecast uncertainty (measured by FEV) has been
declining steadily since the 1970s with only a minimal increase during the 2007–2009
recession, as seen in Figure 7(a).

In sum, we obtain substantial evidence of an increase in the stickiness of SPF in-
flation predictions that lines up with a decline in inflation persistence after the Volcker
disinflation. Our model is not structural; nevertheless, the evidence suggests that fore-
cast stickiness may not be invariant to the inflation process and the monetary policy
framework shaping it.

6. Conclusions

This paper studies the joint dynamics of realized inflation and the term structure of av-
erage inflation predictions in the Survey of Professional Forecasters (SPF). We build non-
linear state space models using the Stock and Watson unobserved components model

37In the Online Supplementary Appendix, we report similar results based on an alternative decomposi-
tion of the forecast error variances. Based on a metric used by Cogley, Primiceri, and Sargent (2010), this
alternative persistence measure reflects the relative variability of h-step ahead inflation expectations.
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and the Coibion and Gorodnichenko (2015) version of the Mankiw and Reis (2002)
sticky-information model to estimate trend and gap inflation, the stochastic volatility af-
fecting these states, the inflation gap persistence parameter, and the sticky-information
weight. The state space models are estimated on a sample of realized inflation and aver-
ages of SPF inflation predictions from 1968Q4 to 2018Q3 using sequential Monte Carlo
methods. The sequential Monte Carlo methods consist of a particle learning filter pro-
posed by Carvalho et al. (2010) and a Rao–Blackwellized particle smoother developed by
Lindsten et al. (2016).

We draw four headline results from our estimates: First, the 4-quarter ahead aver-
age SPF inflation prediction has information that increases the efficiency of estimates of
trend inflation. Second, inflation gap persistence flips from countercyclical before the
Volcker disinflation to acyclical for the remainder of the sample. Third, the stickiness of
inflation forecasts increases after the Volcker disinflation. This remains the case to the
end of the sample except for a transitory decline in the sticky-information weight dur-
ing the 2007–2009 recession. Fourth, shifts in the stickiness of inflation forecasts occur
at the same time the importance of persistent shocks for explaining the variation in real-
ized inflation begins to decline. This evidence suggests that sticky-information inflation
forecasts are state dependent, but without business-cycle dependence. The lesson for
central banks is to engage in policies that prevent private agents from anticipating that
persistent shocks will dominate movements in inflation.

Our results fit into a literature that finds permanent shocks matter more to pro-
fessional forecasters than transitory shocks. In particular, we find changes in the fre-
quency of forecast updating that coincide with a decline in the importance of persistent
shocks for inflation dynamics. In our view, this evidence should point future research
toward endogenizing the sticky-information weight, perhaps, in the tradition of rational
inattention models of Sims (2003) and Mackowiak and Wiederholt (2009). We hope our
paper stimulates further work on the ways in which professional forecasters and other
economic agents process information to form beliefs and predictions about future eco-
nomic outcomes and events.
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