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Supplementary Material

Supplement to “Bottleneck links, essential intermediaries, and
competing paths of diffusion in networks”

(Theoretical Economics, Vol. 16, No. 3, July 2021, 1017–1053)

Mihai Manea
Department of Economics, Stony Brook University

S1. Limits to indirect appropriability in large random networks

We present a set of results suggesting that protection of intellectual property is necessary
for providing sellers with incentives to create the good in many markets. We show that in
sufficiently “dense” networks, the effects of competition between sellers of the original
good and buyers of copies are extreme and eliminate indirect appropriability. If creating
the prototype requires large investments, sellers do not have incentives to produce it
even when production enhances welfare. Then prohibiting reproduction of the good is
socially optimal.

Theorem 1 implies that buyer b receives the good for free from seller s in state S if and
only if b�G(S) s. Since b�G(S) s whenever b�G s, seller s obtains zero profit from trading
with buyer b if b�G s. The latter condition is equivalent to the fact that removing the link
bs from network G does not disconnect the network. If b is linked to any other neighbor
of s in G, then the network obtained by removing the link bs from G is connected, so
seller s must trade with buyer b at zero price. Hence, if G is sufficiently “clustered,” in
the sense that neighbors of s tend to be neighbors with each other,1 then s is unable to
extract any profits from his neighbors. Furthermore, if seller s has at least two links in
G and the network obtained by removing node s (and its links) from G is connected,
then the network obtained by removing any link of s from G is also connected, so s

obtains zero total profit in state S. Another immediate observation is that if there exists
a cycle in G that contains all nodes—conventionally called a Hamiltonian cycle—then
for any S ∈ S , all equivalence classes of ∼G(S) are singletons, and Theorem 1 implies that
no seller makes profits in state S. Intuitively, the previous two statements suggest that
sellers are unable to generate any profits if G is “sufficiently connected.” We established
the following result.

Proposition S.1. Fix a seller configuration S ∈ S in the network G.

(i) If every neighbor of seller s ∈ S in G is linked in G to at least one other neighbor of
s, then s makes no profit in state S.

Mihai Manea: mihai.manea@stonybrook.edu
1This principle, known as triadic closure, was popularized by the work of Granovetter (1973).
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(ii) If seller s ∈ S has at least two links in G and the network obtained by removing
node s from G is connected, then s makes no profit in state S.

(iii) If G contains a Hamiltonian cycle, then no seller earns any profit in state S.

One can asymptotically estimate probabilities related to connectivity in the context
of large random networks. We focus on the well known random graph model of Er-
dos and Renyi (1959),2 for which the relevant asymptotic results are readily available.
Our exposition of theorems here relies on the monograph of Bollobas (2001). A (Erdos–
Renyi) random graph with parameters (n�q) is defined by the probability distribution
over networks with a fixed set of n nodes in which each link is present independently
with probability q or, alternatively, by the random variable Gn�q that has this distribu-
tion. In what follows, let ω be any function of n such that ω(n) → ∞ as n → ∞.

Theorem 7.3 in Bollobas (2001) implies that if qn ≥ qC(n) := (logn+ω(n))/n for all n
(where ω(n) → ∞ as n → ∞), then the probability that the random graph Gn�qn is con-
nected converges to 1 as n → ∞.3 A rough interpretation of this result is that random
networks with n nodes and an average degree slightly greater than logn are asymptoti-
cally connected for large n. Fix a seller s who belongs to Gn�qn with qn ≥ qC(n) for all n.
Given the link independence assumption embedded in the definition of random graphs,
the network G′

n−1�qn obtained by removing node s from Gn�qn is a random graph with
parameters (n− 1� qn). Applying the result above for the sequence (G′

n−1�qn)n≥2 (with a
simple adjustment in the corresponding function ω), we conclude that G′

n−1�qn is con-
nected with limit probability 1 as n → ∞. Since qn ≥ qC(n) for all n, the probability that
s has at least two links in Gn�qn converges to 1 as n → ∞. The second part of Propo-
sition S.1 then implies that seller s gets zero profit in Gn�qn with limit probability 1 as
n → ∞.

Similarly, Theorem 8.9 from Bollobas (2001) states that if qn ≥ qH(n) =: (logn +
log logn + ω(n))/n for all n, then the probability that the random graph Gn�qn contains
a Hamiltonian cycle converges to 1 as n → ∞.4 Thus, a relatively small increase in the
average degree of Gn�qn by the amount log logn over the threshold logn needed for Gn�qn

to be asymptotically connected generates a clear instance of connectedness—the ex-
istence of a Hamiltonian cycle. Based on the third part of Proposition S.1, we conclude
that if qn ≥ qH(n) for all n, then all sellers make zero profits in Gn�qn with limit probability
1 as n→ ∞. The next result summarizes our findings related to random graphs.

Proposition S.2. Consider a sequence of random networks (Gn�qn)n≥1 and a function ω

such that limn→∞ ω(n) = ∞.

2This first article of Erdos and Renyi on the topic considered a variation of the model presented here
based on random graphs with fixed numbers of edges, but followup work developed parallel results for the
two versions of the model.

3It is remarkable that, as Bollobas explains, the threshold function qC is sharp in the following sense: if,
alternatively, qn ≤ (logn−ω(n))/n for all n, then Gn�qn has an isolated node and is thus not connected, with
limit probability 1 as n→ ∞.

4Analogous to the remark from footnote 3, Bollobas argues the threshold function qH is sharp: if qn ≤
(logn + log logn − ω(n))/n for all n instead, then the probability that at least one node has fewer than two
neighbors in Gn�qn , and hence Gn�qn does not contain any Hamiltonian cycle, converges to 1 as n→ ∞.
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(i) If qn ≥ (logn + ω(n))/n for all n ≥ 1, then any particular seller who belongs to all
networks in the sequence earns 0 profit in Gn�qn with limit probability 1 as n → ∞.

(ii) If qn ≥ (logn + log logn + ω(n))/n for all n ≥ 1, then all sellers in Gn�qn obtain 0
profits with limit probability 1 as n → ∞.

Both parts of Proposition S.2 apply when the number of sellers changes arbitrarily
with the size of the network. Versions of this result in which only the network of buyers
is random and sellers are linked to several buyers can be derived using the same ideas.

The negative effects of competition on seller profits may be more pronounced in
large networks observed in applications than the Erdos–Renyi model suggests. Empiri-
cal research provides extensive evidence that social and economic networks are highly
clustered.5 For such networks, the first part of Proposition S.1 implies that it is diffi-
cult for sellers to earn high profits when reproduction and resale are allowed. While the
refinement of the bargaining solution favors trade and generates extreme competition,
clustering represents an obstacle to indirect appropriability even for solutions that do
not survive the refinement. Indeed, under all solutions, the existence of a link between
a pair of a seller’s neighbors implies that the seller cannot extract any profits from one of
the two neighbors, a point echoed by Ali et al. (2020).

S2. The cases of pure intermediation and no intermediation

The competitive and monopolistic forces driving market outcomes in the present model
are similar to those arising in the non-cooperative intermediation game of Manea
(2018), in which a single unit of a nonreplicable indivisible good is sequentially traded
between linked intermediaries in a network until a player consumes it. Mirroring the
assumption from the information selling game that the division of gains from trade be-
tween sellers and buyers is determined by Nash bargaining with weights (p�1−p), when
the player holding the good selects a buyer for bargaining in the intermediation game,
the holder makes an offer with probability p and the buyer makes an offer with proba-
bility 1 − p. Pricing in the information selling game hinges on competition among sell-
ers, whereas pricing in the intermediation game is determined by competition among
buyers.

When the good is not replicable, there is one initial seller and only one of the traders
can consume it. Thus, to understand the strategic differences between the two models,
it is natural to consider a network G with an initial seller s and a buyer b in which all
traders except b have zero intrinsic value for the good. In this setting, all traders different
from b and s serve pure intermediation roles. Nevertheless, we argue that the bargaining
power of intermediaries depends significantly on the replicability of the good.

In both models, if there is a unique path from s to b in the network G, and this path
has length k, then the good is resold along the path at prices (pkvb�p

k−1vb� � � � �pvb); in

5See Jackson (2008) and Easley and Kleinberg (2010) for references. In social networks, clustering cap-
tures the idea that individuals who have common friends are more likely to be friends with each other.
Another expression of this phenomenon, highlighted by the random graph model of Jackson and Rogers
(2007), is that individuals are typically friends with the friends of their friends.
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the absence of any competition among traders, either model boils down to a sequence
of bilateral bargaining problems. However, the two models generate different price dy-
namics in the more interesting case in which there are competing intermediation paths
between s and b. In that case, since b �G s and thus b �G({s}) s, buyer b can receive
the good only following a sequence of trades in which the dealer d of his equivalence
class under ∼G({s}) acquires it, and trade subsequently proceeds along the unique in-
termediation chain between d and b. Again, due to lack of competition in transactions
within d’s equivalence class, either model predicts prices (pkvb�p

k−1vb� � � � �pvb) for the
k intermediaries transmitting the good from d to b.

In contrast, prices along the multiple trading paths from seller s to dealer d diverge
substantially in the two models. In the information selling game, all prices over any
trading path between s and d are 0, reflecting competition between seller s and buyers
who sell replicas of the good. In the intermediation game, prices along the equilibrium
trading path take the form (pl+kvb� � � � �p

l+kvb�p
l+k−1vb� � � � �p

l+k−1vb� � � � �p
k+1vb� � � � �

pk+1vb) for some l. Prices are constant over segments of the path where multiple inter-
mediaries with maximal resale values compete for the good and decline by a factor of
p at stages where competition is insufficient; intermediaries acquiring the good in the
latter scenario make positive profits. While seller s is unable to indirectly appropriate
part of buyer b’s value in the information selling game, he obtains a share pl+k of b’s
value in the intermediation game. For an illustration, in the network from Figure S1, the
path of prices is (0�0�pvb) in the information selling game and (p2vb�p

2vb�pvb) in the
intermediation game.

Another “network” that highlights the role of replicability is one in which intermedi-
ation is unnecessary. Suppose that seller s is linked directly to n ≥ 2 buyers (bi)

n
i=1 who

do not have other links as illustrated in Figure S2. Assume that vb1 ≥ vb2 ≥ · · · ≥ vbn > 0
and vb2 ≥ pvb1 . Then, in the bargaining game of Manea (2018), seller s can trade with a
single buyer and exploits the competition between buyers b1 and b2 to extract a profit of
vb2 from buyer b1. In the information selling game, seller s supplies a copy of the good
to each buyer bi at price pvbi . Clearly, for p ≥ 1/2, we have that

∑n
i=1 pvbi ≥ vb2 , so the

seller obtains higher profits in the information selling game. However, for p close to 0,
we have vb2 >

∑n
i=1 pvbi , and the seller is better off in the bargaining game with unit

supply. Transitioning between the two games in this network is equivalent to increasing
the supply of the good from 1 to n units. Increasing the supply eliminates competi-
tion among buyers and reduces the price the seller can charge to buyer b1 from vb2 to

Figure S1. Diverging price dynamics in the two models.



Supplementary Material Links, intermediaries, and diffusion in networks 5

Figure S2. No intermediation.

pvb1 , but allows the seller to extract a surplus of pvbi from every other buyer bi. This
effect adds a bargaining theory dimension to the trade-off between price and quantity
in standard monopoly pricing.

S3. Proof of Theorem 3

For a general network H, let H \ ij denote the network obtained by deleting the link ij

from H (which is identical to H if ij /∈ H). Fix a connected network G with ij ∈ G and
let G′ = G \ ij. When the network G′ is not connected, the proof relies on applications
of earlier results to the connected components of G′. For every seller configuration S ∈
S , let G′(S) denote the network derived from G′ in the same fashion G(S) is derived
from G. Note that G′(S) = G(S) if i� j ∈ S and G′(S) = G(S) \ ij otherwise. We use the
notation C ′

k(S) for the equivalence class of k under ∼G′(S), use u′
k(S) for the payoff of

player k in network G′ in state S, and use δ′(k� l) for the distance between nodes k and
l in network G′. Fix a seller configuration S ∈ S and assume that {i� j} � S, so G′(S) =
G(S) \ ij.

Suppose that ij is a bottleneck link. As argued in Section 8, the condition {i� j} �
S implies that i ∼G(S) j. Then the link ij represents the unique path between i and j

in G(S), which implies that it is also the unique path connecting i and j in G. Since
G′ = G \ ij and G′(S) = G(S) \ ij, both G′ and G′(S) are disconnected. Each of G′ and
G′(S) must have exactly two connected components, which separate i from j, because
G and G(S) are connected. Furthermore, the partition of (nondummy) players into the
two components is identical for the two networks. Since G′(S) is disconnected and all
sellers in S are linked with one another in G′(S), information does not reach all players
in G′.

The relation i ∼G(S) j implies that there is no cycle in G(S) that contains link ij. Then
every link that is part of a cycle in G(S) is also part of a cycle in G′(S). It follows that the
forests derived by eliminating cycles from G(S) and G′(S) satisfy F(G′(S)) = F(G(S)) \
ij. The removal of link ij from the forest F(G(S)) breaks up the connected component
of F(G(S)) containing i and j into two components, and does not affect other compo-
nents. Therefore, Ci(S) =C ′

i(S)∪C ′
j(S) with C ′

i(S)∩C ′
j(S) = ∅ and C ′

k(S) = Ck(S) for all
k�G(S) i. Theorem 1 implies that sellers outside Ci(S) obtain the same profits in G and
G′. If d(S�Ci(S)) is a seller, Theorem 1, along with C ′

d(S�Ci(S))
(S) ⊂ Ci(S), implies that

d(S�Ci(S))’s profit is lower in G′ than in G (strictly lower if vb > 0 for all b ∈N \ S).
To investigate the effects of ij’s removal from G on information diffusion and buyer

payoffs, suppose without loss of generality that d(S�Ci(S)) ∈ C ′
i(S) (it is possible that

d(S�Ci(S)) = i). Then i and d(S�Ci(S)) are in the same connected component of G′,
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which is different from j’s component. There is a path in G from a seller in S to
d(S�Ci(S)) that does not contain any other node from Ci(S) and, in particular, does not
contain the link ij. Hence, d(S�Ci(S)) is in the same connected component as a seller
in G′(S). Since sellers are linked to one another in G′(S), all nodes in S must be in the
same connected component of G′(S) as i and d(S�Ci(S)). This implies that the good
cannot reach the players in j’s connected component in G′ (this component is a super-
set of C ′

j(S); it can be a strict superset formed by the union of C ′
j(S) and some of the

sets Ck(S) with k�G(S) i). Hence, players in j’s connected component in G′ obtain zero
payoffs in G′.

Consider now a buyer b from i’s connected component in G′. As j /∈ S ∪ b, we have
G′(S ∪ b) = G(S ∪ b) \ ij. Since the links in G′(S ∪ b) \ G′(S) connect only nodes in the
set S ∪ {b�0}, which is disjoint from j’s connected component in G′(S), it must be that
G′(S ∪ b) and G′(S) have identical connected components. Thus, i and j are in distinct
components of G′(S∪b), which means that the link ij constitutes the only path in G(S∪
b) between i and j, and, hence, i ∼G(S∪b) j. Arguments analogous to those above then
show that F(G′(S ∪ b)) = F(G(S ∪ b)) \ ij. If b /∈ Ci(S), then b /∈ Ci(S ∪ b), which implies
that C ′

b(S∪b)= Cb(S∪b). If b ∈ Ci(S), then we have that C ′
b(S∪b)⊆ Cb(S∪b), with strict

inclusion if b ∈ {i� d(S�Ci(S))}. Note that b is a dealer for C ′
b(S) in state S if and only if b

is a dealer for Cb(S) in state S. Theorem 1 then implies that all buyers in i’s connected
component in G′ that do not belong to Ci(S) obtain the same payoffs in G and G′, while
buyers in C ′

i(S) have weakly lower payoffs in G′ than in G (with i and d(S�Ci(S)) having
strictly lower payoffs in G′ if vb > 0 for all b ∈N \ S).

Suppose next that ij is a redundant link, i.e., i �G(S) j. Then we also have that
i �G(S) j, so there exists a path between i and j in G(S) that does not involve link ij.
Since G′(S) =G(S) \ ij and G(S) is connected, the path is contained in G′(S), and G′(S)
is also connected. This means that every buyer is connected to a seller by a path in G′,
so information reaches all buyers eventually. The removal of link ij leads to a weak ex-
pansion in each player’s equivalence class in G(S). For a proof, fix a player k ∈ N . Since
i�G(S) j, it cannot be that both i and j belong to Ck(S). By Lemma 1, every pair of nodes
in Ck(S) is connected by a unique path in G(S), which necessarily contains only nodes
in Ck(S) and, thus, excludes link ij. As G′(S) = G(S) \ ij, every pair of nodes in Ck(S) is
connected by a unique path in G′(S) as well. Hence, all nodes in Ck(S) are in the same
equivalence class of ∼G′(S), i.e., Ck(S) ⊆ C ′

k(S). Theorem 1 implies that every seller’s
payoff is weakly higher in G′ than in G. Indeed, for all s ∈ S, Cs(S) ⊆C ′

s(S) implies that

us(S) =
∑

k∈Cs(S)\s
pδ(k�s)vk ≤

∑
k∈C ′

s(S)\s
pδ′(k�s)vk = u′

s(S)�

The inequality above relies on the fact that δ(k� s) = δ′(k� s) for all k ∈ Cs(S). This follows
from the observation that there is a single path in G between s and any node k ∈ Cs(S),
which does not include the link ij and, hence, constitutes the unique path between s

and k in G′. We have established that the payoffs of all sellers weakly increase when the
redundant link ij is removed from G.

Similarly, for every buyer b, we have i �G(S∪b) j, so Cb(S ∪ b) ⊆ C ′
b(S ∪ b). Suppose

that b is not the dealer for Cb(S) in state S. Then b is not the dealer for C ′
b(S) in state S
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either. For a proof by contradiction, assume that there is a path in G′ from a seller in S to
b that does not contain any node from C ′

b(S) except for b. The path also lies in G because
G′ = G \ ij. Since Cb(S) ⊆ C ′

b(S), the path does not contain any node from Cb(S) other
than b. Then b should be the dealer for Cb(S) in state S, a contradiction. Theorem 1,
along with the condition Cb(S ∪ b) ⊆ C ′

b(S ∪ b) and the equality δ(b�k) = δ′(b�k) for
k ∈ Cb(S ∪ b), implies that

ub(S) = (1 −p)

(
vb +

∑
k∈Cb(S∪b)\b

pδ(b�k)vk

)

≤ (1 −p)

(
vb +

∑
k∈C ′

b(S∪b)\b
pδ′(b�k)vk

)
= u′

b(S)�

This proves that nondealer buyers weakly benefit from the removal of the redundant link
ij from G.

We finally prove that if i is a dealer buyer in state S, then i is hurt by the deletion of
the redundant link ij if and only if ij is a pivotal link for i in state S.

Suppose first that i has exactly two potential suppliers, j and some other node k,
in state S in the network G. Then in the network G \ ij, player i can receive the good
only from neighbor k. Theorem 2 implies that player i is not a dealer in state S in G \ ij.
We next prove that the set of players for whom i is an essential intermediary in state S

cannot expand when the link ij is removed from the network.
Assume that i is an essential intermediary for player k in state S in the network G\ ij.

The following statements must be true: (a) there is a unique path in G \ ij between i and
k, and (b) every path in G \ ij from a node in S to k passes through i. We show that i is
also an essential intermediary for player k in state S in the network G. If this were not
the case, then either there exist multiple paths in G between i and k or there is a path in
G from a node in S to k that does not pass through i.

In the first case, (a) implies that one of the paths from i to k in G includes the link ij;
this path contains a subpath between j and k in G \ ij. As j is a potential supplier for i
in state S, there should be a path from S to j that does not contain the link ij and, thus,
does not pass through i. By pasting the two paths (and removing potential overlap), we
obtain a path in G \ ij from S to k that does not go through i, a contradiction with (b).

In the second case, the path in G from a node in S to k that does not pass through i

necessarily excludes the link ij and, thus, must lie in G \ ij. This implies the existence of
a path in G \ ij from a node in S to k not containing i, a contradiction with (b).

We have established that if ij is a pivotal link for i in state S, then the removal of the
link ij from the network leads to the loss of dealer status for i and does not expand the set
of buyers for whom i provides essential intermediation in the network G \ ij. Theorem 1
and Lemma 2 then imply that buyer i’s payoff is strictly lower in G \ ij than in G if vb > 0
for all b ∈ N \ S.

We are left to consider the case in which ij is not a pivotal link for dealer i in state S. In
this case, Theorem 2 implies that i has at least two potential suppliers k and k′ different
from j in state S. By definition, there exist paths in G from nodes in S to k and k′ that do



8 Mihai Manea Supplementary Material

not contain node i and, thus, exclude the link ij; these paths lie in G \ ij. It follows that
k and k′ are potential suppliers for i in state S in the network G \ ij. From Theorem 2,
we infer that player i maintains his dealer role in state S in the network G \ ij. Since i’s
equivalence class in G(S ∪ i) can only expand when the redundant link ij is removed,
Theorem 1 implies that buyer i’s profit weakly increases after the removal of link ij.
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