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Bottleneck links, essential intermediaries, and competing paths
of diffusion in networks

Mihai Manea
Department of Economics, Stony Brook University

We investigate how information goods are priced and diffused over links in a net-
work. A new equivalence relation between nodes captures the effects of network
architecture and locations of sellers on the division of profits, and characterizes
the topology of competing (and potentially overlapping) diffusion paths. Sell-
ers indirectly appropriate profits over intermediation chains from buyers in their
equivalence classes. Links within the same class constitute bottlenecks for infor-
mation diffusion and confer monopoly power. Links that bridge distinct classes
are redundant for diffusion and generate competition among sellers. In dense
networks, competition limits the scope of indirect appropriability and intellectual
property rights foster innovation.

Keywords. Networks, diffusion, indirect appropriability, captive markets, inter-
mediation, competition, bottlenecks, redundant links, information goods, copy-
ing, intellectual property.

JEL classification. C78, D85, L14, O33.

1. Introduction

Information, knowledge and other replicable goods are often traded over links in a net-
work. Digital goods (e.g., software, music, and audiobooks) are copied and shared be-
tween friends. Farmers reproduce high quality plant and animal breeds and sell them
in local markets (Boldrin and Levine 2008). Apprentices are willing to accept low wages
or even pay fees to learn a trade and then set up their own businesses in which they,
in turn, train apprentices in exchange for cheap labor (Frazer 2006). Insider tips about
corporate events that impact financial markets are sometimes transmitted over four or
more links in networks formed by family and friends, and tipsters are rewarded for in-
sider information with gifts and jobs (Ahern 2017). Chains of intermediaries analyze,
package, and distribute financial and industry-specific information tailored for business
solutions, accounting purposes, or reporting (Sarvary 2011). This paper studies how the
locations of the initial sources of a replicable good in a network shape diffusion paths
and determine the profits that players at different positions in the network obtain from
consuming and reselling the good.
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We consider a market with a network structure in which some players are endowed
with an identical information good. Information is an indivisible consumption good for
which players have unit demand and heterogeneous values. We assume that there are
no consumption externalities and that the good does not depreciate. Our model builds
on work by Polanski (2007), who analyzed a market with a single seller and homoge-
neous values. Every player who has the good can replicate it at no cost and sell copies to
his neighbors in the network. Players acquire the good for the opportunity to consume
it and further resell copies. We refer to the players who own the good at a certain time
as sellers and to the others as buyers. At every date, a buyer–seller pair linked in the net-
work is randomly selected to bargain over the price of the good. We propose a Markovian
solution concept under which the terms of trade for each matched buyer and seller are
determined by Nash bargaining. The state of the market at each date, which determines
the disagreement payoffs in every match, is given by the configuration of sellers in the
network at that date.

While our analysis applies broadly to goods with the properties outlined above, it is
convenient to frame concepts and results in terms of (indivisible) information diffusing
through the network. The assumption that the same good is transmitted through the
network need not be taken literally. Some players may alter the good and resell cus-
tomized versions. For instance, Sarvary (2011) describes the “value chain” in the infor-
mation industry on a data–information–knowledge continuum as intermediaries add
context, patterns, and causal links to raw data, and sell different versions to multiple
institutions.

Buyers serve as both consumers and intermediaries in the market. The intermedi-
ation role can be beneficial for sellers when buyers provide access to parts of the net-
work that sellers cannot reach directly or when buyers enhance the good and make it
useful for others. Each buyer derives a direct utility from consuming the good and can
also earn profits from selling copies to other buyers. Sellers may indirectly extract prof-
its from buyers via intermediation paths along which every player demands a share of
the consumption value and the resale profits of the next buyer on the path. Liebowitz
(1985) coined the term “indirect appropriability” for the idea that sellers can collect part
of the profits gained by intermediaries who acquire the original good and resell copies.1

Nevertheless, as the standard argument for intellectual property rights suggests, com-
petition among sellers of the original good and buyers who resell copies drives prices
down in secondary markets and eliminates opportunities for indirect appropriation.
Our network formulation encapsulates the intermediation role of buyers who provide
indispensable market access as well as competitive forces that restrict indirect appro-
priability.

The starting point of our analysis is the intuition that a seller s can appropriate prof-
its directly or indirectly from a buyer b if and only if the following conditions hold:
(i) there exists a unique path between s and b; and (ii) any path from another seller
to b is intermediated by s. When these conditions are met, every player along the path

1Liebowitz argues that indirect appropriability explains why the introduction of photocopiers in 1959
led publishers to increase price discrimination for individual and library journal subscriptions, but has not
harmed publisher profits.
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from s to b is the only potential source of information for the next buyer on the path. We
prove that uniqueness of the path between a pair of nodes defines an equivalence rela-
tion over nodes in any given network. This key equivalence relation facilitates a succinct
statement of conditions (i) and (ii) above. Specifically, seller s and buyer b satisfy the two
conditions if and only if b belongs to the equivalence class of s in an auxiliary network
that mainly differs from the original one in linking all pairs of sellers.

The partition of the set of nodes into equivalence classes derived from the auxil-
iary network reflects the effects of competition and the scope of indirect appropriability
for every seller. This partition delivers a classification of links in terms of competitive
and monopolistic functions, which also determines the consequences of removing a link
for information diffusion and the distribution of profits in the network. Sellers extract
profits only from buyers who belong to their blocks in the partition. Every block that
does not include sellers contains one buyer—the dealer—who intermediates all diffu-
sion paths between sellers and other nodes in the block. Links within blocks constitute
bottlenecks for the diffusion of information. Removing such links disconnects the net-
work and stops information from reaching some buyers. For this reason, bottleneck
links confer monopoly power to sellers and generate positive externalities for all play-
ers. When trade takes place across a bottleneck link, the seller demands a fraction of
the buyer’s consumption value and resale profits, and the partition evolves to reflect the
buyer’s takeover of the submarket for which he provides essential intermediation. Links
between blocks are redundant for diffusion. Removing any such link does not affect the
ultimate spread of information. However, redundant links create competition and en-
able dealers to acquire information at zero price. Hence, sellers have incentives to sever
redundant links.

Beside its economic relevance, the network partition we discover provides graph
theoretic insights into the structure of competing diffusion paths. There is at most one
seller in every block. Information invariably enters any block without sellers through the
dealer of the block. Dealers can get information from multiple neighbors and always re-
ceive it via redundant links. Nodes along the unique path connecting a particular buyer
to the seller or dealer in his block provide essential intermediation for conveying infor-
mation to that buyer; information diffuses within blocks via bottleneck links. In partic-
ular, every nondealer buyer can only obtain information from a single neighbor over a
bottleneck link. Moreover, all diffusion paths that reach the same buyer via a given block
must overlap within that block.

Our results indicate that sellers’ profit blocks are small in networks that are suffi-
ciently well connected or clustered, as is the case for many large social and economic
networks (Jackson 2008, Easley and Kleinberg 2010). In such networks, the possibility of
reproducing the good and its competitive effects undermine the indirect appropriabil-
ity argument. If the creation of the original good requires investments greater than the
low profits sellers can earn in the network, then granting intellectual property rights to
sellers may be socially optimal.2 When replication and resale are not prohibited, sellers

2Nevertheless, small networks involving criminal activity such as the networks of inside traders mapped
by Ahern (2017) are sparse, allowing sellers to indirectly appropriate significant profits.
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can still avoid the harm of competition by engineering certain features of the prototype
so as to restrict trade.3

The interplay between competition and monopoly in this setting is reminiscent of
the market forces emerging in the intermediation model of Manea (2018). In that model,
a single nonreplicable good is sequentially resold between linked intermediaries in a
network until it reaches a consumer. At every point in the resale process, the price is
determined by competition between buyers. Similarly, pricing in the present model
is driven by competition between sellers, but this analogy is superficial, as the option
of selling multiple units to neighbors leads to distinct strategic considerations. Even
in markets with no intermediaries where the seller is linked directly to several buyers,
the seller may prefer to limit supply to enhance competition among buyers and charge
higher prices. This observation offers a bargaining theory perspective on the price–
quantity trade-off faced by a monopolist.4

In a version of the model with a single initial seller, Polanski (2007) provides recur-
sive equations for the evolution of payoffs as buyers acquire information. Those payoff
equations capture transitions between “consecutive” market states and, as such, reflect
local network effects, but do not elucidate how these effects aggregate to overall prof-
its. We fill this gap by providing explicit payoff formulae that reflect the global network
structure. Our network decomposition into equivalence classes identifies the effective
market share of every seller. The novel graph theoretic concepts developed here offer
a stark delineation between detrimental competition and beneficial intermediation in
networks for information goods, and deliver a purely topological characterization of
competing diffusion paths.

In a contemporaneous working paper, Ali et al. (2020) study markets for information
goods in which every pair of players can trade. Their setting corresponds to a complete
network.5 Focusing on a complete network affords a characterization of the best and the
worst equilibria for the information seller, and facilitates the design of a mechanism in
which the seller sells tokens and delays the release of information until all but one buyer
purchase a token. In the mechanism, buyers are effectively prepaying for information,
and the seller extracts the profits attainable when resale is prohibited.

In other related work, Novos and Waldman (1984), Besen and Kirby (1989), Bakos
et al. (1999), and Varian (2000) investigate how producer profits and social welfare are af-
fected by copying and sharing information goods. Boldrin and Levine (2002) argue that
the creator of a good can earn profits in a market without copyright protection where
users reproduce the good at a constant rate and rent out copies. Jovanovic and Wang

3Roundup Ready seeds are genetically modified to be resistant to the herbicide Roundup but are at the
same time designed to be sterile, so that farmers cannot reproduce and share them. Digital rights manage-
ment schemes control how digital content can be accessed and shared. Sellers can also eliminate redun-
dant links while authorizing bottleneck links by restricting resale markets via sublicensing agreements or
by selling encrypted versions of the good to buyers who generate competition on the primary market, while
selling the production technology or blueprint to buyers who are essential for serving secondary markets.

4Abreu and Manea (2021) formalize a general class of “exclusion commitments” and characterize the
optimal commitment for the seller.

5Ali et al. considered the case of incomplete networks in an early version of their paper, and the exposi-
tion of some results here benefited from a preview of their first draft.
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(2020) study diffusion and pricing in an industry where firms can either innovate or ran-
domly meet and imitate innovators, and the “idea” can be licensed or resold to imitators
and consumers. Muto (1986) and Takeyama (1994) analyze the consequences of con-
sumption externalities for the pricing of information goods in a complete network, and
Polanski (2019) provides a treatment for general networks with a focus on link forma-
tion and an application to citation graphs. This paper contributes to the growing litera-
ture on intermediation and bargaining power in networks (Condorelli and Galeotti 2016,
Manea 2016), which has focused on the trade of nonreplicable goods so far.

The rest of this paper is organized as follows. Section 2 defines basic graph the-
ory concepts needed for the analysis. Section 3 introduces the information selling
game and the solution concept. In Section 4, we develop the network decomposi-
tion into equivalence classes and the characterization of payoffs building on this de-
composition. In Section 5, we discuss the independence of prices from the history of
trades. Section 6 introduces the notions of bottleneck and redundant links, and elu-
cidates how they shape diffusion paths. In Section 7, we derive comparative statics
for link removals, buyer values, and seller entry. Section 8 provides concluding re-
marks. The Appendix presents proofs omitted in the main text, whereas the Supple-
mental Material Appendix (available in a supplementary file on the journal website,
http://econtheory.org/supp/4385/supplement.pdf) explores the implications of our re-
sults for large random networks and contrasts the present model with the intermedia-
tion game of Manea (2018).

2. Graph theory preliminaries

This section reviews standard graph theory notions needed for the analysis: undirected
networks, links, paths, distance, connected components, cycles, trees, and forests.
Readers familiar with these concepts are advised to proceed to the next section.

Let M be a finite set whose elements we call nodes. A network H linking the nodes
in M is a subset of M × M \ {(i� i)|i ∈ M}. The condition (i� j) ∈ H is interpreted as the
existence of a link between nodes i and j in network H. For brevity, we use the notation
ij for the link (i� j). The network H is undirected if ij ∈ H whenever ji ∈ H. All networks
in our analysis are assumed to be undirected. If ij ∈ H, we say that i and j are neighbors
in H. The subnetwork H ′ of H induced by a subset of nodes M ′ ⊆ M is the network
linking the nodes in M ′ formed by the set of links H ∩ (M ′ ×M ′).

A path connecting nodes i and j in network H is a sequence of distinct nodes
(i0 = i� i1� � � � � ik̄ = j) such that ikik+1 ∈ H for all k ∈ {0�1� � � � � k̄ − 1}. The distance be-
tween nodes i and j in H is the smallest length k̄ of any path (i0 = i� i1� � � � � ik̄ = j) con-
necting i and j in H (defined to be infinite if there is no path between the two nodes).
A connected component of H is the subnetwork of H induced by any maximal (with
respect to inclusion) set of nodes that are mutually connected by paths in H. It is
known that the set of connected components of an undirected network partitions the
sets of nodes and links. A network is connected if it has a single connected compo-
nent. A cycle in H is a sequence of nodes (i0 = i� i1� � � � � ik̄ = i) such that ikik+1 ∈ H for
all k ∈ {0�1� � � � � k̄− 1} with the property that the first k̄ nodes are distinct. A connected

http://econtheory.org/supp/4385/supplement.pdf
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network that does not contain any cycle is called a tree. A network without cycles is a
forest (alternatively, a forest is a network whose connected components are all trees).

3. The information selling game

A finite set of players N is linked by an undirected connected network G. Some of the
players—the initial sellers—are endowed with an identical information good. Let S ⊂ N

denote the nonempty set of initial sellers. We assume that information is a nondepreci-
ating indivisible consumption good for which every player has unit demand. Sellers can
replicate the good at zero cost and sell it sequentially to each of their neighbors in G.6

Upon acquiring the good, player i ∈ N enjoys a consumption value vi ≥ 0 and joins the
set of sellers.7 The market is open for an infinite number of discrete dates t = 0�1� � � � .
Players do not discount future payoffs.

The state of the market at date t is described by the set of holders of the information
good S ⊇ S at t. For a given state S, we refer to the players in S as sellers and to those
in N \ S as buyers. In state S, one randomly selected buyer–seller pair linked in G is
presented with the opportunity to trade. Hence, the set of links across which trade is
possible in state S is given by L(S) = {bs ∈ G|b ∈ N \ S� s ∈ S}. Let S denote the set of
seller configurations that may arise from S following a sequence of trades.8 For every S ∈
S \ {N}, a probability distribution π(S) assumed to have full support on L(S) specifies
the probability πbs(S) with which each link bs ∈ L(S) is selected for bargaining at any
date when the seller configuration is S. If b and s agree to trade in state S at date t, then
b pays the agreed price to s, consumes the good, and becomes a seller in the new state
S ∪ b at t + 1.9 The game ends when the market reaches the state N , in which all players
have the good.

3.1 The solution

We propose a cooperative solution concept with a Markov structure under which the
expected payoff of every player and the probability of agreement for the selected link
at each date t depend only on the set of sellers at date t. Let ui(S) denote the expected
payoff of player i ∈ N in state S ∈ S . When the link bs ∈ L(S) is selected for bargaining
at date t in state S, seller s and buyer b negotiate the price for the information good as
follows. In the event of an agreement, the market transitions to state S∪b at t+1, and the
price in the transaction between s and b is determined according to the Nash bargaining
solution with weights (p�1 − p), where p ∈ (0�1) is an exogenous variable common to
all seller–buyer interactions,10 under the following assumptions:

6The analysis extends to a model in which players have a common unit cost for producing copies of the
good.

7There are no consumption externalities. Players i with vi = 0 act exclusively as intermediaries in the
market. Sellers in S are assumed to have consumed the good before date 0.

8Formally, S represents the collection of sets S ⊇ S with the property that every node in S is connected
to a node in S by a path that contains only nodes in S.

9For notational convenience, we routinely write X ∪ y and X \ y for the sets X ∪ {y} and X \ {y}, respec-
tively.

10All results generalize to a setting in which for every state S ∈ S and pair (s�b) ∈ S × (N \ S), seller s and
buyer b divide the gains from trade according to Nash bargaining with weights (p(s�b)�1 −p(s�b)).
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• The total surplus created by the agreement is vb +ub(S∪b)+us(S∪b), which repre-
sents the sum of the consumption value of b and the continuation payoffs of b and
s in the new state S ∪ b.

• The threat points of b and s are given by their corresponding disagreement payoffs,
ub(S) and us(S).

Hence, the feasibility of an agreement between b and s in state S hinges on the gains
from trade

wbs(S) := vb + ub(S ∪ b)+ us(S ∪ b)− ub(S)− us(S)� (1)

Specifically, the probability αbs(S) of an agreement between b and s in state S must sat-
isfy the incentive constraints

∀bs ∈ L(S) : αbs(S)

⎧⎪⎪⎨
⎪⎪⎩

= 1 if wbs(S) > 0�

∈ [0�1] if wbs(S) = 0�

= 0 if wbs(S) < 0�

(2)

Conditional on s and b being matched to bargain in state S, their respective contin-
uation payoffs are given by us(S) + pαbs(S)wbs(S) and ub(S) + (1 − p)αbs(S)wbs(S). In
the event of an agreement between b and s in state S, the continuation payoff of player
i ∈N \ {b� s} is given by ui(S ∪ b), while in case of disagreement, it remains ui(S). Hence,
the expected payoffs for sellers s ∈ S and buyers b ∈ N \ S in state S ∈ S \ {N} solve the
equations

∀s ∈ S : us(S) =
∑

b′:b′s∈L(S)

πb′s(S)
(
us(S)+pαb′s(S)wb′s(S)

)

+
∑

b′s′∈L(S):s′ �=s

πb′s′(S)
(
αb′s′(S)us(S ∪ b′)+ (

1 − αb′s′(S)
)
us(S)

)
(3)

∀b ∈N \ S : ub(S) =
∑

s′:bs′∈L(S)

πbs′(S)
(
ub(S)+ (1 −p)αbs′(S)wbs′(S)

)

+
∑

b′s′∈L(S):b′ �=b

πb′s′(S)
(
αb′s′(S)ub(S ∪ b′)+ (

1 − αb′s′(S)
)
ub(S)

)
� (4)

If seller s and buyer b are matched to bargain and reach an agreement in state S, the
implicit price tbs(S) at which s and b trade solves the equation us(S∪b)+ tbs(S) = us(S)+
pwbs(S). Hence, tbs(S) = us(S)− us(S ∪ b)+pwbs(S).

The equations above do not lead to any constraints on payoffs for states in which
all agreement probabilities are 0. To avoid this degeneracy, we assume that trade takes
place with positive probability for at least one link in every non-terminal state, i.e.,

∀S ∈ S \ {N} : ∃bs ∈ L(S) s.t. αbs(S) > 0� (5)
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Naturally, continuation payoffs at the end of the game should be zero:

ui(N)= 0�∀i ∈N� (6)

For seller configurations S in which trade takes place with positive probability on a
single link bs (i.e., αbs(S) > 0 and αb′s′(S) = 0 for all b′s′ ∈ L(S) \ {bs}), we need to im-
pose an additional condition on the bargaining solution. In such situations, the payoff
equation for seller s in state S boils down to

us(S)= us(S)+pπbs(S)αbs(S)wbs(S)�

which is equivalent to wbs(S) = vb + ub(S ∪ b) + us(S ∪ b) − ub(S) − us(S) = 0 (since
pπbs(S)αbs(S) > 0). The equation for ub(S) is equivalent to the same condition. The
payoff equations for players i ∈ N \ {b� s} do not provide any constraints on us(S) and
ub(S), as they reduce to

ui(S)= (
1 −πbs(S)αbs(S)

)
ui(S)+πbs(S)αbs(S)ui(S ∪ b)�

which is equivalent to ui(S) = ui(S ∪ b). The indeterminacy of the bargaining solution
for states S in which αbs(S) > 0 for a single link bs ∈ L(S) is a consequence of the as-
sumption that threat points in the bilateral bargaining game between b and s are given
by the solution itself in state S. When (b� s) is the only pair that trades in configuration
S, it is more natural to assume that both players’ threat points are 0 since the market is
permanently shut down if b and s fail to reach an agreement in state S. Thus, we require
that s and b split the gains vb + ub(S ∪ b)+us(S ∪ b) from a potential agreement accord-
ing to the Nash bargaining solution with weights (p�1 −p) and disagreement payoffs of
0 for both players. Formally, we impose the condition

{
b′s′ ∈ L(S)|αb′s′(S) > 0

} = {bs} =⇒ us(S) = p
(
vb + ub(S ∪ b)+ us(S ∪ b)

)
� (7)

The formula for us(S) in the condition above, along with the equation vb + ub(S ∪ b) +
us(S ∪ b)− ub(S)− us(S) = 0, implies that ub(S)= (1 −p)(vb + ub(S ∪ b)+ us(S ∪ b)).

We are now prepared to define our solution concept. The profile (u�α) of expected
payoffs u = (ui(S))i∈N�S∈S and agreement probabilities α = (αbs(S))bs∈L(S)�S∈S\{N} con-
stitutes a bargaining solution if it satisfies constraints (2)–(7) for every state S ∈ S (with
the variables wbs(S) derived from u via (1)). We say that the payoffs u are consistent with
the agreement probabilities α if (u�α) constitutes a bargaining solution.

3.2 Uniqueness of payoffs for a given structure of agreements

A contraction argument shows that the agreement probabilities α uniquely determine
the payoffs u in every bargaining solution.

Proposition 1. There exists at most one profile of expected payoffs that is consistent with
a given profile of agreement probabilities.
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Figure 1. Multiple solutions.

3.3 Multiplicity of the solution

Polanski (2007) introduced a version of this model with a single initial seller (|S| = 1)
and symmetric consumption values (vi = 1 for all i ∈ N), which we discuss in detail in
Section 4.6. He shows that multiple solutions may coexist in his model, and this conclu-
sion extends to our framework.11 In light of Proposition 1, multiplicity necessarily stems
from different profiles of agreement probabilities. The example from Figure 1 illustrates
the multiplicity in a simple network with a single seller, player s, and two buyers, b and
b′; the three players are linked with one other. In this example, after one of the buyers
acquires the good from the seller, competitive forces imply that the other buyer obtains
the good at zero price. Hence, Bertrand competition arises endogenously under our so-
lution (see the Appendix for a proof of this claim). Based on this fact, we can construct
several bargaining solutions in this network.12

The left panel of Figure 1 depicts a solution in which trading probabilities are posi-
tive over every link in all states. Under this solution, seller s suffers from a commitment
problem (cf. Coase 1972) and does not make any profit. Each of the two buyers expects
that s will eventually trade with the other buyer and can subsequently exploit the com-
petition between s and the other buyer to acquire the good at zero price. Given these
expectations, neither buyer is willing to pay a positive price for the good to seller s in the
initial market. Payoffs are 0 for the seller, and vb and vb′ for b and b′, respectively. All
pairs of matched players are indifferent between trading and not trading in every mar-
ket state (w takes value 0 for all links in every state), and thus the assumed structure of
agreements is incentive compatible.

The right panel of Figure 1 illustrates a second solution, in which seller s “com-
mits” not to trade with buyer b′ in the initial market, but trade takes place with posi-
tive probability for all other matches and states.13 After s trades with b, neither s nor
b can extract any profit from b′. Since b′ never acquires the good before b does given
the assumed structure of agreements, bargaining between s and b proceeds as in a two-
player network. Payoffs under this solution are pvb for the seller, (1 − p)vb for b, and
vb′ for b′. The agreement probabilities prescribed by the solution are incentive compat-
ible. In particular, s and b′ do not have incentives to trade in the initial market because
wb′s({s}) = −pvb < 0.

11Polanski’s solution concept allows some non-Markovian behavior that turns out to be inconsequential.
12The multiple solutions in this example are robust to the introduction of discounting and non-

cooperative bargaining.
13Another solution is obtained by interchanging the roles of b and b′.
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The second solution does not amount to seller s permanently severing his link with
buyer b′ even though it stipulates that s cannot appropriate any fraction of the value
of b′. Indeed, the Bertrand competition argument in the Appendix shows that even
though the link b′s is not utilized for trade in the initial market state {s} under this solu-
tion (αb′s({s}) = 0), it must be used with positive probability in state {b� s} (αb′s({b� s}) >
0). Then competition between seller s and buyer b drives down the price b′ pays for the
good to 0. By contrast, in the network obtained by removing the link b′s, seller s does
not have the option to compete with buyer b to sell to b′, and the unique bargaining so-
lution prescribes that b sells the good to b′ at the bilateral monopoly price of pvb′ , and
s demands a price of pvb + p2vb′ from b. Hence, seller s would earn higher profits if he
could sever his link with buyer b′.

3.4 Refinement of the solution

To solve the multiplicity problem, we introduce a refinement of the bargaining solution
similar to one proposed by Polanski (2007). We require that a bargaining solution (u�α)

specifies a positive probability of agreement for every link in any configuration, i.e.,

∀S ∈ S \ {N} : αbs(S) > 0�∀bs ∈ L(S)� (8)

Everywhere except Section 5, we restrict attention to bargaining solutions that satisfy
this requirement and simply use the term “bargaining solution” to describe such pro-
files. We prove that a solution that satisfies the refinement always exists and that the
refinement selects unique payoffs u, which are consistent with any profile of agreement
probabilities α (subject to (5)).

Note that under the bargaining solution illustrated in the right panel of Figure 1,
buyer b acquires the good from seller s at price pvb. However, in the “off-the-
equilibrium-path” event that s trades with b′ first, the market transitions to state {s� b′},
in which b obtains the good at price 0 from either s or b′. Hence, under the solution
prescribing that s trade only with buyer b in the initial state, the price b pays depends on
the history of trades (reflected in the market state).

By contrast, prices are history-independent under the bargaining solution illustrated
in the left panel of Figure 1, which is selected by our refinement in the example. Indeed,
any bargaining solution that specifies that the seller trade with positive probability with
either buyer in the initial market entails that each buyer obtains the good at price 0 in
any state of the market. In Section 5, we show how this conclusion generalizes to arbi-
trary networks: the refinement selects the only bargaining solution payoffs that induce
history-independent prices in trades over each link. Thus, under the refinement, bar-
gaining between any buyer and seller does not require information about past trades.

4. Profits and a network decomposition

In our model, buyers act as both consumers and intermediaries. Upon acquiring the
good, each buyer enjoys his consumption value and expects to collect a resale value
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that reflects the profits he earns by reselling the good to others. Thus, sellers may ex-
tract profits from buyers by means of direct links or indirect paths along which every
player demands a fraction of the consumption and resale values of the next buyer on
the path. This reasoning expresses the notion of indirect appropriability in a network
setting (Liebowitz 1985, Johnson and Waldman 2005, Boldrin and Levine 2008).

The following definition, inspired by the example from Figure 1, is crucial for identi-
fying which buyers a seller can indirectly appropriate profits from. Seller s is the essential
supplier for buyer b in state S if the following conditions hold:

• There is a unique path (s� b1� � � � � bk = b) in G between s and b.

• Any path in G from another seller in S to b contains s.

Under these conditions, seller s is the unique supplier of the good for all buyers on the
path (s� b1� � � � � bk), and every player along the path is the only potential seller of the
good for the next buyer on the path. Then seller s exploits his monopoly power over
buyer b1 to get a fraction p of b1’s consumption and resale values. Likewise, b1 acts as
a monopolist for b2 and demands a fraction p of b2’s consumption and resale values,
and so on. These arguments suggest that s should obtain a share pk of the consumption
value vb of buyer b.

Similarly, we say that buyer b is an essential intermediary for buyer b′ in state S if the
following conditions hold:

• There is a unique path (b�b1� � � � � bk = b′) in G between b and b′.

• Every path in G from a node in S to b′ passes through b.

These conditions imply that the good can reach b′ only after b purchases it, and resale
subsequently proceeds along the chain (b�b1� � � � � bk).

4.1 The equivalence relation

Since uniqueness of paths between pairs of nodes is central to the roles of essential sup-
pliers and intermediaries, it is useful to study the properties of this relation. To this end,
define a binary relation ∼H on the set of nodes of an arbitrary undirected network H as
follows: i ∼H j if and only if nodes i and j are connected by a unique path in network H.
We prove that ∼H constitutes an equivalence relation for every network H.

Lemma 1. For every undirected network H, ∼H is an equivalence relation. Furthermore,
if i ∼H j, then all nodes on the unique path between nodes i and j in the network H belong
to the same equivalence class under ∼H .

Figure 2 illustrates the partition of nodes in a network into equivalence classes of the
binary relation. The set of nodes inside each circle constitutes an equivalence class. By
Lemma 1, each equivalence class induces a tree in the underlying network.

Lemma 1 gives rise to an alternative interpretation of ∼H . Let F(H) denote the net-
work obtained from H by simultaneously removing every link that belongs to a cycle in
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Figure 2. Equivalence classes in a network.

H. Since F(H) has no cycles, it must be a forest. If ij ∈ F(H), then there is no cycle in
H that contains the link ij, which means that the link constitutes the only path between
i and j in H, so i ∼H j. Since ∼H is an equivalence relation, every connected compo-
nent of F(H) is included in the same equivalence class of ∼H . If two nodes from dif-
ferent connected components of F(H) were in the same equivalence class of ∼H , then
Lemma 1 implies that all nodes along the unique path connecting them in H must be in
the same equivalence class of ∼H . However, in that case every link along the path repre-
sents the unique path in H between the two nodes, so the entire path must lie in F(H).
This contradicts the assumption that the path connects different components of F(H).
Therefore, the equivalence classes of ∼H are identical to the connected components of
F(H). We refer to F(H) as the forest derived by eliminating cycles from H.14

4.2 Characterization of essential suppliers and intermediaries

The first condition required for s to serve as the essential supplier for b in state S can be
restated as b ∼G s. To articulate the second condition necessary for s to be the essential
supplier for b in state S, namely the requirement that any path in G from another seller
in S to b contains s, we employ the binary relation ∼ for an auxiliary network. Consider
the network G(S) obtained by introducing a dummy player 0 and adding links between
all pairs of nodes in the set S ∪ 0. Let Ci(S) = {j ∈ N|j ∼G(S) i} denote the equivalence
class of node i under ∼G(S) (or equivalence class of i in G(S), for short) excluding the
dummy player. The presence of the dummy player guarantees that no two nodes in S

belong to the same equivalence class in G(S) (its main purpose is to streamline notation
and arguments for market states with two sellers). The right panel of Figure 3 shows how
the network G(S) and its equivalence classes are derived from the network G depicted
in the left panel for the seller configuration S = {s� s′}.

We show that seller s is the essential supplier for buyer b in state S if and only if
b ∼G(S) s. Analogously, we find that buyer b is an essential intermediary for buyer b′ in

14A forest structure also drives market power and equilibrium prices in the model of segmented markets
with interconnected exchanges analyzed by Malamud and Rostek (2021).
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Figure 3. Equivalence classes for G({s� s′}) and corresponding dealers.

state S if and only if b ∼G(S∪b) b′. In other words, seller s is the essential supplier in state
S for the set of buyers Cs(S) \ s, and buyer b is an essential intermediary in state S for
the set of buyers Cb(S ∪ b) \ b. Therefore, Cs(S) \ s is the captive market of seller s, while
Cb(S ∪ b) \ b represents the captive resale market of buyer b in state S.

Lemma 2. Fix S ∈ S , s ∈ S, and b�b′ ∈N \ S. Seller s is the essential supplier for buyer b in
state S if and only if b ∼G(S) s. Buyer b is an essential intermediary for buyer b′ in state S

if and only if b ∼G(S∪b) b′.

4.3 Dealers

There may be equivalence classes in G(S) that do not contain any seller. The next result
shows that the good always “enters” each such class through the same node. Moreover,
it characterizes this node as the only buyer in the class who can acquire the good from
at least two of its neighbors. The following definition is useful in formalizing this state-
ment: a neighbor j of node i in the network G is a potential supplier for buyer i in state
S if there exists a path in G from a node in S to i that contains the link ij.

Lemma 3. For every seller configuration S ∈ S and player i ∈ N , there exists a unique
node d(S�Ci(S)) that is the first element of Ci(S) along any path from S to Ci(S) in the
network G. Moreover, every buyer in Ci(S) \ d(S�Ci(S)) has a unique potential supplier
in state S, and if d(S�Ci(S)) /∈ S, then d(S�Ci(S)) has two or more potential suppliers in
state S.

Lemma 3 implies that in the seller configuration S, the players in Ci(S) \ d(S�Ci(S))

can only purchase the good via a sequence of trades that involves player d(S�Ci(S))

(re)selling the good. For this reason, we refer to d(S�Ci(S)) as the dealer of Ci(S) in
state S. Note that for s ∈ S, the definition naturally implies that seller s is the dealer for
his equivalence class in G(S), i.e., d(S�Cs(S)) = s. Recall that in this case, seller s is the
essential supplier for the buyers in Cs(S) \ s in state S. Likewise, every buyer b who is the
dealer of his equivalence class Cb(S) in state S is an essential intermediary for the buyers
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in Cb(S) \ b in state S. In Figure 3, we indicate the dealer of each equivalence class in the
network G({s� s′}) by enlarging the corresponding node.

4.4 Evolution of equivalence classes

Clearly, if i ∼G(S) j, then the assumption that G is connected implies that i ∼G j, so i and
j must belong to the same tree in the partition induced by ∼G. In effect, ∼G(S) decom-
poses the equivalence classes under ∼G into smaller trees. To compute the bargaining
solution payoffs, it is necessary to understand how equivalence classes evolve as trades
take place. Consider a configuration of sellers S ∈ S and fix a seller s ∈ S linked in G to
a buyer b ∈ N \ S. We show that equivalence classes in G(S) and G(S ∪ b) are identical,
with one important exception: if b and s belong to the same equivalence class in G(S),
i.e., b ∼G(S) s, then the equivalence class of s in G(S) breaks up into two equivalence
classes in G(S ∪ b) that separate b from s.

Proposition 2. Fix s ∈ S ∈ S and b ∈N \ S such that bs ∈G.

(i) If b�G(S) s, then Ci(S ∪ b)= Ci(S) for all i ∈N .

(ii) If instead b ∼G(S) s, then Ci(S ∪ b) = Ci(S) for all i ∈ N \Cs(S), but b�G(S∪b) s and
Cs(S ∪ b)∪Cb(S ∪ b) = Cs(S).

4.5 Main result

Suppose that seller s trades with buyer b in state S. Following the trade, buyer b realizes
his consumption utility vb and collects a resale value of ub(S ∪ b) as a seller in the new
state S ∪ b, aggregating to total gains of vb + ub(S ∪ b).

Lemma 3 and Proposition 2 imply that if s �G(S) b, then b is the dealer for his iden-
tical equivalence classes Cb(S) = Cb(S ∪ b) in the networks G(S) and G(S ∪ b). By
Lemma 3, dealer b can acquire the good via multiple intermediation paths from at least
two potential suppliers in state S. The assumption that each buyer–seller matched pair
trades with positive probability, which underlies our refinement of the bargaining so-
lution, implies that b can delay trade until all players along the competing paths from
sellers, including two of his potential suppliers, have the good. At that stage, compe-
tition between the potential suppliers drives the price that b pays for the good to 0.
It follows that b eventually obtains the good for free, and his expected payoffs satisfy
ub(S)= vb + ub(S ∪ b).

If instead s ∼G(S) b, then s is the dealer of Cb(S) and b is not. Following the trade be-
tween b and s, the new seller b takes over the submarket Cb(S ∪ b) ⊂ Cs(S) for which he
provides essential intermediation. Lemma 3 implies that s is the only potential supplier
for b in state S. Monopoly power enables seller s to demand a fraction p of b’s consump-
tion and resale values. Hence, b acquires the good from s at a price of p(vb + ub(S ∪ b)),
and his expected payoff in state S is given by ub(S)= (1 −p)(vb + ub(S ∪ b)).

These intuitions pave the way to our main result, which leverages Lemma 2 to extend
the formulae for buyer profits derived above to buyers b not directly linked to any seller
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in S. For s ∈ S ∈ S , define

rs(S) =
∑

i∈Cs(S)\s
pδ(i�s)vi�

where δ(i� s) denotes the distance between nodes i and s in network G.15

Theorem 1. The profile (u�α) constitutes a bargaining solution (under the refinement)
if and only if for every S ∈ S ,

∀s ∈ S : us(S) = rs(S)

∀b ∈N \ S : ub(S) =
{
vb + rb(S ∪ b) if b = d

(
S�Cb(S)

)
(1 −p)

(
vb + rb(S ∪ b)

)
if b �= d

(
S�Cb(S)

)
�

(9)

and αbs(S) ∈ (0�1] for all bs ∈ L(S).

The proof shows that the unique bargaining solution payoffs u satisfy vb + ub(S ∪
b) + us(S ∪ b) = ub(S) + us(S) for all bs ∈ L(S) and S ∈ S . Hence, players are indifferent
between trading and not trading across every link, and the payoff profile u is consistent
with any profile of agreement probabilities α.16 The variables rs(S) and rb(S ∪ b) in for-
mulae (9) reflect the profits that seller s and buyer b indirectly appropriate from their
captive markets Cs(S) \ s and Cb(S ∪ b) \ b, respectively, in state S. Lemma 2 implies the
following restatement of Theorem 1. For any seller configuration S, seller s appropriates
a fraction pδ(b�s) of the consumption value vb of each buyer b for whom s is the essential
supplier in state S. Similarly, following any sequence of trades that conveys the good
to buyer b, the resale value of buyer b aggregates a fraction pδ(b�b′) of the consumption
value vb′ of each buyer b′ for whom b is an essential intermediary in state S. The price
buyer b pays for the good is either 0 or a fraction p of his consumption and resale values
in state S that correspond to whether b is a dealer for his equivalence class in G(S) or not.
Proposition 2 and Theorem 1 imply that prices decline along any trading path within an
equivalence class and drop to 0 when the good is sold to a new class. Moreover, if b is a
buyer in state S and (d(S�Cb(S))�b1� � � � � bk = b) denotes the unique path in G between
the dealer for Cb(S) and buyer b, the consumption value of buyer b is directly or indi-
rectly appropriated by the players in the intermediation chain (d(S�Cb(S))�b1� � � � � bk)

with corresponding shares (pk� (1 −p)pk−1� � � � � (1 −p)p�1 −p).

4.6 The case with a single seller

Polanski (2007) provides a recursive system of payoff equations for a setting similar to
the one studied here for markets with a single initial seller. For the special case with a

15The distances δ(i� s) appearing in the formula for rs(S) involve pairs (i� s) with i ∼G(S) s and, hence,
i ∼G s. In this case, δ(i� s) is simply the length of the unique path between i and s in G.

16This indifference in the frictionless model is the main obstacle in extending the analysis to the case of
discounting. In a version of the model with discounting, it is difficult to prove that the indifference is always
broken in favor of trade as postulated by our refinement.
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single seller, S = {s}, the equivalence relations ∼G({s}) and ∼G developed in our frame-
work coincide (modulo the dummy player), so the formula for seller profits from Theo-
rem 1 boils down to

us
({s}) =

∑
i∼Gs�i �=s

pδ(i�s)vi�

Therefore, to determine the profit of seller s, it is sufficient to consider equivalence
classes under ∼G. Examining equivalence classes in the auxiliary networks G(S) is nec-
essary only for computing buyers’ payoffs and tracking the evolution of profits as other
players acquire the good. The construction of the auxiliary network G(S) has indeed
been motivated by the intuition that the corresponding equivalence relation ∼G(S) suc-
cinctly describes competition among sellers in S.

Polanski’s recursive equations capture transitions between “consecutive” market
states by relating the payoff ui(S) to payoffs of the type ui(S ∪ b). He finds that the terms
of trade between a seller s and a buyer b depend on whether b belongs to a cycle that in-
cludes at least one seller. To extend his result to our setting with multiple initial sellers,
we need to consider cycles in the network G(S) rather than G for the payoff equations
that correspond to state S. For S ∈ S , b ∈ N \ S, define

γb(S) =
{

0 if there exists a cycle in G(S) that contains b and an element of S

1 otherwise.

One can check that for bs ∈ L(S), we have γb(S) = 0 if b is the dealer for Cb(S) in state S

and γb(S) = 1 otherwise. This observation, along with Proposition 2, leads to the follow-
ing corollary of Theorem 1, which generalizes Polanski’s result.

Corollary 1. For any s ∈ S ∈ S and b ∈ N \ S such that bs ∈ G, the bargaining solution
payoffs satisfy

us(S) = us(S ∪ b)+pγb(S)
(
vb + ub(S ∪ b)

)
�

ub(S) = (
1 −pγb(S)

)(
vb + ub(S ∪ b)

)
�

For s ∈ S ∈ S and b�b′ ∈ N \ S such that L(S) does not contain any links of b or s, but
contains a link of b′, we have us(S)= 0 and ub(S)= ub(S ∪ b′).

As Polanski points out, the identities from the corollary provide a computational
procedure for evaluating the bargaining solution payoffs based on transitions between
market states. These recursive payoff equations reflect local network effects. Our closed-
form payoff formulae elucidate how the global network structure affects the division of
gains from trade, and the decomposition of the network into equivalence classes de-
lineates opportunities for indirect appropriability and provides a classification of links
according to their monopolistic or competitive roles. In Section 6, we show that this
classification translates into a taxonomy of links as either bottlenecks or redundant for
information diffusion and network connectivity. We also demonstrate that the graph
theoretic concepts introduced here—the equivalence relation, the auxiliary network,
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dealers, essential intermediaries, and bottleneck and redundant links—characterize the
overlapping structure of competing paths of diffusion (Theorem 2) and provide tractable
tools for the derivation of comparative statics for buyer values (Corollary 2), seller entry
(Proposition 4), and, most relevant for applications, link removals (Theorem 3). Another
result that relies on this toolkit is that the refinement selects the unique payoff profile
under which prices are history-independent (Proposition 3).17

5. Foundation for the refinement

With the aim of providing a foundation for our refinement, we revert to using the terms
“bargaining solution” for any profile (u�α) satisfying conditions (2)–(7) and “refinement
of the bargaining solution” for profiles that additionally satisfy constraint (8). Fix a bar-
gaining solution with payoff profile u. Recall that an agreement in state S between seller
s and buyer b entails the price tbs(S) = us(S)−us(S∪b)+pwbs(S). We say that the prices
generated by u are history-independent if for every bs ∈G, we have tbs(S)= tbs(S

′) for any
pair of states S�S′ ∈ S such that s is a seller and b is a buyer in both configurations S and
S′. The interpretation of history independence of prices is that the bargaining process
for any buyer–seller link does not require information about prior trades.

In Section 3, we argued that prices under the bargaining solution ruled out by the
refinement in the network from Figure 1 are not history-independent. The next result
generalizes that conclusion: in every network, prices are history-independent only for
the bargaining solution payoffs that survive the refinement.18 Hence, our refinement
selects the solutions that do not rely on the assumption that matched players observe
the state of the market (but know the initial state S).

Proposition 3. The refinement of the bargaining solution generates history-independent
prices and selects the unique payoff profile for which prices are history-independent.

6. The anatomy of diffusion paths

Consider a link ij ∈ G such that not both i and j are sellers in the initial state S. We
say that ij is a redundant link if i and j belong to distinct equivalence classes in the ini-
tial market, i.e., i �G(S) j. For all S ∈ S , we have that G(S) ⊆ G(S), so i �G(S) j implies
i �G(S) j. Thus, if ij is redundant, then i and j remain in distinct equivalence classes
as the market evolves. We say that ij is a bottleneck link if it is not redundant, i.e.,
i ∼G(S) j. Since equivalence classes induce trees in the network G and each trade breaks
up at most one equivalence class into two distinct classes, Proposition 2 implies that the
only pair of players linked in G that can be separated into different equivalence classes
following a trade is the buyer–seller pair that is conducting the trade. Hence, if ij is a
bottleneck link, then i and j are members of the same equivalence class in state S and

17Polanski also notes history independence of prices in his model, but does not argue that his refinement
selects the unique payoffs with this property.

18The refinement has the additional property of inducing seller-independent prices, i.e., tbs(S) = tbs′(S′)
for any pair of states S�S′ ∈ S such that s ∈ S, s′ ∈ S′, and b /∈ S ∪ S′.
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continue to share an equivalence class until they trade with each other; that is, i ∼G(S) j

for all S ∈ S such that {i� j} � S.
The evolution of equivalence classes as information diffuses (Proposition 2) can be

restated in the language of redundant and bottleneck links as follows. Trading over a
redundant link does not change the structure of equivalence classes, while trading over
a bottleneck link breaks up the equivalence class that contains the link into two classes
that separate the buyer from the seller.

The partition of the network into equivalence classes and the ensuing concepts of
redundant and bottleneck links lead to a systematic characterization of competing paths
of diffusion in the network. By definition, each dealer buyer can receive the good only
from neighbors outside his class. Since links that span distinct equivalence classes are
redundant, dealer buyers must acquire the good by means of redundant links. Moreover,
Lemma 3 implies that dealer buyers have at least two potential suppliers.

By contrast, Lemma 3 shows that each nondealer buyer has a single potential sup-
plier, which is the neighbor of the buyer on the unique path connecting the buyer to the
dealer of his equivalence class. This path is contained within the buyer’s equivalence
class and, thus, consists of bottleneck links. In particular, the nondealer buyer acquires
the good from his only potential supplier over a bottleneck link. Therefore, there is an
implicit flow of trade over bottleneck links: diffusion within each equivalence class is
described by a directed tree rooted at its dealer.

Consider now the collection of competing paths that deliver the good to a given
buyer. Every path in this collection that “crosses” a certain equivalence class has to en-
ter the class via its dealer. Logic similar to Lemma 3 shows that each such path must
also exit the equivalence class through the same node. This implies that all paths con-
veying the good to the chosen buyer and intersecting a given equivalence class must
cross the class only once and overlap within the class. The next result summarizes these
observations.

Theorem 2. A buyer is a dealer in state S if and only if he has two or more potential
suppliers in state S. The good always reaches dealer buyers via redundant links and non-
dealer buyers via bottleneck links. For any market state S ∈ S and buyer b ∈ N \ S, all
paths in G that connect any seller in S to buyer b and intersect a given equivalence class
Ci(S) of ∼G(S) must enter Ci(S) exactly once and overlap perfectly within Ci(S).

7. Comparative statics

In this section, we present comparative statics results for buyer values, seller entry and
link removals, and discuss the optimal removal of links for sellers.

7.1 Comparative statics for buyer values and seller entry

Since rs(S) is increasing in vb for all s ∈ S and b ∈ N \ S, and equivalence classes are
determined entirely by network topology, Theorem 1 has the following corollary.

Corollary 2. For any S ∈ S and b ∈ N \S, the payoffs of all players in state S are (weakly)
increasing in vb.
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Theorem 1 also delivers comparative statics with respect to the set of sellers. Sup-
pose that new sellers enter the market and the initial state expands from S to S′. Since
G(S) is a subnetwork of G(S′), every pair of nodes related under ∼G(S′) is also related
under ∼G(S). It follows that Ci(S

′) ⊆ Ci(S) for all i ∈ N . In particular, the captive mar-
ket of every incumbent seller in S shrinks, and Theorem 1 implies that the profits of all
these sellers decrease following the entry of the new sellers from S′ \ S. By Lemma 3,
dealer buyers (outside S′) have at least two potential suppliers in state S, and thus
maintain dealer status in state S′. However, the captive markets of dealer buyers may
shrink, resulting in lower profits. Finally, the set of buyers for whom nondealer buy-
ers (outside S′) are essential intermediaries shrinks as well—for every buyer b, we have
Cb(S

′ ∪ b) ⊆ Cb(S ∪ b)—but such buyers may become dealers in the new seller configu-
ration S′ due to competition created by the additional sellers. Such buyers acquire the
good at zero price following the entry of new sellers, which may translate into higher
payoffs. Whether the entry of the new sellers benefits nondealer buyers depends on the
trade-off between the lower acquisition price and the smaller captive market. The next
result summarizes these findings.

Proposition 4. Consider two initial market states S ⊂ S′. The payoffs of every seller in
S and every buyer (outside S′) who is a dealer in state S are weakly lower in state S′ than
in S. The effect of the expansion of the set of sellers from S to S′ for buyers who are not
dealers in state S is ambiguous.

7.2 Comparative statics for link removals

We now investigate the effects of removing links from the network on information dif-
fusion and intermediation profits. Fix a connected network G, a seller configuration
S ∈ S , and a link ij ∈ G for which not both i and j belong to S (links between sellers are
irrelevant in the game). Let G′ denote the network obtained by removing link ij from
G.19

Suppose first that ij is a bottleneck link. As argued in Section 6, the assumption that
{i� j} � S implies that i ∼G(S) j. In particular, we have i ∼G j and, hence, deleting the link
from G disconnects the network into two connected components. We prove that the
sellers in S belong to the same connected component of the resulting network G′ as the
dealer d(S�Ci(S)) for the common equivalence class of i and j in G(S). Hence, players
in the other connected component of G′ do not have access to any seller and obtain
no profits. The removal of bottleneck link ij breaks up the equivalence class of i and j

from G(S) into two subclasses and does not affect the composition of other equivalence
classes. Player d(S�Ci(S)) remains the dealer for his smaller equivalence class in G′, but
suffers a drop in profits. The loss of the link hurts both i and j: one of them becomes
disconnected from sellers and gets zero payoff, while the other collects intermediation
profits from a smaller equivalence class. Since the other equivalence classes of ∼G(S)

contained in the connected component of node d(S�Ci(S)) in G′ and their dealers are

19While G′ may be disconnected, the results of previous sections apply to every connected component
of G′ that contains sellers, and we use this straightforward extension here.
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Figure 4. Nondealer buyer b is better off if he severs his link with b′′. Removing the redundant
link bb′′ also benefits dealer buyer b′ if vb′ < (1 −p)vb′′ .

unaffected by the removal of link ij, players in those classes obtain the same payoffs
in G and G′. For an illustration, consider the pair of nodes b′ ∼G({s�s′}) s′ linked in the
network G from Figure 3. The removal of the link b′s′ from G does not affect the payoffs
of players in the equivalence classes of b and s in G({s� s′}), but disconnects the buyers
in other equivalence classes from the two sellers.

If, instead, ij is a redundant link, then we show that its removal from G does not
prevent any player from acquiring the good.20 The removal of the redundant link ij leads
to a weak expansion in each player’s equivalence class in state S. Theorem 1 implies
that every seller’s profit is weakly higher in G′ than in G. Therefore, redundant links
impose negative externalities on sellers. As the example from Section 3 demonstrates,
a seller may benefit from severing one of his links. The set of players for whom each
buyer serves as an essential intermediary also weakly expands. Lemma 2 and Theorem 1
imply that the payoffs of buyers who are not dealers in G(S) weakly increase after link ij

is deleted from G. The network from Figure 4 provides an example in which the profit of
a nondealer buyer strictly increases after deleting one of his redundant links. Indeed, if
b deletes his redundant link with b′′ in that network, then his equivalence class expands
from {b� s} to {b�b′� b′′� s}. Since b is not a dealer either before or after deleting the link
bb′′, the link deletion increases his payoff from (1 −p)vb to (1 −p)(vb +pvb′ +p2vb′′).

However, dealer buyers may lose dealer status when a redundant link is deleted from
the network. Such buyers exploit competition between sellers to obtain the good for
free in the original network, but have to pay a fraction 1 − p of their consumption and
resale values following the deletion of the redundant link, which may cause a decline
in their overall profits. For example, consider the link between nodes b and s for which
b �G({s�s′}) s in the network G from Figure 3. Removing the link bs from G leads to the
merger of the equivalence classes of nodes b and s′ from G({s� s′}). After the link removal,
buyer b is no longer a dealer, and seller s′ is able to get a share 1 −p of his consumption
and resale values. Hence, the removal of link bs is beneficial for s′ and detrimental for b.
Removing redundant links can also have the opposite effect on dealer buyer payoffs. For
instance, in the network from Figure 4, both buyers b′ and b′′ are dealers for singleton

20However, the ensuing network G′ may be disconnected. For instance, in the network G with two sellers
(s and s′) linked to a single buyer (player b), we have b�G({s�s′}) s. Removing the link bs from G disconnects
the network, but does not prevent b from acquiring the good from s′.
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equivalence classes. Removing the redundant link bb′′ leads to a network with a single
equivalence class where buyer b′ obtains payoff (1−p)(vb′ +pvb′′), which is greater than
his payoff vb′ in the original network if (1 −p)vb′′ > vb′ .

In the example from Figure 4, removing the link bb′′ undermines the dealer status of
buyer b′, but expands his captive resale market at the same time. However, we show that
removing one of a dealer’s own links cannot simultaneously produce both of these out-
comes for the dealer. That is, if the removal of one of a dealer buyer’s own links deprives
him of dealer status, then that buyer’s captive market cannot expand; in this case, the
buyer’s payoff unambiguously decreases. If, instead, the link removal does not affect the
buyer’s dealer role, then the buyer continues to secure the good at zero price after los-
ing the link; as the buyer’s captive market cannot shrink following the link removal, the
buyer’s payoff weakly increases. Thus, to predict the payoff consequences of losing a link
for a dealer buyer, it is sufficient to determine whether the link loss changes that buyer’s
dealer status. A special category of redundant links is relevant for this phenomenon: a
link ij is pivotal for dealer buyer i in state S if i has exactly two potential suppliers in state
S, one of which is j (by Theorem 2, links between dealers and their potential suppliers
are always redundant). We prove that removing the link ij from the network results in
buyer i’s loss of dealer status if and only if ij is a pivotal link for dealer i in state S. There-
fore, if i is a dealer buyer in state S, then i is hurt by the loss of the link ij if and only if ij
is a pivotal link for i in state S.

The following result, whose detailed proof is relegated to the Supplemental Material
given the extended sketch above, summarizes the comparative statics.

Theorem 3. Consider a seller configuration S ∈ S in the connected network G and a link
ij ∈G with {i� j} � S. Let G′ be the network obtained by deleting the link ij from G.

(i) If ij is a bottleneck link, then G′ is a disconnected network formed by two connected
components. Information does not reach the players in the connected component of
G′ that does not contain d(S�Ci(S)); thus, these players’ payoffs drop to 0 when link
ij is removed. The payoffs of players in Ci(S) from the same connected component
as d(S�Ci(S)) in G′ weakly decrease after removing link ij. The payoffs of players i, j
and d(S�Ci(S)) strictly decrease following the link removal if vb > 0 for all b ∈N \S.
The payoffs of all other players are identical in G and G′.

(ii) If ij is a redundant link, then information diffuses to all players in G′. All sellers
and the buyers who are not dealers in state S for network G weakly benefit from the
removal of link ij. In general, the effect of removing the link on the payoffs of buyers
who are dealers for their equivalence class in G(S) is ambiguous. Nevertheless, if
i is a dealer in state S and vb > 0 for all b ∈ N \ S, then the loss of link ij strictly
reduces i’s payoff if and only if ij is a pivotal link for i in state S.

The result above considers the effects of removing a single redundant link from the
network. If, instead, we remove all redundant links from G at the same time, which leads
to the forest F(G(S)), then the profits of sellers do not change. However, the simultane-
ous removal of redundant links blocks the spread of information to buyers whose equiv-
alence class under ∼G(S) does not contain sellers and reduces these buyers’ payoffs to 0.
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The classification of links emerging from Theorems 2 and 3 leads to the following
conclusions regarding seller profits and information transmission. Bottleneck links con-
fer monopoly power to sellers. The deletion of a bottleneck link disconnects the net-
work, blocks the spread of information, and hurts sellers. Redundant links create com-
petition among sellers. The deletion of a redundant link does not prevent the diffusion
of information and benefits sellers.

7.3 Optimal link removals

Consider now a situation with a single seller s, who can prohibit trade on a subset of links
by engineering features of the good as explained in footnote 3. Theorem 1 implies that
seller s would optimally allow trade only over the links of a tree T , which is a subnetwork
of G that maximizes the expression ∑

i∈N\s
pδT (i�s)vi�

where δT (i� s) represents the distance between nodes i and s in tree T . Note that any
restructuring of a tree whereby a given buyer b who originally receives the good from a
node b′ severs his link with b′ and creates a new link with a node closer to s is beneficial
for the seller. In particular, the star network, in which the seller is linked to all buyers
and there are no links between buyers, maximizes seller profit among all networks.

We can similarly characterize the subnetwork of G that maximizes the joint profits
of a group of competing sellers S. In this case, the optimal subset of trading links is
described by a partition (Ns)s∈S of the set of nodes N and a collection of associated trees
(Ts)s∈S such that s ∈ Ns and Ts consists of a subset of the links in G between pairs of
nodes in Ns for all s ∈ S. The partition should maximize the expression∑

s∈S

∑
i∈Ns\s

pδTs (i�s)vi�

Sellers prefer to remove all links from G not belonging to the forest
⋃

s∈S Ts . This means
that sellers divide the market into a set of non-overlapping trees from which they indi-
rectly appropriate profits and commit to not competing with one another for any buyer.

8. Conclusion

We studied a model in which players consume, replicate, and resell copies of a good in
a network. In the model, buyers may intermediate trade and indirectly transfer profits
from far-away buyers to sellers as the good is sequentially resold over the links of the
network. However, buyers who acquire copies of the good may also create competi-
tion for sellers of the original good, and this limits opportunities for indirect profit ap-
propriation. Our network formulation thus captures the antithesis between two central
concepts in the research on copying and intellectual property: indirect appropriability
versus competition. We discovered a key equivalence relation that describes the roles of
essential suppliers and intermediaries for the diffusion of the good. Sellers collect profits
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from buyers for whom they are essential suppliers, while buyers make profits by convey-
ing the good to other buyers for whom they provide essential intermediation. Equiva-
lence classes of the relation delineate the captive markets of every seller and buyer in
the network.

The price a buyer pays for the good is either zero or a fixed fraction of his consump-
tion and resale values corresponding to whether the buyer is able to exploit competition
among multiple neighbors supplying the good or is subject to a monopoly in which a
single neighbor provides access to the good. Links that induce competition among sell-
ers are redundant for the diffusion of the good through the network and generate neg-
ative externalities for sellers, while links that enable monopolies constitute bottlenecks
for diffusion and produce positive externalities for all players. Redundant links bridge
distinct equivalence classes, while bottleneck links are enclosed in the same equivalence
class. The network partition into equivalence classes reveals rich structural properties
of competing paths of diffusion. Our analysis shows that in networks that are well con-
nected or clustered, competition obstructs indirect appropriability. In such situations,
granting intellectual property rights fosters the creation of information goods.

To obtain theoretical results for general networks, we have made a number of simpli-
fying assumptions, among which we enumerate the network structure and buyer values
are exogenous and commonly known; players do not discount payoffs; the original good
and its copies are perfect substitutes; the solution concept is cooperative and favors
trade; sales contracts are bilateral and cannot specify restrictions on replication and re-
sale. In future work, it would be useful to extend the analysis to markets in which some
of these modeling assumptions are unrealistic. Nevertheless, the graph theoretic by-
products of this research—including the concepts of equivalence classes, essential sup-
pliers, and intermediaries, dealers, and bottleneck and redundant links—do not hinge
on the particular model specification and are likely to play a role in other models of
diffusion in networks.

Appendix: Proofs

Proof of Proposition 1. We proceed by contradiction. Suppose that (u�α) and
(u′�α) constitute two bargaining solutions with distinct payoffs u and u′, but identi-
cal agreement probabilities α. Let S ∈ S be a set of maximal cardinality for which there
exists i ∈N such that ui(S) �= u′

i(S). By definition, S �=N , L(S) �=∅, and

ui(S ∪ b)= u′
i(S ∪ b)� ∀i ∈ N�b ∈N \ S (s.t. bs ∈ L(S) for some s ∈ S)� (10)

Then the payoff equations for the solutions (u�α) and (u′�α) lead to

us(S) =
( ∑
b′:b′s∈L(S)

πb′s(S)
(
1 −pαb′s(S)

) +
∑

b′s′∈L(S):s′ �=s

πb′s′(S)
(
1 − αb′s′(S)

))
us(S)

+p
∑

b′:b′s∈L(S)

πb′s(S)αb′s(S)
(
vb′ + ub′(S ∪ b′)+ us(S ∪ b′)− ub′(S)

)

+
∑

b′s′∈L(S):s′ �=s

πb′s′(S)αb′s′(S)us(S ∪ b′) (11)
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u′
s(S) =

( ∑
b′:b′s∈L(S)

πb′s(S)
(
1 −pαb′s(S)

) +
∑

b′s′∈L(S):s′ �=s

πb′s′(S)
(
1 − αb′s′(S)

))
u′
s(S)

+p
∑

b′:b′s∈L(S)

πb′s(S)αb′s(S)
(
vb′ + ub′(S ∪ b′)+ us(S ∪ b′)− u′

b′(S)
)

+
∑

b′s′∈L(S):s′ �=s

πb′s′(S)αb′s′(S)us(S ∪ b′)� (12)

Let �1 = maxs∈S |us(S)−u′
s(S)| and �2 = maxb∈N\S |ub(S)−u′

b(S)|. We prove that �1 =
�2 = 0, which contradicts the assumption that ui(S) �= u′

i(S) for some i ∈ N .
Fix s ∈ S such that |us(S)−u′

s(S)| = �1. Let X denote the probability that the matched
pair does not reach agreement under α in a period with seller configuration S, let Ys

denote the probability that seller s reaches an agreement in such a period, and let Zs

denote the sum of terms that do not involve the variables (ui(S))i∈N in (11). Mathemat-
ically,

X =
∑

b′s′∈L(S)

πb′s′(S)
(
1 − αb′s′(S)

)
�

Ys =
∑

b′:b′s∈L(S)

πb′s(S)αb′s(S)�

Zs = p
∑

b′:b′s∈L(S)

πb′s(S)αb′s(S)
(
vb′ + ub′(S ∪ b′)+ us(S ∪ b′)

)

+
∑

b′s′∈L(S):s′ �=s

πb′s′(S)αb′s′(S)us(S ∪ b′)�

We have

1 −X − (1 −p)Ys =
∑

b′s′∈L(S):s′ �=s

πb′s′(S)αb′s′(S)+p
∑

b′:b′s∈L(S)

πb′s(S)αb′s(S) > 0

because p> 0, π(S) places positive probability on every link in L(S) �= ∅, and condition
(5) requires that the probability of agreement under α is positive for at least one link in
state S. Collecting the variables us(S) in (11) and u′

s(S) in (12), we obtain

us(S)
(
1 −X − (1 −p)Ys

) = Zs −p
∑

b′:b′s∈L(S)

πb′s(S)αb′s(S)ub′(S)

u′
s(S)

(
1 −X − (1 −p)Ys

) = Zs −p
∑

b′:b′s∈L(S)

πb′s(S)αb′s(S)u
′
b′(S)

or, equivalently,

us(S) = Zs

1 −X − (1 −p)Ys
−p

∑
b′:b′s∈L(S)

πb′s(S)αb′s(S)

1 −X − (1 −p)Ys
ub′(S)

u′
s(S) = Zs

1 −X − (1 −p)Ys
−p

∑
b′:b′s∈L(S)

πb′s(S)αb′s(S)

1 −X − (1 −p)Ys
u′
b′(S)�
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The triangle inequality implies that

�1 = ∣∣us(S)− u′
s(S)

∣∣ ≤ p
∑

b′:b′s∈L(S)

πb′s(S)αb′s(S)

1 −X − (1 −p)Ys

∣∣ub′(S)− u′
b′(S)

∣∣

≤ p
∑

b′:b′s∈L(S)

πb′s(S)αb′s(S)

1 −X − (1 −p)Ys
�2 = pYs

1 −X − (1 −p)Ys
�2�

We can define buyer-side variables b and Yb analogous to the seller-side variables s and
Ys , respectively, and derive the inequality

�2 ≤ (1 −p)Yb

1 −X −pYb
�1� (13)

It follows that

�1 ≤ pYs

1 −X − (1 −p)Ys
�2 ≤ pYs

1 −X − (1 −p)Ys
× (1 −p)Yb

1 −X −pYb
�1�

which implies that

(
1 − pYs

1 −X − (1 −p)Ys
× (1 −p)Yb

1 −X −pYb

)
�1 ≤ 0� (14)

If �1 = 0, then (13) implies that �2 = 0 and, hence, ui(S) = u′
i(S) for all i ∈ N—a contra-

diction. Therefore, �1 > 0, which along with (14) leads to

pYs

1 −X − (1 −p)Ys
× (1 −p)Yb

1 −X −pYb
≥ 1� (15)

As 1 − X − Ys ≥ 0, we have pYs/(1 − X − (1 − p)Ys) ≤ 1, with equality if and only
if 1 − X − Ys = 0, which means that the total probability of an agreement that does not
involve player s under the profile α(S) is 0. Similarly, (1 −p)Yb/(1 −X −pYb) ≤ 1, with
equality if and only if α(S) places positive probability only on links in L(S) that involve
node b. Thus, (15) holds if and only if α(S) places positive probability only on the link
bs. Then constraint (7) in the definition of bargaining solutions implies that

us(S) = p
(
vb + ub(S ∪ b)+ us(S ∪ b)

)
u′
s(S) = p

(
vb + u′

b(S ∪ b)+ u′
s(S ∪ b)

)
�

Condition (10) leads to us(S) = u′
s(S), which means that �1 = 0. Then (13) implies that

�2 = 0. Therefore, ui(S) = u′
i(S) for all i ∈N , contradicting the definition of S.

Proof of claim regarding Bertrand competition for network in Figure 1.
Suppose that s trades with b first, and consider the ensuing seller configuration S =
{b� s}. We show that ub′(S) = vb′ . By (6), we have that ub(N) = ub′(N) = us(N) = 0. The
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payoff of buyer b′ in state S solves (4):

ub′(S) = ub′(S)+ (1 −p)
(
πbb′(S)αbb′(S)wbb′(S)+πb′s(S)αb′s(S)wb′s(S)

)
�

Since 1 − p > 0, πbb′(S) > 0, and πb′s(S) > 0, and the incentive constraints (2) im-
ply that αbb′(S)wbb′(S) ≥ 0 and αb′s(S)wb′s(S) ≥ 0, it must be that αbb′(S)wbb′(S) =
αb′s(S)wb′s(S) = 0. The payoff equations (3) for players b and s in state S, along with
ub(N)= us(N)= 0, imply that

ub(S) = πbb′(S)ub(S)+πb′s(S)
(
1 − αb′s(S)

)
ub(S)

us(S) = πb′s(S)us(S)+πbb′(S)
(
1 − αbb′(S)

)
us(S)�

which reduce to ub(S)πb′s(S)αb′s(S) = us(S)πbb′(S)αbb′(S) = 0. Since πb′s(S) > 0 and
πbb′(S) > 0, we have ub(S)αb′s(S) = us(S)αbb′(S) = 0. Condition (5) requires that
αbb′(S) > 0 or αb′s(S) > 0. Without loss of generality, assume that αbb′(S) > 0. In that
case, we have us(S) = 0. If αb′s(S) = 0, then constraint (7) leads to ub(S) = pvb′ and
ub′(S) = (1 − p)vb′ . We obtain wb′s(S) = vb′ − ub′(S) − us(S) = pvb′ > 0. Then (2) im-
plies that αb′s(S) = 1, a contradiction with the assumption that αb′s(S) = 0. Hence,
we also have that αb′s(S) > 0, which leads to ub(S) = 0. The conditions αbb′(S) > 0
and αbb′(S)wbb′(S) = 0 imply that wbb′(S) = vb′ − ub(S) − ub′(S) = vb′ − ub′(S) = 0, so
ub′(S)= vb′ , as claimed.

Proof of Lemma 1. Let δ(i� j) denote the distance between nodes i and j in network H.
Suppose, to the contrary, that ∼H is not an equivalence relation. Pick a triple (x� y� z)

with x ∼H y, y ∼H z, and x�H z that minimizes the expression δ(x� y)+ δ(y� z). If there
were any common node t �= y on the unique paths from x to y and y to z, respectively,
then x ∼H t and t ∼H z, and δ(x� t) + δ(t� z) < δ(x� y) + δ(y� z). Hence, (x� t� z) would
contradict the minimality of the counterexample (x� y� z). Thus, y is the only common
node of the paths from x to y and y to z. This implies the existence of a path P from x to
z obtained by appending the path from x to y to the path from y to z.

Since x �H z, there exists an alternative path Q between x and z that excludes at
least one of the links ij in P . Without loss of generality, assume that ij belongs to the path
between x and y. Let H̃ denote the network obtained by removing link ij from H. It must
be that y and z belong to the same connected component of H̃, as the path connecting
them in H overlaps only at node y with the path between x and y in H, and is thus
contained in H̃. Since ij does not belong to Q, nodes x and z also belong to the same
connected component in H̃. Hence, x and y must lie in the same connected component
of H̃, which means that there exists a path between x and y in H̃. By definition, this path
lies in H and excludes link ij, contradicting the fact that ij belongs to the unique path
between x and y in H.

The second part of the lemma follows from the observation that if node k belongs to
the unique path connecting nodes i to j in H, then the subpath of this path between i

and k is the only path connecting i to k in H.
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Proof of Lemma 2. To prove the first statement, assume first that b ∼G(S) s. Then there
exists a unique path P between b and s in G(S). Since G is a connected subnetwork of
G(S), P must also be the unique path between b and s in G. This shows that b and s

satisfy the first condition required for s to be the essential supplier for b in state S. The
first part of Lemma 3 (whose proof does not rely on the current result) implies that s is
the dealer of Cb(S) in state S, and any path between a node in S and b passes through s,
which is the second necessary condition for s to be the essential supplier for b in state S.
We have established that the relationship b ∼G(S) s implies that s is the essential supplier
for b in state S.

Suppose next that b�G(S) s. Then there exist two distinct paths between b and s in
G(S). If neither of these paths contains a node from S ∪ 0 different from s, then both
paths are contained in G, which means that the first necessary condition for s to serve
as the essential supplier for b in state S is violated. If one of the paths contains a node
from S∪0 different from s, then the node with this property that is closest to b along that
path must be an element of S \ s (node 0 is linked only to nodes in S) and the subpath
connecting that node to b must not contain s. Then b and s do not satisfy the second
condition required for s to be the essential supplier for b in state S. Therefore, if b�G(S) s,
then s is not the essential supplier for b in state S.

The second statement of the result follows from the first part and the observation
that b is an essential intermediary for b′ in state S if and only if b is the essential supplier
for b′ in state S ∪ b.

Proof of Lemma 3. Fix a seller configuration S, a seller s ∈ S, and a player i ∈ N . Since
G is a connected network, it contains at least one path connecting s to i (if s = i, this is
the degenerate path formed by the single node i and no links). Let x be the first element
of Ci(S) along the path, and let P denote the subpath between s and x (if s ∈ Ci(S), then
x = s and P is the degenerate path consisting solely of node s). We argue that x is the
first point of intersection with Ci(S) of any other path in G from a node in S to a node in
Ci(S).

We proceed by contradiction. If the claim is not true, then there exists a path Q in
G that connects a node s′ ∈ S to a node y �= x in Ci(S) and contains no other node from
Ci(S). If there are nodes that belong to both P and Q, let z be the common node that
is the smallest number of links away from x along P . Since by construction, x is the
only node from Ci(S) contained in P and, similarly, y �= x is the only node from Ci(S)

contained in Q, we have that z /∈ Ci(S). Then we can form a path from x to y in G by
following P from x to z and subsequently following Q from z to y. As x ∼G(S) i ∼G(S) y,
the resulting path must be the unique path connecting x and y in G(S). By Lemma 1,
any node along this path, including z, must belong to Ci(S)—a contradiction.

If P and Q do not have any nodes in common, then s �= s′, and we can construct a
path between x and y in G(S) by appending the sequence of links from x to s in P with
the link ss′ ∈ G(S) and, subsequently, appending the links between s′ and y in Q. Since
x� y ∈ Ci(S), Lemma 1 implies that all the nodes along this path, including s and s′, must
belong to Ci(S). Then s ∼G(S) s

′, which is impossible for s �= s′ ∈ S.
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We are left to prove the second part of the lemma. Suppose that x /∈ S. If x has a
single potential supplier y in state S, then every path from S to x contains the link xy.
This implies that the only path between x and y in G is the link xy (otherwise, we could
construct a path from S to x that does not include the link xy). It follows that y should
be an essential intermediary (or supplier) for x in state S, so x ∼G(S∪y) y by Lemma 2.
However, x ∼G(S∪y) y implies that x∼G(S) y and y ∈ Cx(S). Since y is a potential supplier
for x in state S, there exists a path in G from a node in S to y ∈ Cx(S) that does not contain
node x. This contradicts the finding that x should be the first point of intersection with
Cx(S) of any path in G from a node in S to a node in Cx(S). The contradiction proves
that x must have at least two potential suppliers in state S.

Consider now a buyer b ∈ Cx(S) \ x. Any path from a node in S to b must include
node x. Since b ∼G(S) x, there exists a unique path from x to b in G. Therefore, any path
from S to b must contain the unique path between x and b. The node preceding b on
this path is the unique potential supplier for b.

Proof of Proposition 2. We first prove that if b�G(S) s, then Ci(S ∪ b) = Ci(S) for all
i ∈ N . Since G(S) ⊂ G(S ∪ b), it must be that Ci(S ∪ b) ⊆ Ci(S). For a proof by con-
tradiction, suppose that there exists i ∈ N for which Ci(S ∪ b) �= Ci(S), so that we can
find j ∈ Ci(S) with j /∈ Ci(S ∪ b). The condition j ∈ Ci(S) implies the existence of a
unique path P between i and j in G(S), which contains only nodes from Ci(S). Since
j /∈ Ci(S ∪ b), there must be a path P ′ distinct from P between i and j in G(S ∪ b). As
P is the unique path between i and j in G(S), P ′ must contain some links from the set
G(S ∪ b) \G(S) ⊂ {bs′|s′ ∈ S ∪ 0}. All such links include b, so P ′ involves either two links
bs′� bs′′ ∈G(S ∪ b) \G(S) or a single such link bs′ ∈G(S ∪ b) \G(S). We consider each of
these cases in turn.

If P ′ contains two links bs′ and bs′′ with s′� s′′ ∈ S ∪ 0, we can replace them with the
link s′s′′ ∈G(S) to obtain another path P ′′ connecting i to j in G(S). Since P is the unique
such path, it must be that P ′′ is identical to P . Hence P contains s′ and s′′, which means
that s′ ∼G(S) s

′′. Since all nodes in S ∪ 0 are mutually linked, s′ ∼G(S) s
′′ is only possible if

S contains a single seller, so S = {s} and {s′� s′′} = {0� s}. However, node 0 ∈ {s′� s′′} cannot
belong to P , since i� j �= 0 and 0 has a single link in G({s}), namely the link with s.

Suppose instead that P ′ contains a single link bs′ ∈ G(S ∪ b) \ G(S). If s does not
belong to P ′, then we can replace the link bs′ with the pair of links bs� ss′ ∈G(S) to obtain
a path P ′′ connecting i to j in G(S). It must be that P ′′ coincides with P . By an argument
similar to that above, we need s ∼G(S) s

′ = 0 and S = {s}. We reach a contradiction using
the fact that i� j �= 0 and node 0 has a single link in G({s}). Thus, s must belong to P ′.
Note that s �= s′ since bs ∈ G(S), while bs′ /∈ G(S). We construct a path P ′′ by replacing
the portion of P ′ between s and s′ with the link ss′ ∈ G(S). If P ′′ is contained in G(S),
we obtain a contradiction as before. Therefore, P ′′ must include the link bs′. We can
now replace the links bs′ and ss′ in P ′′ with the link bs ∈G(S) to obtain another path P ′′′.
Since P ′′′ connects i to j using only links in G(S), it must be that P ′′′ is identical to P .
Then P ′′′ = P contains the link bs, which implies that b ∼G(S) s—a contradiction with
our initial assumption.
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We now turn to the case b ∼G(S) s. The proof that Ci(S∪b)= Ci(S) for all i ∈N \Cs(S)

follows exactly the same steps as in the case b�G(S) s except for the final contradiction,
which is reached by noting that since the path P ′′′ = P from i to j in G(S) contains the
link bs and i ∼G(S) j by assumption, we have i ∼G(S) s or, equivalently, i ∈ Cs(S).

We are left to prove that if b ∼G(S) s, then b�G(S∪b) s and Cs(S∪b)∪Cb(S∪b)= Cs(S).
Since b and s are directly linked in G(S) ⊂ G(S ∪ b) and are also connected by the path
(b�0� s) in G(S ∪ b), we have b �G(S∪b) s. Hence, Cs(S ∪ b) ∩ Cb(S ∪ b) = ∅. Clearly,
Cs(S ∪ b) ⊂ Cs(S) and Cb(S ∪ b) ⊂ Cs(S). To establish that Cs(S ∪ b)∪Cb(S ∪ b) = Cs(S),
we need to show that for every i ∈ Cs(S), either i ∈ Cb(S∪b) or i ∈ Cs(S∪b). Fix i ∈ Cs(S).
Then b� s ∈ Cs(S) implies that G(S) contains a unique path P from i to b and, similarly,
a unique path Q from i to s. If node s does not belong to P , then we can augment P by
adding the link bs to obtain a path from i to s in G(S). This path must coincide with Q,
and, hence, Q contains the link bs. Similarly, if b does not belong to Q, then P should
contain the link bs.

Suppose that Q contains the link bs. We set out to prove that i ∈ Cb(S ∪ b). If this
is not the case, there is a path P ′ distinct from P connecting i to b in G(S ∪ b). This
path must contain a link bs′ ∈ G(S ∪ b) \ G(S) with s′ ∈ S ∪ 0. If node s belongs to P ′,
then the subpath of P ′ from i to s excludes b. Hence, this subpath lies in G(S) and has
to be identical to the unique path Q from i to s in G(S). However, Q contains node
b by assumption, which means that P ′ passes through b twice, a contradiction. This
reasoning proves that s does not belong to P ′. If we replace the link bs′ in P ′ with the
link ss′ ∈ G(S), we obtain a path Q′ that lies in G(S) and connects i to s. It follows that
Q′ coincides with Q. Since Q′ does not contain b, neither should Q, a contradiction with
the hypothesis that Q includes the link bs.

Finally, assume that P contains the link bs. Suppose, to the contrary, that i /∈ Cs(S ∪
b). Then there exists a path Q′ that connects i to s in G(S ∪ b) and includes node b with
links in G(S∪b) \G(S). We construct a path Q′′ by replacing the subpath between b and
s in Q′ with the link bs. If Q′′ lies entirely within G(S), then Q′′ =Q and b is the neighbor
of s in Q. However, in that case, the subpath of Q from i to b must be identical to P , so
it contains the link bs by assumption. Hence, the link bs appears on the path Q twice, a
contradiction, which implies that Q′′ includes a link bs′ ∈G(S ∪ b) \G(S) with s′ ∈ S ∪ 0.
If we modify Q′′ by replacing its links bs and bs′ with the link ss′ ∈ G(S), we obtain a path
Q′′′ in G(S) that connects i to s. It must be that Q′′′ = Q, which leads to the conclusion
that s ∼G(S) s

′ = 0 and S = {s} as above, contradicting the fact that node s′ = 0 has a single
link in G({s}) and appears on the path Q from i �= 0 to s �= 0.

Proof of Theorem 1. We establish that the payoffs u defined by (9) along with any
profile of agreement probabilities α such that αbs(S) > 0 for all bs ∈ L(S) and S ∈ S con-
stitute a bargaining solution. Proposition 1 then implies that u represents the payoff
profile in all bargaining solutions that satisfy the refinement.

The following properties of the payoffs u for S ∈ S are central to the proof:

(a) us(S)= us(S ∪ b′) whenever b′s′ ∈ L(S) and s �= s′ ∈ S

(b) ub(S)= ub(S ∪ b′) whenever b′s′ ∈ L(S) and b′ �= b /∈ S
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(c) vb + ub(S ∪ b)+ us(S ∪ b)− ub(S)− us(S) = 0 for all bs ∈ L(S)

(d) if L(S) = {bs}, then us(S)= p(vb + ub(S ∪ b)+ us(S ∪ b)).

For claim (a), we need to show that if b′s′ ∈ L(S) and s �= s′ ∈ S, then us(S) = us(S∪b′).
As s ∈ S, this is equivalent to rs(S) = rs(S ∪ b′). To prove this identity, it is sufficient to
show that Cs(S) = Cs(S ∪ b′). By Proposition 2, adding b′ to S following his agreement
with s′ can only affect the equivalence class of ∼G(S) that contains s′. Then s �= s′ ∈ S and
s �G(S) s

′ imply that the equivalence class of s is identical under ∼G(S) and ∼G(S∪b), so
Cs(S) = Cs(S ∪ b′), as desired.

For claim (b), we must show that ub(S) = ub(S ∪ b′) for b′s′ ∈ L(S) with b′ �= b /∈ S. We
first argue that Cb(S ∪ b) = Cb(S ∪ b ∪ b′), which implies that rb(S ∪ b) = rb(S ∪ b ∪ b′).
Since both b and s′ are sellers in state S ∪ b, we have b �G(S∪b) s′. Then Proposition 2
implies that an agreement between s′ and b′ in state S ∪ b, which leads to state S ∪ b ∪
b′, cannot affect the equivalence class of b, so Cb(S ∪ b) = Cb(S ∪ b ∪ b′), as desired.
Given the definition of ub, establishing that ub(S) = ub(S ∪ b′) reduces to showing that
either d(S�Cb(S)) = d(S∪b′�Cb(S∪b′)) = b or d(S�Cb(S)) �= b �= d(S∪b′�Cb(S∪b′)). We
proceed by considering two possible cases separately: b�G(S) s

′ and b ∼G(S) s
′.

If b �G(S) s
′, then Proposition 2 shows that the equivalence class of b remains un-

changed when b′ joins S, so Cb(S) = Cb(S∪b′). Hence, d(S∪b′�Cb(S∪b′)) = d(S�Cb(S))

because Lemma 3 implies that d(S ∪ b′�Cb(S ∪ b′)) represents the only node in Cb(S ∪
b′) = Cb(S) that belongs to all paths from S ∪ b′ to Cb(S ∪ b′) in G, and there exists a
path from s′ to Cb(S) in G whose only intersection with Cb(S) is d(S�Cb(S)). Since
rb(S∪b)= rb(S∪b′ ∪b) and d(S�Cb(S)) = d(S∪b′�Cb(S∪b′)), the definition of ub implies
that ub(S) = ub(S ∪ b′).

If instead b ∼G(S) s
′, then either b ∼G(S∪b′) s′ or b ∼G(S∪b′) b′. In the former case,

d(S ∪ b′�Cb(S ∪ b′)) = s′, while in the latter, d(S ∪ b′�Cb(S ∪ b′)) = b′, since both s and b′
are sellers in the new configuration S ∪ b′. As b /∈ {b′� s′}, we have d(S�Cb(S)) �= b �= d(S ∪
b′�Cb(S ∪ b′)) in either case. Since rb(S ∪ b) = rb(S ∪ b′ ∪ b) and d(S�Cb(S)) �= b �= d(S ∪
b′�Cb(S∪b′)), the definition of ub implies that ub(S)= ub(S∪b′) = (1−p)(vb+rb(S∪b)).

To prove claim (c), consider first a link bs ∈ L(S) with b �G(S) s. By Proposition 2,
an agreement between b and s leaves all equivalence classes unchanged, i.e., ∼G(S) and
∼G(S∪b) represent the same equivalence relation. In particular, Cb(S ∪ b) = Cb(S) and
Cs(S∪b)= Cs(S). Hence, us(S∪b)= rs(S∪b)= rs(S) = us(S). Moreover, since s is linked
to b, it must be that d(S�Cb(S)) = b, which means that ub(S) = vb + rb(S ∪ b). Since b

is a seller in the configuration S ∪ b, we have by definition that ub(S ∪ b) = rb(S ∪ b). It
follows that

vb + ub(S ∪ b)+ us(S ∪ b)− ub(S)− us(S)

= vb + rb(S ∪ b)+ rs(S)− (
vb + rb(S ∪ b)

) − rs(S) = 0�

Assume next that bs ∈ L(S) with b ∼G(S) s. Then Proposition 2 shows that an agree-
ment between b and s splits s’s equivalence class into two classes, Cs(S) = Cs(S ∪ b) ∪
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Cb(S ∪ b). Since b and s are sellers in the configuration S ∪ b, we have that

us(S) = rs(S)=
∑

i∈Cs(S)\s
pδ(i�s)vi

us(S ∪ b) = rs(S ∪ b) =
∑

i∈Cs(S∪b)\s
pδ(i�s)vi

ub(S ∪ b) = rb(S ∪ b) =
∑

i∈Cb(S∪b)\b
pδ(i�b)vi�

By Lemma 2, b is an essential intermediary and s is the essential supplier in state S

for the buyers in Cb(S ∪ b) \ b. Hence, for all i ∈ Cb(S ∪ b) \ b, the link bs belongs to the
unique path connecting s to i and δ(i� s) = δ(i� b) + 1. Since Cs(S) \ s = (Cs(S ∪ b) \ s) ∪
b∪ (Cb(S ∪ b) \ b), δ(b� s) = 1, and δ(i� s) = δ(i� b)+ 1 for i ∈ Cb(S ∪ b) \ b, the formula for
us(S) can be rewritten as

us(S) =
∑

i∈Cs(S∪b)\s
pδ(i�s)vi +pvb +

∑
i∈Cb(S∪b)\b

pδ(i�s)vi

= rs(S ∪ b)+pvb +
∑

i∈Cb(S∪b)\b
pδ(i�b)+1vi

= rs(S ∪ b)+p
(
vb + rb(S ∪ b)

)
�

As s ∈ Cb(S), we have d(S�Cb(S)) = s, and hence

ub(S)= (1 −p)
(
vb + rb(S ∪ b)

)
�

The equalities above imply that

vb + ub(S ∪ b)+ us(S ∪ b)− ub(S)− us(S)

= vb + rb(S ∪ b)+ rs(S ∪ b)− (1 −p)
(
vb + rb(S ∪ b)

)
− (

rs(S ∪ b)+p
(
vb + rb(S ∪ b)

)) = 0�

For a proof of claim (d), suppose that L(S) = {bs}. Then seller s has no neighbor left
to sell to when all players in S ∪ b have the good. Hence, Cs(S ∪ b) = {s} and us(S ∪ b) =
rs(S ∪ b) = 0. Since L(S) = {bs}, we have b ∼G(S) s, which via Proposition 2 implies that
Cb(S ∪ b) = Cs(S) \Cs(S ∪ b) = Cs(S) \ s. As δ(i� s) = 1 + δ(i� b) for all i ∈ N \ S, it follows
that

us(S) = rs(S) =
∑

i∈Cs(S)\s
pδ(i�s)vi =

∑
i∈Cb(S∪b)

pδ(i�s)vi

= pvb +
∑

i∈Cb(S∪b)\b
p1+δ(i�b)vi = p

(
vb + ub(S ∪ b)

)
�

Then us(S ∪ b) = 0 leads to us(S) = p(vb + ub(S ∪ b)+ us(S ∪ b)), as asserted.
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Consider now a profile (u�α) that satisfies the hypotheses of the theorem. To prove
that (u�α) is a bargaining solution, fix a state S ∈ S . Claim (c) implies that wbs(S) = 0
for all bs ∈ L(S). Hence, (u�α) satisfies the incentive constraints (2). Claims (a), (b), and
(c) imply that the profile (u�α) solves the payoff equations (3) and (4). If S �= N , then
the set L(S) is nonempty because the network G is assumed to be connected. Thus,
the agreement profile α meets the requirement (5) since it assigns positive probability
of agreement for every link in L(S). By construction, the payoffs u satisfy condition
(6). Finally, to verify that (u�α) has property (7), suppose that αbs(S) > 0 for a single
link bs ∈ L(S). As α specifies a positive probability of agreement for any trading link in
every state, it must be that L(S) = {bs}. Claim (d) then implies (7). We have shown that
(u�α) satisfies conditions (2)–(7) for every state S ∈ S and, thus, constitutes a bargaining
solution. The proof is completed as outlined in the preamble.

Proof of Proposition 3. We first show that the refinement of the bargaining solution
generates history-independent prices. Let u∗ be the payoffs under the refinement with
associated gains from trade and prices denoted by w∗ and t∗, respectively. Step (c) in
the proof of Theorem 1 shows that for all S ∈ S and bs ∈ L(S), we have w∗

bs(S) = 0, which
implies that t∗bs(S) = u∗

s (S)−u∗
s (S∪b). To establish history independence of prices under

u∗, it is sufficient to argue that t∗bs(S)= t∗bs(S∪b′) for any b′ ∈ N \ (S∪b) such that S∪b′ ∈
S . Fix b, b′, s, S with the properties listed above. We have to check that the payoffs
selected by the refinement solve the equation u∗

s (S) − u∗
s (S ∪ b) = u∗

s (S ∪ b′) − u∗
s (S ∪

{b�b′}) or, equivalently, that rs(S)−rs(S∪b)= rs(S∪b′)−rs(S∪{b�b′}). Given the formula
for r, the latter equation is equivalent to∑

i∈Cs(S)\Cs(S∪b)
pδ(i�s)vi =

∑
i∈Cs(S∪b′)\Cs(S∪{b�b′})

pδ(i�s)vi�

Therefore, it is sufficient to prove that

Cs(S) \Cs(S ∪ b)= Cs
(
S ∪ b′) \Cs

(
S ∪ {

b�b′})� (16)

If b′ �G(S) s, then Proposition 2 implies that Cs(S) = Cs(S∪b′). Moreover, b′ �G(S∪b) s
and Proposition 2 also leads to the conclusion that Cs(S∪b)= Cs(S∪{b�b′}). Hence, (16)
holds in this case.

If b�G(S) s, then Proposition 2 implies that Cs(S) = Cs(S∪b), so Cs(S)\Cs(S∪b)= ∅.
Moreover, b�G(S∪b′) s and Proposition 2 also leads to Cs(S ∪ b′) = Cs(S ∪ {b�b′}), which
means that Cs(S ∪ b′) \Cs(S ∪ {b�b′}) =∅. Hence, (16) holds in this case as well.

We are left with the case b ∼G(S) s ∼G(S) b
′. Since S∪b′ ∈ S , it must be that b′ is linked

to a node in S. By Lemma 2, the relationship b′ ∼G(S) s implies that s is the essential
supplier for b′ in state S and, thus, belongs to any path from a node in S to b′, including
any link connecting b′ to S. It follows that b′s ∈ G. Since b ∼G(S) s, Proposition 2 implies
that Cs(S) \Cs(S ∪ b)= Cb(S ∪ b). Note that b�G(S∪b′) b′ because b and b′ are connected
by the paths (b� s�b′) and (b� s�0� b′) in G(S ∪ b′). Applying Proposition 2 again, we have
Cs(S) = Cs(S∪b′)∪Cb′(S∪b′). As b ∈ Cs(S) but b /∈ Cb′(S∪b′), we infer that b ∈ Cs(S∪b′)
and, thus, b ∼G(S∪b′) s. Proposition 2 leads to Cs(S ∪ b′) \Cs(S ∪ {b�b′}) = Cb(S ∪ {b�b′}).
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Then (16) follows from the fact that Cb(S ∪ b) = Cb(S ∪ {b�b′}), which is a consequence
of step (b) in the proof of Theorem 1.

We next prove that every bargaining solution with history-independent prices must
generate the payoffs selected by the refinement. Fix a bargaining solution (u�α) un-
der which prices are history-independent. We need to show that u(S) = u∗(S) for every
S ∈ S . The proof of this claim proceeds by induction on |N \ S|. For the base case
|N \ S| = 0, we have that S =N , and the claim follows trivially from assumption (6).

For the inductive step, fix S ⊂N and assume that the induction hypothesis holds for
every set in S of greater cardinality than S. In particular, u(S ∪ b) = u∗(S ∪ b) for every
b ∈N \S that is linked to a node in S. Since G is connected and S ⊂ N , there exists at least
one node b ∈ N \ S such that S ∪ b ∈ S . We consider two cases, depending on whether
there exists only one such node or multiple ones.

First, assume that there exists only one b ∈ N \ S such that S ∪ b ∈ S . Then all links
in L(S) contain node b. In this case, the payoff equations along with condition (5) imply
that ub′(S) = ub′(S ∪ b) and u∗

b′(S ∪ b) = u∗
b′(S) for all b′ ∈ N \ (S ∪ b). Since ub′(S ∪ b) =

u∗
b′(S∪b) by the induction hypothesis, it follows that ub′(S) = u∗

b′(S) for all b′ ∈N \(S∪b).
Furthermore, us(S) = u∗

s (S) = 0 for all sellers s not linked to b in G.
The payoff equation for buyer b in state S leads to

ub(S)=
∑

s:bs∈L(S)

πbs(S)
(
ub(S)+ (1 −p)αbs(S)wbs(S)

)
�

Since
∑

s:bs∈L(S) πbs(S) = 1, and πbs(S) > 0 and αbs(S)wbs(S)≥ 0 for bs ∈ L(S), it must be
that αbs(S)wbs(S) = 0 for all s such that bs ∈ L(S).

The payoff equation for any seller s in state S linked to node b in network G reduces
to

us(S) = πbs(S)
(
us(S)+pαbs(S)wbs(S)

)
+

∑
s′ �=s:bs′∈L(S)

πbs′(S)
(
αbs′(S)us(S ∪ b)+ (

1 − αbs′(S)
)
us(S)

)

= πbs(S)us(S)+
∑

s′ �=s:bs′∈L(S)

πbs′(S)
(
1 − αbs′(S)

)
us(S)�

where we took into account that αbs(S)wbs(S) = 0 and us(S∪b)= 0 (s is not linked to any
buyer in state S ∪ b). It follows that

us(S)
∑

s′ �=s:bs′∈L(S)

πbs′(S)αbs′(S) = 0�

which is possible only if either us(S) = 0 or αbs′(S) = 0 for all s′ �= s such that bs′ ∈ L(S).
Suppose first that

∃s ∈ S s.t. bs ∈ L(S) and αbs′(S) = 0�∀s′ �= s with bs′ ∈ L(S)� (17)

Then constraint (5) implies that there exists exactly one s satisfying this condition and
αbs(S) > 0. Assumption (7) leads to us(S)= p(vb +ub(S ∪ b)+us(S ∪ b))= p(vb +ub(S ∪
b)) and ub(S) = (1 −p)(vb + ub(S ∪ b)+ us(S ∪ b)) = (1 −p)(vb + ub(S ∪ b)).
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If L(S) = {bs}, then we also have that u∗
s (S) = p(vb+u∗

b(S∪b)+u∗
s (S∪b)) and u∗

b(S) =
(1 − p)(vb + u∗

b(S ∪ b) + u∗
s (S ∪ b)), which along with the induction hypothesis implies

that us(S) = u∗
s (S) and ub(S)= u∗

b(S).

We now consider the case |L(S)| ≥ 2. In this case, there exists s′ ∈ S \ s such that

bs′ ∈ L(S) and αbs′(S) = 0. As argued above, αbs(S) > 0 implies that us′(S) = 0. Hence,

us′(S) = us′(S ∪ b) = 0. Since αbs′(S) = 0, we have wbs′(S) ≤ 0 and, thus, vb + ub(S ∪ b)+
us′(S ∪ b)− ub(S)− us′(S) = vb + ub(S ∪ b)− ub(S) ≤ 0. However, αbs(S) > 0 also means

that wbs(S) ≥ 0, which leads to vb + ub(S ∪ b) − ub(S) − us(S) ≥ 0. It follows that vb +
ub(S ∪ b)− ub(S) = us(S) = 0. We have established that us′(S) = 0 for all s′ ∈ S such that

bs′ ∈ L(S). Since the equation for seller payoffs above also applies to any refinement of

the bargaining solution (u∗�α∗) under which α∗
bs′(S) > 0 for all s′ ∈ S with bs′ ∈ L(S), we

conclude that u∗
s′(S) = 0—in particular, us′(S) = u∗

s′(S)—for all s′ ∈ S such that bs′ ∈ L(S).

Suppose next that statement (17) is false. Then it must be that us(S) = 0 for all s ∈ S,

|L(S)| ≥ 2, and b is a dealer in state S, while each seller forms a singleton equivalence

class in G(S). It follows that us(S) = 0 = u∗
s (S) for all s ∈ S. There exists s ∈ S with bs ∈

L(S) such that αbs(S) > 0, which implies that wbs(S) = 0. For such an s, we have ub(S) =
vb +ub(S ∪ b)+us(S ∪ b)−us(S) = vb +u∗

b(S ∪ b)= u∗
b(S). The second equality relies on

ub(S ∪ b) = u∗
b(S ∪ b) (induction hypothesis) and us(S) = us(S ∪ b) = 0, while the third

follows from the dealer status of buyer b in state S. We have shown that the negation of

(17) implies that u(S) = u∗(S), which completes the proof of the inductive step for the

case in which S ∪ b ∈ S for a single b ∈N \ S.

Finally, consider the case in which there exist b �= b′ ∈ N \ S with the property that

S ∪ b and S ∪ b′ ∈ S . For such pairs (b�b′), the induction hypothesis implies that tbs(S ∪
b′) = t∗bs(S ∪ b′) whenever bs ∈ L(S). History independence of prices under u and u∗

requires that tbs(S) = tbs(S ∪ b′) and t∗bs(S) = t∗bs(S ∪ b′), and, hence, tbs(S) = t∗bs(S) for

bs ∈ L(S). We have shown that in this case, tbs(S) = t∗bs(S) for every link bs ∈ L(S).

Fix s ∈ S. The payoff equation for seller s in state S can be rewritten as

us(S) =
∑

b:bs∈L(S)

πbs(S)
((

1 − αbs(S)
)
us(S)+ αbs(S)

(
us(S ∪ b)+ tbs(S)

))

+
∑

bs′∈L(S):s′ �=s

πbs′(S)
(
αbs′(S)us(S ∪ b)+ (

1 − αbs′(S)
)
us(S)

)
�

Since tbs(S) = t∗bs(S) and us(S ∪ b)= u∗
s (S ∪ b) in the equation above, we have

us(S) =
∑

b:bs∈L(S)

πbs(S)
((

1 − αbs(S)
)
us(S)+ αbs(S)

(
u∗
s (S ∪ b)+ t∗bs(S)

))

+
∑

bs′∈L(S):s′ �=s

πbs′(S)
(
αbs′(S)u

∗
s (S ∪ b)+ (

1 − αbs′(S)
)
us(S)

)
�
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By Theorem 1, the payoffs u∗ are consistent with any profile of agreement probabilities,
including α. Therefore, we also have that

u∗
s (S) =

∑
b:bs∈L(S)

πbs(S)
((

1 − αbs(S)
)
u∗
s (S)+ αbs(S)

(
u∗
s (S ∪ b)+ t∗bs(S)

))

+
∑

bs′∈L(S):s′ �=s

πbs′(S)
(
αbs′(S)u

∗
s (S ∪ b)+ (

1 − αbs′(S)
)
u∗
s (S)

)
�

Subtracting the two equalities above and rearranging terms, we obtain(
us(S)− u∗

s (S)
) ∑
bs′∈L(S)

πbs′(S)αbs′(S) = 0�

Condition (5) implies that the summation in the equation above is positive, so it must
be that us(S)= u∗

s (S).
We have argued that us(S) = u∗

s (S) for all s ∈ S. A similar logic proves that ub(S) =
u∗
b(S) for all b ∈ N \ S and completes the proof of the inductive step for the case under

consideration.

Proof of Theorem 2. The first two statements of the result were proved in Section 6.
To prove the third statement, consider a seller configuration S ∈ S and a buyer b ∈N \ S.
All paths in G connecting any seller in S to buyer b that intersect some equivalence class
Ci(S) must enter Ci(S) via its dealer d(S�Ci(S)) and, thus, can cross Ci(S) only once. If
two paths in this collection exit Ci(S) through nodes x �= y ∈ Ci(S), then we obtain the
contradiction that x�G(S) y by “pasting” the subpaths from x to b and from b to y, and
eliminating potential overlap as in the proof of Lemma 3. Therefore, every path that
connects a node in S to buyer b in G and intersects Ci(S) must enter Ci(S) via node
d(S�Ci(S)) and exit through the same node x. Hence, all such paths must overlap in
Ci(S) with the unique path between d(S�Ci(S)) and x in G.
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