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When is a monotone function cyclically monotone?

Alexey I. Kushnir
Tepper School of Business, Carnegie Mellon University

Lev V. Lokutsievskiy
Steklov Mathematical Institute of the Russian Academy of Sciences

We provide sufficient conditions for a monotone function with a finite set of
outcomes to be cyclically monotone. Using these conditions, we show that any
monotone function defined on the domain of gross substitutes is cyclically mono-
tone. The result also extends to the domain of generalized gross substitutes and
complements.

Keywords. Monotone, cyclically monotone, nonconvex domain, gross substi-
tutes, gross substitutes and complements, mechanism design, algebraic topology,
homology, nerve theorem.

JEL classification. D82.

1. Introduction

One of the major goals of mechanism design is to study the properties of optimal mech-
anisms that maximize a given objective such as revenue or welfare maximization. The
difficulty in deriving such mechanisms results from the designer lacking information
about the agents’ preferences. Hence, a well designed mechanism should take into ac-
count the agents’ ability to hide their privately held information, often called incentive
compatibility constraints.

Previous work provides important insights into these constraints. Myerson (1981)
showed that in standard private value settings with one-dimensional types, any nonde-
creasing allocation rule can be implemented; that is, there exists a payment rule that
when combined with the allocation rule produces a direct mechanism where truth-
telling is in the best interests of the agents. In multidimensional settings, Rochet (1987)
showed that an allocation rule is implementable if and only if it is cyclically monotone.
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To define a cyclically monotone allocation rule f : RN → R
N , N ≥ 1, consider a weighted

graph with points in the domain of f being vertices and directed edges from any point
t to any other point t ′. With each directed edge, we associate weight t · (f (t) − f (t ′)).
Allocation f is then cyclically monotone if along any cycle the sum of edge weights is
nonnegative. If the weight of any cycle with two edges is nonnegative, the allocation
rule satisfies a weaker condition called monotone.

Though Rochet’s characterization and its modifications have been successfully used
in auction theory, computer science, and matching theory, it is often tedious to verify.1

An important contribution by Saks and Yu (2005) (also Bikhchandani et al. 2006) estab-
lishes an equivalence between cyclically montone and monotone conditions for convex
domains with a finite set of outcomes. Their result greatly simplifies checking whether
an allocation rule is implementable.2

Does the equivalence result extend to nonconvex domains? Ashlagi et al. (2010)
showed that Saks and Yu’s result cannot be extended beyond domains with convex clo-
sure if one requires equivalence between two conditions for every finite-valued random-
ized allocation. However, randomized allocations might not always be plausible. Fur-
ther, Ashlagi et al.’s (2010) result does not preclude equivalence between monotone and
cyclically monotone conditions on nonconvex domains for a given set of possible out-
comes.

In this paper, we provide sufficient conditions on a domain, on a set of possible out-
comes, and on a function that guarantee that if the function is monotone, then it is also
cyclically monotone. Our two main conditions require the domain to be simply con-
nected and the function to satisfy the local-to-global condition. The former condition
ensures that the domain does not contain “holes” of a certain type. The latter condition
ensures that if a function is a solution to a local optimization problem, it also delivers
the global optimal.3

We then apply these conditions to study deterministic demand functions on the
domain of gross substitutes. The domain of gross substitutes is an important non-
convex domain of agent preferences that has been extensively exploited in the mecha-
nism design, matching, equilibrium, and algorithmic literatures (e.g., Ausubel and Mil-
grom 2002, Roth 1991, Gul and Stacchetti 1999, Paes Leme 2017). We establish that any
monotone demand function defined on the domain of gross substitutes is also cyclically
monotone. We further extend the equivalence between monotone and cyclically mono-
tone conditions to the domain of generalized gross substitutes and complements, the
domain that allows for multiple objects of the same type and some complementarities
across objects (Sun and Yang 2006, Shioura and Yang 2015).

On the methodological side, we introduce some novel techniques to economics. The
proof of our main result uses a version of the nerve theorem—a classical result in alge-
braic topology (see Björner 1995). To explain the result, let us consider a set that is cov-
ered by a finite system of closed subsets. Nerve is then a special weighted hypergraph

1See Lavi and Swamy (2009), Mishra and Roy (2013), and Carbajal and Mu’alem (2020). The cyclic mono-
tonicity condition also has applications in revealed preference theory, producer theory, and spatial alloca-
tion (see Chambers and Echenique 2018, Kushnir and Lokutsievskiy 2019).

2The result with a similar flavor for environments without transfers also appeared in Pycia (2012).
3As explained later, we also require an additional technical condition.
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associated with this system of subsets. The nerve theorem helps to map the geometrical
properties of the set to the geometrical properties of the nerve. This result could be of
special interest to economists working in the areas of mechanism design, social choice,
network theory, and operations research.

Related Literature. The cyclic monotonicity condition was introduced by Rockafellar
(1966) to characterize the subdifferentials of convex functions. For mechanism design
applications, Rochet (1987) was the first to show that in quasilinear environments an
allocation rule can be implemented if and only if it is cyclically monotone. He also drew
a parallel between the cyclic monotonicity condition and the strong axiom of revealed
preferences (see also Brown and Calsamiglia 2007, Makowski and Ostroy 2013). Saks and
Yu (2005) simplified the characterization of implementable allocation rules by establish-
ing that any monotone function is cyclically monotone on convex domains with a finite
set of outcomes (see also Bikhchandani et al. 2006).4 Importantly, Ashlagi et al. (2010)
showed that Saks and Yu’s characterization cannot be extended beyond domains with
convex closure if the equivalence is required to hold for all finite-valued randomized al-
location rules. For an infinite set of outcomes, Müller et al. (2007), Archer and Kleinberg
(2014), and Carbajal and Müller (2015, 2017) provided various additional conditions to
guarantee that the cyclical monotonicity condition is satisfied.

For nonconvex domains, the literature is scarce. For single-peaked preferences,
Mishra et al. (2014) showed the equivalence of monotone and cyclically monotone con-
ditions. Vohra (2011) provided an inspiring example of a simple domain with two objects
and the agent’s valuation of a bundle of objects equals the maximum value of objects in
the bundle. For the setting, he established that any monotone function is also cyclically
monotone. This is an example of a domain where every valuation satisfies the gross
substitutes condition. Ever since, it has been an open question as to whether the equiv-
alence between the monotone and cyclically monotone conditions can be extended to
the whole domain of gross substitutes.5

The gross substitutes condition was introduced by Kelso and Crawford (1982) in the
context of labor matching markets. Sun and Yang (2006, 2009) and Shioura and Yang
(2015) extended the gross substitutes condition to allow for some complementarities
and multiple objects of the same type, a domain they referred to as generalized gross
substitutes and complements. They also designed a dynamic auction for efficiently al-
locating the objects to the agents. Our most general results in Section 4 apply to the
latter domain.

Our main theorem exploits the local-to-global condition that relates local incen-
tive compatibility to global incentive compatibility constraints in convex and noncon-
vex domains. This condition is closely connected to the decomposition monotonicity

4Jehiel et al. (1999) also contains the proof a geometric lemma that is the main step in Saks and Yu (2005).
See also Cuff et al. (2012) and Edelman and Weymark (forthcoming) for the cases when every monotone
function is cyclically monotone.

5The only progress in that direction was made in a concurrent paper by Agarwal and Roy (2019), who
extended Vohra’s (2011) example to the case of an arbitrary number of objects.

Mishra and Roy (2013) also showed that the nonnegativity of any three-cycle is sufficient for imple-
mentability in dichotomous domains. The conditions of Agarwal and Roy (2015, 2017) also apply formally
to nonconvex domains.
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condition first proposed by Müller et al. (2007) to study Bayesian incentive compatible
allocation rules on convex domains.6 In a related paper, Archer and Kleinberg (2014)
considered convex domains and showed that if a function with a finite or infinite set
of outcomes is locally monotone and its loop is integral over every sufficiently small
triangle vanishes, then it is also incentive compatible. Carroll (2012) also thoroughly
studied local and global incentive compatibility constraints. He showed that local in-
centive compatibility always implies global incentive compatibility for convex domains
with transferable utility, the single-peaked preference domain, and the single-crossing
domain without transferable utility.7 Though Carroll (2012) did not study nonconvex
domains with transferable utilities, one of his geometric characterizations has proved to
be very useful for our purposes (see Section 3).

One of our results (Proposition 1) is also closely related to the Helmholtz decompo-
sition of Jiang et al. (2011). Candogan et al. (2011) used these techniques to decompose
any finite game into potential, harmonic, and nonstrategic components. In a recent pa-
per, Caradonna (2020) also used the decomposition to analyze when the weak axiom of
revealed preferences implies the rationalizability of choice functions.

The paper proceeds as follows. Section 2 introduces notation and definitions. Sec-
tion 3 presents our main results. We use these results in Section 4 to study functions
defined on the domain of gross substitutes and the domain of generalized gross substi-
tutes and complements. Section 5 concludes the paper.

2. Notation and definitions

We begin by introducing some notation and definitions. Then we motivate them from
the perspective of mechanism design. Consider a domainT ⊆ R

N , a finite setA⊂ R
N for

N ≥ 1, and some function f : T → A. The vector product of t ∈ T and a ∈ A is denoted
as both t · a and ta. We consider two monotonicity conditions.

Definition 1. Function f : T → A is monotone if for all t� t ′ ∈ T ,

t
(
f (t)− f

(
t ′
)) + t ′

(
f
(
t ′
) − f (t)

) ≥ 0� (1)

This is a generalization of the one-dimensional monotonicity condition to multidi-
mensional settings. We use the term “monotone function” following Rockafellar (1966).
Some recent papers also call such functions weakly monotone (see, e.g., Bikhchandani
et al. 2006). Our second and more demanding condition is defined as follows.

Definition 2. Function f : T → A is cyclically monotone if for any integer M and any
points t0� t1� � � � � tM = t0 in T ,

M−1∑
k=0

tk
(
f
(
tk

) − f
(
tk+1)) ≥ 0� (2)

6See also Berger et al. (2009, 2017). The condition is also related to the reverse triangle inequality in
Mishra et al. (2014).

7See also Gibbard (1977), Mishra et al. (2016), Pycia and Ünver (2010), and Sato (2013) for related results.
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As we mentioned in the Introduction, both definitions could be conveniently inter-
preted using graph theory. Consider a weighted graph with points t ∈ T being vertices
and directed edges from any point t to any other point t ′. With each edge, we associate
weight t(f (t) − f (t ′)). Hence, if f is cyclically monotone, then the weight of any cycle
has to be nonnegative. If f is monotone, then the above condition is restricted to cycles
of length 2. Note that to check whether f is monotone, we need to verify only inequal-
ity (1). At the same time, we need to verify a system of inequalities (2) for all integers M

to check whether f is cyclically monotone. The latter is a much more demanding task.
For any f : T → A, we also consider a cover of T by a finite number of subsets. To

define these subsets for any ordered pair a�b ∈A, we define lower bound

�ab = inf
t∈T :f (t)=a

t(a− b)�

Using the lower bounds, we construct a cover {Tf
a }a∈A of set T , where for each a ∈ A,

T
f
a = {

t ∈ T : t(a− b)≥ �ab ∀b ∈A
}
�

Note that Tf
a depends on the choice of function f and T = ⋃

a∈AT
f
a . In addition, if out-

come a /∈ f (T), then we have �ab = +∞ and T
f
a is the empty set. For all other outcomes,

each set T
f
a is nonempty and contains the set of points that leads to outcome a, i.e.,

{t ∈ T�f (t) = a} ⊆ T
f
a .

In our analysis, we study functions that lead to path-connected subsets Tf
a and func-

tions that are defined on a simply connected domain T . Set Tf
a is path-connected if it is

nonempty and any two points x ∈ T
f
a and y ∈ T

f
a can be connected with a continuous

curve lying inside T
f
a . A domain T is simply connected if it is path-connected and any

loop in T can be continuously contracted to a point.8 For example, a triangle without an
interior is not simply connected (see Example 1). At the same time, any set with a point
that can be connected to each of the set’s other points with a line segment within the set
is simply connected. Such a set is called star-shaped (or star-convex).

For a closed line segment connecting two points x� y ∈ R
N , we use the standard no-

tation [x� y] = {z ∈ R
N : z = αx + (1 − α)y�α ∈ [0�1]}. We also employ [x� y), (x� y], and

(x� y) throughout the paper, depending on whether the boundary points are included.
Finally, the following property is helpful in our analysis.

Definition 3. Function f : T → A satisfies the local-to-global condition if for any two

outcomes a�b ∈ f (T) with T
f
a ∩T

f
b = ∅, there exists a path {a ≡ a0� � � � � aM ≡ b} such that

T
f
am ∩ T

f
am+1 �= ∅, m= 0� � � � �M − 1, and �ab ≥ ∑M−1

m=0 �amam+1 .

The local-to-global condition can be most accurately interpreted through the prism
of mechanism design and we slightly postpone its discussion to the end of this section.

8A formal definition of domain T being simply connected is as follows. Let S1 denote a circle (in R
2).

Then, for any continuous function (a loop) γ : S1 → T , there must exist a continuous function F : [0�1] ×
S1 → T such that for all s ∈ [0�1], F(0� s) ≡ γ(s) and F(1� s) ≡ t0 for some t0 ∈ T .
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Here, we mention only one of our results related to the condition. At first glance, veri-
fying the local-to-global condition might require a significant effort. However, we show
that it is not the case. We present a sufficient geometric property that ensures that a
monotone function f satisfies the local-to-global condition (see Lemma A1). In partic-

ular, the geometric property requires that for any a�b ∈ f (T), any x ∈ T
f
a , there should

exist type y ∈ T
f
b such that [x� y] ⊂ T . In Section 4, we show that the geometric property

is satisfied for any monotone function defined on some important economic domains.
Mechanism design. For mechanism design applications, one could think of N as the

number of outcomes and think of T as the set of agent types. Type t ∈ T can be inter-
preted as a vector of agent’s valuations for all possible outcomes. With each outcome,
we associate an indicator a ∈ {0�1}N that has one component equal to 1 and all other
components equal to 0. The union of these indicators is then a finite set A ⊂ R

N . The
agent’s utility from a ∈A can conveniently be written then as u(t�a�p) = t · a−p, where
p is the agent’s payment.

We consider direct mechanisms characterized by two functions: an allocation rule,
f : T → A, mapping an agent’s reported type to the set of possible outcomes, and a
payment rule, p : T → R, mapping an agent’s reported type to the set of real numbers.
We consider only deterministic allocation rules and do not allow randomizations over
outcomes.9 We can then write the agent’s utility as

tf
(
t ′
) −p

(
t ′
)
�

where t ′ and t refer to the agent’s reported and true types, respectively. We call allocation
rule f implementable if there exists a payment rule p such that mechanism (f�p) is
incentive compatible; that is, if it satisfies the constraints

tf (t)−p(t)≥ tf
(
t ′
) −p

(
t ′
) ∀t� t ′ ∈ T�

Rochet (1987) proved an important result that characterizes the set of implementable
allocations as stated in the following theorem.

Rochet’s Theorem (1987). An allocation rule is implementable if and only if it is cycli-
cally monotone.

Though the cyclic monotonicity condition characterizes the set of all implementable
allocation rules, this condition is often tedious to verify. Remarkably, Saks and Yu (2005)
showed that for convex domains it is enough to check that only two cycles are nonnega-
tive. Saks and Yu’s (2005) characterization and its modifications have been successfully
used in several important applications (see Lavi and Swamy 2009, Mishra and Roy 2013,
Carbajal and Mu’alem 2020, Shi et al. 2018). One of our main results extends Saks and
Yu’s (2005) result to important nonconvex domains, including the domain of gross sub-
stitutes (see Section 4).

Before proceeding to our main results, we discuss the interpretation of the lower
bounds �ab and the local-to-global condition (Definition 3). Let us consider all agent

9See Ashlagi et al. (2010) for the study of randomized mechanisms.
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types that lead to outcome a ∈A. Lower bound �ab then corresponds to the lowest ben-
efit from revealing its true type compared to lying when lying leads to outcome b ∈ A

(excluding transfers). For a monotone allocation, set Tf
a almost coincides with the set of

types that lead to outcome a ∈A (up to the boundary points).
The local-to-global condition can then be interpreted as a condition that ensures

that local incentive compatibility implies global incentive compatibility (see Archer and
Kleinberg 2014, Carroll 2012). Lower bound �ab is the lowest benefit from revealing true
type compared to lying when lying leads to outcome b. Hence, −�ab can be regarded as

the maximum gains from lying. We interpret −�ab, Tf
a ∩T

f
b =∅, as the gains from global

deviations and interpret −�ab, Tf
a ∩ T

f
b �= ∅, as the gains from local deviations. Then the

local-to-global condition ensures that the gains from global deviations are smaller than

the total gains from deviations along the path connecting t ∈ T
f
a and some type in T

f
b ;

i.e., local incentive compatibility implies global incentive compatibility. Similar condi-
tions are considered in previous literature (see Müller et al. 2007, Mishra et al. 2014). The
main difference is that our condition is also applicable to nonconvex domains.

3. Main result

The main result of this section, Theorem 1, provides a set of conditions on a domain T ,
a set A, and a function f : T → A that ensure that if f is monotone, it is also cyclically
monotone. These conditions are simplified in Corollary 1. The result of Corollary 1 is
then used to analyze monotone demand functions on the domain of gross substitutes
and the domain of generalized gross substitutes and complements in Section 4.

Theorem 1 (Main result). Consider a domain T ⊂ R
N , a finite set A ⊂ R

N , and a func-
tion f : T →A. Suppose that

(i) T is simply connected

(ii) T
f
a is either path-connected or empty for each a ∈A

(iii) f satisfies the local-to-global condition.

Then if f is monotone, it is also cyclically monotone.

Discussion. The simply connected condition is satisfied for most economically rele-
vant models.10 It ensures that domain T does not contain “holes” of a certain type. The

condition on sets T
f
a is technical. For instance, any star-shaped set is path-connected.

To check that a monotone function f satisfies the local-to-global condition, we show
that it is enough for f to satisfy the following geometric property: for any a�b ∈ f (T)

and any x ∈ T
f
a , there should exist type y ∈ T

f
b such that [x� y] ⊂ T (see Lemma A1). This

condition was originally proposed by Carroll (2012) to show that local incentive com-
patibility implies global incentive compatibility in single-peaked preferences settings
without transfers.

10One exception is a circular domain in monopolistic competition models (Salop 1979).
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Proof of Theorem 1. First, we establish that it is sufficient to prove the statement for
f such that f (T) = A. Indeed, if we prove the statement under this assumption, then for
an arbitrary f : T →A that satisfies the theorem conditions, we put A′ = f (T) and apply
the established result for f : T → A′. Hence, without loss of generality, we assume from

this point on that f (T) = A and, hence, Tf
a �=∅ for each a ∈A.

The proof of Theorem 1 is based on graph theory and algebraic topology. We asso-
ciate two graphs with set A. The first graph � is the complete directed graph with ver-
tices corresponding to each outcome in A and directed edges connecting every ordered
pair of vertices. To distinguish vertices from outcomes, for each a�b� c ∈ A, we denote
the corresponding vertices in � by Gothic letters a, b� and c, respectively, and denote the
set of vertices by A0. Each directed edge a → b in � has weight equal to �ab.

The second graph �n is a subgraph of � with the same set of vertices A0, but directed
edges connecting only adjacent outcomes; i.e., a and b are connected (by both directed

edges) in �n if and only if Tf
a ∩ T

f
b �= ∅. The subgraph’s directed edges still have weight

�ab. We call graph �n a neighborhood subgraph.
We first notice that Definitions 1 and 2 can be reformulated using the weights of cy-

cles in �.11 We say that � is cyclically monotone if any M-cycle a0 → a1 → ·· ·aM−1 →
aM ≡ a0 with ai ∈ A0 for i = 0� � � � �M − 1 and M ≥ 2 has nonnegative weight, i.e.,∑M−1

m=0 �amam+1 ≥ 0. We also say that � is monotone if any 2-cycle has nonnegative weight.
It is straightforward to verify that f is monotone (cyclically monotone) if and only if � is
monotone (cyclically monotone) (e.g., Heydenreich et al. 2009). Therefore, to prove that
f is cyclically monotone, it is enough to establish that � is cyclically monotone.

To prove that � is cyclically monotone, we first establish that all cycles in the neigh-
borhood subgraph �n have exactly zero weight using the conditions that domain T is

simply connected and sets Tf
a are path-connected for a ∈A. Then we show that the local-

to-global condition implies that all cycles in � have nonnegative weight.

Proposition 1. If conditions (i) and (ii) are satisfied and f is monotone, then any cycle
in the neighborhood subgraph �n has exactly zero weight.

Proof. We first establish two simple facts about subgraph �n. Consider some directed
edge a → b in �n. As f is monotone, graph � is also monotone and �ba + �ab ≥ 0. At the

same time, as a→ b is in �n, there exists t ∈ T
f
a ∩T

f
b , and t(a−b)≥ �ab and t(b−a)≥ �ba

by definition of Tf
a and T

f
b . Hence, �ab + �ba ≤ 0. Overall, we have �ba + �ab = 0. Hence,

we obtain the following fact.

Fact 1. If Tf
a ∩ T

f
b �=∅, then �ab = −�ba and �ab = t(a− b) for any t ∈ T

f
a ∩ T

f
b .

Second, let us show that if Tf
a ∩ T

f
b ∩ T

f
c �= ∅, then the 3-cycle a → b → c → a in �n

has 0 weight. Indeed, for t ∈ T
f
a ∩ T

f
b ∩ T

f
c , we have �ab = t(a − b), �bc = t(b − c) and

�ca = t(c − a) by Fact 1. Hence, �ab + �bc + �ca = 0. This result is summarized below.

11The weight of a cycle (or any path) in a graph is the sum of the weights of its directed edges.
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Fact 2. If Tf
a ∩ T

f
b ∩ T

f
c �= ∅, then �ab + �bc + �ca = 0.

We now investigate whether it is possible to “pave” any cycle in �n by triplets that

satisfy Fact 2. For example, if Tf
a ∩ T

f
b ∩ T

f
c �= ∅ and T

f
a ∩ T

f
b′ ∩ T

f
c �= ∅, then 4-cycle

a→ b→ c→ b′ → a has zero weight. Indeed, Facts 1 and 2 imply that

�ab + �bc + �cb′ + �b′a = (�ab + �bc + �ca)+ (�ac + �cb′ + �b′a) = 0�

For the general case, we consider a construction in topology called the nerve of a cover⋃
a∈A T

f
a . 12 Nerve N = (A0�A1�A2� � � �) of the cover T = ⋃

a∈AT
f
a is formally composed

of vertices A0, edges A1, triangles A2, and their k-dimensional counterparts Ak defined
as follows:

• Set A0 consists of vertices a corresponding to sets Tf
a �=∅, a ∈A.

• Set A1 consists of unordered pairs {a�b} (where a and b are different), such that
T
f
a ∩ T

f
b �= ∅. The elements of A1 are called edges in N .

• Set A2 consists of unordered triples {a�b� c} (where a, b, and c are different) such
that Tf

a ∩ T
f
b ∩ T

f
c �=∅. The elements of A2 are called triangles in N .

• Set Ak for k ≥ 2 is defined similarly. The elements of Ak for any k are generally
called simplices in N .

Nerve N is usually identified with its geometrical realization, which is a polytope P(N )

in R
A0 , where the elements of A0 form a basis and linear space R

A0 consists of formal
sums

∑
a∈A0

xa ·a with xa ∈R. The vertices of P(N ) are the endpoints of the basis vectors

in R
A0 . Two vertices a and b in R

A0 are connected by a segment in P(N ) if and only if

T
f
a ∩ T

f
b �= ∅ (i.e., {a�b} ∈ A1). Three vertices a, b, and c are the extreme points of a

triangle face in P(N ) if and only if Tf
a ∩ T

f
b ∩ T

f
c �= ∅ (i.e., {a�b� c} ∈ A2), etc. Overall,

P(N ) is contained in the standard simplex {∑a∈A0
xa = 1�xa ≥ 0}.

At this point, we are able to explain the main idea of the proof. We first show that
the geometrical properties of domain T imply that polytope P(N ) has a special struc-
ture. In particular, Lemma 1 below establishes that conditions (i) and (ii) of Theorem 1
imply that P(N ) is simply connected. We then prove that P(N ) being simply connected
ensures that any cycle in �n can be “paved” by triples with zero weight.13

To relate the geometrical properties of domain T to that of polytope P(N ), we use a
variation of the nerve theorem from algebraic topology. The nerve theorem has multiple

versions (see, e.g., Björner 1995). The classical one requires each set Tf
a �a ∈A, and each

possible intersection T
f
a0 ∩ T

f
a1 ∩ · · · ∩ T

f
aM to be either empty or contractible. If these

conditions are satisfied, the nerve theorem says, roughly speaking, that the geometrical
properties of T and P(N ) coincide. We need to establish, however, a weaker conclusion

12The definition of the nerve goes back to Alexandroff (1928).
13The latter step is related to Theorem 4 in Jiang et al. (2011). However, they consider a more restrictive

setting where {a�b}� {b� c}� {c�a} ∈ A1 implies {a�b� c} ∈ A2. This assumption is natural in their setting, but
might not be satisfied in our environment.
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so that T being simply connected implies that P(N ) is simply connected. Hence, we use

a weaker requirement on sets Tf
a and no requirement on their intersections.

We state and prove the formal result in Lemma 1 below. The result is new and does
not follow from the existing versions of the nerve theorem; hence, it requires a separate
proof. As the proof is technical, we postpone it to the Appendix.

Lemma 1. Let N be the nerve of the cover T = ⋃
a∈A T

f
a . If conditions (i) and (ii) are

satisfied, then P(N ) is simply connected.

We now show that any cycle in �n can be paved by triplets with zero weight. For
this purpose, we consider the following algebraic construction. Let us enumerate the
elements of finite set A in some way. We write a < b if a comes before b. Consider now
the linear space

R
A1 =

{ ∑
{a�b}∈A1

a<b

xab · ab where xab ∈R

}
�

We use the order on A to avoid counting ab and ba twice. For ba, we then write ba = (−1) ·
ab = −ab ∈ R

A1 . Any path p = (a0 → a1 → ·· · → aM) in �n has then a representative in
R
A1 :

r(p) = a0a1 + a1a2 + · · · + aM−1aM ∈R
A1 �

Having an order on A is important here, as p consists of directed edges in �n, and an
order on A allows us to distinguish directed edges a → b and b → a in R

A1 . Indeed,
r(a → b) = ab and r(b → a) = ba = −ab.

Slightly abusing the notation, we now define a linear function � :RA1 →R as

�

( ∑
{a�b}∈A1

a<b

xab · ab
)

def=
∑

{a�b}∈A1
a<b

xab�ab�

Function � measures the weight of any path p in �n. Indeed, if ai < ai+1, then �(aiai+1) =
�aiai+1 , and if ai > ai+1, then Fact 1 implies �(aiai+1) = �(−ai+1ai) = −�ai+1ai = �aiai+1 .
Therefore,

�
(
r(p)

) = �(a0a1)+ �(a1a2)+ · · · + �(aM−1aM)= �a0a1 + �a1a2 + · · · + �aM−1aM �

Using the above definitions, we need to prove that if path p = (a0 → a1 → ·· · → aM)

in �n is a cycle (i.e., aM = a0), then �(r(p)) = 0. We reformulate the last statement using
a linear map ∂1 : RA1 → R

A0 (called a boundary operator):

∂1

( ∑
{a�b}∈A1

a<b

xab · ab
)

def=
∑

{a�b}∈A1
a<b

xab · (b− a)�
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Operator ∂1 maps edge ab in N to the difference between its tail and head b− a. Hence,
if path p is a cycle in �n, we must have ∂1(r(p)) = 0 or r(p) ∈ ker∂1 ⊂ R

A1 . It is then
sufficient to show that � vanishes on any r(p) ∈ ker∂1.

To establish the latter result, we use Fact 2. According to Fact 2, function � vanishes
on the boundary of any triangle in A2. In addition, function � is linear. Hence, to show
that any cycle in �n has zero weight, it is sufficient to pave the cycle with triangles in A2.

To give an exact algebraic meaning to the idea of paving, consider the linear space
R
A2 (defined as a linear space of formal sums

∑
{a�b�c}∈A2
a<b<c

xabcabc with notation abc =
bca = cab = −acb = −cba = −bac for a < b < c) and a linear map ∂2 : RA2 → R

A1 defined
as

∂2

( ∑
{a�b�c}∈A2
a<b<c

xabc · abc
)

=
∑

{a�b�c}∈A2
a<b<c

xabc(ab+ bc+ ca)�

Operator ∂2 maps a triangle abc to the sum of its boundary edges ab+ bc+ ca. For exam-
ple, for a < c < b, we have ∂2(abc) = ∂2(−acb) = −(ac+ cb+ ba) = ab+ bc+ ca.

Hence, for cycle p, if we have r(p) ∈ Im∂2, then p can be paved by triangles in A2.
More precisely, Fact 2 allows us to prove that � vanishes on image Im∂2. Indeed, for any
{a�b� c} ∈A2, we have �(∂2(abc)) = �(ab+ bc+ ca) = 0. As maps � and ∂2 are linear, � also
vanishes on Im∂2.

We know that r(p) ∈ ker∂1 for any cycle p. Hence, it remains to show that ker∂1 =
Im∂2. It is easy to see that Im∂2 ⊂ ker∂1, as ∂1(∂2(abc)) = ∂1(ab+ bc+ ca) = (b− a)+ (c−
b)+ (a− c) = 0 for any {a�b� c} ∈ A2. To measure the difference between ker∂1 and Im∂2,
we consider the first homology of N defined as

H1(N �R) = ker∂1/ Im∂2�

Note that H1(N �R) is a linear space with dimH1(N �R) = dim ker∂1 − dim Im∂2. Hence,
Im∂2 = ker∂1 if and only if H1(N �R) = 0. The latter is guaranteed by the Hurewicz the-
orem, which ensures that if P(N ) is simply connected, then H1(N �R) = 0 (see Hatcher
2001). Hence, ker∂1 = Im∂2 by Lemma 1. In particular, r(p) ∈ Im∂2 for any cycle p in �n

and the weight of any cycle in �n is 0.

Finally, to establish the statement of Theorem 1, we show that any cycle in � has
nonnegative weight. Consider some cycle a0 → ·· ·aM−1 → a0 in �. The local-to-global
condition (iii) then implies that for each j = 0� � � � �M − 1, there exists a path aj ≡ a0

j →
·· ·aM(j)

j ≡ aj+1 in �n such that �ajaj+1 ≥ ∑M(j)−1
m=0 �

amj am+1
j

. Therefore,

M−1∑
j=0

�ajaj+1 ≥
M−1∑
j=0

M(j)−1∑
m=0

�
amj am+1

j
= 0�

This implies that � is cyclically monotone. Hence, f is also cyclically monotone.
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Figure 1. An example of a function that is monotone, but not cyclically monotone.

We now illustrate that the conditions of Theorem 1 are indispensable. For this pur-
pose, we consider the following example.

Example 1. Consider a domain that is the boundary of a triangle with vertices x =
(0�1�−1), y = (−1�0�1), and z = (1�−1�0). Its sides are [x�z), [z� y), and [y�x) (see
Figure 1). Assume that A = {a�b� c}, where a = (1�0�0), b = (0�1�0), and c = (0�0�1).
Function f is defined as

f (t) =

⎧⎪⎪⎨⎪⎪⎩
a if t ∈ [x�z)�
b if t ∈ (x� y]�
c if t ∈ [z� y)�

A calculation shows that �ab = −�ba = �bc = −�cb = �ca = −�ac = −1; hence, f is mono-
tone. There is a negative cycle, �ab + �bc + �ca = −3; hence, f is not cyclically mono-
tone. ♦

Example 1 presents a domain T = [x�z)∪ [z� y)∪ [y�x) that is not simply connected
and an allocation rule that is monotone, but not cyclically monotone.14 Note the local-
to-global condition is automatically satisfied for the allocation rule of Example 1 as each
pair of outcome sets intersects. To present an example of a function and a domain that
violates the local-to-global condition, cut a piece from the end of side [x�z). We ob-
tain simply connected domain T ′ = [x�z′) ∪ [z� y) ∪ [y�x) with z′ = (1/2�0�−1/2). If we
keep the same allocation rule on the remaining parts of the domain, lower bounds �

do not change. At the same time, sets T
f
a and T

f
b cease to be neighbors. Hence, lower

bound �ab should satisfy the local-to-global condition. However, it is not the case, as

−1 = �ab ≤ �ac + �cb = 2. Finally, we illustrate the importance of sets T
f
a �a ∈ A, being

path-connected. Let us take a piece out of the middle of side [x�z) leading to simply
connected domain T ′′ = [x�x′) ∪ (z′� z) ∪ [z� y) ∪ [y�x), x′ = (1/4�1/2�−3/4). If we keep
the same allocation rule, we obtain an example of an allocation rule that satisfies the
local-to-global condition, but with set Tf

a not path-connected. We again observe a do-
main and a monotone function that is not cyclically monotone.

14Note that domain T = [x�z) ∪ [z� y) ∪ [y�x) is not simply connected, as it is a loop that cannot be
continuously contracted within the domain to a point.
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Figure 2. An example of a star-shaped domain T and outcome sets corresponding to
f : T → {a�b� c�d� e� f } that satisfy the conditions of Corollary 1.

We now establish a corollary to Theorem 1 that provides easy to check sufficient
conditions on a domain T , a finite set A, and a monotone function f : T → A that guar-
antees f is also cyclically monotone.

Corollary 1. Suppose domain T is star-shaped and f : T → A is a monotone allocation

rule that satisfies the following property: for every a ∈ f (T), there exists t ∈ T
f
a such that

[s� t] ⊂ T for all s ∈ T . Then f is cyclically monotone.

A star-shaped domain and sets T
f
a �a ∈ A, that satisfy the conditions of Corollary 1

are illustrated in Figure 2. In the figure, domain T is star-shaped because any point in

T
f
f can be connected to any point in T with a line segment. Moreover, for any a�b ∈ A

and for any x ∈ T
f
a , there exists y ∈ T

f
b such that line segment [x� y] lies in T .

We now present a simple example of a star-shaped domain and a monotone alloca-
tion rule that is not cyclically monotone. The example also illustrates that the additional

condition on sets Tf
a in Corollary 1 cannot be dropped.

Example 2. Let us consider a modification of Example 1. We consider the domain con-
sisting of the union of two segments [x�z] and [x� y]. This is a star-shaped domain, as
x can be connected to any point in the domain with a line segment. There are three
alternatives A = {a�b� c} and allocation f ′ that coincides with allocation f in Example 1
on domain [x�z] ∪ [x� y]. Note that the only pre-image of alternative c is point z. The
definition of lower bounds then implies that �ab, �ba, �ac , and �bc remain unchanged.
A direct calculation also shows that �ca = zc − za = −1 and �cb = zc − zb = 1. Hence, f ′ is
monotone, but there is a negative cycle, �ab + �bc + �ca = −3. ♦

Remark 1. The result of Saks and Yu (2005) follows straightforwardly from Corollary 1,
as its conditions are trivially satisfied for convex domains.15 However, Corollary 1 can
be applied to more general settings when a domain can be represented as a union of
convex sets Ci, T = ⋃I

i=1 Ci, that have nonempty intersection Tcore = ⋂I
i=1 Ci. In such a

case, any point in Tcore can be connected to any point of the domain with a line segment.

15In the working paper version (Kushnir and Lokutsievskiy 2019), we also show how the result for single-
peaked preferences by Mishra et al. (2014) follows from Theorem 1.
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To ensure that the conditions of Corollary 1 are satisfied for a given monotone function,

it remains to show that each nonempty set Tf
a �a ∈A, contains a point in Tcore.

We use the conditions of Corollary 1 and the idea of Remark 1 to study the relation-
ship between monotone and cyclically monotone functions on the domain of gross sub-
stitutes and the domain of generalized gross substitutes and complements in the next
section.

4. Gross substitutes and complements

In this section, we apply our main results to study functions choosing among possible
object bundles defined on two important economic domains: the domain of gross sub-
stitutes and the domain of generalized gross substitutes and complements. The concept
of gross substitutes provides a sufficient condition that ensures the existence of Wal-
rasian equilibria in economies with indivisible objects. The domain of gross substitutes
has been explored extensively in the matching, auction, equilibrium, and algorithmic
literatures (see, e.g., Paes Leme (2017) and Murota (2016) for extensive surveys). The
domain of generalized gross substitutes and complements is a generalization of the first
domain that also allows for multiple objects of the same type and some complementar-
ities across objects (see Shioura and Yang 2015).

To define these domains, we consider a finite set of objects E and n = |E|. The set of
possible object bundles then equals 2E and N = 2|E|. For each bundle S ⊆ E, we denote
the agent’s value as t(S). Hence, vector t is an element of RN . Valuation t is called mod-
ular if t(S) = ∑

e∈S t(e) for all S ⊆ E. Finally, we define the demand correspondence for
any price p ∈R

n as

D(t�p)= arg max
S⊆E

{
t(S)−

∑
e∈S

p(e)

}
�

We now consider the following condition (see Kelso and Crawford 1982).

Definition 4. Valuation t satisfies the gross substitutes (GS) condition if, for any price
p ∈ R

n and any S ∈ D(t�p), if p′ is a price vector with p′ ≥ p, then there exists S′ ∈
D(t�p′) such that {e ∈ S : p(e) = p′(e)} ⊆ S′. The domain of all valuations satisfying the
GS condition is denoted by Tgs .

In other words, an increase in the price of some goods does not cause a decrease
in the demand for other goods. Reijnierse et al. (2002) and Fujishige and Yang (2003)
show that the GS condition can be formulated purely in terms of inequalities on the
agent’s values. The following example presents their characterization for the case of
three objects.

Example 3. For |E| = 3, t ∈ Tgs if and only if for all distinct i� j�k ∈ E, we have

t
({i� j} ∪ {k}) + t

({k}) ≤ t
({i�k}) + t

({j�k})�
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t
({i� j}) + t(∅) ≤ t

({i}) + t
({j})�

t
({i� j}) + t

({k}) ≤ max
{
t
({i�k}) + t

({j})� t({j�k}) + t
({i})}� ♦

Example 3 illustrates that domain Tgs is not convex (because of the third set of in-
equalities). In general, domain Tgs consists of several convex polytopes and, therefore,
can be quite complex.

For the domain of gross substitutes, it is natural to consider functions f : Tgs → 2E .
However, 2E is not a subset of RN , and, hence, neither Definitions 1 and 2 in Section 2
nor our results in Section 3 formally apply. To accommodate the subtlety, with each set
S ⊆ E we associate an indicator α(S) ∈ {0�1}N , with a component corresponding to set
S equal to 1 and all other components equal to 0. Hence, for any t ∈ Tgs , we have t(S) =
t · α(S). We denote then the union of these indicators as A ⊂ R

N and the constructed
one-to-one function as α : 2E →A.16

This construction allows us to consider functions f : Tgs → 2E within our frame-
work. Define f̃ = α ◦ f . Then f : Tgs → 2E is monotone (or cyclically monotone) if
and only if f̃ : Tgs →A is monotone (or cyclically monotone) according to Definitions 1
and 2. We can then apply the result of Corollary 1 to obtain the following result.

Theorem 2 (Gross substitutes). If a function f : Tgs → 2E is monotone, then it is cycli-
cally monotone.

Proof. Let us consider a monotone function f : Tgs → 2E . Function f is monotone if
and only if the associated f̃ = α◦f is monotone. We show that every monotone f̃ : Tgs →
A satisfies the conditions of Corollary 1. For this purpose, we establish that domain Tgs

satisfies two important properties:

(i) Any modular valuation m belongs to Tgs .

(ii) For any modular m and β ∈ [0�1], if t ∈ Tgs , then βt + (1 −β)m ∈ Tgs .

The first property is well known (e.g., Paes Leme 2017) and follows from the definition
of demand correspondence. Indeed, for any modular m and p ∈R

n, we have

S ∈D(m�p) ⇔ {
e ∈E : m(e) > p(e)

} ⊆ S ⊆ {
e ∈E : m(e)≥ p(e)

}
�

Therefore, an increase in the price of some goods does not cause a decrease in de-
mand for other goods.

To verify the second property, for any modular valuation m ∈ R
N , we denote m̃ ∈ R

n

such that m̃(e) = m(e) for each e ∈ E. For any price p ∈ R
n and any β ∈ (0�1], we then

have

D
(
βt + (1 −β)m�p

) = arg max
S⊆E

{
βt(S)+ (1 −β)m(S)−

∑
e∈S

p(e)

}
= D

(
t�p/β− m̃(1 −β)/β

)
�

16This construction is similar to the one used in our mechanism design interpretation (see the Introduc-
tion).
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Therefore, if demand D(t�p) satisfies the GS condition for any p ∈ R
n, so does D(βt +

(1 −β)m�p). For β= 0, the second property follows from the first one.
Properties (i) and (ii) stated above imply that domain Tgs is star-shaped. To check

the requirement of Corollary 1 on sets T
f
a �a ∈ A, we need to establish that every

nonempty set Tf
a contains a point that can be connected to any point in Tgs with a line

segment within Tgs . Using the one-to-one correspondence α : 2E → A, consider S ⊆ E

such that a= α(S). We then have

T
f
a = {

t ∈ Tgs : t(S)− t(G)≥ �SG�∀G⊂ E
}
�

where �SG = �α(S)α(G) for all G ⊂ E. If Tf
a is nonempty, we have �SG < +∞ for all G ⊂ E.

Consider a modular valuation

m(e) =
{
M if e ∈ S�

−M if e /∈ S�

For sufficiently large M > 0, such modular valuation m satisfies inequalities m(S) −
m(G) ≥ �SG for all G ⊂ E. Therefore, m lies in T

f
a . Hence, property (ii) implies that

each nonempty T
f
a contains a point that can be connected with a line segment to any

point in Tgs . Overall, every monotone function f̃ : Tgs → A satisfies the conditions
of Corollary 1. Hence, it is cyclically monotone. Therefore, every monotone function
f : Tgs → 2E is cyclically monotone.

The proof of Theorem 2 has a nice geometric interpretation. As we mentioned before
Example 3, Reijnierse et al. (2002) and Fujishige and Yang (2003) showed that domain
Tgs can be represented as a union of convex polytopes. We established that the inter-
section of these convex polytopes is nonempty and contains all modular valuations and

each nonempty T
f
a contains a modular valuation. Hence, all conditions of Corollary 1

are satisfied (see Remark 1).
We now extend the above result to the domain of generalized gross substitutes and

complements (GGSC). To define the GGSC condition, consider a finite set of object types
E and n = |E|. There can be several objects of each type, and we denote the bundle
of available objects as ω = (ω1� � � � �ωn) ∈ Z

E+, where ωe denotes the available number
of objects of type e ∈ E. The types can be divided into two classes E = E1 ∪ E2 with
E1 ∩E2 =∅. We also denote Ec

j as the complement of set Ej� j = 1�2. The objects are sub-
stitutes within each class and complements across the classes. For example, E1 could be
considered the set of left shoes and E2 the set of right shoes. A more practical exam-
ple concerns the allocation of spectrum licenses. There are two geographic regions and
radio spectra. Radio spectrum licenses are substitutes within each region, but comple-
ments across regions.

Denote the set of feasible object bundles as � = {z ∈ Z
n+ : z ≤ ω} and N = |�|. Each

agent valuation is then t : � → R. A vector p = (p1� � � � �pn) ∈ R
n indicates the price for

each type. For each price and agent valuation, we consider demand correspondence

D(p� t)= arg max
z∈�

{
t(z)−p · z}�
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Denote χe ∈ R
n as the vector with all zeros except one on the place corresponding to

object type e ∈E and χ0 = 0. We say also that C ⊆ Z
n is a discrete convex set if it contains

all integer vectors in its convex hull. Shioura and Yang (2015) introduced the following
definition.

Definition 5. Valuation t satisfies the generalized gross substitutes and complements
(GGSC) condition if the following conditions hold:

(i) For any price p ∈R
n, D(p,t) is a discrete convex set.

(ii) For any price p ∈ R
n and any e ∈ Ej , j = 1�2, δ > 0, and z ∈ D(p� t), there exists

z′ ∈D(p+ δχe� t) such that

(∀l ∈Ej\{e}
)
z′
l ≥ zl�

(∀l ∈ Ec
j

)
z′
l ≤ zl�∑

l∈Ej

zl −
∑
l∈Ec

j

zl ≥
∑
l∈Ej

z′
l −

∑
l∈Ec

j

z′
l�

The domain of all the valuations satisfying the GGSC condition is denoted by Tggsc .

The GGSC condition states that the objects of each type in each set Ej are substi-
tutes, but that goods across the two sets E1 and E2 are complements. In particular, let
us assume that bundle z is demanded for price vector p. If the price of type k ∈ Ej is
increased, then demand for objects of the other types in Ej will not decrease whereas
demand for objects of each type in the other group Ec

j will not increase. In addition, the
difference in demand between the two groups at the new prices should not exceed the
difference at the old prices.

Note that when there is only one object of each type ω = (1� � � � �1), domain Tggsc

coincides with the domain of gross substitutes and complements introduced by Sun and
Yang (2006, 2009). Additionally, if ω = (1� � � � �1) and either E1 = ∅ or E2 = ∅, domain
Tggsc coincides with the domain of gross substitutes Tgs (see Shioura and Yang 2015).

Furthermore, any function f : Tggsc → � can be put into our environment in a simi-
lar way. For any z ∈ �, we again associate an indicator α(z) ∈ {0�1}N with a component
corresponding to z equal to 1 and all other components equal to 0. Therefore, t(z) =
t · α(z). Denote the union of all these indicators as A� ⊂R

N and f̃ = α ◦ f : Tggsc → A�.
So f is called monotone (or cyclically monotone) if f̃ is monotone (or cyclically mono-
tone). We then establish the following result.

Theorem 3 (Generalized gross substitutes and complements). If a function f : Tggsc →
� is monotone, then it is cyclically monotone.

Theorem 3 subsumes Theorem 2. At the same time, Theorem 3 requires a more in-
volved proof that uses the characterization of domain Tggsc in terms of the GM concave
functions introduced in Shioura and Yang (2015). We postpone the details until the Ap-
pendix.
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5. Conclusion

In this paper, we provide sufficient conditions for a monotone function with a finite set
of outcomes to be cyclically monotone. Using these conditions, we established that for
the domain of gross substitutes and the domain of generalized gross substitutes and
complements, any monotone function that chooses among possible object bundles is
cyclically monotone.

The relationship between the monotone and cyclically monotone conditions has
implications beyond mechanism design. In revealed preference theory, Chambers and
Echenique (2018) use it to establish that a demand function is strongly rationalizable
with a quasilinear utility if and only if it satisfies a continuity condition and the law of
demand (i.e., the negative of the demand function is monotone) (see also Amir et al.
2017). In producer choice theory, the working paper version (Kushnir and Lokutsievskiy
2019) shows that any weakly rationalizable supply functions with a finite range that is
positive homogeneous of degree zero is characterized by the law of supply (i.e., the sup-
ply function is monotone). We also explain how the reduction of cyclic monotonicity to
the requirement of an allocation being monotone is helpful in solving spatial allocation
problems.

Finally, we want to highlight a limitation of our approach. Our approach is con-
fined to settings with a finite set of outcomes, because our main building block—the
nerve theorem—does not hold when the set of outcomes is infinite (see Björner 1995).
For those interested in an infinite set of outcomes, Carbajal and Müller (2015, 2017)
and Archer and Kleinberg (2014) provide conditions when a monotone function is cycli-
cally monotone.17 Understanding when these conditions are applicable to various con-
vex and nonconvex domains is an important direction for future research. This exten-
sion will have invaluable implications for some identification problems in econometrics
(e.g., Shi et al. 2018).

Appendix

A.1 Proof of Lemma 1

We call a subset of T closed if it is an intersection of T and some closed subset of RN .
This is a standard convention when one considers the closed subsets of some set.

Let us first prove that P(N ) is path-connected. For this purpose, consider the
union of all edges in P(N ) that we call 1-skeleton P1(N ). We show that P1(N ) is path-
connected. Indeed, if we were able to decompose A into two nonintersecting sets
A= A′ ∪A′′ such that for any a′ ∈A′ and a′′ ∈A′′ vertices a′ and a′′ are not connected in

P1(N ), then sets T ′ = ⋃
a′∈A′ T

f
a′ and T ′′ = ⋃

a′′∈A′′ T
f
a′′ would not intersect. This contra-

dicts set T being path-connected, as T = T ′ ∪ T ′′ and both T ′ and T ′′ are closed subsets
of T . Hence, P1(N ) is path-connected, which implies that P(N ) is also path-connected.

Now, we prove that P(N ) is simply connected. The proof is based on the following
carrier theorem, which is a standard tool to prove nerve-type theorems (see Nagórko
2007, Björner 1995). In Nagórko (2007), the carrier theorem is proved under very general
assumptions. We adopt his statements to our setting.

17See also Berger et al. (2017).
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Definition A1. Let X = ⋃
a∈AXa and Y = ⋃

b∈B Yb, where A and B are some sets of
indices. A carrier is a map C : A → B such that if

⋂
a∈A′ Xa �= ∅ for some A′ ⊂ A, then⋂

b∈C(A′) Yb �= ∅. We say that a map f : X ′ → Y defined on a closed subset X ′ ⊂ X is
carried by C if f (Xa ∩X ′)⊂ YC(a) for all a ∈A.

Definition A2. A topological space Z is an absolute extensor for a topological space W

if each continuous map from a closed subset of W into Z extends over the entire W .18

For example, two-point set {0�1} is not an absolute extensor for interval [0�1], and
any space Z is an absolute extensor for {0�1}, as any map {0�1} →Z is continuous.

Theorem A1 (Carrier theorem, Nagórko (2007)). Let X = ⋃
a∈AXa ⊂ R

n and Y =⋃
b∈B Yb ⊂ R

m, and let C : A → B be a carrier. If A and B are finite, Xa is a closed sub-
set of X for each a ∈ A, and for any nonempty B′ ⊂ B,

⋂
b∈B′ Yb is an absolute extensor for

X , then there exists a continuous map f :X → Y carried by C.

To use the carrier theorem, we need some covers of two spaces. We already have

cover T = ⋃
a∈A T

f
a , where T

f
a are closed subsets of T (since each T

f
a is an intersection of

T with a collection of closed half-spaces). The second space is the geometric realization
of nerve P(N ), and we consider its cover by barycentric stars that can be constructed
as follows. For any simplex σ ∈ N , we denote the corresponding face center of mass
by B(σ) ∈ P(N ), which is also called barycenter B(σ) = 1/|σ |∑a∈σ a. For a given vertex
a ∈ A0, we also consider new simplices with vertices in barycenters B(σ1), � � �, B(σr)

and such that a ∈ σ1 ⊂ · · · ⊂ σr ∈ N (including the case σ1 = {a}). The union of all such
simplices is called the barycentric star of a and is denoted

bsta =
⋃

a∈σ1⊂···⊂σr∈N
conv

{
B(σ1)� � � � �B(σk)

}
�

Barycentric stars are closed star-shaped sets and P(N ) = ⋃
a∈A0

bsta.

Definition A3. A cover X = ⋃
a∈AXa with A being finite and Xa being closed subsets

of X is called regular for metric spaces if, for any nonempty A′ ⊂ A set,
⋂

a∈A′ Xa is an
absolute extensor for any metric space.

Lemma 3.2 in Nagórko (2007) shows that cover P(N ) = ⋃
a∈A0

bsta is a regular cover
for metric spaces. Therefore, for any nonempty A′

0 ⊂A0,
⋂

a∈A′
0

bsta are absolute exten-

sors for T as T ⊂R
N .

Consider a carrier C : A → A0 for covers T = ⋃
a∈AT

f
a and P(N ) = ⋃

a∈A0
bsta that

sends each a ∈A to the corresponding a ∈A0. Note that both C and C−1 by the definition
of the nerve (see Lemma 3.2 in Nagórko (2007)). Moreover, for any nonempty A′

0 ⊂ A0,⋂
a∈A′

0
bsta is an absolute extensor for T as shown above. By the carrier theorem, there

exists a continuous map κ : T → P(N ) carried by C.

18The definition is given for arbitrary topological spaces. Any subset of Rn is a metric space and any
metric space is a topological space.
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Figure 3. Map λ : P1(N ) → T carried by C−1, where C : A → A0 is a carrier for covers
T = ⋃

a∈A T
f
a and P(N )= ⋃

a∈A0
bsta.

We construct a map λ : P1(N ) → T carried by C−1 (see Figure 3). For any a ∈ A0, we

pick a point ta in T
f
a , and for any {a�b} ∈A1, we pick a point tab in T

f
a ∩T

f
b . Recall that the

definition of nerve N implies that Tf
a �= ∅ for a ∈ A0 and T

f
a ∩ T

f
b �= ∅ for {a�b} ∈ A1. We

define λ by sending each half of edge [a�B({a�b})] into a continuous path connecting ta

and tab (note that such a path exists as Tf
a is path-connected). This construction implies

that for any x ∈ P1(N )∩bsta = ⋃
b∈A[a�B({a�b})], we have λ(x) ∈ T

f
a . Hence, λ is carried

by C−1.
Recall now some definitions from topology. A continuous map from circle S1 to Y

is called a loop in Y , i.e., η : S1 → Y . Loop η is called trivial if there exists y0 ∈ Y such
that η(S1) ≡ y0. Two continuous maps f0� f1 : X → Y are homotopic if there exists a
continuous map F : [0�1] ×X → Y such that F(0�x) ≡ f0(x) and F(1�x) ≡ f1(x). Hence,
Y is simply connected if it is path-connected and any loop in Y is homotopic to some
trivial loop.

Using continuous maps κ : T → P(N ) and λ : P1(N ) → T , we can now prove that
P(N) is simply connected. Consider a loop γ in P(N ). By the cellular approximation
theorem (see Hatcher 2001), γ is homotopic to a loop γ′ in 1-skeleton P1(N ), γ′ : S1 →
P1(N ). We consider a loop λ◦γ′ in T , λ◦γ′ : S1 → T . Loop λ◦γ′ is homotopic to a trivial
loop in T , as T is simply connected. Hence, there exists a continuous map F[0�1] ×
S1 → T such that F(0� s) ≡ λ(γ′(s)) and F(1� s) ≡ const. We claim that γ′′ = κ ◦ λ ◦ γ′ is
homotopic to a trivial loop in P(N ). Indeed, κ ◦ F is a homotopy contracting γ′′ to a
point, since κ(F(0� s)) ≡ γ′′(s) and κ(F(1� s)) ≡ const. To establish that γ is homotopic to
a trivial loop in P(N ), it remains to prove that γ′ and γ′′ are homotopic, as the homotopic
property is transitive.

To prove that γ′ and γ′′ are homotopic, we first show that they have the following
property: for any s ∈ S1, there exists a ∈ A0 such that γ′(s)�γ′′(s) ∈ bsta. Nagórko (2007)
calls such loops {bsta}a∈A0 -close. Indeed, for any s ∈ S1, there exists a ∈ A0 such that
γ′(s) ∈ bsta, as P(N ) = ⋃

a∈A0
bsta is a cover. Since λ is carried by C−1, we also must have

λ(γ′(a)) ∈ T
f
a . Since κ is carried by C, we also have γ′′(s) = κ(λ(γ′(s))) ∈ bsta. In addi-

tion, cover P(N ) = ⋃
a∈A0

bsta is regular for metric space (see Lemma 3.1 in Nagórko

(2007)) and S1 × [0�1] is a metric space. Therefore, Corollary 2.1 in Nagórko (2007) im-
plies that γ′ and γ′′ are homotopic.
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A.2 Proof of Corollary 1

We first note that any star-shaped domain is simply connected. Indeed, take some point
x ∈ T that can be connected with a line segment to any point in T . Such x is called
a base point. Hence, any loop in T can be continuously contracted to x. Hence, any
star-shaped domain is simply connected.

Since any nonempty T
f
a contains a base point of T , the line segment connecting

the base point and a point in T
f
a lies in T . The line segment also lies in T

f
a as T

f
a is an

intersection of T with some half-spaces. Hence, Tf
a is path-connected.

Finally, we establish that any monotone function f that complies with the condi-
tions of the corollary also satisfies the local-to-global condition. In particular, if every

nonempty T
f
a contains a base point of T , function f satisfies the following geometric

property: for any a�b ∈ f (T) and for any x ∈ T
f
a , there exists y ∈ T

f
b such that line seg-

ment [x� y] lies within T . The following lemma establishes that this geometric property
ensures that every monotone f also satisfies the local-to-global condition.

Lemma A1. Consider a domain T ⊂ R
N , a finite set A ⊂ R

N , and f : T → A. Suppose

that f is monotone, and for any a�b ∈ f (T) and x ∈ T
f
a , there exists y ∈ T

f
b such that line

segment [x� y] lies within T . Then f satisfies the local-to-global condition.

Proof. Consider outcomes a�b ∈ f (T) with T
f
a ∩ T

f
b = ∅. Take some x ∈ T

f
a and y ∈ T

f
b

such that line segment [x� y] lies within T . Denote the intersection of closed half-spaces

as T̃
f
q = {t ∈ R

N : t(q − c) ≥ �qc�∀c ∈ A}. Note T
f
q = T ∩ T̃

f
q . Since any set T̃ f

q is closed

and convex for any q ∈A, intersection [x� y] ∩ T
f
q = [x� y] ∩ T̃

f
q is either a closed interval,

a point, or an empty set. We claim that the following choices are possible:

(i) A path {a ≡ a0� � � � � aM ≡ b} such that Tf
am ∩T

f
am+1 �= ∅, m= 0� � � � �M−1, and [x� y]∩

T
f
am �=∅.

(ii) Points zm ∈ [x� y]∩T
f
am such that zm+1 −zm �= 0 and the vectors zm+1 −zm and x−y

are co-directed for any m= 1� � � � �M − 1.

This can be done in the following way. We put a0 = a and z0 = x. Then we denote the

right end of interval [x� y] ∩ T
f
a0 by z1. Point z1 must belong to some set Tf

q �q �= a0. We

put a1 = q. The right end of interval [x� y] ∩ T
f
a1 we denote by z2. Point z2 must belong

to some set Tf
q′� q′ �= a0� a1. We put a2 = q′. We repeat the process until we cover the

whole interval [x� y]. We finish in a finite number of steps as set A is finite and we pick
different points at each step. Finally, we eliminate those zm and am for which zm−1 = zm

and update the numeration of am and zm, preserving the order. Note that Tf
am ∩T

f
am+1 �= ∅

because both sets contain zm+1.
For each zm ∈ [x� y] ∩ Tam�m= 1� � � � �M , we could write

x(a− b)=
M−1∑
m=0

x(am − am+1)
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= x(a0 − a1)+
M−1∑
m=1

(x− zm)(am − am+1)+
M−1∑
m=1

zm(am − am+1)�

Since all zm belong to the same interval [x� y] and zm �= zm+1, there exists λm such that

x − zm = λm(zm − zm+1). Moreover, λm > 0 by the choice of zm. As zm ∈ T
f
am and zm+1 ∈

T
f
am+1 , f being monotone implies

(x− zm)(am − am+1)= λm
(
zm(am − am+1)+ zm+1(am+1 − am)

)
≥ λm(�amam+1 + �am+1am) ≥ 0�

Taking into account that x(a0 −a1) ≥ �a0a1 and zm(am −am+1)≥ �amam+1 , we obtain x(a−
b) ≥ ∑M−1

m=0 �amam+1 . Hence, �ab ≥ ∑M−1
m=0 �amam+1 , where T

f
am ∩ T

f
am+1 �= ∅ for each m =

1� � � � �M − 1.

All three conditions of Theorem 1 are satisfied. Hence, f is cyclically monotone.

A.3 Proof of Theorem 3

Similarly to how the domain of gross substitutes can be characterized in terms of in-
equalities on the agent’s values (see Example 3; Reijnierse et al. 2002, Fujishige and Yang
2003), Theorem 3.3 in Shioura and Yang (2015) shows that t ∈ Tggsc if and only if it is
GM-concave.

To define GM-concave valuations, let U : Rn → R
n be a diagonal matrix U =

diag(1� � � � �1�−1� � � � �−1) that contains 1 as the first |E1| elements and −1 as the remain-
ing |E2| elements. Denote supp(z) = {e : ze > 0} for z ∈ Z

n. A valuation t : � →R is called
GM-concave if

∀z� z′ ∈ � ∀e ∈ supp
(
U

(
z − z′)) ∃l ∈ supp

(
U

(
z′ − z

)) ∪ 0 :
t(z)+ t

(
z′) ≤ t

(
z −U(χe −χl)

) + t
(
z′ +U(χe −χl)

)
� (3)

In fact, each inequality (3) determines a half-space in R
N . Hence, the set of all GM-

concave functions (and, hence, domain Tggsc) is the union of some convex polytopes.
Now we construct a generalization of modular valuations. Let ge : {0�1� � � � �ωe} → R

be arbitrary concave functions for 1 ≤ e≤ n. Put

m : � →R� m(z) =
n∑

e=1

ge(ze) for z ∈ ��

Note that valuation m is linear in object types, but concave in the number of objects. So
we call such valuations modular-concave. We show below that these valuations satisfy
inequalities (3) for each e ∈ supp(U(z− z′)) and each l ∈ supp(U(z′ − z))∪ 0. Hence, they
belong to the intersection of the convex polytopes shaping domain Tggsc . This helps us
to establish that the conditions of Corollary 1 are satisfied (see also Remark 1).
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Let us show that each modular-concave valuation satisfies inequalities (3) for each
e ∈ supp(U(z − z′)) and each l ∈ supp(U(z′ − z)) ∪ 0. Using the definition of modular-
concave valuation, we obtain that condition (3) is equivalent to

ge(ze)+ ge
(
z′
e

) + gl(zl)+ gl
(
z′
l

)
≤ ge(ze −Uχe)+ ge

(
z′
e +Uχe

) + gl(zl +Uχl)+ gl
(
z′
l +Uχl

)
�

Hence, it is sufficient to prove separately the following inequalities for each e ∈
supp(U(z − z′)) and each l ∈ supp(U(z′ − z))∪ 0:

ge(ze)+ ge
(
z′
e

) ≤ ge(ze −Uχe)+ ge
(
z′
e +Uχe

)
� (4)

gl(zl)+ gl
(
z′
l

) ≤ ge(zl +Uχl)+ gl
(
z′
l −Uχl

)
� (5)

We begin with inequality (4). If e ∈E1, then ze > z′
e and (4) becomes

ge(ze)− ge(ze − 1)≤ ge
(
z′
e + 1

) − ge
(
z′
e

)
�

which follows from the concavity of ge. If e ∈ E2, then ze < z′
e and (4) becomes

ge(ze + 1)− ge(ze)≥ ge
(
z′
e

) − ge
(
z′
e − 1

)
�

which follows from the concavity of ge. Hence, (4) holds for each e ∈ supp(U(z −w)).
Now we proceed to inequality (5). If l = 0, then (5) is obviously satisfied as equality.

If l ∈E1, then zl < z′
l and (5) becomes

gl(zl + 1)− gl(zl)≥ gl
(
z′
l

) − gl
(
z′
l − 1

)
�

which follows from the concavity of gl. Finally, if l ∈E2, then zl > z′
l and (5) becomes

gl(zl)− gl(zl − 1)≤ gl
(
z′
l + 1

) − gl
(
z′
l

)
�

which follows from the concavity of gl. Hence, (5) holds for each l ∈ supp(U(z′ − z))∪ 0.
Now we use modular-concave valuations to show that any monotone function f̃ :

Tggsc → A� satisfies the conditions of Corollary 1. First, let us show that any modular-
concave valuation m can be connected with an arbitrary t ∈ Tggsc by a segment line
within Tggsc . In other words, we need to show that for any β ∈ [0�1], (1 − β)t + βm ∈
Tggsc . Fix arbitrary z�w ∈ � and e ∈ supp(U(z − w)). Since 1 − β ≥ 0, valuation (1 − β)t

satisfies (3) for some l = l0 ∈ supp(U(z′ − z)) ∪ 0. At the same time, valuation βm is
modular-concave and satisfies (3) for each l ∈ supp(U(z′ − z)) ∪ 0, as we showed above.
Therefore, (1 −β)t +βm satisfies (3) for l = l0 and, hence, (1 −β)t +βm ∈ Tggsc . There-
fore, domain Tggsc is star-shaped.

It remains to establish that any nonempty set Tf
a contains a modular-concave val-

uation. Using the one-to-one correspondence α : � → A�, consider z ∈ � such that
a = α(z). We then have

T
f
a = {

t ∈ Tggsc : t(z)− t
(
z′) ≥ �zz′ ∀z′ ∈�

}
�
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where �zz′ ≡ �α(z)α(z′) for all z′ ∈�. If Tf
a is nonempty, then �zz′ < +∞ for all z′ ∈�. For a

given z ∈�, consider concave functions

ge(i) = −M|ze − i|

for e = 1� � � � � n, i = 1� � � � �ωe, and M > 0. These functions define a modular-concave
valuation m∗. Let us show that m∗ ∈ T

f
a for sufficiently large M > 0. Indeed, for any

z′ ∈�, we have

m∗(z)−m∗(z′) =
n∑

e=1

(
ge(ze)− ge

(
z′
e

)) =M

n∑
e=1

∣∣ze − z′
e

∣∣ ≥ �zz′ �

For z′ = z, the above inequality is satisfied as �zz ≡ �aa = 0. For z′ �= z, the above inequal-
ities are satisfied as �zz′ <+∞ and M is large enough.

Therefore, m∗ lies in T
f
a . Hence, Tf

a contains a valuation that can be connected with
a line segment to any valuation in Tggsc . Overall, any monotone function f̃ : Tggsc →A�

satisfies the conditions of Corollary 1. Hence, it is cyclically monotone. Therefore, every
monotone function f : Tggsc → � is cyclically monotone.
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