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Minimally unstable Pareto improvements over deferred
acceptance

Battal Doğan
Department of Economics, University of Bristol

Lars Ehlers
Département de Sciences Économiques and CIREQ, Université de Montréal

We investigate efficient and minimally unstable Pareto improvements over the de-
ferred acceptance (DA) mechanism—a popular school choice mechanism that is
stable but not efficient. We show that there is no Pareto improvement over the DA
mechanism that is minimally unstable among efficient assignments when the sta-
bility comparison is based on counting the number of blocking pairs. Our main
result characterizes the priority profiles for which there exists a Pareto improve-
ment over the DA assignment that is minimally unstable among efficient assign-
ments. We further consider an alternative natural stability comparison based on
the set of blocking students who are involved in at least one blocking pair, show
that the impossibilities remain, and characterize the possibility domain of priority
profiles.

Keywords. School choice, deferred acceptance, stability comparisons, cardinal
minimal instability.

JEL classification. C70, D47, D61, D63.

1. Introduction

Assigning students to schools in a desirable way, taking into account both the prefer-
ences of the students and their priorities at different schools, has led to an extensive
school choice literature starting with the seminal study by Abdulkadiroğlu and Sönmez
(2003). In the meantime, centralized school choice systems have been implemented in
many school districts around the world. Both in theory and in practice, the deferred ac-
ceptance (DA) mechanism (Abdulkadiroğlu and Sönmez (2003)), which is based on the
DA algorithm (Gale and Shapley (1962)), stands out as a central school choice mecha-
nism.
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1250 Doğan and Ehlers Theoretical Economics 16 (2021)

The DA mechanism offers a compromise between two natural and desirable proper-
ties that are, in general, incompatible: (Pareto) efficiency and stability. An assignment is
efficient if there is no other assignment at which a student is better off while no student
is worse off. An assignment is stable (or fair) if it does not involve a “blocking pair” of
a student and a school such that the student prefers the school to his assigned school
and he has a higher priority than another student who is assigned to that school. Unfor-
tunately, there are school choice problems without an assignment that is both efficient
and stable.1 The DA mechanism is stable, and although it is not efficient, it is “con-
strained efficient” as it always chooses the students-optimal (with respect to the Pareto
dominance comparison) stable assignment (Gale and Shapley (1962)).

Given the inefficiency of the DA mechanism, the literature has been investigating
Pareto improvements over the DA mechanism.2 In this paper, we insist on efficiency
and investigate Pareto improvements over the DA assignment that are minimally unsta-
ble among efficient assignments: such assignments are efficient and there is no other
efficient assignment that is more stable. To formulate what it means to be more stable,
we first consider comparing assignments by comparing their sets of blocking (student–
school) pairs. An assignment is more stable than another assignment if the set of block-
ing pairs in the former is a proper subset of the set of blocking pairs in the latter as-
signment. This method has a corresponding cardinal version where an assignment is
cardinally more stable than another assignment if the number of blocking pairs in the
former assignment is less than the number of blocking pairs in the latter assignment.
Minimal instability is a relatively weak requirement as many assignments are incompa-
rable when their sets of blocking pairs are compared in the set inclusion sense, which is
not the case for cardinal minimal instability.3

It turns out that there is a Pareto improvement over the DA mechanism that is min-
imally unstable among efficient assignments: the efficiency adjusted deferred accep-
tance (EADA) mechanism (Kesten (2010)). That is, at each problem, the EADA mecha-
nism produces an assignment that is minimally unstable among efficient assignments.4

However, there is no Pareto improvement over the DA mechanism that is cardinally min-
imally unstable among efficient assignments (Proposition 2). Our main result character-
izes the priority profiles for which there exists a Pareto improvement over the DA assign-
ment that is cardinally minimally unstable among efficient assignments (Theorem 1).5

Our characterization result provides two important insights.

1This follows from an example in Roth (1982). It is more explicitly shown in Abdulkadiroğlu and Sönmez
(2003).

2See, among others, Abdulkadiroğlu et al. (2015), Che and Tercieux (2019), Kesten (2010), Dur et al.
(2019), Erdil and Ergin (2008), and Kesten and Kurino (2019). Pareto improvements over the DA mecha-
nism violate strategy-proofness (Abdulkadiroğlu et al. (2009), Kesten (2010), Kesten and Kurino (2019)). We
discuss strategy-proofness in Section 6.

3Clearly, if an assignment is more stable than another assignment, then it is also cardinally more stable.
4This result also follows from Tang and Zhang (2021). We present our proof, which is independent and

different.
5The main result is presented in the unit capacity setup. In Appendix A.2, we show that the characteriz-

ing conditions are still necessary conditions for the EADA assignment to be cardinally minimally unstable
among efficient assignments in the general multicapacity case and essentially the main insights extend to
the general setup.
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(a) For any priority profile for which there exists a Pareto improvement over the DA
assignment that is cardinally minimally unstable among efficient assignments,
the DA assignment always includes at most one improvement cycle6 and there is a
unique efficient Pareto improvement over the DA assignment. This result suggests
that such priority profiles are quite restricted.

(b) Our characterization result fully uncovers the three potential reasons why a Pareto
improvement over the DA assignment, for example, the EADA assignment, may
fail to be cardinally minimally unstable among efficient assignments. Each po-
tential reason corresponds to the violation of one of the three conditions in Theo-
rem 1. A key condition is based on a novel acyclicity notion.

Comparing the sets of blocking pairs is a reasonable stability comparison method in
the context of school choice because a student who is involved in a blocking pair is being
treated unfairly, which makes the assignment open to criticism on fairness grounds and
even on legal grounds, since the student may pursue legal action against the school dis-
trict.7 Minimizing blocking pairs, in a sense, minimizes unfairness and possibilities of
legal action. The same perspective justifies another natural stability comparison: com-
paring the sets of blocking students, i.e., students involved in at least one blocking pair.
According to this alternative method, an assignment is blocking–student-wise (BS-wise)
more stable than another assignment if the set of blocking students in the former is a
proper subset of the set of blocking students in the latter assignment. This method also
has a corresponding cardinal version such that an assignment is BS-wise cardinally more
stable than another assignment if the number of blocking students in the former is less
than the number of blocking students in the latter assignment.

It turns out that there is no implication relation between any of the blocking–
student-wise notions and any of the blocking–pair-wise notions. More interestingly,
there is no mechanism that Pareto improves over the DA mechanism and that is BS-
wise minimally unstable among efficient assignments (Proposition 3), and, in particular,
the EADA mechanism is not BS-wise minimally unstable among efficient assignments.
Our results suggest that the EADA mechanism’s failure of cardinal minimal instability
while satisfying minimal instability cannot be solely attributed to the cardinal feature
of the comparison method and that several conclusions related to minimal instability
are sensitive to the choice of the stability comparison method.8 We characterize the
priority profiles for which there exists a Pareto improvement over the DA assignment
that is BS-wise cardinally minimally unstable among efficient assignments (Theorem 2),
which results in similar insights as above: For any “possibility priority profile,” there is
a unique efficient Pareto improvement over the DA assignment, which includes exactly
one blocking student, and our characterization result again fully uncovers all potential
reasons for impossibility.

6See Section 3 for a definition of an improvement cycle.
7Ehlers and Morrill (2020) provide a thorough analysis of legal assignments in school choice.
8Not all conclusions have to be sensitive, however. In Doğan and Ehlers (2020b), we show that a result

by Abdulkadiroğlu et al. (2020), which relies on a particular stability comparison method, is, in fact, robust
to the choice of the stability comparison method.
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1.1 Related literature

Our methods to compare assignments by their stability are inspired by comparison
methods in recent studies (here, we provide a non-exhaustive list). In Pathak and Sön-
mez (2013), school choice mechanisms are compared in terms of their manipulability
by comparing the sets of problems, in the set inclusion sense, at which they are ma-
nipulable. In Andersson et al. (2014), resource allocation mechanisms (in the model of
allocating objects with monetary transfers) are compared also in terms of their manipu-
lability, but by comparing cardinalities of the sets of problems at which they are manipu-
lable. Similar comparison methods have been used to compare manipulability of social
choice functions (Maus et al. (2007a, 2007b)) and the efficiency of probabilistic assign-
ments (Doğan et al. (2018)). Although our study uses similar comparison methods, we
depart from these studies by focusing on stability. While stability comparisons in school
choice have been studied only recently, there is an earlier literature in the context of
roommates problems. Among others, Abraham et al. (2005) define almost stable match-
ings as matchings that minimize the number of blocking pairs, which is the roommates
problem counterpart of the blocking-pairs and blocking-students cardinality compar-
isons considered in our paper.

Abdulkadiroğlu et al. (2020),9
 Kwon and Shorrer (2019), and Tang and Zhang (2021)

also compare school choice mechanisms, and assignments, in terms of their stability.
Although these studies also consider minimally unstable assignments, to our knowl-
edge, our study is the first to consider cardinally minimally unstable assignments and
blocking–student-wise comparisons in school choice. Tang and Zhang (2021) introduce
the notion of self-constrained optimality for assignments, which requires that the as-
signment Pareto dominates any other assignment that is more stable, and show that the
EADA assignment is self-constrained optimal at each problem. This result also implies
that the EADA mechanism is minimally unstable among efficient assignments. Kwon
and Shorrer (2019) introduce the notion of a blocking triplet that includes, in addition
to a blocking pair, a student who violates the priority of the student in the blocking pair,
and show that the EADA mechanism is minimally unstable among efficient assignments
also when stability comparison is based on comparing (in the set-inclusion sense) sets
of blocking triplets. Also, Kwon and Shorrer (2019) allow for private endowments, which
is important to capture some other applications.

Ergin (2002) derived necessary and sufficient conditions on the priority profiles for
the efficiency of the DA mechanism. Here, we ask a similar question and characterize
the priority profiles for which there exists a Pareto improvement over the DA mecha-
nism that is cardinally minimally unstable among efficient assignments. It turns out
that whenever this is possible, such a mechanism must coincide with the EADA mecha-
nism.10

In a recent paper, Bonkoungou and Nesterov (2020) use natural stability compar-
isons, including blocking–pair-wise and blocking–student-wise comparisons, to explain

9We say more about Abdulkadiroğlu et al. (2020) in Section 6.
10Doğan and Yenmez (2020), Dur et al. (2019), Ehlers and Morrill (2020), Kwon and Shorrer (2019), Tang

and Zhang (2021), and Troyan et al. (2020) provide other justifications for EADA.
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some school choice reforms. In another recent paper, Combe et al. (2017) compare as-
signments in terms of their stability by comparing the sets of blocking pairs in the set-
inclusion sense, in the context of teacher assignments, where each teacher is initially
endowed with a position at a school, and individual rationality and stability are incom-
patible.

2. Model

Let N denote a finite set of students and let C denote a finite set of schools. Each student
i ∈ N has a preference ordering Ri over C ∪ {∅},11 where ∅ represents an outside option
for the student. The strict part of the preference ordering Ri is denoted by Pi, so if c1, c2 ∈
C ∪ {∅}, c1 �= c2, and c1 Ri c2, then c1 Pi c2. School c is acceptable to student i if the
student prefers it to the outside option, that is, c Pi ∅. Each school c ∈ C has a capacity
qc ∈ N, which is the maximum number of students that the school can admit, and a
priority ordering �c over the set of students N .12 The strict part of the priority ordering
�c is denoted by �c .

An assignment is a mapping μ : N ∪C →N ∪C ∪ {∅} such that

(i) for each i ∈N , μ(i) ∈ C ∪ {∅}

(ii) for each c ∈ C, μ(c) ⊆ N such that |μ(c)| ≤ qc

(iii) for each i ∈N and each c ∈ C, i ∈ μ(c) if and only if c = μ(i).

Let A denote the set of all assignments.
An assignment μ is individually rational if for each i ∈ N , μ(i) Ri ∅. An assignment

μ Pareto improves an assignment μ′ if for each i ∈ N , μ(i) Ri μ
′(i) and there exists j ∈ N

such that μ(j) Pj μ
′(j). An assignment μ is efficient if it cannot be Pareto improved.

A pair (i, c) ∈ N ×C blocks μ if c Pi μ(i) and [|μ(c)| < qc or there exists j ∈ μ(c) such
that i �c j]. Let

B(μ) = {
(i, c) ∈ N ×C : (i, c) blocks μ

}
denote the set of blocking pairs at μ and let Bi(μ) = B(μ) ∩ ({i} × C ) denote the set of
blocking pairs at μ containing student i.

An assignment μ is stable if it is individually rational and includes no blocking pair.
Unfortunately, there exist school choice problems without an assignment that is both
efficient and stable (Roth (1982)). We investigate assignments that are minimally un-
stable among efficient assignments based on methods to compare assignments by their
stability.

A (school choice) problem P is a tuple (N , C, R, q, �), where R = (Ri )i∈N denotes
the (student) preference profile, q = (qc )c∈C denotes the (school) capacity profile, and

11Formally, a preference ordering over C∪{∅} is a complete, transitive, and antisymmetric binary relation
over C ∪ {∅}. Binary relation Ri over C ∪ {∅} is complete if, for every c1, c2 ∈ C ∪ {∅}, c1Ric2 or c2Ric1. It is
transitive if, for every c1, c2, c3 ∈ C ∪ {∅}, c1Ric2 and c2Ric3 imply c1Ric3. It is antisymmetric if, for every
c1, c2 ∈ C ∪ {∅}, c1Ric2 and c2Ric1 imply c1 = c2.

12The priority ordering �c is a complete, transitive, and antisymmetric binary relation over N .
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�= (�c )c∈C denotes the (school) priority profile. We keep everything fixed except for
the preference profile and, for short, a problem is often denoted by R. Let P denote the
set of all problems.

2.1 Stability comparisons

A stability comparison is a function f associating with each problem P ∈ P a binary re-
lation over assignments �P

f ⊆ A × A. We write μ �P
f ν instead of (μ, ν) ∈�P

f and write

μ�P
f ν instead of [μ�P

f ν and not ν �P
f μ]. We read μ�E

f ν as “μ is weakly f -more stable

than ν at P” and μ�P
f ν as “μ is (strictly) f -more stable than ν at P”.13 We say that μ is

f -minimally unstable at P among efficient assignments if μ is efficient and there exists
no efficient assignment ν such that ν �P

f μ. We use the abbreviation a.e.a. to denote
“among efficient assignments.” Below, we describe two primitive stability comparisons
based on blocking pairs.

The blocking pairs inclusion comparison (pincl) is defined as follows. For each prob-
lem P ∈ P and μ, ν ∈ A,

μ�P
pincl ν ⇔ B(μ) ⊆ B(ν).

The blocking pairs cardinality comparison (pcard) is defined as follows. For each
problem P ∈ P and μ, ν ∈ A,

μ�P
pcard ν ⇔ ∣∣B(μ)

∣∣ ≤ ∣∣B(ν)
∣∣.

Note that any two assignments can be compared with respect to blocking pairs car-
dinality, but not necessarily with respect to blocking pairs inclusion. We use the con-
vention to write more stable instead of pincl more stable, minimally unstable instead
of pincl minimally unstable, cardinally more stable instead of pcard more stable, and
cardinally minimally unstable instead of pcard minimally unstable.14

Remark 1. For any stable assignment μ, there is no other assignment that is (cardinally)
more stable than μ. However, μ is not necessarily minimally unstable among efficient
assignments, since μ may not be efficient.

2.2 Mechanisms

A mechanism associates each problem with an assignment. When we say that a mech-
anism satisfies a certain assignment property (such as efficiency or minimal instabil-
ity among efficient assignments), we mean that at each problem, the assignment pre-
scribed by the mechanism satisfies the property.

13Let L denote the set of all binary relations over assignments. Given �∈ L, (i) � is complete if for all
μ, ν ∈ A, we have μ� ν or ν � μ and (ii) � is transitive if μ� ν and ν � η imply μ� η.

14Note that �P
pincl is transitive but not complete, and �P

pcard is complete (as any two assignments can be

compared) and transitive. Moreover, �P
pincl⊆�P

pcard.
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The deferred acceptance (DA) mechanism due to Gale and Shapley (1962) is used in
many school districts that have reformed their school choice systems. The DA mecha-
nism associates each problem P with the assignment determined by the following de-
ferred acceptance algorithm.

Deferred Acceptance Algorithm. Step 1. Each student proposes to her top-ranked
acceptable school. If there is no such school, then she is assigned to her outside
option. Each school c considers the set of proposals that it receives. Among them,
it tentatively accepts the highest priority students up to its capacity and rejects the
others. If there is no rejection, then stop.

Step t ≥ 2. Each student who is rejected at Step t − 1 proposes to her top-ranked ac-
ceptable school among those that have not rejected her yet. If there is no such
school, then she is assigned to her outside option. Each school c considers the
set of students that it tentatively accepted at Step t − 1 together with students that
have proposed at Step t. Among them, it tentatively accepts the highest priority
students up to its capacity and rejects the others. If there is no rejection, then stop.
Otherwise, move to Step t + 1.

The DA algorithm stops in finitely many steps and the DA assignment, which we
denote by DA(P ), is defined by the acceptances at the last step. At each problem, the DA
assignment is stable, but not necessarily efficient (Abdulkadiroğlu and Sönmez (2003)).

Another mechanism, which was proposed as an efficient mechanism that Pareto im-
proves over the DA mechanism, turns out to be central to our analysis. The efficiency-
adjusted deferred acceptance mechanism (Kesten (2010)) is based on the EADA algo-
rithm, which works by iteratively removing certain schools from the preference order-
ings of certain students and rerunning the DA algorithm. Instead of providing Kesten’s
original definition of the EADA algorithm, we provide the outcome-equivalent version
due to Tang and Yu (2014). Given an assignment μ, a school c ∈ C is underdemanded at
μ if no student strictly prefers it to his assigned school. We adopt the convention that for
each student i ∈N , his outside option is underdemanded at any assignment.

Efficiency-Adjusted Deferred Acceptance Algorithm. Round 0. Run DA for the
problem P = (N , C, R, q, �).

Round r ≥ 1. Identify underdemanded schools at the outcome of round r − 1. Let Ir
denote the set of students who are assigned to underdemanded schools (includ-
ing the students who are assigned to their outside options). Let μr denote the
restriction of the outcome of Round r − 1 to Ir . (Note that μr includes only the
underdemanded schools and students in Ir .) Remove these schools and Ir from
the problem. Stop if there are no remaining schools. Otherwise, run DA for the
reduced problem. Move to the next round, Round r + 1.

The EADA algorithm stops in finitely many rounds, say in m rounds. The EADA as-
signment is defined as the collection of μ1, � � � , μm; that is, EADA(P ) = μ1 ∪ · · · ∪μm. For
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each t ∈ {1, � � � , m}, let μt denote the assignment obtained by collecting μ1, � � � , μt to-
gether with the DA assignment for the reduced problem at the end of Round t. In other
words, μt is the assignment obtained by iterating the EADA algorithm for only t rounds.
Note that μm = EADA(P ).

At each problem, the EADA assignment is efficient and Pareto improves the DA as-
signment (Tang and Yu (2014), Kesten (2010)).

Remark 2. Given a problem, if the EADA assignment coincides with the DA assignment,
then the EADA assignment is the unique assignment that is (cardinally) minimally un-
stable among efficient assignments.

3. The main result

It turns out that there exists a Pareto improvement over the DA mechanism that is min-
imally unstable among efficient assignments: the efficiency adjusted deferred accep-
tance (EADA) mechanism (Kesten (2010)).15 Noting that minimal instability is a rel-
atively weak requirement, as many assignments are incomparable when their sets of
blocking pairs are compared, we turn our focus to cardinal minimal instability, which
results in the following impossibilities.

(a) There is no Pareto improvement over the DA mechanism that is cardinally mini-
mally unstable among efficient assignments.

(b) Any Pareto improvement over the DA mechanism may produce an arbitrarily large
loss in terms of cardinal minimal instability, that is, there exists a problem with an
alternative efficient assignment that has arbitrarily fewer blocking pairs.

The proofs of these results and a general analysis of impossibilities with minimally
unstable Pareto improvements over DA is presented in Section 5. In this section, moti-
vated by these impossibilities, we characterize the priority profiles for which there ex-
ists a Pareto improvement over the DA assignment that is cardinally minimally unstable
among efficient assignments at each problem.16

We investigate this question under the following two assumptions:

A1: Unit capacities. Each school has unit capacity, i.e., qc = 1 for each c ∈ C.

A2: At least five schools. There are at least five schools, i.e., |C| ≥ 5.

The following notions are useful. A priority profile (�c )c∈C includes an Ergin cycle
(Ergin (2002)) if there exist a list of three students (i1, i2, i3 ) and a pair of schools (c1, c2 )
such that i3 �c1 i1 �c1 i2 and i2 �c2 i3. We call student i1 the initiator of the cycle.

15This result also follows from Tang and Zhang (2021). We thank Szilvia Papai for bringing this to our
attention. We present our proof, which is independent and different from Tang and Zhang (2021), in Ap-
pendix A.1.

16This is parallel to Ergin (2002), who derived necessary and sufficient conditions (on the capacity–
priority profile) for the efficiency of the DA mechanism. Recall that the DA mechanism is stable but not
necessarily efficient.
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We say that a list of three students (i1, i2, i3 ) and a pair of schools (c1, c2 ) constitute
a tight Ergin cycle if they constitute an Ergin cycle and both

I. there is no m ∈N \ {i2, i3} such that i2 �c2 m�c2 i3

II. there is no m ∈N \ {i1, i2, i3} such that i3 �c1 m�c1 i2.

Given two Ergin cycles consisting of (i1, i2, i3 ), (c1, c2 ) and (j1, j2, j3 ), (c′
1, c′

2 ), respec-
tively, we say that the Ergin cycles are distinct if all the students and schools in the two
Ergin cycles are distinct, i.e., {i1, i2, i3} ∩ {j1, j2, j3} = ∅ and {c1, c2} ∩ {c′

1, c′
2} = ∅. We say

that the two Ergin cycles are distinct except for the initiator if i1 = j1 and all the other
students and schools in the two Ergin cycles are distinct.

We introduce the following three conditions on a priority profile (�c )c∈C .

Condition 1. All Ergin cycles are tight.

Condition 2. There are no two Ergin cycles that are distinct except for the initiator.

Condition 3. There are no two distinct Ergin cycles.

Our main result is that these three conditions are necessary and sufficient for the
existence of a Pareto improvement over the DA mechanism that is cardinally minimally
unstable among efficient assignments at each problem.17 Moreoever, whenever such a
Pareto improvement exists, it coincides with the EADA mechanism.

Theorem 1. Suppose each school has unit capacity and there are at least five schools.
The following statements are equivalent:

(i) There exists a mechanism that is both a Pareto improvement over the DA mecha-
nism and cardinally minimally unstable among efficient assignments.

(ii) The priority profile � satisfies Conditions 1, 2, and 3.

(iii) There is a unique mechanism that is both a Pareto improvement over the DA
mechanism and cardinally minimally unstable among efficient assignments (and,
therefore, this mechanism coincides with the EADA mechanism).

Before providing a complete proof, we provide rough intuitions for why these three
conditions are necessary. First note that when the DA assignment is not efficient, a sim-
ple Pareto improvement over the DA assignment involves reassignment of the assigned
seats of students in an Ergin cycle while keeping the assignment of the initiator of the cy-
cle fixed. This improvement creates at least one blocking pair (since the initiator is now
involved in a blocking pair), and the exact number of resulting blocking pairs essentially
depends on the relative position of the initiator in the priority orderings of all the schools

17The counterparts of the characterizing conditions are still necessary for the EADA mechanism to
be cardinally minimally unstable among efficient assignments in the general multicapacity case (Ap-
pendix A.2), and, therefore, the main insights extend to the general setup.
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in the Ergin cycle. (Note that only the position of the initiator in the first school’s priority
ordering is relevant in the definition of an Ergin cycle.) When Condition 1 is violated, it
is possible to construct a preference profile such that the initiator is included in blocking
pairs with several schools in the unique Pareto improvement over the DA assignment,
while there is an alternative efficient assignment with smaller number of blocking pairs
where the initiator is assigned his most preferred school in the cycle and is not included
in any blocking pair. When Condition 2 is violated, it is possible to construct a prefer-
ence profile such that the same student initiates two distinct rejection cycles consecu-
tively such that the initiator is included in blocking pairs with several schools from both
cycles in the unique Pareto improvement over the DA assignment, while there is an al-
ternative efficient assignment with a smaller number of blocking pairs (although not a
Pareto improvement over DA) where the initiator is assigned his most preferred school
in the two cycles and is not included in any blocking pair. When Condition 3 is violated,
it is possible to construct a preference profile such that a student initiates a rejection cy-
cle, then a different student—as a result of the first rejection cycle—initiates a different
rejection cycle such that both initiators are included in blocking pairs with schools from
their cycles in the unique Pareto improvement over the DA assignment, while there is an
alternative efficient assignment with smaller number of blocking pairs where both ini-
tiators are assigned their most preferred schools in the two cycles and are not included
in any blocking pair.

Note that the existence of a mechanism that is cardinally minimally unstable a.e.a.
is trivial. The surprising insight of Theorem 1 is that there is only one that is a Pareto
improvement over the DA mechanism, namely the EADA mechanism. The DA mecha-
nism has been used in many different contexts, and economists have proposed efficient
Pareto improvements of DA. Now if cardinal minimal instability is important, then The-
orem 1 describes the priority structures for which this can be done (à la Ergin (2002) for
the compatibility of efficiency and stability).

Remark 3. Instead of simply counting blocking pairs, one might consider other cardi-
nal stability comparisons that do not treat all blocking pairs the same way. One natu-
ral method is to distinguish blocking pairs based on the number of positions the stu-
dent and the school improve. Formally, for problem P and assignment μ, the block-
ing pair (i, c) is an (+k, +l) instance if the rank of c in i’s preference is k positions
above μ(i) and i is l positions above μ(c). For short, we write ⊥(i, c) = (+k, +l) and
⊥(B(μ)) = {⊥(i, c) : (i, c) ∈ B(μ)} (where repetitions of the same instance are allowed).
Let us call f cardinal if for any problem P and all μ and ν, ⊥(B(μ)) = ⊥(B(ν)) im-
plies μ ∼P

f ν. Let us call f reasonable if for any problem P and all μ and ν such that

⊥(B(μ)) = {(+1, +1)} and |B(ν)| > 1, we have μ �P
f ν. Now Theorem 1 remains un-

changed when the blocking pairs cardinality comparison is replaced by any reasonable
cardinal stability comparison f .18

18This is due to the fact that in the proof of (ii)⇒(iii) of Theorem 1, all the examples have ⊥(B(μ′ )) =
{(+1, +1)} and |B(μ)| > 1, and, hence, μ′ �P

f μ.
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Remark 4. (a) The proof of Theorem 1 shows that if the priority profile satisfies Con-
ditions 1, 2, and 3, then for each problem, either the DA assignment is efficient or
there exists a unique Pareto improvement of the DA assignment that contains ex-
actly one blocking pair. Therefore, the latter assignment coincides with the EADA
assignment. Thus, the EADA assignment is as close to stability as possible if it
is unstable (by allowing only one blocking pair). We call an assignment (almost)
stable if it is stable or contains exactly one blocking pair. Now Theorem 1 shows
that for the EADA mechanism, cardinal minimal instability a.e.a. implies (almost)
stability.

(b) As the set of efficient Pareto improvements over DA is a subset of the efficient as-
signments, Conditions 1, 2, and 3 are sufficient for the EADA mechanism to be
cardinally minimally unstable among efficient Pareto improvements over DA. It is
an open question to determine necessary and sufficient conditions for the EADA
mechanism to be cardinally minimally unstable among efficient Pareto improve-
ments over DA.

3.1 Proof of Theorem 1

Note that (iii)⇒(i) is trivial. We prove (i)⇒(ii) and (ii)⇒(iii).
(i)⇒(ii). We show that if one of Conditions 1, 2, or 3 is violated, then there exist prob-

lems where no efficient Pareto improvement over DA is cardinally minimally unstable.

Lemma 1. Suppose that the priority profile violates Condition 1, i.e., it includes an Ergin
cycle that is not tight. Then there exists a problem such that there is no Pareto improve-
ment over DA that is cardinally minimally unstable among efficient assignments.

Proof. Suppose that a list of students (1, 2, 3) and a list of schools (c1, c2 ) constitute an
Ergin cycle of (�c )c∈C that is not tight.

Case 1. Suppose that 2 �c2 1 �c2 3. We depict only the relative positions of the stu-
dents {1, 2, 3} in �:

�c1 �c2

3 2
1 1
2 3

Let R be a preference profile such that the preference orderings of students in
{1, 2, 3} over their acceptable schools are

R1 R2 R3

c1 c1 c2

c2 c2 c1

∅ ∅ ∅
and each other student finds no school acceptable.
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Let μ be the assignment where the assignments of the students in {1, 2, 3} are as
depicted above in boxes, and each other student is assigned to his outside option.

Let μ′ be the assignment where the assignments of the students in {1, 2, 3} are as
underlined above, and each other student is assigned to his outside option.

Note that the DA assignment is
( 1 2 3

∅ c2 c1

)
(each other student is assigned to his outside

option), and μ is the unique Pareto improvement over the DA assignment that is efficient
and μ′ is an efficient assignment. Moreover, B(μ) = {(1, c1 ), (1, c2 )} and B(μ′ ) = {(3, c1 )}.

Case 2. Suppose that there is m ∈N \ {1, 2, 3} such that 3 �c2 m�c2 2. We depict only
the relative positions of the students {1, 2, 3, m} in �:

�c1 �c2

3 2
1 m

2 3

Let R be a preference profile such that the preference orderings of {1, 2, 3, m} over
their acceptable schools are

R1 R2 Rm R3

c1 c1 c2 c2

∅ c2 ∅ c1

∅ ∅
and each other student finds no school acceptable.

Note that in profile R, student 1 ranks c2 unacceptable, and, thus, the DA assignment
and any efficient assignment does not assign 1 to c2 independently of the position of 1
in �c2 . Thus, the position of 1 in �c2 is omitted. The same applies to student m and c1

(and similarly below, for any example where a student does not rank a certain school,
we omit the student’s position in the priority ordering of this school).

Let μ be the assignment where the assignments of the students in {1, 2, 3, m} are as
depicted above in boxes, and each other student is assigned to his outside option.

Let μ′ be the assignment where the assignments of the students in {1, 2, 3, m} are as
underlined above, and each other student is assigned to his outside option.

Note that the DA assignment is
( 1 2 m 3

∅ c2 ∅ c1

)
(each other student is assigned to his out-

side option), and μ is the unique Pareto improvement over the DA assignment that
is efficient and μ′ is an efficient assignment. Moreover, B(μ) = {(1, c1 ), (m, c2 )} and
B(μ′ ) = {(3, c1 )}.

Case 3. Suppose that there is m ∈N \ {1, 2, 3} such that 3 �c1 m�c1 2. Without loss of
generality, suppose that m �c1 1 (if 1 �c1 m, then we exchange the roles of m and c1). We
depict only the relative positions of the students {1, 2, 3, m} in �:

�c1 �c2

3 2
m 3
1
2
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Let R be a preference profile such that the preference orderings of {1, 2, 3, m} over
their acceptable schools are

R1 R2 R3 Rm

c1 c1 c2 c1

∅ c2 c1 ∅
∅ ∅

and each other student finds no school acceptable.
Let μ be the assignment where the assignments of the students in {1, 2, 3, m} are as

depicted above in boxes, and each other student is assigned to his outside option.
Let μ′ be the assignment where the assignments of the students in {1, 2, 3, m} are as

underlined above, and each other student is assigned to his outside option.
Note that the DA assignment is

( 1 2 3 m
∅ c2 c1 ∅

)
(each other student is assigned to his out-

side option), and μ is the unique Pareto improvement over the DA assignment that
is efficient and μ′ is an efficient assignment. Moreover, B(μ) = {(1, c1 ), (m, c1 )} and
B(μ′ ) = {(3, c1 )}.

Lemma 2. Suppose that the priority profile violates Condition 2, i.e., it includes two Ergin
cycles that are distinct except for the initiator. Then there exists a problem such that there
is no Pareto improvement over DA that is cardinally minimally unstable among efficient
assignments.

Proof. Suppose that there are two Ergin cycles of (�c )c∈C consisting of (i1, i2, i3 ),
(c1, c2 ) and (j1, j2, j3 ), (c′

1, c′
2 ), that are distinct except for the initiator. Let i1 = j1 ≡ i:

�c1 �c2 �c′
1
�c′

2

i3 i2 j3 j2

i i3 i j3

i2 j2

Let R be a preference profile such that the preference orderings of students in
{i, i2, i3, j2, j3} over their acceptable schools are

Ri Ri2 Ri3 Rj2 Rj3

c1 c1 c2 c′
1 c′

2

c′
1 c2 c1 c′

2 c′
1

∅ ∅ ∅ ∅ ∅
and each other student finds no school acceptable.

Let μ be the assignment where the assignments of the students in {i, i2, i3, j2, j3} are
as depicted above in boxes, and each other student is assigned to his outside option.

Let μ′ be the assignment where the assignments of the students in {i, i2, i3, j2, j3} are
as underlined above, and each other student is assigned to his outside option.

Note that the DA assignment is
( i i2 i3 j2 j3

∅ c2 c1 c′
2 c′

1

)
(each other student is assigned to his

outside option), and μ is the unique Pareto improvement over DA that is efficient and μ′
is an efficient assignment. Moreover, B(μ) = {(i, c1 ), (i, c′

1 )} and B(μ′ ) = {(i3, c1 )}.
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Lemma 3. Suppose that the priority profile violates Condition 3, i.e., it includes two dis-
tinct Ergin cycles. Then there exists a problem such that there is no Pareto improvement
over DA that is cardinally minimally unstable among efficient assignments.

Proof. Suppose that there are two distinct generalized cycles of (�c )c∈C consisting of
(i1, i2, i3 ), (c1, c2 ) and (j1, j2, j3 ), (c′

1, c′
2 ). We depict only the relevant relative positions

of the students (i1, i2, i3, j1, j2, j3 ) in �:

�c1 �c2 �c′
1
�c′

2

i3 i2 j3 j2

i1 i3 j1 j3

i2 j2

Since |C| ≥ 5, there exists c ∈ C \ {c1, c2, c′
1, c′

2}. Without loss of generality, suppose
that j1 �c i1.

Let R be a preference profile such that the preference orderings of students in
(i1, i2, i3, j1, j2, j3 ) over their acceptable schools are

Ri1 Ri2 Ri3 Rj1 Rj2 Rj3

c c1 c2 c′
1 c′

1 c′
2

c1 c2 c1 c c′
2 c′

1

∅ ∅ ∅ ∅ ∅ ∅
and each other student finds no school acceptable.

Let μ be the assignment where the assignments of the students in (i1, i2, i3, j1, j2, j3 )
are as depicted above in boxes, and each other student is assigned to his outside option.

Let μ′ be the assignment where the assignments of the students in (i1, i2, i3, j1, j2, j3 )
are as underlined above, and each other student is assigned to his outside option.

Note that the DA assignment is
( i1 i2 i3 j1 j2 j3

∅ c2 c1 c c′
2 c′

1

)
(each other student is assigned to his

outside option), and μ is the unique Pareto improvement over DA that is efficient and μ′
is an efficient assignment. Moreover, B(μ) = {(i1, c1 ), (j1, c′

1 )} and B(μ′ ) = {(j2, c′
2 )}.

(ii)⇒(iii). We now show that if Conditions 1, 2, and 3 are satisfied, then the EADA
mechanism is the unique Pareto improvement over the DA mechanism that is cardi-
nally minimally unstable among efficient assignments. First, we define some auxiliary
notions and prove some auxiliary results.

A priority profile (�c )c∈C includes a generalized cycle (of length n− 1) if there exist a
list of students (1, � � � , n) and a list of schools (c1, � � � , cn−1 ) such that n �c1 1 �c1 2 and for
each i ∈ {2, � � � , n− 1}, i �ci i+ 1.19 Given a generalized cycle consisting of (1, � � � , n) and
(c1, � � � , cn−1 ), we call the first student, student 1, the initiator of the generalized cycle.20

Given two generalized cycles consisting of (i1, � � � , in ), (c1, � � � , cn−1 ) and (j1, � � � , jm ),
(c′

1, � � � , c′
m−1 ), respectively, we say that the two generalized cycles are distinct if all

19The notion of a generalized cycle was first introduced in Ergin (2002).
20Note that in the definition of a generalized cycle, the first school c1 and the first student 1 have partic-

ular roles; in that sense, rotating the elements of a generalized cycle would not necessarily result in a new
generalized cycle, in contrast to what the word “cycle” would normally indicate.
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the students and schools in the two generalized cycles are distinct, i.e., {i1, � � � , in} ∩
{j1, � � � , jm} = ∅ and {c1, � � � , cn−1} ∩ {c′

1, � � � , c′
m−1} = ∅. We say that the two generalized

cycles are distinct except for the initiator if i1 = j1 and all the other students and schools
in the two generalized cycles are distinct.

We say that a list of students (1, � � � , n) and a list of schools (c1, � � � , cn−1 ) constitute
a tight generalized cycle (of length n− 1) if they constitute a generalized cycle and

I. there is no m ∈N \ {2, � � � , n} and k ∈ {2, � � � , n− 1} such that k �ck m�ck k+ 1

II. there is no m ∈N \ {1, 2, � � � , n} such that n �c1 m�c1 2.

Lemma 4. If the priority profile satisfies Condition 3, then there are no two distinct gen-
eralized cycles.

Proof. Note that Ergin cycles are generalized cycles of length 2. Thus, if there are two
distinct Ergin cyles, then there are two distinct generalized cycles. Furthermore, if there
are two distinct generalized cycles, then by Ergin (2002) (Step 2 in the proof of Theo-
rem 1), there are two distinct Ergin cycles.

Lemma 5. If the priority profile satisfies Conditions 2 and 3, then there are no two gener-
alized cycles that are distinct except for the initiator.

Proof. Consider any two generalized cycles consisting of (i1, � � � , in ), (c1, � � � , cn−1 ) and
(j1, � � � , jm ), (c′

1, � � � , c′
m−1 ) that are distinct except for the initiator. Then i1 = j1 and all

the other students and schools in the two generalized cycles are distinct. But then, by
Ergin (2002) (Step 2 in the proof of Theorem 1), either there exist two distinct Ergin cy-
cles, which implies that Condition 3 is violated, or there exist two Ergin cycles that are
distinct except for the initiator, which implies that Condition 2 is violated.

Lemma 6. If the priority profile satisfies Conditions 1, 2, and 3, then all generalized cycles
are tight.

Proof. Suppose that there is a generalized cycle that is not tight. Then there are a list
of students (1, � � � , n) and a list of schools (c1, � � � , cn−1 ) such that one of the following
statements holds:

(i) There is m ∈ N \ {1, 2, � � � , n} such that n �c1 m�c1 2.

(ii) There is m ∈ N \ {2, � � � , n} and k ∈ {2, � � � , n− 1} such that k�ck m�ck k+ 1.

If n− 1 = 2, then there is an Ergin cycle that is not tight, which implies that Condition 1
is violated. So suppose that n− 1 > 2.

Step 1. Suppose that (i) is satisfied. Without loss of generality, suppose that there is
no shorter generalized cycle that satisfies (i). If 2 �c2 n, then there exists an Ergin cycle
that is not tight, consisting of (1, 2, n) and (c1, c2 ), which violates Conditiion 1. Similarly,
if there exists l ∈ {1, � � � , n − 1} such that 2 �cl n, then there exists an Ergin cycle that is
not tight. So suppose that n �cl 2 for all l ∈ {1, � � � , n− 1}.
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Now, if n− 2 �cn−1 n− 1 �cn−1 n �cn−1 2, then there is a shorter generalized cycle that
satisfies (i), consisting of (n, 2, 3, � � � , n − 3, n − 2) and (cn−1, c2, � � � , cn−2 ), a contradic-
tion. If n − 1 �cn−1 n − 2 �cn−1 n �cn−1 2, then, again, there is a shorter generalized cycle
that satisfies (i), consisting of (1, 2, � � � , n− 2, n) and (c1, � � � , cn−3, cn−1 ), a contradiction.
If n − 1 �cn−1 n �cn−1 n − 2 �cn−1 2, then, again, there is a shorter generalized cycle that
satisfies (i), consisting of (n− 2, 2, 3, � � � , n− 2, n− 1) and (cn−1, c2, c3, � � � , cn−2, cn−1 ), a
contradiction. If n − 1 �cn−1 n �cn−1 2 �cn−1 n − 2, then there exists an Ergin cycle that is
not tight, consisting of (2, n − 2, n − 1) and (cn−1, cn−2 ), which is a violation of Condi-
tion 1, a contradiction. Hence (i) cannot be satisfied.

Step 2. Suppose that (i) is not satisfied, but (ii) is satisfied. Without loss of generality,
suppose that there is no shorter generalized cycle that satisfies (ii).

Suppose that m �= 1. If k �ck 1 �ck k+ 1, clearly there is a generalized cycle that satis-
fies (i), a contradiction. Thus, 1 �ck k or k+ 1 �ck 1. If 1 �ck k, then the generalized cycle
consisting of (k, k + 1, � � � , n, 1) and (ck, � � � , cn−1, c1 ) satisfies (i) by 1 �ck m �ck k + 1, a
contradiction. If k+ 1 �ck 1, then the generalized cycle consisting of (k+ 1, 1, 2, � � � , k)
and (ck, c1, � � � , ck−1 ) satisfies (i) by k �ck m�ck 1, a contradiction.

Suppose that m = 1. If k + 1 �ck n, then the generalized cycle consisting of (k +
1, n, 2, 3, � � � , k) and (ck, c1, c2, � � � , ck−1 ) satisfies (i) by k �ck 1 �ck k + 1, a contradic-
tion. Similarly, if n �ck k, then the generalized cycle consisting of (k, k + 1, � � � , n) and
(ck, ck+1, � � � , cn ) satisfies (i) by k �ck 1 �ck k + 1, a contradiction. Thus, k �ck n �ck

k + 1. If k + 1 �c1 2, then the generalized cycle consisting of (n, k + 1, 2, � � � , k) and
(ck, c1, � � � , ck−1 ) satisfies (i) by k �ck 1 �ck k+ 1, a contradiction. Thus, 2 �c1 k+ 1. But
then the generalized cycle consisting of (2, k + 1, k + 2, � � � , n) and (c1, ck+1, � � � , cn−1 )
satisfies (i) by n �c1 1 �c1 k+ 1, a contradiction.

Given an assignment μ, a list of students (i1, � � � , ik ) is called an improvement cy-
cle21 if μ(it+1 ) Pit μ(it ) for each t ∈ {1, � � � , k − 1} and μ(i1 ) Pik μ(ik ).22 In this case, we
say that student it precedes student it+1 in the improvement cycle (with the conven-
tion that ik precedes i1). We say that an assignment μ′ is obtained by implementing
an improvement cycle at μ if μ′ is obtained from μ by simply assigning each student
in the improvement cycle to the school of the student whom he precedes, keeping the
assignments of the students who do not belong to the improvement cycle the same.

Whenever we omit the description of parts of priorities, then they can be completed
arbitrarily.

Lemma 7. Suppose that every generalized cycle of the priority profile is tight. Then at
each problem where the DA assignment is not efficient, there is a unique efficient Pareto
improvement over the DA assignment.

Proof. Let P = (N , C, R, q, �) be a problem such that every generalized cycle of
(�c )c∈C is tight. Let μ denote the DA assignment.

21The notion of an improvement cycle is from Dur et al. (2019).
22Note that for any t ∈ {1, � � � , k}, (it , it+1, � � � , ik, i1, � � � , it−1 ) is also an improvement cycle including the

same set of students.
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Step 1. We first show that there is no student who is included in two different “im-
provement cycles” at μ.

We claim that any two different improvement cycles cannot have a common stu-
dent. Suppose not, i.e., (i1, � � � , ik ) and (j1, � � � , jq ) are improvement cycles such that
(i1, � � � , ik ) �= (j1, � � � , jq ) and {i1, � � � , ik} ∩ {j1, � � � , jq} �= ∅. We claim that there exists
i ∈ {i1, � � � , ik} ∩ {j1, � � � , jq} such that the student preceding i in the cycle (i1, � � � , ik ), say
student j, and the student preceding i in the cycle (j1, � � � , jk ), say student j′, are differ-
ent students, i.e., j �= j′. To see this, consider any student i ∈ {i1, � � � , ik} ∩ {j1, � � � , jq}. If
the students preceding i in the two cycles are different, then we are done (as j �= j′). Oth-
erwise, the student j who precedes i in both cycles satisfies j ∈ {i1, � � � , ik} ∩ {j1, � � � , jq}.
Proceeding similarly, our claim follows from the facts that the two cycles are finite and
different.

Now, without loss of generality, suppose that the two cycles are of the form
(j, i1, � � � , ik ) and (j′, i1, j1, � � � , jq ) such that j �= j′. Let c1 ≡ μ(i1 ). Note that c1 Pj μ(j)
and c1 Pj′ μ(j′ ). Then, by the stability of μ, we have i1 �c1 {j, j′}. Without loss of
generality, suppose that i1 �c1 j′ �c1 j. Let ct ≡ μ(it ) for each t ∈ {1, � � � , k} and let
c0 ≡ μ(j). Since (j, i1, � � � , ik ) is an improvement cycle, by Ergin (2002)23 there exist
t ∈ {0, 1, � � � , k} and i ∈ N \ {i1, � � � , ik, j} such that (ct , ct−1, � � � , c0, ck, ck−1, � � � , ct+1 ) and
(i, it−1, it−2, � � � , i1, j, ik, ik−1, � � � , it+1, it ) constitute a cycle of (�c )c∈C :

�c0 �c1 �c2 �c3 · · · �ct · · · �ck

j i1 i2 i3 it ik
ik j′ i1 i2 · · · i · · · ik−1

j it−1

Now (�c )c∈C includes a generalized cycle that is not tight because (a) for t �= 1, con-
dition I is satisfied, as i �= j′ and i /∈ {j, j′, i1, � � � , ik}, and (b) for t = 1, condition II is sat-
isfied, as i �= j′ and i /∈ {j, j′, i1, � � � , ik}. This is a contradiction. Hence, no two improve-
ment cycles share a common student.

Step 2. By Lemma 6 of Dur et al. (2019), for any Pareto improvement μ′ over the DA
assignment μ, there exists a set of disjoint improvement cycles (that is, no two improve-
ment cycles share a common student) such that μ′ can be obtained from μ by imple-
menting the improvement cycles. Since any two improvement cycles are disjoint, there
is a unique efficient Pareto improvement over the DA assignment.

Lemma 8. Suppose that every generalized cycle of the priority profile is tight. Then, at
each problem, any assignment obtained from the DA assignment by implementing an
improvement cycle includes a unique blocking pair.

Proof. Let P = (N , C, R, q, �) be a problem such that every generalized cycle of
(�c )c∈C is tight. Let μ denote the DA assignment. Let μ′ be obtained from μ by im-
plementing the improvement cycle (i1, � � � , ik ). Let ct ≡ μ(it−1 ) for each t ∈ {2, � � � , k}
and c1 ≡ μ(ik ). Suppose that μ′ includes two blocking pairs (i, c) �= (j, c′ ).

23More precisely, it follows from arguments in the proof of Theorem 1 in Ergin (2002).
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Since (i1, � � � , ik ) is an improvement cycle, by Ergin (2002) there exist t ∈ {1, � � � , k}
(without loss of generality, let t = 1) and i0 ∈ N \ {i1, � � � , ik} such that (c1, � � � , ck ) and
(i0, i1, � � � , ik ) constitute a cycle of (�c )c∈C :

�c1 �c2 · · · �ck

ik i1 · · · ik−1

i0 i2 · · · ik
i1

Note that since (i, c), (j, c′ ) ∈ B(μ′ ) \B(μ), then c, c′ ∈ {c1, � � � , ck}.
Case 1. Suppose that c = c1. Since (i, c) ∈ B(μ′ ) \ B(μ), ik �c1 i �c1 i1. If i �= i0, this

contradicts that every generalized cycle is tight. Suppose that i = i0. Now either j �= i0 or
c′ �= c1. In either case, by similar arguments, it is easy to see that there is a generalized
cycle is that is not tight.

Case 2. Suppose that c = ct , t �= 1. Since (i, c) ∈ B(μ′ ) \ B(μ), then it−1 �ct i �ct it ,
which indicates that there is a generalized cycle that is not tight.

Let P = (N , C, R, q, �) be an arbitrary unit-capacity problem with at least five
schools such that � satisfies conditions Conditions 1, 2, and 3. By Lemma 6, every
generalized cycle of (�c )c∈C is tight. Then, by Lemma 7, all the improvement cycles at
DA(P ) are distinct and the assignment obtained from DA(P ) by implementing the im-
provement cycles, let us call it μ, is the unique efficient Pareto improvement over DA(P ).
Now there can be at most one improvement cycle, since otherwise there must exist two
generalized cycles that are either distinct, which would be a violation of Condition 3 by
Lemma 4, or distinct except for the initiator, which would be a violation of Condition 2
or 3 by Lemma 5. Now, by Lemma 8, μ includes at most one blocking pair.

If μ includes no blocking pair, then it is trivially cardinally minimally unstable
among efficient assignments (in fact, this means that the DA assignment is efficient
at this problem). Suppose that μ includes a unique blocking pair. Suppose that μ is
not cardinally minimally unstable among efficient assignments. Then there exist an ef-
ficient assignment μ′ without a blocking pair. But then DA(P ) does not include any
improvement cycle and, therefore, μ cannot have a blocking pair, a contradiction.

Thus, μ = EADA(P ) and the EADA mechanism is cardinally minimally unstable
among efficient assignments.

4. Stability comparisons based on blocking students

Another natural stability comparison is based on comparing the sets of blocking
students—students involved in at least one blocking pair. Let BS(μ) = {i ∈N : Bi(μ) �= ∅}
denote the set of blocking students at μ. The blocking students inclusion comparison
(sincl) is defined as follows. For each problem P ∈ P and μ, ν ∈ A,

μ�P
sincl ν ⇔ BS(μ) ⊆ BS(ν).

The blocking students cardinality comparison (scard) is defined as follows. For each
P ∈ P and μ, ν ∈ A(P ),

μ�P
scard ν ⇔ ∣∣BS(μ)

∣∣ ≤ ∣∣BS(ν)
∣∣.
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We write BS-wise more stable instead of sincl more stable, BS-wise minimally unsta-
ble instead of sincl minimally unstable, BS-wise cardinally more stable instead of scard
more stable, and BS-wise cardinally minimally unstable instead of scard minimally un-
stable.24

Interestingly, there is no Pareto improvement over the DA mechanism that is BS-wise
minimally unstable among efficient assignments and, in particular, the EADA mecha-
nism is not BS-wise minimally unstable among efficient assignments. An immediate
corollary is an impossibility result also with BS-wise cardinal minimal instability. We
prove these impossibilities in Section 5. Below we investigate the same questions as in
Theorem 1 for BS-wise cardinal minimal instability (instead of cardinal minimal insta-
bility).25 The corresponding result is almost identical except for one new cycle condi-
tion.

We say that a list of three students (i1, i2, i3 ) and a pair of schools (c1, c2 ) constitute a
weakly tight Ergin cycle if they constitute an Ergin cycle, and there is no m ∈N \ {i1, i2, i3}
such that i3 �c1 m�c1 i2 or i2 �c2 m�c2 i3.26

Condition 4. All Ergin cycles are weakly tight.

Theorem 2. Suppose each school has unit capacity and there are at least five schools.
The following statements are equivalent:

(i) There exists a mechanism that is both a Pareto improvement over the DA mecha-
nism and BS-wise cardinally minimally unstable among efficient assignments.

(ii) The priority profile � satisfies Conditions 2, 3, and 4.

(iii) There is a unique mechanism that is both a Pareto improvement over the DA mech-
anism and BS-wise cardinally minimally unstable among efficient assignments
(and, therefore, this mechanism coincides with the EADA mechanism).

The proof of Theorem 2 is similar to the proof of Theorem 1 and is available in Doğan
and Ehlers (2020a).

Remark 5. (a) The proof of Theorem 2 shows that if the priority profile satisfies Con-
ditions 2, 3, and 4, then for each problem, either the DA assignment is efficient or
there exists a unique Pareto improvement of the DA assignment that contains ex-
actly one blocking student. Therefore, the latter assignment coincides with EADA
assignment.

(b) By Remark 4(a), under Conditions 1, 2, and 3, the EADA assignment contains no
blocking student if the DA assignment is efficient and otherwise contains exactly

24Note that �P
sincl⊆�P

scard, �P
sincl is transitive but not complete, and �P

scard is complete and transitive.
25Note that such a result does not follow directly from Remark 3 because the blocking students car-

dinality comparison fails the “reasonability” property: we may have ⊥(B(μ)) = (+1, +1), |B(ν)| > 1 and
μ∼P

scard ν when BS(μ) = BS(ν).
26Note that every tight Ergin cycle is also weakly tight.
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one blocking student. Thus, the EADA mechanism is BS-wise cardinally minimally
unstable among efficient assignments if the priority profile satisfies Conditions 1,
2, and 3. However, the priority profile

�c1 �c2

3 2
1 1
2 3

satisfies Conditions 2, 3, and 4, but violates Condition 1. Hence, the EADA mech-
anism is BS-wise cardinally minimally unstable among efficient assignments, but
not cardinally minimally unstable among efficient assignments.

(c) Instead of blocking students, one might count “envied schools” (ES). However, in
school choice students are agents and schools are objects to be consumed. Now
if we count envied schools, there might be only one envied school with many stu-
dents, whereas there are only two students envying two schools, which might be a
counterintuitive comparison in school choice.27

5. Impossibilities

There exists a mechanism that is a Pareto improvement over the DA mechanism and
minimally unstable among efficient assignments (for the blocking pairs inclusion com-
parison). In fact, we prove a stronger result. Let us call an assignment μ strongly min-
imally unstable at P among efficient assignments if μ is efficient and for any efficient
assignment ν such that B(ν) ⊆ B(μ), we have μ = ν. We show that the EADA mecha-
nism always chooses an assignment that is strongly minimally unstable among efficient
assignments. We present our proof in Appendix A.1.

Proposition 1 (Possibility with Minimal Instability). The EADA mechanism is strongly
minimally unstable among efficient assignments.

Next we show that all other stability comparisons we have considered result in im-
possibilities.

Proposition 2 (Impossibilities with Cardinal Minimal Instability). (i) There is no
mechanism that is both a Pareto improvement over the DA mechanism and car-
dinally minimally unstable among efficient assignments. In particular, the EADA
mechanism is not cardinally minimally unstable among efficient assignments.

(ii) For any n ≥ 3, there exists a unit-capacity problem P with |N| = n and |C| = n− 1,
and an efficient assignment μ such that EADA(P ) is the unique efficient Pareto
improvement over DA(P ) and∣∣B(

EADA(P )
)∣∣ = n− 1 and

∣∣B(μ)
∣∣ = 1.

27Nevertheless for envied schools-wise cardinal minimal instability, a result close to Theorem 2 might
be obtained due to the fact that in the proof of (ii)⇒(iii) of Theorem 1 (where ES(μ) = {c ∈ C : (i, c) ∈
B(μ) for some i ∈ N }, except for Case 3 of Lemma 1, in all the examples we have |ES(μ′ )| = 1 and |ES(μ)| > 1.
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(iii) The EADA mechanism is not cardinally minimally unstable among efficient Pareto
improvements over the DA mechanism.

(iv) For any n≥ 5, there exists a unit-capacity problem P with |N| = n and |C| = n− 1,
and an efficient assignment μ that Pareto improves over DA(P ) and

∣∣B(
EADA(P )

)∣∣ = n− 2 and
∣∣B(μ)

∣∣ = 2.

Proof. Note that (i) follows from (ii) and (iii) follows from (iv).
(ii). Consider the following problem P : Let N = {1, 2, 3, � � � , n}, C = {c1, c2, c3, � � � ,

cn−1} (all with unit capacities), and

R1 R2 R3 · · · Rn−1 Rn �c1 �c2 �c3 · · · �cn−2 �cn−1

c1 c1 c2 cn−2 cn−1 n 2 3 · · · n− 2 n− 1
c2 c2 c3 cn−1 c1 1 1 1 · · · 1 1
c3 ∅ ∅ ∅ ∅ 2 3 4 · · · n− 1 n

c4
...

...
...

...
...

...
...

cn−1

∅

.

Note that

DA(P ) =
(

1 2 3 · · · n− 1 n

∅ c2 c3 · · · cn−1 c1

)

EADA(P ) =
(

1 2 3 · · · n− 1 n

∅ c1 c2 · · · cn−2 cn−1

)

and B(EADA(P )) = {(1, c1 ), (1, c2 ), � � � , (1, cn−2 ), (1, cn−1 )}. Note that the EADA assign-
ment is the unique efficient Pareto improvement over the DA assignment.

Consider the assignment μ = ( 1 2 3 ··· n−1 n
c1 c2 c3 ··· cn−1 ∅

)
, where B(μ) = {(n, c1 )}. Note that μ is

efficient and is cardinally more stable than EADA(P ).
(iv). Consider the following problem P : Let N = {1, 2, 3, � � � , n}, C = {c1, c2, c3, � � � ,

cn−1} (all with unit capacities), and

R1 R2 R3 · · · Rn−2 Rn−1 Rn �c1 �c2 �c3 · · · �cn−3 �cn−2 �cn−1

c1 c1 c2 · · · cn−3 c1 cn−1 n 2 3 · · · n− 3 1 n− 2
c2 c2 c3 · · · c1 ∅ cn−2 n− 1 1 1 · · · 1 n n

c3 ∅ ∅ · · · cn−1 c1 n− 2 3 4 · · · n− 2
... 1

... ∅ ∅ ...
...

... · · · ...
...

cn−3 3
cn−2 1

∅ 2

.
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Note that

DA(P ) =
(

1 2 3 · · · n− 2 n− 1 n

cn−2 c2 c3 · · · cn−1 ∅ c1

)

EADA(P ) =
(

1 2 3 · · · n− 2 n− 1 n

cn−2 c1 c2 · · · cn−3 ∅ cn−1

)

B(EADA(P )) = {(1, c1 ), (1, c2 ), � � � , (1, cn−3 ), (n− 1, c1 )}, and |B(EADA(P ))| = n− 2.
Consider the assignment

μ =
(

1 2 3 · · · n− 2 n− 1 n

c1 c2 c3 · · · cn−1 ∅ cn−2

)
,

where B(μ) = {(n − 2, c1 ), (n − 1, c1 )} and |B(μ)| = 2. Note that μ is efficient, μ Pareto
improves DA(P ), and μ is cardinally more stable than EADA(P ).

Below we show that Proposition 1 does not extend to BS-wise minimal instability.

Proposition 3 (Impossibilities with BS-wise Minimal Instability). (i) There is no mech-
anism that is both a Pareto improvement over the DA mechanism and BS-wise min-
imally unstable among efficient assignments. In particular, the EADA mechanism
is not BS-wise minimally unstable among efficient assignments.

(ii) The EADA mechanism is not BS-wise minimally unstable among efficient Pareto
improvements over the DA mechanism.

Proof. We show both (i) and (ii) by considering the following problem P : Let N =
{1, 2, 3, 4, 5, 6, 7}, C = {c1, c2, c3, c4, c5, c6} (all with unit capacities), and

R1 R2 R3 R4 R5 R6 R7 �c1 �c2 �c3 �c4 �c5 �c6

c1 c1 c3 c3 c4 c1 c6 7 2 5 4 1 3
c5 c2 c2 c4 c3 ∅ c5 6 3 3 5 7 7

∅ ∅ c1 ∅ ∅ c1 3
... 4

...
...

...

c6 ∅ 1
...

∅ 2
...

Note that

DA(P ) =
(

1 2 3 4 5 6 7
c5 c2 c6 c4 c3 ∅ c1

)

EADA(P ) =
(

1 2 3 4 5 6 7
c5 c1 c2 c3 c4 ∅ c6

)

and BS(EADA(P )) = {1, 3, 6} (since B(EADA(P )) = {(1, c1 ), (3, c3 ), (6, c1 )}).



Theoretical Economics 16 (2021) Pareto improvements over deferred acceptance 1271

Consider the assignment

μ=
(

1 2 3 4 5 6 7
c1 c2 c6 c3 c4 ∅ c5

)
,

where BS(μ) = {3, 6} (since B(μ) = {(3, c1 ), (6, c1 )}). Note that μ is efficient and Pareto
improves over DA. Moreover, μ is BS-wise more stable than EADA(P ) since BS(μ) �
BS(EADA(P )). Furthermore, note that μ and EADA(P ) are the only efficient Pareto im-
provements over DA(P ).28

Consider the assignment ν = ( 1 2 3 4 5 6 7
c5 c2 ∅ c3 c4 c1 c6

)
, where BS(ν) = {3} (since B(ν) =

{(3, c3 ), (3, c6 )}). Note that ν is efficient and BS-wise more stable than μ and EADA(P).

Since BS-wise cardinal minimal instability implies BS-wise minimal instability,
Proposition 3 remains unchanged if we replace BS-wise minimal instability with BS-wise
cardinal minimal instability.

6. Discussion

There is another important property for the design of mechanisms that we have not
discussed so far: strategy-proofness. A mechanism is strategy-proof if at any problem,
no student can be better off by reporting a preference relation different than his true
preference relation. Proposition 1 in Kesten (2010) shows that there is no efficient and
strategy-proof mechanism that selects the efficient and stable assignment whenever it
exists. Hence, there exists no mechanism that is strategy-proof and minimally unsta-
ble among efficient assignments for any of our stability comparisons based on blocking
pairs or blocking students. Even if the priority profile satisfies Conditions 1, 2, and 3 and
the EADA mechanism does not coincide with DA, the EADA mechanism is not strategy-
proof: this follows from Abdulkadiroğlu et al. (2009).

The top trading cycles (TTC) mechanism (Abdulkadiroğlu and Sönmez (2003)),
which is based on Gale’s TTC algorithm (Shapley and Scarf (1974)), is another well
known efficient mechanism. The TTC mechanism is not a Pareto improvement over
the DA mechanism, but it is strategy-proof. The TTC mechanism is not minimally un-
stable among efficient assignments simply because, TTC may not choose the efficient
and stable assignment when it exists. Yet, Abdulkadiroğlu et al. (2020) has shown that if
we fix a set of agents and a set of schools with unit capacities, then TTC is minimally un-
stable among efficient and strategy-proof mechanisms. In our companion paper Doğan
and Ehlers (2020b), we show that TTC is also minimally unstable among efficient and
strategy-proof mechanisms for any of our stability comparisons if we fix a set of agents
and a set of schools with unit capacities.

Another known efficient mechanism is the top trading cycles over DA mechanism
(DA ⊕ TTC), which is based on applying Gale’s TTC procedure over the DA outcome,

28This follows because for any efficient Pareto improvment η over DA(P ), we must have η(6) = ∅, η(4) =
c3, η(5) = c4, and η(7) �= c1. If η(7) = c5, then η= μ and if η(7) = c6, then η = μ.
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i.e., first run the DA algorithm and obtain the DA assignment; then, using the DA as-
signment as the endowment profile, calculate the TTC assignment as in Shapley and
Scarf (1974). The DA ⊕ TTC mechanism is efficient and Pareto improves over DA. The
DA ⊕ TTC assignments are also not necessarily minimally unstable among efficient as-
signments, since there exist problems where the EADA assignment is more stable (see
Example 8 in Kesten (2010)). Hence, DA ⊕ TTC is also not cardinally minimally unstable
among efficient assignments, which also follows from Proposition 3.

Furthermore, stability is equivalent to the conjunction of non-wastefulness and no
justified envy.29 Now any efficient assignment is non-wasteful, and for efficient assign-
ments, stability is equivalent to no justified envy. Thus, the concepts of (cardinal) mini-
mal instability are equivalent to (cardinal) minimal justified envy.30

Another alternative stability comparison is based on blocking triplets. Kwon and
Shorrer (2019) study the blocking triplets inclusion comparison (tincl), which is defined
(given problem P and assignment μ) as (i, j, c) ∈ T (μ) if and only if i �c j, μ(j) = c, and
cPiμ(i); then for μ, ν ∈ A,

μ�P
tincl ν ⇔ T (μ) ⊆ T (ν).

Now the blocking triplets cardinality comparison tcard is defined, for each P ∈ P and
μ, ν ∈ A, as

μ�P
tcard ν ⇔ ∣∣T (μ)

∣∣ ≤ ∣∣T (ν)
∣∣.

Note that �P
tincl⊆�P

tcard.
An immediate observation is that Theorem 1 extends to the blocking triplets car-

dinality comparison tcard. As for problems where schools have unit capacity, for any
problem P , we have |B(μ)| = |T (μ)| for any efficient assignment μ. Hence, tcard and
scard coincide on the set of efficient assignments. This is due to the fact that efficient
assignments are non-wasteful, and stability and no justified envy become equivalent.
The same is true for Propositions 2 and 3, as in the examples of the proofs, all schools
have unit capacities.31

29Given problem P , (i) an assignment μ is non-wasteful if there exists no (i, c) ∈ B(μ) with |μ(c)| < qc ,
and (ii) an assignment μ has no justified envy if there exists no (i, c) ∈ B(μ) with |μ(c)| = qc .

30This is the terminology used by Abdulkadiroğlu et al. (2020) and Kwon and Shorrer (2019). In a recent
paper, Romm et al. (2020) show that in different contexts, the concepts of blocking and justified envy may
diverge.

31Furthermore, strong minimal instability of EADA a.e.a. that we prove in Appendix A.1 also holds for
tincl and implies Proposition 4 of Kwon and Shorrer (2019): Suppose, by contradiction, that there are a
problem P , ν = EADA(P ), and an efficient assignment μ such that μ �P

tincl ν and μ �= ν; then by definition
T (μ) ⊆ T (ν), and [I] any (i, j, c) ∈ T (μ) implies (i, c) ∈ B(μ) and [II] any (i, j, c) ∈ T (ν) implies (i, c) ∈ B(ν).
Since B(μ) = {(i, c) : (i, j, c) ∈ T (μ) for some j ∈N }, we obtain B(μ) ⊆ B(ν) and μ�P

pincl ν. Now, as shown in
the proof of Proposition 1, there exists a unit-capacity problem P ′ and an efficient assignment μ′ such that
μ′ �P ′

tincl EADA(P ′ ) and μ′ �= EADA(P ′ ), which implies that μ′ �P ′
pincl EADA(P ′ ), which contradicts Proposi-

tion 1.
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Appendix

A.1 Minimal instability of EADA

We prove Proposition 1: the EADA mechanism is minimally unstable among efficient
assignments. The following notation is useful. Given a set of students I ⊆ N and a set
of school S ⊆ C, let μ(I ) = ⋃

i∈I μ(i) and μ(S) = ⋃
c∈S μ(c) denote the aggregate assign-

ments of I and S at μ, respectively. Given a set of students I ⊆ N , let μ|I denote the
restriction of μ to I. Note that μ|I is a mapping μ|I : I ∪μ(I ) → I ∪μ(I ).

The following results from the literature are useful. The following lemma is Lemma 2
of Tang and Yu (2014), which shows that each step of the EADA algorithm Pareto im-
proves upon the previous step.

Lemma 9. For each t ∈ {2, � � � , m}, μt Pareto improves μt−1. Also, μ1 Pareto improves the
DA assignment.

The following lemma follows from Doğan and Yenmez (2020), which shows that the
EADA satisfies a particular consistency property.

Lemma 10. Whenever a student who is assigned to a school that is underdemanded at DA
is removed with his assigned seat at the EADA assignment, the assignments of the remain-
ing students do not change when the EADA algorithm is run for the reduced problem.

The proof is in two steps. First, we prove the statement for problems at which each
school has unit capacity. Then we extend it to the entire domain of problems.

Unit-capacity case. Let P = (N , C, R, q, �) be a problem such that for each c ∈ C,
qc = 1. Let μ = EADA(P ). Let {I1, � � � , Im} denote the partition of N generated by
the underdemanded schools algorithm. Let ν = DA(P ). For each t ∈ {1, � � � , m}, let
I>t = It+1 ∪ · · · ∪ Im (and, similarly, we define I≤t and I<t ). Let μ1, � � � , μm be as defined
above, i.e., for each t ∈ {1, � � � , m}, μt is the assignment obtained by iterating the EADA
algorithm for only t rounds.

We first claim that B(μ1 ) ⊆ B(μ2 ) ⊆ · · · ⊆ B(μm ) = B(μ). Note that for each t ∈
{1, � � � , m− 1}, μt+1 is a Pareto improvement over μt by Lemma 9. Then, for each school
c ∈ C, the student who is assigned to c in μt+1 has a weakly lower priority than the stu-
dent who is assigned to c in μt , since otherwise μt restricted to I≥t would be unstable.
Thus, for each student i ∈ I≤t , the set of blocking pairs in μt that include i is a subset of
the set of the set of blocking pairs in μt+1 that include i. Moreover, since no student in
I>t prefers a school that is assigned to a student in I≤t to his assigned school in μt+1, no
student in I≥t+1 is included in a blocking pair in μt or μt+1, which proves the claim.

Suppose to the contrary that μ′ is an efficient assignment such that B(μ′ ) ⊆ B(μ)
and μ′ �= μ. Then, for some j ∈ N , μ′(j) �= μ(j). Let j ∈ It . If μ(It ) = μ′(It ), then by
the underdemanded schools algorithm, μ(i) = μt(i) for all i ∈ It . But then Bi(μ) ∩ (It ×
μ(It )) = ∅ for all i ∈ It . By B(μ′ ) ⊆ B(μ), we also have Bi(μ′ ) ∩ (It × μ(It )) = ∅ for all
i ∈ It . Thus, both μ|It and μ′|It are stable. Because μ(It ) = μ′(It ), it now follows from
efficiency that μ(i) = μ′(i) for all i ∈ It , a contradiction to μ′(j) �= μ(j) and j ∈ It . Thus,
μ(It ) �= μ′(It ).
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Suppose, without loss of generality, that μ′(j) /∈ μ(It ). But then going from μ to
μ′ agent j is involved in a trading cycle j1, � � � , jr such that μ′(jl ) = μ(jl+1 ) for each
l ∈ {1, � � � , r − 1}, and μ′(jr ) = μ(j1 ). Let cl = μ(jl ) for each l ∈ {1, � � � , r}.

We show that there exists l ∈ {1, � � � , r} such that jl ∈ It , cl+1 ∈ μ(I>t ), and cl+1Pjlcl.
By efficiency of μ′, there exists l ∈ {1, � � � , r} such that cl+1Pjlcl. Then by the under-
demanded schools algorithm, cl+1 ∈ μ(I≥t ). If cl+1 ∈ μ(I>t ), then we have the de-
sired l. Suppose not, that is, suppose that cl+1 ∈ μ(It ). Then we have μt(jl ) = μ(jl ) = cl
and μt(jl+1 ) = μ(jl+1 ) = cl+1 which implies jl+1 �cl+1 jl. Since (jl+1, cl+1 ) /∈ B(μ) and
B(μ′ ) ⊆ B(μ), we have (jl+1, cl+1 ) /∈ B(μ′ ) and cl+2 = μ′(jl+1 )Pjl+1cl+1. But then again
cl+2 ∈ μ(I≥t ). If cl+2 ∈ μ(I>t ), we have the desired l. Otherwise, cl+2 ∈ μ(It ). Since
j ∈ {j1, � � � , jr } and μ′(j) /∈ μ(It ), by continuing similarly we eventually reach the de-
sired l.

Now, without loss of generality, let j be such that j ∈ It , μ′(j) ∈ μ(I>t ), and
μ′(j)Pjμ(j). Let i1 = μt(μ′(j)). Note that i1 ∈ I>t since μ′(j) ∈ μ(I>t ). By μ′(j)Pjμ(j), we
have i1 �μ′(j) j. Thus, μ(i1 )Ri1μ

′(j) and (i1, μ′(j)) /∈ B(μ). By B(μ′ ) ⊆ B(μ), (i1, μ′(j)) /∈
B(μ′ ). Hence, μ′(i1 )Pi1μ

′(j) and since i1 ∈ I>t , by the underdemanded schools algo-
rithm, μ′(i1 ) ∈ μ(I>t ).

Let i2 = μt(μ′(j)). By similar arguments, there exists an agent i3 such that i3 =
μt(μ′(i2 )), μ′(i3 ) ∈ μ(I>t ), and μ′(i3 )Pi3μ(i3 ). Continuing similarly, since the number of
agents is finite, we eventually reach an agent ir such that j = μt(μ′(ir )), μ′(ir ) ∈ μ(I>t ),
and μ′(ir )Pirμ(ir ), which is a contradiction since μ′(ir ) = μ(j) and μ(j) ∈ μ(It ).

Extension to general capacities. Let P = (N , C, R, q, �) be a problem (not necessarily
unit capacity). We construct an auxiliary unit-capacity problem P ′ = (N , C ′, R′, q′, �′ ),
which has the same set of students, as follows.

(i) For each c ∈ C, we construct qc unit-capacity schools labelled as c1, � � � , cqc and
assign them into C ′. Note that |C ′| = ∑

c∈C qc and q′ is a |C ′|-tuple of 1s.

(ii) For each i ∈ N and cp, c′
q ∈ C ′, we have cp R′

i c
′
q if and only if c Pi c

′ or [c = c′ and
p ≤ q]. Also, cp Pi i if and only if c Pi i.

(iii) For each cp ∈ C ′ and i, j ∈ N , we have i �′
cp

j if and only if i �c j. Also, i �cp cp if
and only if i �c c.

We define a mapping ϕ from the set of assignments in P ′ to the set of assignments
in P as follows. Given an assignment μ in problem P ′, let ϕ(μ′ ) be the assignment in
problem P such that for each i ∈ N , ϕ(μ′ )(i) = c if and only if μ′(i) = cp for some p ∈
{1, � � � , cqc }.

Observation 1. ϕ(DA(P ′ )) = DA(P ). To see this, first note that clearly ϕ(DA(P ′ )) is
stable at P . Suppose that ϕ(DA(P ′ )) �= DA(P ). Since DA(P ) is the student-optimal stable
assignment at P , DA(P ) Pareto improves ϕ(DA(P ′ )). Let μ be the assignment in problem
P ′ such that for each i ∈ N , μ(i) = cp if and only if DA(P )(i) = c and |j ∈ DA(P )(c) : j �c

i| = p. Note that μ is stable and Pareto improves DA(P ′ ) at P ′, which is a contradiction
since DA(P ′ ) is the student-optimal stable assignment at P ′.
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Observation 2. Each student i ∈ N who is assigned to an underdemanded school at
DA(P ′ ) is assigned to an underdemanded school also at DA(P ). (Note that it is not nec-
essarily true that if c ∈ C is underdemanded at DA(P ), each of c1, � � � , cqc is underde-
manded at DA(P ′ ).) This easily follows from ϕ(DA(P ′ )) = DA(P ).

We show that ϕ(EADA(P ′ )) = EADA(P ). Let i1 ∈N be a student who is assigned to an
underdemanded school cq at DA(P ′ ) (Since all the students who are assigned to a school
at the last step of the DA algorithm are assigned to underdemanded schools, there exists
such a student). By Observation 1, ϕ(DA(P ′ ))(i1 ) = DA(P )(i) = c. By Observation 2, c is
underdemanded at DA(P ). Then ϕ(EADA(P ′ ))(i1 ) = EADA(P )(i1 ).

By Lemma 10, at the problem P ′, if student i1 is removed with his assigned seat at
the EADA(P ′ ) assignment, the assignments of the remaining students do not change
when the EADA algorithm is run for the reduced problem. Again by Lemma 10, at the
problem P , if student i is removed with his assigned seat at the EADA(P ) assignment,
the assignments of the remaining students do not change when the EADA algorithm is
run for the reduced problem.

Now we proceed likewise with the reduced problems. Let i2 ∈ N \ {i1} be a student
who is assigned to an underdemanded school cq at the DA assignment for the problem
reduced from P ′. (As long as N \ {i1} �= ∅, there exists such a student.) By similar ar-
guments as above, ϕ(EADA(P ′ ))(i2 ) = EADA(P )(i2 ). Proceeding likewise, we eventually
exhaust all the students, which concludes that ϕ(EADA(P ′ )) = EADA(P ).

Suppose that EADA(P ) is not minimally unstable among efficient assignments. Let
μ �= EADA(P ) be an efficient assignment that is weakly more stable than EADA(P ) at P .
Let μ′ be the assignment in problem P ′ such that for each i ∈ N , μ(i) = cp if and only
if DA(P )(i) = c and |{j ∈ DA(P )(c) : j �c i}| = p. Note that μ′ �= μ is efficient and weakly
more stable than EADA(P ′ ), which is a contraction since the EADA assignment is mini-
mally unstable among efficient assignments when each school has unit capacity.

A.2 Necessary conditions in the multicapacity case

A capacity–priority profile (qc , �c )c∈C includes an (multi-capacity) Ergin cycle (Ergin
(2002)) if there exist a list of three students (i1, i2, i3 ), a pair of schools (c1, c2 ), and a pair
of (possibly empty) disjoint sets of students (Nc1 , Nc2 ) such that such that i3 �c1 i1 �c1 i2
and i2 �c2 i3.

i. We have i3 �c1 i1 �c1 i2 and i2 �c2 i3.

ii. For each t ∈ {1, 2}, Nct ⊂ N \ {i1, i2, i3} and |Nct | = qct − 1.

iii. We have Nc1 ⊂ {i ∈N : i �c1 i1} and Nc2 ⊂ {i ∈N : i �c2 i3}.

Given an Ergin cycle consisting of (1, 2, 3), (c1, c2 ), and (Nc1 , Nc2 ), we call the first
student, student i1, the initiator of the Ergin cycle.

Given an Ergin cycle consisting of (i1, i2, i3 ), (c1, c2 ), and (Nc1 , Nc2 ), and another
Ergin-cycle consisting of (j1, j2, j3 ), (c′

1, c′
2 ), and (N ′

c′
1
, N ′

c′
2

), we say that the two general-

ized cycles are distinct if all the students, schools, and sets of students in the two gen-
eralized cycles are distinct; we say that the two generalized cycles are distinct except for
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the initiator if i1 = j1 and all the other students, schools, and sets of students in the two
generalized cycles are distinct.

We say that a list (i1, i2, i3 ), (c1, c2 ), and (Nc1 , Nc2 ) constitute a tight Ergin cycle if
they constitute an Ergin cycle and

iv. there is no m ∈N \ (Nc1 ∪Nc2 ∪ {i2, i3}) such that i2 �c2 m �c2 i3

v. and there is no m ∈N \ (Nc1 ∪Nc2 ∪ {i1, i2, i3}) such that i3 �c1 m �c1 i2.

Condition 1*. All the Ergin cycles are tight.

Condition 2*. There are no two Ergin cycles that are distinct except for the initiator.

Condition 3*. For any two distinct Ergin cycles consisting of (i1, i2, i3 ), (c1, c2 ), and
(Nc1 , Nc2 ), and (j1, j2, j3 ), (c′

1, c′
2 ), and (N ′

c′
1
, N ′

c′
2

), there does not exist any student i ∈
{i1, i2, i3}, any school c ∈ C \ {c1, c2, c′

1, c′
2}, and any set of students Nc distinct from the

students in the two Ergin cycles (including the sets of students in the two Ergin cycles)
such that Nc ⊂ {j ∈N : j �c i} and |Nc| = qc − 1.

Proposition 4. Suppose that (qc , �c )c∈C violates Condition 1*, i.e., it includes an Ergin
cycle that is not tight. Then there exists a problem such that there is no Pareto improve-
ment over DA that is cardinally minimally unstable among efficient assignments.

Proof. The proof follows from the same arguments as in the proof of Lemma 1 with the
following modifications.

– In the preference profile R, for each t ∈ {1, 2}, each student in Nct top ranks ct .

– In the assignments μ and μ′, for each t ∈ {1, 2}, each student in Nct is assigned
to ct .

Proposition 5. Suppose that (qc , �c )c∈C violates Condition 2*, i.e., it includes two Ergin
cycles that are distinct except for the initiator. Then there exists a problem such that there
is no Pareto improvement over DA that is cardinally minimally unstable among efficient
assignments.

Proof. The proof follows from the same arguments as in the proof of Lemma 2 with the
following modifications.

– In the preference profile R, for each t ∈ {1, 2}, each student in Nct top ranks ct and
each student in N ′

c′
t

top ranks c′
t .

– In the assignments μ and μ′, for each t ∈ {1, 2}, each student in Nct is assigned to ct
and each student in N ′

c′
t

is assigned to c′
t .

Proposition 6. Suppose that (qc , �c )c∈C violates Condition 3*. Then there exists a prob-
lem such that there is no Pareto improvement over DA that is cardinally minimally unsta-
ble among efficient assignments.
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Proof. The proof follows from the same arguments as in the proof of Lemma 3 with the
following modifications.

– Note that in the proof of Lemma 3, existence of a school c with the desired property
follows from the unit-capacity assumption and the assumption that |C| ≥ 5. Here,
it directly follows from the violation of C3*.

– In the preference profile R, each student in Nc top ranks c, and for each t ∈ {1, 2},
each student in Nct top ranks ct and each student in N ′

c′
t

top ranks c′
t .

– In the assignments μ and μ′, each student in Nc is assigned to c, and for each
t ∈ {1, 2}, each student in Nct is assigned to ct and each student in N ′

c′
t

is assigned

to c′
t .
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