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Delegating learning

Juan F. Escobar
Department of Industrial Engineering, University of Chile

Qiaoxi Zhang
School of Economics, Xiamen University and Departmento de Economía, Universidad Diego Portales

Learning is crucial to organizational decision making but often needs to be dele-
gated. We examine a dynamic delegation problem where a principal decides on a
project with uncertain profitability. A biased agent, who is initially as uninformed
as the principal, privately learns the profitability over time and communicates to
the principal. We formulate learning delegation as a dynamic mechanism design
problem and characterize the optimal delegation scheme. We show that private
learning gives rise to the trade-off between how much information to acquire and
how promptly it is reflected in the decision. We discuss implications on learning
delegation for distinct organizations.

Keywords. Private learning, delegation, delays, deadlines, commitment, cheap
talk.

JEL classification. D82, D83.

1. Introduction

Suppose that two people need to decide whether to invest in a project. If they invest,
they could receive a gain or suffer a loss. If they do not invest, they wait, obtain new
information, and may invest in the future. Now suppose that given the information so
far, one of them—the principal—prefers to learn more, while the other—the agent—
prefers to invest. If learning has to be delegated to the agent and the principal cannot
observe the learning outcome, can the agent convey it truthfully? If so, what should be
the optimal delegation scheme? How does it change over time given what the agent has
learned so far? For how long should learning take place?

Delegating learning is a common occurrence. For example, suppose the board of
directors of a company is deliberating whether to acquire another company. Apart from
the financial value of the acquisition, its strategic value—e.g., its impact on the price and
competition, the current employees, the bargaining power with suppliers—is also rele-
vant. Since much of this information is hard to observe directly, the board needs to rely
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on learning by the manager, who has direct access to the parties involved. For another
example, the Food and Drug Administration (FDA) relies on pharmaceutical companies
to develop drugs and test their efficacy. Although the companies are required to submit
clinical trial results, the trials themselves cannot be fully monitored and, therefore, the
results can be manipulated.1

We study how a principal should delegate an investment decision to an agent who
privately learns about the investment over time. Our analysis extends the traditional
static delegation approach (Holmström 1984, Melumad and Shibano 1991, Alonso and
Matouschek 2008, Amador and Bagwell 2013) to allow for evolving private information.
We formulate delegation as a dynamic mechanism design problem and show that the
optimal delegation scheme should have delays in response to information acquired so
as to incentivize the agent’s learning. Moreover, we uncover a unique trade-off arising
in learning delegation, which is that between the amount of information acquired and
how promptly it is reflected in the decision. The optimal duration of learning solves this
trade-off. We also discuss some implications on organization decisions.

In our model, a principal and an agent face a project that never expires. The project’s
quality, which can be good or bad, is initially uncertain. Players share the same belief
about the project’s quality. The principal needs to decide when, if ever, to invest in the
project. The project generates a signal whose arrival time is random. As long as no in-
vestment has happened, the agent privately observes the signal, or the absence thereof,
without cost. Hence, investing and learning are two sides of the same coin in that as
long as investment has not happened, learning continues. A signal perfectly reveals the
project quality. At each point in time before investment happens, the agent sends a
cheap talk message about the information learned so far to the principal. The princi-
pal commits to a delegation rule that specifies, for each point in time and each possible
message history at that time, whether to invest. Once the investment happens, the game
ends.

No one receives a payoff if no investment has happened. Once the investment hap-
pens, each player receives a time-discounted payoff determined by project quality and
the player’s identity. A good investment brings gains to both players, while a bad invest-
ment brings losses to both players. Consequently, each player will want to invest if they
are optimistic enough about project quality and will want to wait for more information
otherwise. However, the common initial belief is high enough for the agent such that he
prefers to invest immediately and low enough for the principal such that she prefers to
wait and invest only when a good signal arrives. The challenge for the principal is then
to incentivize the agent to tell the truth when he has not received any signal, while trying
to invest as soon as possible after a good signal arrives.

First, we note that investment must follow a good signal with delay. If a good signal
triggers immediate investment, the agent would like to pretend to be informed when

1Several authors have documented frauds in clinical trials (George and Buyse 2015). Seife (2015) shows
that the FDA has found substantive evidence of fraudulent data in biomedical research on humans. For
a summary, see Seife, “Are your medications safe,” Slate, February 9, 2015. However, we think the more
common cases are probably less extreme and that some results are verifiable while others are not. We focus
on the residual unverifiability.
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in fact no signal has arrived, and no learning would take place. To see how the delay
should evolve over time to incentivize learning, we need to understand the driving forces
behind learning. On the one hand, learning benefits the agent because if a bad signal
arrives, he would then learn that the project is bad and avoid the loss from investing.
On the other hand, learning costs the agent in that it takes time. Suppose that no sig-
nal has arrived and the agent is still optimistic enough to prefer to invest right away. At
this point, the cost of learning outweighs the benefit. To encourage learning, the prin-
cipal needs to decrease the cost by making investment respond faster to the good signal
throughout time. Suppose that the principal wants to encourage the agent to learn for
one more day. If a claim of good signal leads the principal to invest immediately, then
the cost of learning is a one day delay. However, if a good signal that arrives today leads
to investment 5 days later while a good signal that arrives tomorrow leads to investment
4�5 days after tomorrow, the cost of learning is only a half day delay. Delays in invest-
ment that decrease in the arrival times of the good signal allow the principal to balance
the cost and benefit of learning for the agent, hence his truthful revelation.

It is natural to think that if no good signal has arrived, investment should not hap-
pen. This is not always the case. In fact, as a result of the trade-off between the amount
of information acquired and how effectively it is used, the principal may prefer to in-
vest at a deadline even if no good signal has been claimed. Suppose that at some time
T , even if no signal has arrived, learning stops and investment happens. Since no in-
centives for learning is required from T on, the delay decreases gradually to 0 at T . If
instead the principal decides to incentivize learning after T , the delay at T must be pos-
itive. Accordingly, delays of investment for claims of the good signal at each time before
T must also be increased. Therefore, the longer learning takes place, the better informa-
tion the principal receives and the more accurate but less prompt her decision to invest
is. If no investment happens unless a good signal arrives, learning could take place for
an arbitrarily long period of time. Consequently, the decision to invest is 100% accu-
rate because the principal only invests if she is completely sure that the project is good.
However the downside is that she has to provide incentives for learning for a long time.
The resulting long delays in investment when a good signal arrives can, therefore, be a
prohibitive cost for the principal. Therefore, due to the trade-off between the amount of
information acquired and how effectively it is used, the principal may find it optimal to
commit to investing with a deadline even if no good signal has been claimed.

The optimal duration of learning that balances the trade-off depends on the players’
preferences for learning. Given that the principal prefers to wait while the agent prefers
to invest initially, if the players’ gain–loss ratios are sufficiently high, maintaining incen-
tives for learning becomes very costly for the principal and, therefore, the duration of
learning is short. Alternatively, when the players’ gain–loss ratios are sufficiently low,
it is in the principal’s interest to maintain a longer learning phase. Our results speak
to how distinct organizations should use distinct protocols to delegate learning. In the
FDA example, losses from approving a damaging drug are substantial. This maps to our
model when the principal has a low gain–loss ratio and, therefore, is strongly inclined
to learn. The optimal course of action for the FDA is then to be prudent by establish-
ing long revision processes. Not only do they ensure that a damaging drug never gets
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approved, the ensuing long delays in approval also guarantee truthful revelation from
pharmaceutical companies. Alternatively, if a manager’s career concern is strong and he
has a high gain–loss ratio, the optimal action for the board when it comes to acquisition
decisions is to set short learning phases and then acquire as long as no negative news
has arrived.

Our paper contributes to the delegation literature initiated by Holmström (1984) and
extended by Melumad and Shibano (1991), Alonso and Matouschek (2008), Armstrong
and Vickers (2010), Amador and Bagwell (2013), and Ambrus and Egorov (2017), among
others. As in all these papers, in our model, the principal may grant flexibility to the
agent so that he can use his information, but granting too much flexibility may open up
room for opportunistic behavior. However, these papers study static models and do not
address the issue of how to provide incentives to an agent with evolving private infor-
mation.2 In particular, our work emphasizes how the dynamic provision of incentives
determines how information is used and for how long learning takes place.

Grenadier et al. (2016) and Guo (2016) explore delegation models in dynamic con-
texts. In Grenadier et al. (2016), a timing decision needs to be made and an agent
who is informed at time 0 communicates with the principal throughout time. Whereas
Grenadier et al. (2016) explore how the value of commitment for the principal depends
on the sign of the agent’s bias, we take commitment for granted but explore how to del-
egate with evolving private information. As Grenadier et al. (2016) point out, their full
commitment case is similar to standard static delegation problems and, as a result, in-
terval delegation is optimal. In Guo (2016), the principal delegates the decision to ex-
periment over time to an agent who has private information about its profitability at
time 0.3 Once experimentation starts, however, all signals are public. A comparison be-
tween our paper and Guo (2016) highlights the differences between private and public
learning, which have important implications for the design of incentive schemes. In
her model with a continuum of types, since signals are public, once a good signal ar-
rives, the risky project is publicly known to be optimal and is fully implemented. In our
model, however, investment decisions commonly known to be optimal are nonetheless
delayed. This is the principal’s response to the problem of providing incentives to an
agent with evolving private information.

Our paper is also related to the study of optimal delegation decisions when informa-
tion acquisition is endogenous. In Aghion and Tirole (1997), Szalay (2005), and Deimen
and Szalay (2019), information acquisition is a one-time decision; therefore, the trade-
off between extracting information and using information efficiently is different from
ours. Lewis and Ottaviani (2008) study a setting where the agent searches for the best
alternative over time and money transfers are used, which we rule out.

Frankel (2016), Li et al. (2017), Lipnowski and Ramos (2020), Guo and Hörner (2020),
and Chen (2018) study repeated delegation models in which parties face a stream of

2While in our model the principal dynamically screens the agent’s information, we depart from the grow-
ing dynamic mechanism design literature (Pavan et al. 2014, Bergemann and Välimäki 2019, Madsen 2018)
by assuming transfers are infeasible.

3Guo (2016) focuses on the full commitment case, but she also shows that the sign of the agent’s bias
determines the value of commitment.
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decisions. In these models, incentives can be provided by linking the different decisions.
In contrast, we study situations in which a single, irreversible decision is to be made and,
therefore, linking decisions is infeasible.4

Finally, our work is related to dynamic persuasion models such as Ely (2017),
McClellan (2017), Henry and Ottaviani (2019), and Orlov et al. (2020). These papers ex-
plore how to design approval rules when learning is costly, signals are public, and incen-
tives are misaligned ex post. In contrast, we mainly focus on the case where learning is
costless, signals are private, and incentives are misaligned ex ante. Our result is remi-
niscent of Ely (2017), where the delay of information is used to influence the receiver’s
beliefs so that he is exactly indifferent between working and stopping. In our model, the
delay of implementation is used to distort the consequences of the sender’s reports so
that he is exactly indifferent between truth-telling and lying.

The rest of the paper is organized as follows. Section 2 presents the model. Sec-
tion 3 formalizes the dynamic delegation problem. Section 4 presents our main results.
Section 5 concludes.

2. The model

We consider an infinite-horizon continuous-time game played by a principal and an
agent. There is an initially unknown state θ ∈ {0�1}. We call θ = 1 the good state and
θ = 0 the bad state. At time 0, the agent and the principal are symmetrically uninformed
about the state θ, with P[θ = 1] = p0 being the initial prior.

The agent privately learns about the state without cost. A signal is generated accord-
ing to an exponential distribution with arrival rate λθ, which depends on θ. Specifically,
conditional on θ, over an interval [t� t + dt], a signal st = θ is realized with probability
λθ dt. The arrival of the signal is privately observed by the agent. Thus, the arrival of a
signal perfectly reveals the state to the agent. We say that the agent is uninformed if he
has not observed a signal. The agent’s private history up to period t is denoted ht . We
use ∅ to denote the history with no signal.

The private belief process pt = P[θ = 1 | ht] is formed according to the initial prior p0
and the agent’s private history ht up to period t. The law of motion for the agent’s private
belief pt can be derived as follows. If a signal st = 1 arrives during the interval [t� t + dt),
the belief jumps to 1; if a signal st = 0 arrives during the interval, the belief jumps to 0.
If no signal arrives, Bayes’s rule can be used to deduce that the posterior at the end of
t + dt is

pt + dpt = pt
(
1 − λ1 dt

)
(1 −pt)

(
1 − λ0 dt

) +pt
(
1 − λ1 dt

) �
That is, when no signal arrives, the evolution of the belief is governed by the differential
equation5

dpt

dt
= −(

λ1 − λ0)pt(1 −pt)�

4Another difference is that, with the exception of Guo and Hörner (2020), the repeated delegation litera-
ture has focused on serially uncorrelated incomplete information.

5See Liptser and Shiryaev (2013) for details.
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We assume that λ0 < λ1 and thus no news is bad news. In other words, the belief de-
creases in the absence of a signal. We show that our results extend to the case λ0 ≥ λ1 in
Appendix E (also see Remark 1).

The principal chooses yt ∈ {0�1} at each t ≥ 0, where yt = 1 means to invest and yt = 0
means not to invest. The decision to invest is irreversible: if yt = 1 for some t, then yτ = 1
for all τ > t and the interaction ends.

Players’ preferences over investment coincide conditional on θ. During each interval
[t� t + dt) for which yt = 0, both players receive zero payoff. Conditional on θ, if the
principal invests at time t, she gets total discounted payoffs equal to

e−rtV if θ = 1 and e−rt(−ν) if θ = 0�

whereas the agent gets total discounted payoffs equal to

e−rtW if θ = 1 and e−rt(−ω) if θ = 0�

where V , ν, W , and ω are strictly positive, and r > 0 is the common discount rate.6 For
the rest of the paper, we normalize ν = ω = 1, and, therefore, V and W are the gain–loss
ratios of the principal and the agent, respectively.

To state our assumption on the conflict of interest, it is useful to describe the one-
person benchmark. Suppose that the agent not only perfectly observes the arrival of
the signal, but also has the right to invest. The optimal policy for the agent is charac-
terized by a cutoff p∗ := (λ1 + r)/(rW + λ1 + r) (Keller et al. 2005). The agent finds it
optimal to invest given the current belief p if and only if he is optimistic enough about
the state; that is, p ≥ p∗. Intuitively, the optimal policy must be a cutoff policy because if
the uninformed agent does not find it attractive to invest at t, then neither does the un-
informed agent at t+dt, who is more pessimistic about the value of the investment than
at t. Similarly, suppose that the principal not only controls decisions, but also observes
the signal. Given the current belief p, the principal would find it optimal to invest if and
only if p ≥ q∗ = (λ1 + r)/(rV + λ1 + r).

We can now state the assumption on the conflict of interest, which is maintained
throughout the paper.

Assumption 1. The agent’s cutoff belief is lower than the principal’s, and the common
prior is inbetween. That is, p∗ <p0 < q∗.

This assumption implies that at t = 0, the agent wants to invest immediately,
whereas the principal wants to invest only after observing a good signal. An equivalent
formulation for Assumption 1 is

W
r

λ1 + r

p0

1 −p0
> 1 > V

r

λ1 + r

p0

1 −p0
�

6One can allow for heterogeneous discount rates. As long as the principal is weakly more patient than the
agent, all the results hold qualitatively. When the agent is strictly more patient, the optimal deterministic
mechanism is characterized in the same way, but the optimal mechanism is random.
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The above inequality means that the gain–loss ratio for the agent, W , is sufficiently
high while the gain–loss ratio for the principal, V , is sufficiently low. Note that when
Assumption 1 does not hold, the principal can easily align the agent’s incentives.7

Since λ1 > λ0, as time goes on and no signal is received, the agent gets more pes-
simistic. At some point, the agent would prefer to wait and invest only after observing
the good signal. Let t∗ be the time at which the agent becomes indifferent between
investing and waiting for a good signal. Formally, for λ1 > λ0,

t∗ = 1

λ1 − λ0 ln
(

p0

1 −p0
W

r(
λ1 + r

))
�

For t < t∗, the principal’s and the agent’s interests are not aligned when no signal has
arrived. For t > t∗, the principal’s and the agent’s interests coincide for all private histo-
ries. We can thus interpret t∗ as a measure of how long it takes for the incentives to be
aligned. Note that t∗ increases as the agent becomes more willing to invest without any
information (i.e., when W becomes larger) and as the absence of signal becomes less
informative (i.e., when λ1 − λ0 becomes smaller so that learning becomes slower).

3. The dynamic delegation problem

We set up the principal’s problem of eliciting the agent’s evolving private information to
maximize her expected profits. Following the delegation literature (Holmström 1984),
we focus on incentive provision through the design of control rights in the absence of
transfers. To do this when learning is private, we formulate a dynamic mechanism de-
sign problem with commitment. At each t ∈ [0�∞) the agent sends a costless message
mt ∈ {0�1�∅} given the private history ht . The principal commits to an action yt ∈ {0�1}
as a function of the message history up to t.

Given our single-agent setting, it is without loss to restrict to direct mechanisms
(see Sugaya and Wolitzky 2020 for details) and restrict the message space so that once
the agent announces a signal, the future message space becomes a singleton and
the game essentially ends.8 A contract is, therefore, a function mapping, for each t,
({mτ}0≤τ≤t � {yτ}0≤τ<t) to yt ∈ {0�1} with the following irreversibility property: for any t, if
yτ = 1 for some 0 ≤ τ < t, then yt = 1. In Appendix A, we show that it is without loss to re-
strict to contracts that specify an investment time for each time at which a good signal is
claimed, as well as a deadline at which investment happens even if no signal is claimed.
In particular, the principal never invests after the agent reports a bad signal. Therefore,
for the rest of the paper, we define a contract as a tuple 〈T�τ〉, with T ∈ 	+ ∪ {∞} and

7To see this, note that if q∗ < p0, then the principal would like to invest at t = 0 and would not need the
agent. If p0 < p∗ and p0 < q∗, both the principal and the agent would like to invest only after observing
a good signal. In this case, both parties’ preferences are perfectly aligned throughout the game and the
first-best can be achieved even without commitment.

8Alternatively, one may think that the principal could benefit from allowing the agent to withdraw after
announcing a fake good news and receive payoff 0 before investment occurs. In this case, incentive com-
patibility implies that the optimal contract features a fixed investment time given good news, which makes
the principal worse off. Since we assume that the principal has full commitment power, it is without loss to
rule out the ability to withdraw.
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τ : [0�T ] → 	+ if T < ∞ while τ : 	+ → 	+ if T = ∞. We use dom(τ) to denote the do-
main of τ. If the agent has reported mt = ∅ for all t ∈ dom(τ), the principal invests at
time T . The function τ is the time at which the investment is made when the agent
reports that he has received the good signal at t (mt = 1).

We now describe the feasibility and incentive constraints. Since time is irreversible,
τ(t) ≥ t for all t ∈ dom(τ). To ensure the agent truthfully reveals when he is informed
that the state is good at t instead of delaying the report, it must be that τ(t) is nonde-
creasing. Otherwise, take τ(t1) > τ(t2) with t1 < t2 and note that the agent who receives
the good signal at t1 could wait and report the good signal at t2 > t1. The principal also
needs to ensure that the informed agent at t reveals truthfully instead of pretending to
be uninformed during the rest of the game. Formally, τ(t) ≤ T for all t ∈ dom(τ).

A key incentive constraint is to ensure the uninformed agent at t does not want to
claim that he is informed and has received a good signal. To ensure truthful revelation
of the uninformed agent at t, 〈T�τ〉 must satisfy

∫ T

t
ptλ

1 e
−λ1s

e−λ1t
e−rτ(s)W ds +

(
pt

e−λ1T

e−λ1t
e−rTW − (1 −pt)

e−λ0T

e−λ0t
e−rT

)

≥ max
{
e−rτ(t)(ptW +pt − 1)�0

}
for all t ∈ dom(τ). Note that the agent can always claim that the state is bad and ensure
a payoff equal to 0. The right-hand side is the maximum between 0 and the expected
payoff of an uninformed agent at t (who has belief pt ) if he claims the state is good
and induces investment at τ(t). The left-hand side is the agent’s expected payoff if he
claims to be uninformed and his continuation policy is to report truthfully. In this case,
he could receive the good signal at s < T and get the payoff e−rτ(s)W with conditional
probability ptλ

1e−λ1(s−t) ds, or receive no signal before T and induce an uninformed
investment decision at T .9

The dynamic delegation problem can be formulated as

max
T∈	+∪{∞}�τ(·)

∫ T

0
p0λ

1e−λ1se−rτ(s)V ds + [
p0e

−λ1T e−rT V − (1 −p0)e
−λ0T e−rT

]
(1)

subject to

τ(t) ≥ t ∀t ∈ dom(τ) (2)

τ is nondecreasing (3)

τ(t) ≤ T ∀t ∈ dom(τ) (4)

∫ T

t
ptλ

1 e
−λ1s

e−λ1t
e−rτ(s)W ds +

[
pt

e−λ1T

e−λ1t
e−rTW − (1 −pt)

e−λ0T

e−λ0t
e−rT

]

≥ max
{
e−rτ(t)(ptW +pt − 1)�0

}
� t ∈ dom(τ)� (5)

9This incentive constraint could be considered insufficient as the agent could find it optimal to be truth-
ful in some interval [t� t + ε] and lie after t + ε. As we show in Appendix A, this is not the case.
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This problem maximizes the principal’s expected payoffs (1) over all contracts sub-
ject to the feasibility constraint (2) and the dynamic incentive constraints (3)–(5). The
dynamic incentive constraints ensure that at any private history, the agent has incen-
tives to truthfully reveal his information.

We can also allow the principal to choose a random timing of investment. In partic-
ular, apart from delaying the decision to invest, now the principal can also commit to
never invest with some probability. By varying this probability with the time at which
the agent claims a good news, the principal can use the threat of no investment to in-
centivize learning. We show that for any given deadline T , the optimal deterministic
mechanism remains optimal. Therefore, it is without loss to restrict to deterministic
mechanisms.

As it turns out, the discount factor e−rτ(t) resulting from the delay function in a deter-
ministic contract can act as probabilities in a random contract. As a result, the optimal
random mechanism can be characterized in essentially the same way. After drawing a
connection between the “discount factors” from a deterministic and random mecha-
nism, we show that the ability to randomize at T does not benefit the principal. There-
fore, we have the following lemma (see Appendix B for the proof).

Lemma 1. The optimal deterministic contract with deadline is weakly better than all ran-
dom contracts.

4. Analysis

In this section, we characterize the solution to the dynamic delegation problem.

4.1 Delays

This subsection characterizes the delay with which an investment commonly known to
be profitable is implemented. The proofs are relegated to Appendix C. Our first result
shows that optimal investments are delayed in any contract that satisfies the dynamic
incentive constraints.

Lemma 2. Let 〈T�τ〉 satisfy (2) and (5). Then τ(t) > t, for all t < min{t∗�T }.

Conditional on the project being revealed profitable at t < min{t∗�T }, the implemen-
tation time is inefficient (from both the principal’s and the agent’s perspectives). This
distortion arises precisely due to the fact that learning is private: if the implementation
time were not distorted and τ(t) = t for some t < min{t∗�T }, the uninformed agent at t
would claim he learned that the state is good so as to induce immediate investment.

To solve our dynamic delegation problem, it is useful to find a solution τ to (1) keep-
ing T ∈ 	+ ∪ {∞} fixed. Solving the dynamic delegation problem for a fixed T is ana-
lytically useful and allows us to illustrate the trade-offs involved when delegating to an
agent who privately learns over time. The dynamic delegation problem keeping T fixed
can be analyzed by finding solutions to the following relaxed problem (6). It is obtained
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by ignoring constraints (3) and (4), and by imposing the feasibility constraint (2) and the
dynamic incentive constraint (5) over subsets of dom(τ):

max
τ(·)

∫ T

0
p0λ

1e−λ1se−rτ(s)V ds + [
p0e

−λ1T e−rT V − (1 −p0)e
−λ0T e−rT

]
(6)

subject to

τ(t) ≥ t ∀t ≥ min
{
t∗�T

}
(7)

∫ T

t
ptλ

1 e
−λ1s

e−λ1t
e−rτ(s)W ds +

[
pt

e−λ1T

e−λ1t
e−rTW − (1 −pt)

e−λ0T

e−λ0t
e−rT

]

≥ max
{
e−rτ(t)(ptW +pt − 1)�0

}
� ∀t ≤ min

{
t∗�T

}
� (8)

The following result establishes a necessary and sufficient optimality condition for
the relaxed problem (6).

Lemma 3. Let τ satisfy (7) and (8).

(a) Suppose T ≤ t∗. Then τ solves the relaxed problem if and only if (8) binds for almost
every t ∈ [0�T ].

(b) Suppose T > t∗. Then τ solves the relaxed problem if and only if (7) binds for almost
every t ≥ t∗ and (8) binds for almost every t ≤ t∗.

In the optimal solution to the relaxed problem, the uninformed agent is indifferent
between truthful revelation and claiming to know that the state is good for almost all t ≤
min{t∗�T }. To see this, suppose that τ is optimal and there is a set A ⊆ [0�min{t∗�T }] of
positive measure such that for any t ′ ∈ A, the uninformed agent strictly prefers to reveal
the truth. The principal could construct a new function τ′ that coincides with τ outside
of A but is slightly smaller than τ inside A. Then τ′ results in higher expected payoffs
for the principal than τ, and it satisfies (7) and (8). Thus, τ cannot be optimal. Moreover,
Lemma 3 also shows that for t > min{t∗�T }, there is no need to distort investment. Since
after t∗ the incentives are aligned, delaying investments only makes it harder to provide
incentives before t∗.

We now further explore an important consequence of the binding incentive con-
straint (8) over [0�min{t∗�T }).

Lemma 4. Fix T and τ(·) such that (8) binds for all t < min{t∗�T }. Then the derivative of
τ with respect to t is given by

τ̇(t) =
(
λ0

r

)
1

W
pt

1 −pt
− 1

for all t < min{t∗�T }. In particular, over t < min{t∗�T }, τ is strictly increasing and convex,
and its slope is strictly less than 1.
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Outcomes st = 1 st = 0 st =∅, θ = 1 st = ∅, θ = 0

Lie at t e−rτ(t)W −e−rτ(t) e−rτ(t)W −e−rτ(t)

Lie at t + dt e−rτ(t+dt)W 0 e−rτ(t+dt)W −e−rτ(t+dt)

Probabilities ptλ
1 dt (1 −pt)λ

0 dt pt(1 − λ1 dt) (1 −pt)(1 − λ0 dt)

Note: Under the first policy (lie at t), the uninformed agent claims that the state is good at t. Under the second policy (lie
at t + dt), the uninformed agent claims to be uninformed at t, but lies at t + dt if he remains uninformed.

Table 1. Payoffs from two different policies.

This lemma characterizes the slope of a timing policy τ when (8) is binding. It can
be intuitively derived as follows. Since (8) is binding everywhere in [0�min{t∗�T }), the
uninformed agent at t is indifferent between claiming he has received the good signal
and truth-telling for all t ′ ≥ t. The expected payoff the agent gets from truth-telling for
t ′ ≥ t can be decomposed into the current and continuation payoffs. Current payoffs are
0, as by declaring truthfully no investment is made at t. For continuation payoffs, note
that since the incentive constraint (8) is also binding at t + dt, the uninformed agent
at t + dt gets the same expected payoff from truth-telling for all t′ ≥ t + dt and from
pretending to have observed the good signal at t + dt. Combining these two remarks,
the payoff the uninformed agent gets at t from being truthful for all t′ ≥ t is the same as
what he gets from truth-telling at t and lying at t + dt. As a result, the uninformed agent
at t is indifferent between (i) claiming to have observed the good signal at t (lie at t) and
(ii) being truthful at t but lying at t + dt if he is still uninformed (lie at t + dt). Table 1
shows the agent’s payoffs from both policies for all possible outcomes.

Since the expected payoffs from both policies coincide,

e−rτ(t)(ptW +pt − 1)= e−rτ(t+dt)
(
ptW − (1 −pt)

(
1 − λ0 dt

) + 0 · (1 −pt)λ
0 dt

)
�

Equivalently,

(1 −pt)λ
0 dte−rτ(t) = (

e−rτ(t) − e−r(τ(t+dt))
)(
ptW − (1 −pt)

(
1 − λ0 dt

))
�

Rearranging terms, dividing by dt, and taking dt → 0, we deduce that

(1 −pt)λ
0 = rτ̇(t)(ptW +pt − 1)� (9)

which provides the characterization in Lemma 4.
Equation (9) illustrates how τ balances the costs and benefits of learning for the

agent. The left-hand side in (9) is the benefit from learning, as the agent could avoid
investment when the project is bad. The right-hand side in (9) is the cost of learning, as
when no signal arrives the investment is just delayed. An important implication from
this characterization is that τ̇(t) < 1 and, thus, the delay with which investment deci-
sions are made, τ(t)− t, is decreasing in t. Intuitively, to motivate the agent to learn, the
agent’s cost of learning has to be lower than that in the single-player benchmark for the
agent and, therefore, the principal sets τ̇(t) < 1. In Appendix E, we show that this feature
of decreasing delays is robust when λ0 ≥ λ1.
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Figure 1. The dark line shows the time at which the investment is made as a function of the
time at which the good signal is received. For t < T , the investment decision is delayed and the
delay, τT (t) − t, is decreasing. Parameter values: λ1 = 5, λ0 = 4�8, r = 0�03, p0 = 0�8, v = 120,
V = 480, W = 180, T = 2�4.

4.2 Optimal dynamic delegation

This subsection characterizes the solutions to the optimal delegation problem and es-
tablishes the trade-off between the amount of information acquired and how effectively
it is used.

We first find a solution τT to the relaxed problem when T ≤ t∗. We impose (8) bind-
ing everywhere in [0�T ]. Note that (8) binding at T gives us

τT (T) = T�

By Lemma 4, this together with (8) binding in [0�T ) gives us

τT (t) = T − λ0

r

∫ T

t

1

W
ps

1 −ps
− 1

ds� t ≤ T� (10)

Figure 1 illustrates the solution.
Since τT (·) satisfies the conditions in Lemma 3, it solves the relaxed problem. We

now verify that it actually solves the original dynamic delegation problem (1) for a
given T . First note that τT satisfies (2). Indeed, τT (t) = τT (T) − ∫ T

t τ̇T (s)ds and, since
τT (T) = T and τ̇T (t) < 1, τT (t) ≥ τT (T)− (T − t)= t for all t ∈ [0�T ]. Second, τT satisfies
(5) because it holds with equality over t ∈ [0�T ]. Finally, since τT (t) is increasing over
[0�T ] and τT (T) = T , τT also satisfies the incentive constraints (3) and (4). As a result,
τT indeed solves the dynamic delegation problem (1) for a given T . As can be seen, the
incentive constraint for the uninformed agent is the key to pinning down the optimal
contract when T ≤ t∗.

The following result provides a key insight for solving for the optimal T < t∗.

Proposition 1. Let t < T < T̂ < t∗. Then τT (t) < τT̂ (t).
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Figure 2. For t ≤ T < T̂ , τT (t) < τT̂ (t). Parameter values: λ1 = 5, λ0 = 4�8, r = 0�03, p0 = 0�8,
v = 120, V = 480, W = 180, T = 2�4, T̂ = 4�3.

Figure 2 illustrates Proposition 1. Increasing the deadline is beneficial for the prin-
cipal in that more information is acquired and, thus, investment in the bad state is less
likely to happen. Proposition 1 shows that more learning imposes a nontrivial incentive
cost on the principal because when T increases, τT (t) must increase too. This means
that when T increases, investments are delayed more when the good signal is received.

Formally, Proposition 1 follows immediately from (10). To better understand Propo-
sition 1, take t < T < T̂ and assume for the moment that t is close to T . When the un-
informed agent at t faces the contract 〈T�τT 〉, he knows that by declaring truthfully, the
investment will be made at T (unless a bad signal is received in the meanwhile). Now,

when the uninformed agent at t faces the contract 〈T̂ � τT̂ 〉, the earliest time at which the

investment could be made is τT̂ (T) > T . As a result, the expected continuation payoff

that the uninformed agent gets at t by being truthful is lower when he faces 〈T̂ � τT̂ 〉 than
when he faces 〈T�τT 〉. Therefore, to provide incentives for truthful revelation at t, con-
tract 〈T̂ � τT̂ 〉 must punish the agent even more when he claims a good signal. In other

words, τT̂ (t) > τT (t). This intuition can be iteratively applied backward to render this
property for all t < T .

We now solve the relaxed problem given T > t∗ by imposing (8) binding everywhere
in [0� t∗) and (7) binding everywhere in [t∗�T ]. By Lemma 4, (8) binding in [0� t∗) com-
bined with (7) binding for t ≥ t∗ gives us

τT (t) =

⎧⎪⎪⎨
⎪⎪⎩
t∗ − λ0

r

∫ t∗

t

1

W
ps

1 −ps
− 1

ds t ≤ t∗

t t > t∗�

Last, to make sure that τT satisfies (8) at t∗ and, therefore, solves the relaxed problem,
we need T to be infinity. To see this, notice that at t∗, by revealing truthfully that he has
not received a signal, the agent receives the payoff from the policy “invest as soon as a
good signal arrives before T and invest at T if no signal arrives before T ,” which is weakly
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less preferred to the policy “invest as soon as a good signal arrives and do not invest if no
signal arrives.” Since at t∗ the agent is indifferent between the latter policy and the policy
“invest right away,” we need T = ∞ to ensure incentive compatibility. We have shown
that τ∞(·) is a solution to the relaxed problem. Moreover, since τ∞(·) is increasing and
(5) is satisfied everywhere in [0�∞), it solves the original dynamic delegation problem
(1) given that T > t∗.

The following theorem summarizes our characterization.

Theorem 1. The optimal contract takes one of the following two forms:

(a) There is a deadline T < t∗. If a good signal arrives before T , investment happens
with a delay. If no signal arrives before T , investment happens at T .

(b) There is no deadline. If a good signal arrives before t∗, investment happens with a
delay. If a good signal arrives after t∗, investment happens with no delay.

To find the optimal contract 〈T ∗� τT ∗〉, it suffices to compare the optimal solution
when T ∈ [0� t∗] to the case in which T = ∞. It is thus enough to compare the expected
payoff for the principal from the optimal τT when T ≤ t∗ to that from τ∞.

The optimal contract can be implemented by setting time-dependent delegation
sets. At any t < min{t∗�T ∗}, the agent is allowed to commit to invest in [τT ∗

(t)�∞) or
just wait and commit later. For t ≥ min{t∗�T ∗}, the agent is granted full freedom.

Remark 1. When λ0 = λ1, the agent’s belief remains constant given no news. Therefore,
the uninformed agent is never indifferent between investing and waiting; that is, t∗ = ∞.
In this case, we show that the optimal contract always features a finite deadline and τ(·)
is linear. When λ0 > λ1, the agent’s belief drifts up as time goes on. In this case, there
is a t∗ after which even the principal would like to invest. The deadline is also finite in
this case, and τ(·) is concave. In both cases, the decreasing delay feature remains (see
Appendix E for details).

4.3 Comparative statics

We now derive some comparative statics results. These results assume that parameters
satisfy Assumption 1, that is, (W rp0)/((λ

1 + r)(1 −p0)) > 1 > (V rp0)/((λ
1 + r)(1 −p0)).

Proposition 2. (a) Fix all parameters except W . There exist cutoffs 0 < κ< κ̄ such that
for all W <κ, the optimal contract sets no deadline, whereas for W > κ̄, the optimal
contract sets a deadline T ∗ < t∗.

(b) Fix all parameters except V . There exist cutoffs 0 < η < η̄ such that for all V < η,
the optimal contract sets no deadline, whereas for V > η̄, the optimal contract sets
a deadline T ∗ < t∗.

Part (a) shows that when W is sufficiently small, it is optimal to invest only after the
principal has perfectly learned that θ = 1. In this case, t∗ is small, so the incentives be-
come aligned rapidly and there is no need to significantly delay investments for t < t∗. In
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contrast, when W is large, t∗ is large and the conflict of interest is severe. So decisions to
invest need to be significantly distorted for t < min{T ∗� t∗}. To economize on distortions
early in the game, the principal commits to invest at a deadline T ∗ < t∗ even when this
means learning stops early.

Part (b) characterizes the solutions as we vary the principal’s payoff. When V is
small, it is relatively costly for the principal to invest when the state is bad. To avoid the
costs of a failure, the principal prefers to perfectly learn the state even when this entails
significant delays for t < t∗. In contrast, when V is large, the cost of a failure is rela-
tively small, and the principal fixes a deadline T ∗ < t∗ that stops learning and reduces
distortions for t < T ∗.10

Proposition 2 sheds light on how different organizations should provide incentives
for learning. For example, the FDA incurs significant costs when approving bad drugs.
Our results suggest that the FDA should set lengthy revision processes to ensure phar-
maceutical companies learn the value of the drugs even if this entails substantial delays
between the drugs’ discovery and the FDA’s final approval. In contrast, the board of a
company that is contemplating a partially reversible acquisition or that cannot align the
manager’s career incentives should set a deadline T ∗ < t∗ that facilitates truthful com-
munication even at the possible cost of an incorrect decision.

5. Concluding remarks

We study a dynamic delegation model in which learning is private. Evolving private
information shapes the optimal contract in distinctive ways. Indeed, we show that to
ensure truthful revelation from the agent, the principal needs to delay investment com-
monly known to be optimal. As time goes on, the principal grants more flexibility to the
agent and eventually the agent is free to make any decision. Our analysis uncovers a new
trade-off between the amount of information acquired and how promptly it is used.

One may be interested in what happens if transfers are allowed. First, one can easily
see that with unlimited transfers, the principal can perfectly align the incentives through
charging the agent for investment as well as at the beginning of the relationship. With
limited liability, however, one can show that transfers rewarding good news exacerbate
the incentive problem and, therefore, are never optimal.

Our model is stylized. The learning process is assumed to be Poisson,11 the princi-
pal has full commitment power, investment is irreversible, and the agent has little free-
dom to decide how to learn.12 The model could also be extended to allow for money
burning.13 Our dynamic delegation model with private learning can also be used as a
workhorse to explore applied issues in political economy, finance, and organizational
economics. We leave these research projects for future work.

10As W has a direct impact on τ as well as an indirect impact on τ through t∗, it is not obvious that the
payoff difference between the optimal finite deadline policy and the policy with no deadline is monotonic
in W . Therefore, it is not clear how to show that the cutoffs coincide.

11Exploring a model with Brownian learning would be interesting, but evolving private information
makes the problem hard to analyze. When learning is Brownian, delays and deadlines are likely to play
a role, but the contract may have additional features.

12At the other extreme, the agent could decide any experiment that reveals information about the state.
13This means that the agent can spend resources that have no value for the principal.
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Appendix

This Appendix consists of five parts. Appendix A justifies our mechanism design for-
mulation. Appendix B provides the proof for Lemma 1. Appendix C provides proofs
for Section 4.1. Appendix D provides proofs for Section 4.3. Appendix E extends the
information structure to no news is no news and no news is good news.

Appendix A: Formulation of mechanism design problem

Our objective in this section is to show that it is without loss to represent a mechanism
as 〈T�τ〉 and, therefore, the principal’s problem can be written as in (1)–(5).

First we define a contract. To do this, we first need some terminology. A public his-
tory at t is h

ρ
t := {(mτ� yτ)}0≤τ<t ∈ H

ρ
t . It contains the sequence of messages and invest-

ment decisions strictly before t. A private history at t ishα
t := {{(mτ� yτ)}0≤τ<t� {hτ}0≤τ≤t} ∈

Hα
t . It contains the sequence of signal, messages, and investment decisions strictly be-

fore t as well as the signal observation at t. The message space at time t, Mt : Hρ
t →

2{0�1�∅}, is defined ∀t as

Mt
(
h
ρ
t

) =
{

{mτ} if ∃τ < t s.t. mτ �=∅ or yτ = 1

{0�1�∅} otherwise�

We use mt to denote the message sequence up to and including t: mt = {mτ}0≤τ≤t .
Through abuse of notation, we say that mt = ∅ if mτ =∅ for all 0 ≤ τ ≤ t.

A contract � is a function mapping {{mτ}0≤τ≤t � {yτ}0≤τ<t} to yt ∈ {0�1} with the fol-
lowing irreversibility property: for any t, if yτ = 1 for some 0 ≤ τ < t, then yt = 1. From
now on, we keep in mind this property and omit the dependence of yt on {yτ}0≤τ<t and
simply write yt = y(mt).

Our next goal is to simplify the principal’s problem. To do this, we first show that any
contract can be represented by three components: a “deadline” T ∈ 	+ ∪{∞}, a function
τ0(·) that maps the arriving time of the first 0 message to an investment time 	+ ∪ {∞},
and a function τ1(·) that maps the arriving time of the first 1 message to an investment
time 	+ ∪ {∞}.

Let us define T := inf{t :mt =∅� y(mt) = 1}. It follows that for any t such that mt = ∅,
if t < T , then y(mt) = 0; otherwise y(mt) = 1. In other words, T pins down the princi-
pal’s action for an empty message history of any length. Now let us consider mt �= ∅.
We define γ(mt) := min{τ : mτ �= ∅}, the time that a nonempty message history jumps
from ∅ to 0 or 1. Then by the definition of Mt , any mt �= ∅ is completely character-
ized by γ(mt), the value of mt ∈ {0�1}, and the value of t. For each x ≥ 0, let us define
τ0(x) = inf{t : y(mt) = 1�mt = 0�γ(mt) = x}. Therefore, for each mt for which mt = 0
and t < τ0(γ(m

t)), we have y(mt) = 0; for each mt for which mt = 0 and t ≥ τ0(γ(m
t)),

y(mt) = 1. Similarly, τ1(·) := inf{t : y(mt) = 1�mt = 1�γ(mt) = x} pins down y(mt) for
all mt �= ∅ and mt = 1. Therefore, τ0(·) and τ1(·) pin down the principal’s action at any
nonempty message history. Note that since the infimum of an empty set is +∞, we allow
the case that T = ∞ or τi(x) = ∞ for i = 0�1 for some x.
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Right now the domains of τ0(·) and τ1(·) are both [0�∞). We argue that it suffices
to restrict them to [0�T ] whenever T < ∞. In other words, it is redundant to define the
investment time for a history mt �= ∅ for which γ(mt) > T . The argument is simple: if
for some mt we have γ(mt) > T , then it must be the case that mT = ∅ and y(mT ) =
y(mt) = 1. We sum up our discussion in the following proposition.

Proposition 3. A contract belongs to one of the groups

(a) T <∞, τ0� τ1 : [0�T ] → [0�∞]
(b) T = ∞, τ0� τ1 : [0�T ) → [0�∞].

Now we have demonstrated that a contract consists of three components T , τ0(·),
and τ1(·). We are now ready to state the principal’s objective function:

∫ T

0

[
p0λ

1e−λ1se−rτ1(s)V − (1 −p0)λ
0e−λ0se−rτ0(s)

]
ds

+ [
p0e

−λ1T + (1 −p0)e
−λ0T

]
e−rT (pTV +pT − 1)�

For the constraints faced by the principal, first note that the principal’s actions must
be feasible; therefore, τi(x) ≥ x for all x. For the incentive compatibility constraints of
the agent, we require that at any on- or off-path history, the agent prefers to tell the truth
from then on. Hence, we discuss the possible histories hα

t faced by the agent at which
Mt is not a singleton:

Case 1. Suppose that ht contains signal 1. Then choosing mt = 1 is preferred by the
agent to

(a) choosing mt = 0: e−rτ1(t)W ≥ e−rτ0(t)W

(b) choosing mt =∅ and ms = 1 for some s > t: e−rτ1(t)W ≥ e−rτ1(s)W ∀s > t

(c) choosing mt =∅ and ms = 0 for some s > t: e−rτ1(t)W ≥ e−rτ0(s)W ∀s > t

(d) choosing ms =∅ for all s ≥ t.

That is,

(a) τ1(t) ≤ τ0(t) ∀t
(b) τ1(t) ≤ τ1(s) ∀s > t

(c) τ1(t) ≤ τ0(s) ∀s > t

(d) τ1(t) ≤ T ∀t.
Case 2. Suppose that ht contains signal 0. Then choosing mt = 0 is preferred by the

agent to

(a) choosing mt = 1: −e−rτ0(t) ≥ −e−rτ1(t)
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(b) choosing mt =∅ and ms = 0 for some s > t: −e−rτ0(t) ≥ −e−rτ0(s) ∀s > t

(c) choosing mt = ∅ and ms = 1 for some s > t: −e−rτ0(t) ≥ −e−rτ1(s) ∀s > t

(d) choosing ms =∅ for all s ≥ t.

That is,

(a) τ0(t) ≥ τ1(t) ∀t
(b) τ0(t) ≥ τ0(s) ∀s > t

(c) τ0(t) ≥ τ1(s) ∀s > t

(d) τ0(t) ≥ T ∀t.
Case 3. Suppose that ht = ∅. Then truth-telling forever from now on maximizes the

agent’s expected payoff. That is, the agents expected payoff from using the truth-
telling strategy given that ht =∅,

V (t) =
(∫ T

t
e−λ1s−rτ1(s) ds

)
ptλ

1e(r+λ1)tW

−
(∫ T

t
e−λ0s−rτ0(s) ds

)
(1 −pt)λ

0e(r+λ0)t

+pte
(r+λ1)(t−T)W − (1 −pt)e

(r+λ0)(t−T)�

satisfies

U(t) = max
{
e−r[τ1(t)−t](ptW +pt − 1)� e−r[τ0(t)−t](ptW +pt − 1)�

e−r dtptλ
1 dte−r[τ1(t+dt)−t−dt]W − e−r dt(1 −pt)λ

0 dte−r[τ0(t+dt)−t−dt]

+ e−r dt
[
1 −ptλ

1 dt − (1 −pt)λ
0 dt

]
U(t + dt)

}
�

The first and second terms denote the agent’s expected payoff if he chooses mt =
1 and mt = 0, respectively. Both actions essentially end the game and there is no
need to specify future actions. The last term denotes the agent’s expected payoff
if he chooses mt = ∅ and the optimal action at t + dt. The first component is the
agent’s payoff if he gets a 1 signal during (t� t + dt). The incentive-compatibility
(IC) conditions in Case 1 ensure that the optimal action is to choose mt+dt = 1 in
this case, which leads to an investment time τ1(t + dt). The second component is
the agent’s payoff if he gets a 0 signal during (t� t +dt). The third component is the
agent’s payoff if he receives no signal during (t� t + dt).

The next lemma simplifies the incentive condition at ht =∅.

Lemma 5. Suppose that a contract 〈T�τ0� τ1〉 satisfies IC at any history hα
t for which

ht �=∅. Moreover, suppose that at hα
t for which ht =∅, the following relationship holds:

e−rtV (t) ≥ max
{
e−rτ0(t)(ptW +pt − 1)� e−rτ1(t)(ptW +pt − 1)

}
�
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Then the strategy of truth-telling at every history also maximizes the agent’s expected pay-
off at any hα

t for which ht = ∅.

Proof. Fix an arbitrary hα
t for which Mt(h

ρ
t ) = {0�1�∅} and ht = ∅. Let σ∗ denote the

strategy of truth-telling at every history, whenever doing so is possible. Let σ denote
an alternative strategy such that either σ(hα

t ) �= σ∗(hα
t ) or there exists a concatenation

history of hα
t , hα

s , such that s > t and σ(hα
s ) �= σ∗(hα

s ).
If σ(hα

t ) �=∅, then by inequality (5), σ∗ renders higher payoff than σ .
If σ(hα

t ) =∅, then take a concatenation history of hα
t for which σ∗(hα

s ) �= σ(hα
s ). Note

that at hα
s , mτ = ∅ for all τ < s; otherwise, Ms(h

ρ
s ) is a singleton. Moreover, yτ = 0 for

all τ < s; otherwise, a decision is already made at T and Ms(h
ρ
s ) is again a singleton.

Therefore, the agent’s cumulative payoff during [0� s) equals 0 for both σ∗ and σ . Now,
if hs �= ∅, σ∗ renders higher payoff since the contract is incentive compatible at such a
history. If hs =∅, then σ∗(hα

s )= ∅ while σ(hα
s ) ∈ {0�1}. By inequality (5), σ∗ still renders

higher payoff. We have thus shown that σ∗ renders higher payoff at any future (on- or
off-path) history hα

s for which σ∗ and σ differ. Therefore, σ∗ renders higher expected
payoff than σ at the information set hα

t .

Now we characterize the optimal contract. First we notice that any incentive-
compatible optimal contract 〈T ∗

� τ∗
0� τ

∗
1〉 must have τ∗

0 = ∞ almost surely.

Proposition 4. Given an incentive-compatible optimal contract 〈T ∗
� τ∗

0� τ
∗
1〉, let us de-

fine A := {t : τ∗
0(t) <∞}. Then A has measure 0.

Proof. First notice that if T
∗ = ∞, then IC requires that τ∗

0(t) = ∞ for all t. So for the

rest of the proof, let us assume that T
∗
<∞. By way of contradiction, suppose that A has

positive measure. Then the part of the principal’s payoff involving τ∗
0(·) can be rewritten

as ∫ T
∗

0
−e−rτ∗

0(s)(1 −p0)λ
0e−λ0s ds

=
∫
A

−e−rτ∗
0(s)(1 −p0)λ

0e−λ0s ds +
∫

[0�T ∗]\A
−e−rτ∗

0(s)(1 −p0)λ
0e−λ0s ds

=
∫
A

−e−rτ∗
0(s)(1 −p0)λ

0e−λ0s ds

< 0�

Let t be such that ptW − (1 −pt) = 0. We propose an alternative contract depending
on whether T

∗
is greater or less than t.

Option 1: T
∗ ≤ t. Consider an alternative contract 〈T ∗

� τ̃0� τ
∗
1〉, where

τ̃0(s) = ∞ ∀s�
Since the principal’s payoff involving τ̃0 is 0, this contract strictly increases the prin-

cipal’s payoff. Now we show that 〈T ∗
� τ̃0� τ

∗
1〉 is incentive compatible, contradicting that

〈T ∗
� τ∗

0� τ
∗
1〉 is a solution.
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It is obvious that the IC conditions when ht �= ∅ (i.e., Cases A and A) are still satisfied
for the new contract. For the case when ht = ∅, notice that under the new contract, the
agent’s payoff from truth-telling forever from time t on is

[
pte

−λ1(T
∗−t) + (1 −pt)e

−λ0(T
∗−t)

]
e−rT ∗[

p
T

∗W − (1 −p
T

∗)
]

+
∫ T

∗

t
(1 −pt)λ

0e−λ0(s−t)e−rτ∗
0(s) · 0ds +

∫ T
∗

t
ptλ

1e−λ1(s−t)e−rτ∗
1(s)W ds

≥ [
pte

−λ1(T
∗−t) + (1 −pt)e

−λ0(T
∗−t)

]
e−rT ∗[

p
T

∗W − (1 −p
T

∗)
]

−
∫ T

∗

t
(1 −pt)λ

0e−λ0(s−t)e−rτ∗
0(s) ds +

∫ T
∗

t
ptλ

1e−λ1(s−t)e−rτ∗
1(s)W ds

≥ (ptW +pt − 1)e−rτ∗
1(t)

≥ 0�

The second inequality follows from the the fact that the old contract satisfies IC.
Therefore, truth-telling forever from t on is preferred to lying that mt = 1. The last in-
equality follows because for any t ≤ T

∗ ≤ t, ptW + pt − 1 ≥ 0. Therefore, truth-telling
forever from t on is preferred to lying that mt = 0. We have just established that under
the new contract, truth-telling forever from t on is preferred to lying at t. By Lemma 5,
this ensures that the new contract is incentive compatible.

Option 2: T
∗
> t. Since pt decreases in t, p

T
∗W − (1 − p

T
∗) < 0. Consider an alter-

native contract 〈T̃ � τ̃0� τ̃1〉, where

T̃ = ∞� τ̃0(s) = ∞ ∀s
and

τ̃1(t) =
{
τ∗

1(t) if t ≤ T
∗

t otherwise.

The agent’s payoff under this contract equals

∫ T
∗

0
(1 −p0)λ

0e−λ0s · 0ds +
∫ T

∗

0
p0λ

1e−λ1se−rτ∗
1(s)W ds

+ [
p0e

−λ1T
∗ + (1 −p0)e

−λ0T
∗] ·

∫ ∞

T
∗ p

T
∗λ1e−λ1(s−T

∗
)e−rsW ds

>

∫ T
∗

0
−(1 −p0)λ

0e−λ0se−rτ∗
0(s) ds +

∫ T
∗

0
p0λ

1e−λ1se−rτ∗
1(s)W ds

+ [
p0e

−λ1T
∗ + (1 −p0)e

−λ0T
∗] · e−rT

∗[
p
T

∗W − (1 −p
T

∗
)

]
�

The inequality follows because∫ ∞

T
∗ p

T
∗λ1e−λ1(s−T

∗
)e−rsW ds > 0 > e−rT

∗[
p
T

∗W + (1 −p
T

∗)(−ω)
]
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and A has positive measure by assumption. Now we show the new contract is incentive
compatible. First, it is easy to see that at ht �= ∅ and t ≤ T

∗
, IC are satisfied. Second,

at any t > T
∗
> t∗, the interests of the principal and the agent are aligned. Therefore,

the first-best action is incentive compatible. Last, at any ht = ∅ and t ≤ T
∗

, the agent’s
payoff if he is truth-telling since then on equals

∫ T
∗

t
ptλ

1e−λ1(s−t)e−rτ∗
1(s)W ds +

∫ ∞

T
∗ p

T
∗λ1e−λ1(s−T

∗
)e−rsW ds ≥ 0�

Therefore, the payoff of truth-telling is greater than the payoff of lying that mt = 0.
Alternatively, the payoff of lying that mt = 1 is[

ptW − (1 −pt)
]
e−rτ∗

1(t)

≤ [
pte

−λ1(T
∗−t) + (1 −pt)e

−λ0(T
∗−t)

]
e−rT

∗[
p
T

∗W − (1 −p
T

∗)
]

+
∫ T

∗

t
−(1 −pt)λ

0e−λ0(s−t)e−rτ∗
0(s) ds +

∫ T
∗

t
ptλ

1e−λ1(s−t)e−rτ∗
1(s)W ds

≤
∫ T

∗

t
ptλ

1e−λ1(s−t)e−rτ∗
1(s)W ds

≤
∫ T

∗

t
ptλ

1e−λ1(s−t)e−rτ∗
1(s)W ds +

∫ ∞

T
∗ p

T
∗λ1e−λ1(s−t)e−rsW ds�

which is the agent’s payoff of truth-telling. The first inequality follows because the
contract 〈T ∗

� τ∗
0� τ

∗
1〉 is incentive compatible. The second inequality follows because

p
T

∗W − (1 − p
T

∗) < 0. Applying Lemma 5 again, we know that the new contract is in-
centive compatible.

It is easy to argue the following statement.

Proposition 5. Given an incentive-compatible optimal contract 〈T ∗
� τ∗

0� τ
∗
1〉 for which

T
∗
<∞,

τ∗
0(t) = ∞ ∀t < T

∗
�

Proof. Suppose that τ∗
0(t) < ∞ for some t < T

∗
. Then at hα

t , which includes a 0 sig-
nal, the agent could deviate to mτ = ∅ for all t ≤ τ < s and ms = 0 for some s > t. By
Proposition 4, such s must exist.

We have shown that τ∗
0(t) = ∞ for all t with the possible exception of τ∗

0(T
∗
) when

T
∗
< ∞. We set τ0(T

∗
) = T

∗
automatically whenever T

∗
< ∞. This ensures that for any

T
∗
<∞, truth-telling is incentive compatible at T

∗
and at t < T

∗
, and ht �=∅.

Now we are ready to rewrite the principal’s constrained maximization problem as

max
T∈	+∪{∞}�τ(·)

∫ T

0
pλ1e−λ1se−rτ(s)V ds + [

pe−λ1T + (1 −p)e−λ0T
]
e−rT (pTV +pT − 1)



592 Escobar and Zhang Theoretical Economics 16 (2021)

subject to

τ(t) ≥ t ∀t ∈ [0�T ]
τ(s) ≥ τ(t) ∀s ≥ t

τ(t) ≤ T ∀t ∈ [0�T ]
∫ T

t
ptλ

1 e
−λ1s

e−λ1t
e−rτ(s)W ds +

[
pt

e−λ1T

e−λ1t
e−rTW − (1 −pt)

e−λ0T

e−λ0t
e−rT

]

≥ max
{
e−rτ(t)(ptW +pt − 1)�0

} ∀t ∈ [0�T )�

Appendix B: Proving Lemma 1

Proof of Lemma 1. Following Pavan et al. (2014), we focus on random mechanisms
that do not allow the agent to update his belief about the outcomes of the randomiza-
tion until the game ends. In particular, we study the following family of contracts (which
we call the simple family): let T ∈ 	+∪{∞} be deterministic. At any t ≤ T , if the agent an-
nounces mt = 1, the principal chooses the investment time according to βτ(· | t), which
is the probability measure from the space ([t�∞]�B([t�∞])�βτ(· | t)). In addition, if
T < ∞ and the agent never announces mt = 1 or mt = 0 for any t ≤ T , the principal
chooses the investment time according to βT , which is the probability measure from
the space ([T�∞]�B([T�∞])�βT (·)). Once the investment time has been determined
by βτ or βT , the game ends.

The principal’s constrained maximization problem is

max
T∈	+∪{∞}�βτ(·|t)�βT (·)

∫ T

0
p0λ

1e−λ1s

[∫ ∞

s
e−rτβτ(dτ | s)

]
V ds

+
∫ ∞

T
e−rτβT (dτ)

[
p0e

−λ1T V − (1 −p0)e
−λ0T

]
subject to

W

[∫ ∞

t
e−rτβτ(dτ | t)

]
≥W

[∫ ∞

s
e−rτβτ(dτ | s)

]
∀s ≥ t (11)

W

[∫ ∞

t
e−rτβτ(dτ | t)

]
≥W

∫ ∞

T
e−rτβT (dτ) ∀t (12)

∫ T

t
ptλ

1 e
−λ1s

e−λ1t
W

[∫ ∞

s
e−rτβτ(dτ | s)

]
ds

+
∫ ∞

T
e−rτβT (dτ)

[
pte

−λ1(T−t)W − (1 −pt)e
−λ0(T−t)

]

≥ max
{[∫ ∞

t
e−rτβτ(dτ | t)

]
· (ptW +pt − 1)�0

}
∀t� (13)

We fix T , ignore conditions (11) and (12), and argue that condition (13) should bind
for almost all t < t∗. Suppose the strict inequality holds for all t ∈A, where A has positive
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measure. Let us consider

βε
τ(· | t)=

{
(1 − ε)βτ(· | t)+ ε1t if t ∈A

βτ(· | t) otherwise�

For ε sufficiently small, the strict inequality still holds at t. For s < t, the incentive is
strengthened. For s > t, the incentive is unaffected. Since βε

τ first-order stochastic dom-
inates βτ and e−rτ is decreasing in τ, the principal receives strictly higher payoff under
βε
τ .

Now let us impose (13) binding for all t < t∗ while letting (12) and (13) hold for t = T

simultaneously. Moreover, for any t ≥ 0, let τ(t) be such that e−rτ(t) = ∫ ∞
t e−rτβτ(dτ | t)

and e−rS = ∫ ∞
T e−rτβT (dτ). We then have

∫ T

t
ptλ

1 e
−λ1s

e−λ1t
W e−rτ(s) ds + e−rS

[
pte

−λ1(T−t)W − (1 −pt)e
−λ0(T−t)

]
= e−rτ(t) · (ptW +pt − 1) ∀t ∈ [0� t∗) (14)

e−rS = e−rτ(T)� (15)

Equations (14) and (15) combined give us

∫ ∞

t
e−rτβ∗

τ(dτ | t) = e−rτ(t) = e−r(S−T)e−rτT∗(t) ∀t < t∗� (16)

where τT∗ is the optimal deterministic contract given deadline T . It is then easy to see
that β∗

τ satisfies the other conditions as well and, therefore, is feasible. Therefore, it
solves the original problem.

Note that any β∗
τ that satisfies (16) must not assign probability 1 to {t} for t <

min{t∗�T }. If this is the case, then∫ ∞

0
e−rτβ∗

τ(dτ | t)= e−rt > e−rτT
∗
(t) ≥ e−r(S−T)e−rτT∗(t)�

a contradiction.
The principal’s payoff equals

∫ T

0
p0λ

1e−λ1s

[∫ ∞

s
e−rτβ∗

τ(dτ | s)
]
V ds +

∫ ∞

T
e−rτβT (dτ)

[
p0e

−λ1T V − (1 −p0)e
−λ0T

]

=
∫ T

0
p0λ

1e−λ1se−r(S−T)e−rτT∗(s)V ds + e−rS
[
p0e

−λ1T V − (1 −p0)e
−λ0T

]

=
∫ T

0
p0λ

1e−λ1se−rτT∗(s)e−r(S−T)V ds + e−rS
[
p0e

−λ1T V − (1 −p0)e
−λ0T

]

≤
∫ T

0
p0λ

1e−λ1se−rτT∗(s)V ds + e−rT
[
p0e

−λ1T V − (1 −p0)e
−λ0T

]
�
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The first equality comes from (16). We have thus shown that for any given T , the opti-
mal random contract is at most as good as the optimal deterministic contract with the
same T .

Appendix C: Proofs for Section 4.1

Proof of Lemma 2. We prove that τ(t) > t for t < min{t∗�T }. For simplicity, take t = 0.
By contradiction, assume that τ(0) = 0. The left-hand side of (5) can be written as

∫ T

0

(
p0λ

1 exp
(−λ1s

)
exp

(−rτ(s)
)
W

)
ds

+ (
p0 exp

(−λ1T
)
e−rTW − (1 −p0)exp

(−λ0T
)
e−rT

)
≤

∫ T

0

(
λ1 exp

(−λ1s
)

exp(−rs)p0W
)
ds

+ (
p0 exp

(−λ1T
)
e−rTW − (1 −p0)exp

(−λ0T
)
e−rT

)
�

The inequality follows since τ(s) ≥ s. The term on the right-hand side of the inequality
above is the expected payoff that the agent would get following the policy of investing if
any good signal is revealed before T and investing at T if no signal is revealed before T .
Since p0 > p∗, this policy must result in strictly lower payoffs than the expected payoff
from investing at t = 0. So

∫ T

0

(
λ1 exp

(−λ1s
)

exp(−rs)p0W
)
ds

+ (
p0 exp

(−λ1T
)
e−rTW − (1 −p0)exp

(−λ0T
)
e−rT

)
<p0W − (1 −p0)�

Combining these inequalities, we deduce that (5) is violated at t = 0 when τ(0) = 0. It
follows that τ(0) > 0.

Proof of Lemma 3. Let τ∗ solve the relaxed problem. By way of contradiction, assume
that for some A ⊆ [0�min{t∗�T }) with positive Lebesgue measure and for all t ∈ A, the
constraint (8) is slack. For t ∈ dom(τ), define

ϕt =
∫ T

t
ptλ

1 e
−λ1s

e−λ1t
e−rτ∗(s)W ds +

(
pt

e−λ1T

e−λ1t
e−rTW − (1 −pt)

e−λ0T

e−λ0t
e−rT

)
�

Now define τ′ as follows. For t /∈A, τ′(t) = τ∗(t), while for t ∈A,

e−rτ′(t)(ptW +pt − 1)= ϕt�

For t ∈ A, e−rτ′(t) > e−rτ∗(t). Therefore, τ′(t) ≤ τ∗(t) for all t ∈ [0�min{t∗�T }], with
strict inequality for t ∈ A. We claim that τ′ is feasible. To see this, note that for all
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t ∈ [0�min{t∗�T }],
∫ T

t
ptλ

1 e
−λ1s

e−λ1t
e−rτ′(s)W ds +

(
pt

e−λ1T

e−λ1t
e−rTW − (1 −pt)

e−λ0T

e−λ0t
e−rT

)

≥
∫ T

t
ptλ

1 e
−λ1s

e−λ1t
e−rτ∗(s)W ds +

(
pt

e−λ1T

e−λ1t
e−rTW − (1 −pt)

e−λ0T

e−λ0t
e−rT

)

= ϕt

≥ e−rτ′(t)(ptW +pt − 1)

≥ max
{
0� e−rτ′(t)(ptW +pt − 1)

}
�

The first inequality follows since τ′ is below τ∗ and the equality is by definition of ϕt . The
second inequality follows with equality when t ∈ A (by definition of τ′), and for t /∈ A

follows since τ′ and τ∗ coincide and τ∗ satisfies (8). The third inequality follows since
t < t∗. It follows that τ′ satisfies (7) and (8) and results in higher expected payoffs than
τ∗. This contradicts the optimality of τ∗ for the relaxed problem.

We now argue that when T > t∗ (case (b) in the statement of the proposition), τ∗(t) =
t for almost every t ∈ [t∗�T ]. Otherwise, there is a set A⊆ [t∗�T ] of positive measure such
that for all t ∈A, τ∗(t) > t. Construct τ′ that coincides with τ∗ outside A, but τ′(t) = t for
t ∈ A. It is clear that τ′ satisfies (8) since for t < t∗, τ′ does not change the payoff from
lying, but does increase the payoff from truth-telling. It follows that τ′ is feasible for the
relaxed problem and results in higher expected payoffs for the principal than τ∗. This is
a contradiction.

Now, to prove the converse, we assume that T > t∗. The proof of the converse when
T ≤ t∗ is analogous. Take τ∗ such that (7) and (8) bind almost everywhere. Take τ′ that
solves the relaxed problem (6). From the first part of this proof, τ′ and τ∗ coincide for
almost every t ∈ [t∗�T ]. The previous step also shows that τ′ is such that (8) binds for
almost every t ∈ [0�min{t∗�T }]. Define

u(t) =
∫ T

t
e−λ1s

(
e−rτ∗(s) − e−rτ′(s))ds

for t ∈ [0�min{t∗�T }]. Note that u(t) is absolutely continuous, and its derivative is de-
fined almost everywhere and equals −e−λ1t (e−rτ∗(t) − e−rτ′(t)). Now using the fact that
the constraint binds almost everywhere for both τ′ and τ∗, we deduce that for almost
every t ∈ [0�min{t∗�T }],

−ptλ
1W u(t) = u′(t)(ptW +pt − 1)

and u(min{t∗�T }) = 0. It follows that for almost every t ∈ [0�min{t∗�T }], d(u(t)e
∫ t

0 H(s)ds)/

dt = 0, where H is a continuous function. Since u(min{t∗�T }) = 0, u(t) = 0 for all
t ∈ [0�min{t∗�T }]. In particular, 0 = u′(t) = −e−λ1t (e−rτ∗(t) − e−rτ′(t)) almost everywhere,
and, therefore, τ′ and τ∗ coincide for almost every t ∈ [0�min{t∗�T }]. Since τ∗ satisfies
(7) and (8), τ∗ solves the relaxed problem.
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Proof of Lemma 4. Since (5) is binding for all t ∈ [0�min{t∗�T }),

∫ T

t
λ1e−λ1se−rτ(s)W ds +

(
e−λ1T e−rTW − 1 −pt

pt
e(λ

0−λ1)te−λ0T e−rT

)

= e−λ1te−rτ(t)

(
W − 1 −pt

pt

)
�

where we use the fact that t ≤ t∗. Since the left-hand side of this equation and pt are dif-
ferentiable, so is τ. Taking derivatives and using the fact that d( 1−pt

pt
)/dt = (λ1 − λ0)(1 −

pt)/pt , we deduce that

−λ1e−λ1te−rτ(t)W = −(
λ1 + rτ̇(t)

)
e−λ1t−rτ(t)

(
W − 1 −pt

pt

)
− e−λ1t−rτ(t)

(
λ1 − λ0)1 −pt

pt
�

Solving for τ̇(t), we deduce that

τ̇(t) =
(
λ0

r

)
1

W
pt

1 −pt
− 1

�

The slope of τ is nonnegative. To see that τ is convex, note that pt/(1 − pt) is nonin-
creasing and, thus, τ̇ is nondecreasing. To see that τ̇ is less than 1, note that

τ̇ < 1 if and only if 1 <W
r

λ0 + r

pt

1 −pt
�

To verify this last property, note that investing at t results in higher expected payoffs for
the agent than learning at t and investing at t + dt unless the bad state is revealed. That
is,

ptW − (1 −pt)≥ −(1 −pt)
(
1 − λ0 dt

)
e−r dt +pte

−r dtW �

Reordering terms and taking dt → 0, we deduce that

1 <W
r

λ0 + r

pt

1 −pt
�

Appendix D: Proofs for Section 4.3

Proof of Proposition 2. We first prove part (a). Note that the principal’s expected
payoff from setting T = ∞ equals

ϕ(W ) =
∫ t∗

0
p0λ

1e−λ1se−rτt
∗
W (s)V ds +

∫ ∞

t∗
p0λ

1e−λ1se−rsV ds�

where

τt
∗
W (s) = t∗ −

(
λ0

r

)∫ X

s

1

W
px

1 −px
− 1

dx�

We claim that for all ε > 0, there exists L such that for all W >L, ϕ(W ) < ε.
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First, notice that since t∗ → ∞ as W → ∞, there exists L1 such that for all W >L1,∫ ∞

t∗
p0λ

1e−λ1se−rsV ds < ε/2�

Now we show that there exists L2 such that for all W >L2,

∫ t∗

0
p0λ

1e−λ1se−rτt
∗
W (s)V ds <

ε

2
�

To show this, we first show that for any δ, there exists L3 such that for all W >L3,

1

W
px

1 −px
− 1

< δ ∀x ∈ [
0� t∗

]
�

Since px/(1 −px) decreases in x, it suffices to show

1

W
p0

1 −p0
− 1

< δ�

This is done by letting

L3 = δ+ 1
δ

2(1 −p0)

p0
�

Given this, we now show that for any η, there exists L4 such that W >L4 implies

e−rτ(s) < η ∀s ∈ [
0� t∗

]
�

To show this, first we notice that τ(s) increases in s, so it suffices to show that there exists
L4 such that W >L4 implies

e
−r[t∗− λ0

r

∫ t∗
0

1
W

px
1−px

−1
dx]

<η�

In other words,

t∗ − λ0

r

∫ t∗

0

1

W
ps

1 −ps
− 1

ds >
lnη
−r

�

Given what we showed in the previous step, we can find L3 such that

1

W
px

1 −px
− 1

<
r

2λ0 ∀x ∈ [
0� t∗

]
�

Therefore,

t∗ − λ0

r

∫ t∗

0

1

W
px

1 −px
− 1

dx > t∗ − λ0

r

∫ t∗

0

r

2λ0 dx
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= t∗ − λ0

r

r

2λ0 t
∗

= t∗

2
→ ∞

as W → ∞. We have, therefore, shown that there exists L4 such that W >L4 implies

e−rτ(s) < η ∀s ∈ [
0� t∗

]
�

Now find L4 such that

e−rτ(s) <
ε

4Vp0
∀s ∈ [

0� t∗
]
�

Therefore,

∫ t∗

0
p0λ

1e−λ1se−rτ(s)V ds <

∫ t∗

0
p0λ

1e−λ1s ε

4Vp0
V ds

= p0λ
1 ε

4Vp0
V

∫ t∗

0
e−λ1s ds

= p0λ
1 ε

4Vp0
V · 1

λ1

(
1 − e−λ1t∗)

= p0
ε

4Vp0
V

(
1 − e−λ1t∗)

= ε

4
(
1 − e−λ1t∗)

<
ε

2
�

Therefore, for W >L2 := max{L3�L4}, we have

∫ t∗

0
p0λ

1e−λ1se−rτt
∗
W (s)V ds <

ε

2
�

Last, letting L := max{L1�L2}, we then have

ϕ(W ) < ε

for W >L.
Now note that by setting an optimal deadline T ∈ [0� t∗], the principal’s payoff equals

�(W )= max
T∈[0�t∗]

�(W �T)�

where

�(W �T) =
∫ T

0
p0λ

1e−λ1se−rτTW (s)V ds + (
p0e

−λ1T e−rT V − (1 −p0)e
−λ0T e−rT

)
�
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Note that

�(W �T) > p0e
−rT

(
1 − e−λ1T

)
V + (

p0e
−λ1T e−rT V − (1 −p0)e

−λ0T e−rT
)

= e−rT
(
p0V − (1 −p0)e

−λ0T
)
�

Fix any T such that the expression above is strictly positive and equals η> 0. Let ε = η/2,
and take W >L such that ϕ(W ) < ε = η/2 and T < t∗. In particular,

�(W )≥ η>η/2 ≥ ϕ(W )�

which proves that there exists some κ̄ such that for all W > κ̄, T ∈ [0� t∗] results in higher
payoffs than T = ∞.

To complete the proof of part (a), note that as W goes to x (where (xrp0)/((λ
1 +r)(1−

p0)) = 1), t∗ → 0. In particular,

ϕ(W ) →
∫ ∞

0
p0λ

1e−λ1se−RsV ds = p0V
λ1

λ1 + r
�

whereas

�(W ) → p0V + (1 −p0)(−ν)�

Since p0V λ1/(λ1 + r) > p0V − (1 − p0), there exists κ such that for all W < κ, ϕ(W ) >

�(W ).
To prove part (b), we note that

ϕ(V ) =
∫ t∗

0
p0λ

1e−λ1se−rτt
∗
W (s)V ds +

∫ ∞

t∗
p0λ

1e−λ1se−rsV ds

for the principal’s payoff when T = ∞ and

�(V �T) =
∫ T

0
p0λ

1e−λ1se−rτTW (s)V ds + (
p0e

−λ1T e−rT V − (1 −p0)e
−λ0T e−rT

)
for the principal payoff when setting T < t∗. Note that as V → 0,

ϕ(V ) → 0� �(V �T) → −(1 −p0)e
−λ0T e−rT �

Since � is continuous in (V �T), there exists η> 0 such that for all V < η,

ϕ(V ) > max
T∈[0�t∗]

�(V �T)

and, thus, it is optimal for the principal to set T = ∞.
To complete part (b), define y such that 1 = yrp0/((λ

1 + r)(1 −p0)). By definition,

ϕ(y) < max
T∈[0�t∗]

�(y�T)�
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where the maximum on the right is attained at T = 0. By continuity, there exists η̄ < y

such that for all V > η̄,

ϕ(V ) < max
T∈[0�t∗]

�(V �T)

and the principal sets a deadline T < t∗.

Appendix E: No news is no news and no news is good news

In the absence of a signal, the evolution of the agent’s belief (pt)t≥0 satisfies

dpt

dt
= −(

λ1 − λ0)pt(1 −pt)�

We first consider the case when λ0 = λ1; that is, dpt/dt = 0. In this case, the agent’s belief
remains constant if no signal has arrived and jumps to 0 or 1 at the first signal. Therefore,
the uninformed agent is never indifferent between investing and waiting to invest after
a good signal, and we define t∗ = ∞.

The single-player problem is solved identically as that in Section 2. The dynamic
delegation problem and the relaxed problem are set up in the same way. When solving
the relaxed problem, since t∗ = ∞, we need only to consider the T ≤ t∗ case. Since it
is infeasible to set T = ∞ for any combination of parameters that satisfy Assumption 1,
the optimal contract always features a deadline T and the corresponding contract τT is
solved in the same way as in Section 4.2.

When λ0 > λ1, the agent’s belief drifts up as time goes on. Suppose that the agent
observes the signal and decides whether to invest at each point in time. Following argu-
ments similar to those in Section 2, it is relatively simple to show that there exists p∗ such
that the agent invests if and only if pt ≥ p∗. Analogously, there exists q∗ such that the
principal would make the decision if and only if pt ≥ q∗.14 We assume that p∗ <p0 < q∗.
This means that at time 0, the agent would like to invest, whereas the principal would
like to wait for information. In contrast to Section 2, the assumption λ0 > λ1 now implies
that there exists t∗ such that if no signal has been received, the principal would like to
invest at any t > t∗. In particular, for t > t∗, the principal’s and the agent’s preferences
surely coincide, as both would like to invest. This implies that there is always a deadline
T ≤ t∗.

We find the contract 〈T�τ〉 that solves (1) under constraints (2)–(5). All these con-
straints remain relevant in this setup, as they capture feasibility and truth-telling incen-
tives that need to be provided regardless of the direction followed by the belief path.

The solution method is similar to Section 4. We now sketch and discuss the main
steps.

Lemma 6. Let 〈T�τ〉 satisfy (2) and (5). Then τ(t) > t for all t ≤ T .

14Note that the thresholds p∗ and q∗ in this subsection do not coincide with the thresholds derived in
Section 2.
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This result is similar to Lemma 2. The main difference is that now the uninformed
agent prefers to invest for all t ∈ dom(τ) and, as a result, all the investment times need
to be distorted.

We also solve the dynamic delegation problem for fixed T and, as in Section 4, it is
convenient to formulate the relaxed problem

max
τ(·)

∫ T

0
p0λ

1e−λ1se−rτ(s)V ds + (
p0e

−λ1T e−rT V − (1 −p0)e
−λ0T e−rT

)
(17)

subject to

τ(T) ≥ T (18)

∫ T

t
ptλ

1 e
−λ1s

e−λ1t
e−rτ(s)W ds +

[
pt

e−λ1T

e−λ1t
e−rTW − (1 −pt)

e−λ0T

e−λ0t
e−rT

]

≥ max
{
e−rτ(t)(ptW +pt − 1)�0

}
� ∀t ≤ T� (19)

Lemma 7. Let τ∗ satisfy (18) and (19). Then τ∗ solves the relaxed problem (17) if and only
if (19) binds for almost every t ∈ [0�T ].

This lemma is similar to Lemma 3. Intuitively, if the constraint were slack, the prin-
cipal could slightly reduce the investment time and improve her expected payoffs.

A solution to the relaxed problem is then found by imposing (19) binding over [0�T ].
Since ptW +pt − 1 > 0 for all t ≥ 0, (19) binding at T implies τ(T) = T . Using Lemma 4,
we can solve for the binding constraint (19) by simply solving the system

τ(T) = T� τ̇(t) =
(
λ0

r

)
1

W
pt

1 −pt
− 1

t < T�

The solution τT to this system is given by (10). This function is concave and its slope
is less than 1. As it satisfies all the constraints of the dynamic delegation problem, τT

actually solves the dynamic delegation problem for fixed T . As T increases, so does
τT (t) and, thus, the principal needs to distort more investment decisions. The optimal
T is chosen as follows. Over T ≥ t∗, the principal should optimally set T = t∗ since for
all t > t∗, the principal is optimistic enough to invest without any news. Over T < t∗, the
solution solves the trade-off characterized in Proposition 2.
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