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The paper considers a voting model where each voter’s type is her preference. The
type graph for a voter is a graph whose vertices are the possible types of the voter.
Two vertices are connected by an edge in the graph if the associated types are
“neighbors.” A social choice function is locally strategy-proof if no type of a voter
can gain by misrepresentation to a type that is a neighbor of her true type. A so-
cial choice function is strategy-proof if no type of a voter can gain by misrepre-
sentation to an arbitrary type. Local-global equivalence (LGE) is satisfied if local
strategy-proofness implies strategy-proofness. The paper identifies a condition
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on the graph that characterizes LGE. Our notion of “localness” is perfectly gen-
eral. We use this feature of our model to identify notions of localness according
to which various models of multidimensional voting satisfy LGE. Finally, we show
that LGE for deterministic social choice functions does not imply LGE for random
social choice functions.
Keywords. Local incentive constraints, strategy-proofness, mechanism design,
strategic voting.

JEL classification. D71.

1. Introduction

Mechanism design theory is concerned with models where agents have private informa-
tion (called a type) that has to be elicited by the mechanism designer. The cornerstone of
the theory is the collection of strategy-proofness constraints that ensure that agents do
not have incentives to misreport their types (or manipulate). The standard assumption
in the theory is that the proposed social choice function must be immune to all possible
misreports of agents. There is, however, considerable experimental evidence that agents
do not always lie in an optimal payoff-maximizing way. For instance, Fischbacher and
Föllmi-Heusi (2013) conduct an experiment where agents are paid money on the basis
of a report of a privately observed roll of a die. In their results, only 20 percent of the
subjects lie optimally, 39 percent are fully honest, and the remaining lie partially. Agents
often choose to lie credibly by misreporting only to types that are near or close to their
true types. We consider a model where an agent of a particular type can only misreport
to an arbitrary set of pre-specified local types. Our main contribution is a complete an-
swer to the following question: under what circumstances is immunity to misreporting
via a local type (local strategy-proofness) equivalent to immunity to misreporting via an
arbitrary type (strategy-proofness)?

The equivalence issue has important conceptual and practical implications.1 If it is
not satisfied, the mechanism designer can choose from a wider class of locally strategy-
proof social choice functions. It may enable her, in principle, to avoid negative results
such as the Gibbard–Satterthwaite theorem (Gibbard (1973), Satterthwaite (1975)). Al-
ternatively, suppose that the problem at hand satisfies equivalence. So as to verify that
a social choice function is strategy-proof, it suffices to check that it is locally strategy-
proof. The latter is a simpler task because it involves checking fewer constraints.

We consider a model where an agent’s type is a strict preference ordering over a fi-
nite set of alternatives. There are no monetary transfers. For convenience, we refer to
this model as the voting model and refer to the agent as a voter, even though the model
could apply to other settings such as matching. For our purpose, it is sufficient to re-
strict attention to the case of a single voter.2 The set of possible preferences is called a
domain. An environment is an undirected graph whose vertices are preferences in the
domain. The agent whose preference is specified by a particular vertex can only mis-
report to another preference (or vertex) if the two vertices are connected by an edge in

1They are also discussed extensively in Carroll (2012) and Sato (2013).
2Our results can easily be interpreted in the multi-voter setting.
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the environment. The set of vertices connected by an edge to a vertex are its neighbors.
A social choice function is locally strategy-proof if no type of the agent can gain by ma-
nipulating to a neighbor; it is strategy-proof if the agent cannot gain by manipulating to
any vertex in the graph. An environment satisfies local-global equivalence (LGE) if local
strategy-proofness implies strategy-proofness.3

Section 2 of the paper contains some examples and observations that highlight the
issues underlying LGE. It serves to motivate our main result in Section 3, Theorem 1,
which is a characterization of environments that satisfy LGE. Section 4 contains a dis-
cussion of the computational complexity of Property L and its relationship with earlier
results in the literature. Section 5 applies Theorem 1 to multidimensional voting envi-
ronments. Finally, Section 6 uses Theorem 1 to construct an example of an environment
where LGE holds but equivalence fails for random social choice functions.

The LGE property depends on the existence of certain types of paths in the environ-
ment. For every pair of preferences P and P ′ in the domain and alternative a, there must
exist a path from P to P ′ satisfying a monotonicity property with respect to all alterna-
tives that are ranked worse than a according to P . Specifically, the relative ranking of
a and any alternative b ranked worse than a according to P , can change at most once
along the path. We call this condition Property L. According to Theorem 1, Property L is
both necessary and sufficient for LGE.

One of the strengths of our approach is that our notion of neighbors in the defini-
tion of local strategy-proofness is perfectly general. The earlier literature (discussed be-
low) used the Kemeny distance metric to define “localness.” Thus, two preferences are
neighbors if there is a single pair of consecutively ranked alternatives that are switched
between the two preferences. Preferences that are neighbors in this sense are referred
to as being adjacent. A limitation of adjacency is that it excludes several multidimen-
sional voting models that are of interest. In these models, an alternative is an m-tuple
(m> 1) and preferences are typically assumed to satisfy some form of separability. Con-
sequently, it is not always possible to switch a consecutively ranked pair of alternatives
without affecting the ranking of other alternatives. We consider two such domains—
separable domains and multidimensional single-peaked domains—and propose natu-
ral notions of neighbors such that the resulting environments satisfy LGE.

The question of local-global equivalence also arises naturally in the context of ran-
dom social choice functions. We follow the standard approach of comparing lotteries
via stochastic dominance (see Gibbard (1977)). Earlier results (again discussed below)
suggest that environments that satisfy LGE for deterministic social choice functions also
do so for random social choice functions. We use our characterization result for the de-
terministic case to show that this is not true generally. We construct an environment
that satisfies Property L and, therefore, satisfies deterministic LGE. We also find a ran-
dom social choice in the same environment that satisfies local strategy-proofness but
violates strategy-proofness.

3The converse is, of course, always true.
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1.1 Related literature

Two important papers on LGE in voting models are Carroll (2012) and Sato (2013). Both
papers use the adjacency version of localness. Carroll (2012) considers random so-
cial choice functions and shows that specific preference domains, such as the set of
all strict preferences, the set of all single-peaked preferences, and particular subsets of
single-crossing preferences satisfy LGE. Sato (2013) provides a necessary condition and
a stronger sufficiency condition for LGE in the context of deterministic social choice
functions. Section 4.2 describes the relationship between Sato’s results and ours in
greater detail. As already mentioned, there are two significant ways in which our main
result extends and refines the earlier analysis. The first is that our notion of neighbors
is completely general; the second is that we have a complete characterization. Both
aspects of our result permit a wider range of applications than was earlier possible.

Cho (2016) provides sufficient conditions for LGE with random social choice func-
tions. The notion of neighbors is once again adjacency, but several notions of prefer-
ence extensions to lotteries are considered. In particular, it shows that a stronger ver-
sion of the sufficient condition proposed in Sato (2013) (see Property U in Section 4.2)
is sufficient for LGE if lotteries are compared via stochastic dominance. We show in
Section 6 that the condition that is necessary and sufficient for LGE with deterministic
social choice functions (using adjacency as the notion of localness) is not sufficient for
LGE with random social choice functions.

There are several papers that investigate LGE in models where monetary transfers
to agents are permitted and preferences are quasilinear in the usual sense (see, for in-
stance, Carroll (2012), Archer and Kleinberg (2014), and Mishra et al. (2016)). Although
the basic question is the same, the flavor of the analysis and the results in the two models
are very different from each other.

In a companion paper (Kumar et al. (2021)), we consider a multi-voter model and
address the question, “Under what conditions on the environment is it the case that ev-
ery locally strategy-proof social choice function that also satisfies the mild condition of
unanimity4 is also strategy-proof?” We show that a condition much weaker than Prop-
erty L is sufficient for LGE in this sense for both deterministic and random social choice
functions.

2. The model

Let A = {a, b, � � � } denote a finite set of alternatives with |A| ≥ 2. Throughout the paper,
we assume that there is a single voter. This assumption is without loss of generality as is
soon apparent.

A preference P is an antisymmetric, complete, and transitive binary relation over A,
i.e., given a, b ∈ A, aPb is interpreted as a is strictly preferred to b according to P . Let
P denote the set of all preferences: the set P is referred to as the universal domain. We
refer to an arbitrary set D ⊆ P as a domain.

4A deterministic social choice function satisfies unanimity if it always picks an alternative in a profile
where it is first-ranked by all voters. In the case of a random social choice function such an alternative is
picked with probability 1.
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An environment is an (undirected) graph G= 〈D, E〉. The set of vertices of the graph
is a domain D. The set of edges is the set E . If P , P ′ ∈ D and (P , P ′ ) ∈ E , the two prefer-
ences are said to be neighbors or are local.

The notion of neighbors is perfectly general. One possible specification is that used
by Carroll (2012) and Sato (2013). Fix a pair of preferences P , P ′ ∈ D. Two alternatives
a and b in A are reversed if aPb and bP ′a, or bPa and aP ′b. Let P � P ′ = {{a, b} ⊆ A :
a and b are reversed in P and P ′} be the set of all reversed pairs of alternatives between
P and P ′.5 Two preferences P and P ′ are called adjacent if |P � P ′| = 1.6 An environment
where neighbors are defined by adjacency is referred to as an adjacency environment.
Whenever the notion of neighbors is defined by adjacency, we denote the set of edges by
Eadj. An adjacency environment typically is denoted by G = 〈D, Eadj〉. In Section 5, we
provide an example of a nonadjacency environment.

Definition 1. A social choice function (SCF) is a map f : D →A.

Definition 2. Consider an environment G = 〈D, E〉. An SCF f : D → A is locally ma-
nipulable at P if there exists P ′ ∈ D with (P , P ′ ) ∈ E such that f (P ′ )Pf (P ). The SCF f is
locally strategy-proof if it is not locally manipulable at any P ∈ D.

Consider a graph or an environment. An SCF labels each vertex of the graph with an
alternative. It is locally strategy-proof if the voter with a preference for a particular vertex
cannot gain by misrepresenting her preference to a vertex that is a neighbor of her true
preference.

In contrast to local strategy-proofness, an SCF is strategy-proof if the voter cannot
gain by an arbitrary misrepresentation.

Definition 3. An SCF f : D → A is manipulable at P if there exists P ′ ∈ D such that
f (P ′ )Pf (P ). The SCF f is strategy-proof if it is not manipulable at any P ∈ D.

A strategy-proof SCF is clearly locally strategy-proof. We investigate the structure of
an environment when the converse is true.

Definition 4. The environment G = 〈D, E〉 satisfies local-global equivalence (LGE) if
every locally strategy-proof SCF f : D → A is strategy-proof.

The next subsection makes some important observations regarding LGE.

2.1 Preliminary observations

Our goal in this subsection is to illustrate the issues involved in LGE and to provide some
intuition behind our result. We begin with some standard concepts from graph theory.

5We are guilty of abuse of notation here. Since a preference is an ordered pair, P � P ′ should include both
ordered pairs (a, b) and (b, a) if a and b are reversed in P and P ′. In our notation, P � P ′ includes only the
unordered pair {a, b} in this case.

6An alternative and equivalent statement is that the Kemeny distance between P and P ′ is exactly 1.
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Table 1. Domain D.

P1 P2 P3 P4 P5

c c c c c

[a] [b] [b] [b] a

b a a a [b]
z z z z z

v v v u u

w w u v v

u u w w w

Let G = 〈D, E〉 be an environment. A path π = (P1, � � � , Pt ) is a sequence of dis-
tinct vertices in D satisfying the property that consecutive vertices are neighbors, i.e.,
(Pk, Pk+1 ) ∈ E for all k = 1, � � � , t − 1.7 Let �(P , P ′ ) denote the set of all paths from P

to P ′ in G. For any path π = (P1, � � � , Ps , Ps+1, � � � , Pt ), we let π|[Ps ,Pt ] denote the sub-
path (Ps , Ps+1, � � � , Pt ). We say G is connected if there exists a path between every pair
of vertices in G, i.e., �(P , P ′ ) 	= ∅ for all P , P ′ ∈ D.

The example below highlights the reasons why LGE may fail.

Example 1. Let A = {a, b, c, z, u, v, w}. Consider the adjacency environment G =
〈D, Eadj〉, where D = {P1, P2, P3, P4, P5} (Table 1). It is convenient to represent G by
Figure 1.

The SCF f : D → A picks a at P1 and b at other preferences.8 The SCF f is locally
strategy-proof. However, it is not strategy-proof since the voter with preference P5 can
manipulate via P1. ♦

The cause of the failure of strategy-proofness while maintaining local strategy-
proofness can be clearly identified from Example 1. Consider the path π = (P5, P4, P3,
P2, P1 ). The outcome at P5 is b. Since b “improves” at P4 relative to P5, local strategy-
proofness implies that the outcome at P4 must be b; otherwise the voter would manip-
ulate locally to P5. Local strategy-proofness also implies that the outcomes at P3 and
P2 must be b. Note that b “declines” at P1 with respect to a. There are two options at
P1 that are consistent with the requirement of local strategy-proofness (with respect to
P1). The outcome can remain b or it can switch to a. In the former case, we maintain
strategy-proofness since the outcome is b everywhere along the path π. However, if the
outcome is a, a problem with strategy-proofness arises since a is preferred to b at P5.

Figure 1. The environment G = 〈D, Eadj〉.9

7In other words, repetitions of vertices in a path are ruled out.
8This is indicated by the square brackets on the alternative chosen by f at each preference.
9Two vertices are connected by an edge in G if and only if the preferences represented by the vertices are

adjacent. For instance, P1 and P2 are adjacent; in particular aP1b and bP2a. The edge between P1 and P2
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The failure of LGE in G = 〈D, Eadj〉 arises from an inherent asymmetry in the “mono-
tonicity” requirement imposed by local strategy-proofness. If the outcome of an SCF at
a preference improves10 relative to a local preference, the same outcome continues to
be chosen at the new neighbor preference. However, if the outcome at a preference falls
relative to a local preference, the new outcome can either remain the same or switch
to an alternative that has improved (relative to the original outcome) in the new prefer-
ence. Combining the latter option together with an improvement in the same path can
lead to a failure of strategy-proofness without violating local strategy-proofness.

A key feature of the path π in Example 1 is that a and b switch relative ranking more
than once in the path. Thus, aP5b, bP4a, and aP1b. The preceding discussion makes it
clear that such paths may be problematic for LGE.

Definition 5. Let G = 〈D, E〉 be an environment and let a, b ∈ A. A path π =
(P1, P2, � � � , Pt ) satisfies no {a, b} restoration if the relative ranking of a and b is re-
versed11 at most once along π, i.e., there do not exist integers q, r, and s with 1 ≤ q < r <

s ≤ t such that either (i) aPqb, bPra and aPsb or (ii) bPqa, aPrb and bPsa.12

Let P , P ′ ∈ D and a, b ∈ A be such that aPb. We say that b overtakes a in path π ∈
�(P , P ′ ) if bPla for some preference Pl in the path π. The notion of overtaking can be
used to restate the definition of an {a, b} restoration in an obvious way. For instance, in
case (i) of Definition 5, b overtakes a in the path π1 = (Pq, � � � , Pr ) and a overtakes b in
the path π2 = (Pr , � � � , Ps ).

It is sometimes useful to consider paths without restoration for a pair of alternatives.
Let P , P ′ ∈ D and a, b ∈ A be such that aPb. Let π = (P1, P2, � � � , Pt ) ∈ �(P , P ′ ) be a
path without {a, b} restoration. If aP ′b, then aPrb for all preferences Pr on the path π.
Suppose bP ′a instead. Then there exists a unique preference Pr on π such that aPsb for
all s = 1, � � � , r and bPsa for all s = r + 1, � � � , t.

To further clarify the relationship between the LGE property and paths without
restoration, we make two modifications to Example 1.

Example 2. As in Example 1, A = {a, b, c, z, u, v, w}. We consider six additional pref-
erences P0, P6, P7, P8, P9, P10 as shown in Table 2. Let D and D∗ be the domains
D = D ∪ {P0} and D∗ = D ∪ {P6, P7, P8, P9, P10}. These domains are used to construct
two adjacency environments G= 〈D, Eadj〉 and G∗ = 〈D∗, Eadj〉. These environments are
shown in Figures 2 and 3.

ConsiderG and a locally strategy-proof SCF f̄ : D →A such that f̄ (P5 ) = b. Using the
same arguments as in Example 1, along the path π = (P5, P4, P3, P2, P1 ), we can infer

is labelled {a, b} so as to signify that the only “difference” between the two preferences is the ranking of a
and b.

10We are intentionally informal in this description. These notions are made precise in due course.
11Recall that a pair of alternatives a, b is reversed in the pair of preferences P and P ′ if they are ranked

differently in P and P ′.
12It is worth emphasizing that in our definition of {a, b} restoration, we are not referring to an ordered

pair (a, b). Thus, {a, b} restoration and {b, a} restoration are the same in our definition. We use expressions
such as “the path has no {a, b} restoration” and “the path has no restoration for the pair {a, b}” interchange-
ably.
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Table 2. Preferences P0 and P6, P7, P8, P9, P10.

P0 P6 P7 P8 P9 P10

c a a a a a

a c c c c c

b b z z z b

z z b b b z

v u u v v v

u v v u w w

w w w w u u

that local strategy-proofness implies f̄ (Pk ) = b for all k = 5, 4, 3, 2 and f̄ (P1 ) is either b
or a. Due to the presence P0, there is now another path π̄ = (P5, P0, P1 ) from P5 to P1.
This path has no {a, b} restoration. Furthermore, the path π̄ has the properties that (i) a
and b are identically consecutively ranked, and (ii) c always ranks above a, while z, u, v,
and w are all ranked below b. Clearly, b does not switch places with any other alternative
along π̄. As a result, local strategy-proofness forces the outcome of f̄ to be b everywhere
along π̄, which rules out the manipulability of f̄ .

Now consider G∗ and a locally strategy-proof SCF f ∗ : D∗ → A such that f ∗(P5 ) = b.
Once again, local strategy-proofness along the path π = (P5, P4, P3, P2, P1 ) implies
that f ∗(Pk ) = b for all k = 5, 4, 3, 2 and f ∗(P1 ) is either b or a. Consider the path
π∗ = (P5, P6, P7, P8, P9, P10, P1 ). Observe that π∗ has no restoration for a and any of
the alternatives in the set Z = {b, z, u, v, w}, which are all ranked below a in P5. Alter-
natives of Z switch places among themselves along π∗ (see, for example, the subpath
(P6, P7, P8, P9, P10 )). Consequently, the local strategy-proofness of f ∗ does not pre-
clude the outcomes for preferences along π∗ from belonging to Z. Suppose f ∗(P1 ) = a.
Since f ∗(P5 ) = b, local strategy-proofness implies that some alternative in Z must “jump
above” a and then “jump below” a (so as to conform with P1) along the path π∗.13 How-
ever, this is explicitly ruled out by the observation that π∗ has no restoration for a and
any of the alternatives in Z. Therefore, it must be the case that f ∗(P1 ) = b. In fact,
only two possibilities can arise: (i) f ∗(Pk ) = b for all k = 1, � � � , 10 or (ii) f ∗(Pk ) = b for
all k = 1, 2, 3, 4, 5, 6, 10 and f ∗(Pk′

) = z for all k′ = 7, 8, 9. In either case, f ∗ is strategy-
proof.

Figure 2. The environment G= 〈D, Eadj〉.

13We can first easily rule out the possibility that c is chosen at some preference in the subpath
(P6, P7, P8, P9, P10 ). In that case, local strategy-proofness forces the outcome of f ∗ to be c everywhere
in G∗.
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Figure 3. The environment G∗ = 〈D∗, Eadj〉.

We conclude with an important observation. The alternative c is always ranked
above a along the path π̄ in G. However, the path π∗ in G∗ does not forbid restoration
between a and alternatives better than a in the initial preference P5. ♦

We summarize the insights of Examples 1 and 2. There is “potential” for the failure
of LGE whenever there is a path in an environment that has restoration for some pair
of alternatives. However, LGE can be restored by the existence of certain “other” paths
in the environment. As the argument relating to π∗ in G∗ suggests, the existence of a
path that satisfies no restoration of an alternative with respect to all alternatives that are
worse at a preference is sufficient to ensure strategy-proofness and, hence, LGE. In the
next section, we show that this insight is general. In fact, this condition is also necessary,
though the argument establishing necessity is more subtle.

3. The main result

The key condition for LGE is the lower contour set no-restoration property that we define
below.

For any P ∈ D and a ∈ A, the lower contour set of a at P is the set of alternatives
strictly worse than a according to P , i.e., L(a, P ) = {b ∈A : aPb}.

Property L. The environment G satisfies the lower contour set no-restoration property
(Property L) if, for all P , P ′ ∈ D and a ∈ A, there exists a path π ∈ �(P , P ′ ) with no {a, b}
restoration for all b ∈ L(a, P ).

Pick an arbitrary pair of preferences P , P ′ ∈ D and an alternative a ∈ A that is not
ranked last in P . Suppose L(a, P ) = {b1, � � � , bm}. If G satisfies Property L, there exists a
path from P to P ′ that has no {a, bi} restoration for all bi ∈ {b1, � � � , bm}. More informally,
if a lies above bi in P ′, then it lies above bi everywhere along the path. Alternatively, if
the rankings of a and bi are reversed between P and P ′, there is a single reversal between
a and bi along the path.

The environment G∗ in Example 2 satisfies Property L. In G∗, there are exactly
two paths between any pair of vertices, one clockwise path and the other coun-
terclockwise. For instance, between P1 and P5, the paths (P1, P2, P3, P4, P5 ) and
(P1, P10, P9, P8, P7, P6, P5 ) are the clockwise and counterclockwise paths, respectively.
These paths satisfy an important property. Fix an arbitrary pair of distinct preferences
P and P ′. If a path between P and P ′ possesses a restoration, say an {x, y} restora-
tion, and x is better than y in P , then the other path between P and P ′ must have no
restoration for x and any alternative of L(x, P ). For example, consider P1 and P5. The
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clockwise path (P1, P2, P3, P4, P5 ) has {a, b} restoration and aP1b. The counterclock-
wise path (P1, P10, P9, P8, P7, P6, P5 ) has no {a, x} restoration for all x ∈ L(a, P1 ). The
counterclockwise path (P1, P10, P9, P8, P7, P6, P5 ) has both {c, a} restoration and {b, z}
restoration, cP1a and bP1z. Alternatively, the clockwise path (P1, P2, P3, P4, P5 ) has no
{c, x} restoration for all x ∈ L(c, P1 ) and no {b, x} restoration for all x ∈ L(b, P1 ). This
property ensures that G∗ satisfies Property L.

Theorem 1. An environment satisfies LGE if and only if it satisfies Property L.

Proof. Sufficiency: Suppose G = 〈D, E〉 satisfies Property L but fails LGE, i.e., there ex-
ists a locally strategy-proof SCF f : D → A that is not strategy-proof. Suppose f is ma-
nipulable at P . Define the alternative x1 = maxP {a ∈ A : f (P̄ ) = a for some P̄ ∈ D}. In
other words, x1 is the highest-ranked alternative in the range of f according to P .14 Let
P ′ be such that f (P ′ ) = x1. Since f is manipulable at P , we have x1 	= f (P ).

By Property L, there exists a path π = (P1, P2, � � � , Pt ) ∈ �(P , P ′ ) that has no {x1, z}
restoration for all z ∈ L(x1, P ). Searching the path π backward from Pt to P1, let Ps be
the first vertex such that f (Ps ) = x2 	= x1, i.e., f (Pk ) = x1 for all s < k ≤ t. Note that
Ps always exists since f (Pt ) 	= f (P1 ). It follows from the definition of x1 that x1P1x2.
Since (Ps , Ps+1 ) ∈ E , local strategy-proofness implies x2Psx1 and x1Ps+1x2. We therefore
have an {x1, x2} restoration on the path π, contradicting our hypothesis. Therefore, G =
〈D, E〉 satisfies LGE and completes the proof of the sufficiency part of Theorem 1.

Necessity: We define a class of SCFs that we employ repeatedly in the proof.

Definition 6. Fix an environment G = 〈D, E〉. Let a ∈ A, let P̂ ∈ D, and let B be a
nonempty set with B ⊆ L(a, P̂ ). An SCF f : D →A is monotonic with respect to (a, B, P̂ )
if the following statements hold:

(i) We have f (P ) = a if there is a path π ∈ �(P̂ , P ) such that B ⊆L(a, P̄ ) for all P̄ ∈ π.

(ii) We have f (P ) = maxP (B) otherwise.

Thus, f (P ) = a if there exists a path from P̂ to P such that no alternative x ∈ B over-
takes a along the path (note that aP̂x). Clearly f (P̂ ) = a. The next lemma shows that the
SCF f of Definition 6 is locally strategy-proof.

Lemma 1. Suppose f : D → A is monotonic with respect to (a, B, P̂ ). Then f is locally
strategy-proof.

Proof. Pick an arbitrary pair P , P ′ ∈ D with (P , P ′ ) ∈ E . We show either f (P ) = f (P ′ ) or
f (P )Pf (P ′ ) and f (P ′ )P ′f (P ), establishing local strategy-proofness.

Let Da = {P̄ ∈ D : f (P̄ ) = a} denote the set of preferences that are associated to a at
SCF f . There are four cases to consider.

Case 1: P , P ′ ∈ Da. Then f (P ) = f (P ′ ) = a.

14For later reference, maxP (B) refers to the P-maximal alternative in the set B ⊆ A.
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Case 2: P , P ′ /∈ Da. Then f (P ) = maxP (B) and f (P ′ ) = maxP ′(B). Hence, either f (P ) =
f (P ′ ) or f (P )Pf (P ′ ) and f (P ′ )P ′f (P ) must hold.

Case 3: P ∈ Da and P ′ /∈ Da. Thus, f (P ) = a 	= b = maxP ′(B) = f (P ′ ). Since P ∈ Da,
there exists a path π = (P1, � � � , Pt ) ∈ �(P̂ , P ) such that B ⊆ L(a, Pk ) for all 1 ≤ k ≤ t

(recall Definition 6). Since b ∈ B, we have aPb. Next, suppose aP ′b. Since b = maxP ′(B),
it follows that B ⊆ L(a, P ′ ). Observe that P ′ must be distinct from the vertices in the
path π; otherwise, we would contradict the hypothesis that P ′ /∈ Da. Since (P , P ′ ) ∈ E , we
now have a new path π̄ = (P1, � � � , Pt , P ′ ) ∈ �(P̂ , P ′ ) such that B ⊆ L(a, P̄ ) for all P̄ ∈ π̄.
Consequently, Definition 6 implies f (P ′ ) = a. This contradicts our initial assumption
that f (P ′ ) = b. Therefore, bP ′a.

Case 4: P /∈ Da and P ′ ∈ Da. This case is symmetric to Case 3 above and is omitted.
This completes the proof of the lemma.

Lemma 1 and the LGE property imply that monotonic SCFs are also strategy-proof.
This, in turn, imposes certain no-restoration conditions on the environment. The rest of
the proof essentially shows that Property L is the consequence of the strategy-proofness
of monotonic SCFs.

Let G = 〈D, E〉 be an environment satisfying LGE. We show that G satisfies Prop-
erty L. We begin with an observation.

Claim 1. The environment G is connected.

Proof. Suppose the claim is false. Then there exists a component G′ of G such that
G′ 	= ∅ and G′ is a strict subset of G,15 i.e., there does not exist a path from any vertex in
G′ to any vertex not in G′. Denote the set of vertices in G′ by D′. Pick an arbitrary vertex
P∗ in D′ and let a, b ∈ A be such that aP∗b. Define the SCF f as f (P ) = b for all vertices
P ∈ D′ and f (P ) = a for all P /∈ D′.

Clearly f is not strategy-proof because f (P∗ ) = b while f (P ′ ) = a for any P ′ /∈ D′.
However, f is locally strategy-proof because the outcome does not change if the voter
misrepresents via a neighboring preference.Thus, LGE is violated.

Suppose G violates Property L, i.e., there exist P0, P1 ∈ D and a ∈ A such that every
path of �(P0, P1 ) has an {a, x} restoration for some x ∈L(a, P0 ). In view of Claim 1, this
statement cannot hold vacuously.

Let � be the set of alternatives in L(a, P0 ) that appear in some restoration with a on
some path of �(P0, P1 ):

�= {
x ∈L

(
a, P0) : there exists π ∈ �

(
P0, P1) with {a, x} restoration

}
.

Then the hypothesis for the contradiction can be restated as follows: each path of
�(P0, P1 ) has an {a, x} restoration for some x ∈ �.

For a specific path π ∈�(P0, P1 ), let �π
1 denote the set of alternatives in L(a, P0 ) that

appear in some restoration with a on the path π, i.e.,

�π
1 = {

x ∈L
(
a, P0) : π has {a, x} restoration

}
.

15We say that G′ is a component of G if G′ is a maximal connected subgraph of G.
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Let �1 ⊆ [� ∩ L(a, P1 )] be the set of alternatives such that every path π ∈ �(P0, P1 )
has {a, x} restoration for some x ∈ �1. Note that either �1 	= ∅ or �1 = ∅ holds, and every
alternative in �1 (if �1 is nonempty) is ranked below a in both preferences P0 and P1. We
show that each one of the two possible cases �1 	= ∅ and �1 = ∅ leads to a contradiction.

Case A: �1 	= ∅. Let f : D → A be the SCF that is monotonic with respect to (a, �1, P0 ).
Note that f is well defined since ∅ 	= �1 ⊆ L(a, P0 ). According to Lemma 1, f is locally
strategy-proof. We show that f is not strategy-proof.

According to Definition 6, f (P0 ) = a. Pick an arbitrary path π ∈ �(P0, P1 ). By defi-
nition, there exists z ∈ �1 such that π has {a, z} restoration, i.e., there exists Pr ∈ π such
that zPra. Hence �1 � L(a, Pr ). Since π was chosen arbitrarily, there does not exist
π̄ ∈ �(P0, P1 ) such that �1 ⊆ L(a, Ps ) for all Ps ∈ π̄. Consequently, Definition 6 implies
f (P1 ) = maxP1 (�1 ) ≡ b. Since �1 ⊆ L(a, P1 ), we have f (P0 ) = aP1b = f (P1 ). Therefore,
f is not strategy-proof and we have a contradiction to the assumption that G satisfies
LGE.

This argument establishes that Case A cannot occur.

Case B: �1 = ∅. This case is more complicated than the earlier one. We begin with a
series of claims.

Claim 2. There exists a path π ∈ �(P0, P1 ) such that �π
1 ∩L(a, P1 ) = ∅.

Proof. Suppose Claim 2 is false. This implies that in each path of �(P0, P1 ), at least one
alternative involved in a restoration with a is ranked below a in P1, i.e., �π

1 ∩L(a, P1 ) 	= ∅
for all π ∈ �(P0, P1 ). Let �̂ = ⋃

π∈�(P0,P1 )[�
π
1 ∩ L(a, P1 )]. Then ∅ 	= �̂ ⊆ L(a, P1 ) and

Case A holds with �1 = �̂.

Following Claim 2, let π1 ∈�(P0, P1 ) be the path such that �π1

1 ∩L(a, P1 ) = ∅. Thus,

xP1a for all x ∈ �π1

1 . Note that path π1 has {a, x} restoration only for all x ∈ �π1

1 , and

that aP0x for all x ∈ �π1

1 . Searching the path π1 from P1 back to P0, let P2 ∈ π1\{P1} be

the the first vertex such that a overtakes some alternative of �π1

1 . Note that preference

P2 always exists since xP1a and aP0x for all x ∈ �π1

1 . Let Z be the (nonempty) subset of

alternatives in �π1

1 that are overtaken by a in the reverse path from P1 to P2, i.e., Z ⊆ �π1

1

such that (i) aP2z for all z ∈ Z, (ii) yP2a for all y ∈ �π1

1 \Z (if Z 	= �π1

1 ), and (iii) xP̄a for

all x ∈ �π1

1 and all P̄ ∈ π1|[P2,P1]\{P2}. Thus, subpath π1|[P2,P1] has no {a, x} restoration

for any x ∈ �π1

1 and, hence, P2 	= P0. Since π1 has {a, x} restoration only for all x ∈ �π1

1 ,

path π1 must have no {a, y} restoration for any y ∈ �\�π1

1 (if �π1

1 	= �). Therefore, subpath
π1|[P2,P1] has no {a, x} restoration for any x ∈ �.

Claim 3. The relationship �∩L(a, P1 ) is a strict subset of �∩L(a, P2 ).

Proof. It follows from the definition of Z that if � ∩ L(a, P1 ) ⊆ � ∩ L(a, P2 ), then
� ∩ L(a, P1 ) must be a strict subset of � ∩ L(a, P2 ). Suppose it is not the case that
�∩L(a, P1 ) ⊆ �∩L(a, P2 ), i.e., there exists x ∈ �∩L(a, P1 ) such that xP2a. Then we have
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aP0x, xP2a, and aP1x, which imply the {a, x} restoration on π1 and x ∈ �π1

1 ∩ L(a, P1 ).

This contradicts the hypothesis �π1

1 ∩L(a, P1 ) = ∅.

Claim 4. For every π̂ ∈�(P0, P2 ), there exists x ∈ � such that π̂ has {a, x} restoration.

Proof. Suppose there exists π̂ ∈�(P0, P2 ) and π̂ has no {a, x} restoration for any x ∈ �.
Clearly P2 is a vertex common to both π̂ and π1|[P2,P1]. Starting from P1, proceed along
the path that is the reverse of π1|[P2,P1]. Let P̃ be the first vertex in this reverse path
that also belongs to π̂. From our earlier remark, such a vertex must exist (it could be
P2). Now combine the sequences of vertices π̂|[P0,P̃] and π1|[P̃ ,P1] to form the vertex
sequence π̄. By construction, π̄ contains no repetition of vertices so that it is a path and
π̄ ∈�(P0, P1 ).

For convenience, let π̄ = (P̄1, � � � , P̄k, � � � , P̄t ), where P̄k = P̃ , π̂|[P0,P̃] = (P̄1, � � � , P̄k ),

and π1|[P̃ ,P1] = (P̄k, � � � , P̄t ). Since π̄ ∈ �(P0, P1 ), the hypothesis for the contradiction of

the necessity part of Theorem 1 implies �π̄
1 	= ∅. Therefore, there exists b ∈ � such that

π̄ has {a, b} restoration. Since neither π̂ nor π1|[P2,P1] has {a, b} restoration and aP0b,
it must be the case that b overtakes a on the path (P̄1, � � � , P̄k ) and then a overtakes b

on the path (P̄k, � � � , P̄t ). Thus, we have bP̄ka and aP̄tb. Now refer back to the path π1.
Since aP0b, bP̃a and aP1b, path π1 has {a, b} restoration and, hence, b ∈ �π1

1 ∩L(a, P1 ).

This contradicts the hypothesis �π1

1 ∩L(a, P1 ) = ∅.

We can now replace P1 by P2 in our earlier arguments and define �2 in the same way
as we defined �1. Once again, there are two possibilities, �2 	= ∅ and �2 = ∅. The former
case leads to an immediate contradiction using the arguments in Case A. In the latter
case, we can apply Claims 2, 3, and 4 to infer the existence of P3 such that (i) �∩L(a, P2 )
is a strict subset of �∩L(a, P3 ) and (ii) every path π ∈�(P0, P3 ) has {a, x} restoration for
some x ∈ �. Repeating the argument, it follows that the only way to avoid a contradiction
via Case A is to find an infinite sequence of vertices P1, P2, � � � Pn, � � � such that

[
�∩L

(
a, P1)] ⊂ [

�∩L
(
a, P2)] ⊂ · · · ⊂ [

�∩L
(
a, Pn

)] · · · .16

However this is impossible in view of the finiteness of G. Thus, Case B cannot occur
either and the proof is complete.

Property L can be simplified if an additional restriction is imposed on the domain.
For any preference P , r1(P ) denotes the first-ranked alternative in P . A domain D

satisfies minimal richness if for all a ∈A, there exists P ∈ D such that r1(P ) = a.

Property L′ . The environment G= 〈D, E〉 satisfies Property L′ if the following two con-
ditions hold:

(i) For all P , P ′ ∈ D with r1(P ) = r1(P ′ ) = a, there exists a path π = (P1, � � � , Pt ) ∈
�(P , P ′ ) such that r1(Pk ) = a for all k= 1, � � � , t.

16Each of the subset relations is strict.
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(ii) For all a ∈ A and P ′ ∈ D with r1(P ′ ) 	= a, there exists P ∈ D with r1(P ) = a and a
path π = (P1, � � � , Pt ) ∈�(P , P ′ ) that has no {a, b} restoration for all b ∈A\{a}.

Property L′ is easier to verify than Property L. So as to verify the latter, we have to
find the existence of a suitable path for all pairs of preferences and all alternatives not
ranked last in one of the preferences. For part (i) of Property L′, we need only to check for
the existence of a path with a simple property for all pairs of preferences with the same
first-ranked alternative. For part (ii) of Property L′, we need only to verify the existence
of appropriate paths for special pairs of preferences.

Proposition 1. Properties L and L′ are equivalent on all environments G = 〈D, E〉 where
D is minimally rich.

Proof. Let G = 〈D, E〉 be an environment where D is minimally rich. We first show that
Property L implies Property L′.

Pick P , P ′ ∈ D such that r1(P ) = r1(P ′ ) = a. Since G satisfies Property L, there exists
a path from P to P ′ with no {a, b} restoration for all b ∈ L(a, P ) = A \ {a}, Clearly, all
preferences on this path must have a as the first-ranked alternative. To show part (ii) of
Property L′, consider a ∈ A and P ′ ∈ D, where r1(P ′ ) 	= a. By minimal richness, we can
find P ∈ D with r1(P ) = a. Property L implies the existence of a path in �(P , P ′ ) that has
no {a, b} restoration for all b ∈ L(a, P ) = A \ {a}. This is precisely the path required to
satisfy part (ii) of Property L′.

We now show that Property L′ implies Property L. Pick P , P ′ ∈ D and a ∈ A. We
have to show the existence of a path in �(P , P ′ ) that has no {a, b} restoration for all
b ∈L(a, P ). There are four cases to consider.

Case 1: r1(P ) = r1(P ′ ) = a. Part (i) of Property L′ guarantees the existence of a path
that satisfies the required condition.

Case 2: r1(P ) = a and r1(P ′ ) 	= a. According to part (ii) of Property L′, there exist
P ′′ ∈ D with r1(P ′′ ) = a and a path π′ ∈ �(P ′′, P ′ ) such that π ′ has no {a, b} restoration
for any b 	= a. Let π̃ ∈ �(P , P ′′ ) be the path whose existence is guaranteed by part (i) of
Property L′. Let P̃ be the first vertex in the path π̃ (proceeding from P toward P ′′) that lies
on π′. Such a vertex must exist since P ′′ belongs to both π̃ and π ′. Let π be the sequence
of vertices obtained by concatenating the subpaths π̃|[P ,P̃] and π′|[P̃ ,P ′]. By construction,
π does not contain any repetition of vertices. Therefore, π ∈ �(P , P ′ ). Since there is no
{a, b} restoration in π ′ for any b 	= a, there is no such restoration on its subpath π′|[P̃ ,P ′]
either. Also, a is first-ranked everywhere on the subpath π̃|[P ,P̃]. Therefore, π has no
{a, b} restoration for all b ∈ A \ {a} = L(a, P ).

Case 3: r1(P ) 	= a and r1(P ′ ) = a. According to Case 2, there exists a path π′ ∈ �(P ′, P )
that has no {a, b} restoration for any b 	= a. Let π be the reverse of path π ′. Then π ∈
�(P , P ′ ) and π has no {a, b} restoration for all b ∈L(a, P ).

Case 4: r1(P ) 	= a and r1(P ′ ) 	= a. By minimal richness, there exists P̄ ∈ D with
r1(P̄ ) = a. Applying the argument in Case 3, there exists a path π̃ ∈ �(P , P̄ ) with no
{a, b} restoration for any b ∈ L(a, P ). Applying Case 2, there exists a path π̂ ∈ �(P̄ , P ′ )
with no {a, b} restoration for all b ∈ A \ {a}. Arguments similar to those in Case 2 can
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now be used to construct an appropriate path from P to P ′. Let P̃ be the first vertex in
the path π̃ (proceeding from P to P̄) that also lies on π̂. Let π be the sequence of vertices
obtained by the concatenation of the subpaths π̃|[P ,P̃] and π̂|[P̃ ,P ′]. Clearly π ∈ �(P , P ′ ).

Since π̃ satisfies no {a, b} restoration for all b ∈ L(a, P ) and a = r1(P̄ ), it follows that no
alternative in L(a, P ) overtakes a in π̃|[P ,P̃], i.e., L(a, P ) ⊂ L(a, P̃ ). The subpath π̂ sat-
isfies no {a, b} restoration for all b 	= a; therefore, the subpath π̂|[P̃ ,P ′] satisfies no {a, b}
restoration for all b ∈ L(a, P ). We can summarize the argument thus far as follows. Pick
an arbitrary b ∈L(a, P ) and consider the path π. If aP ′b, then b lies everywhere less pre-
ferred to a along π. If bP ′a, then b is less preferred to a in π until P̃ and overtakes a once
from P̃ to P ′. In other words, π satisfies no {a, b} restoration for all b ∈ L(a, P ).

In Section 5, we apply Property L′ to various environments so as to show LGE.

4. Discussion

We comment on some aspects of our results.

4.1 Computational complexity

The problem of determining whether an environment satisfies Property L is not compu-
tationally hard. The depth first search algorithm17 for efficiently traversing graphs can
be modified easily to construct an algorithm that decides whether an environment satis-
fies Property L. The worst case time complexity of the algorithm is O(|A|2|D|(|D| + |E|)),
which is polynomial in the parameters of the problem. The details of the argument can
be found in Chatterjee (2020).

4.2 Relationship with earlier results

Carroll (2012) proved that the the environments 〈P , Eadj〉 and 〈DSP, Eadj〉 satisfy LGE.18

Both these environments satisfy a stronger version of Property L that we refer to as Prop-
erty U.

Property U. The environment G= 〈D, E〉 satisfies the universal pairwise no-restoration
property (Property U) if for all P , P ′ ∈ D, there exists a path in �(P , P ′ ) that satisfies no
restoration for all pairs {a, b}.

Let π ∈ �(P , P ′ ) be the path that satisfies no restoration for all pairs of alternatives
as required by Property U. Then π also satisfies no {a, b} restoration for any a ∈ A and
b ∈L(a, P ). Clearly, Property L is satisfied. Alternatively, Property L does not imply Prop-
erty U. To see this, consider the environment G∗ in Example 2, which satisfies Prop-
erty L. For the pair (P1, P5 ), the clockwise path has {a, b} restoration while the counter-
clockwise path has {c, a} restoration. Clearly, Property U is violated.

17See Cormen et al. (2001).
18Recall that P is the set of all strict preferences. Also DSP is the domain of single-peaked preferences.

A formal definition of single-peaked preferences can be found in Section 5.
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Sato (2013) showed that Property P below is necessary for LGE in adjacency environ-
ments.

Property P. The environment G = 〈D, E〉 satisfies the pairwise no-restoration property
(Property P) if for all P , P ′ ∈ D and a, b ∈ A, there exists a path in �(P , P ′ ) that satisfies
no {a, b} restoration.

Example 3.2 in Sato (2013) shows that Property P is not sufficient for LGE. The dif-
ficulty is that Property P does not specify the relationship between the no-restoration
paths for different pairs of alternatives: the path satisfying no restoration between P and
P ′ for {a, b} could be distinct from the no-restoration path between the same vertices for
another pair {c, d}. Property L is clearly a strengthening of Property P.

Sato (2013) also introduced a sufficient condition for LGE in adjacency environ-
ments (we refer to this condition as Property S for convenience) that is weaker than
Property U.

Property S. Let G = 〈D, Eadj〉 be an environment. Consider P , P ′ ∈ D. A path π =
(P1, P2, � � � , Pt ) ∈ �(P , P ′ ) satisfies the antidote property with respect to the pair (P , P ′ )
if, for all pairs a, b ∈ A such that π is with {a, b} restoration and aP1b, then for each
h ∈ {1, � � � , t} such that bPh−1a and aPhb, there exists a path π′ ∈�(P , Ph ) along which a

does not overtake any alternative.
The environment G satisfies Property S if, for every P , P ′ ∈ D, there exists a path

satisfying the antidote property with respect to (P , P ′ ).

Environment G∗ in Example 2 violates Property S, which establishes that Property S
is stronger than Property L. Consider the pair (P1, P5 ). As noted earlier, the clockwise
path from P1 to P5 has {a, b} restoration since aP1b, bP4a, and aP5b. For it to satisfy the
antidote property, a should not overtake any alternative in the counterclockwise path
from P1 to P5. However, a does overtake c on this path. Property L is nevertheless satis-
fied since there is no restoration with a and any of the alternatives ranked below a in P1

along this path.

5. Multidimensional voting: The separable domain and the

multidimensional single-peaked domain

In this section, we apply our results to a well known voting model. The set of alternatives
has a Cartesian product structure, i.e., A = ×j∈MAj , where M = {1, 2, � � � , m} is a finite
set of components with m ≥ 2. For each j ∈ M , the component set Aj contains a finite
number of elements with |Aj| ≥ 2. For any j ∈ M , A−j = ×i 	=jAi. An alternative a ∈ A is
an m-tuple a ≡ (a1, � � � , am ). We sometimes write a in the form (aj , a−j ), where aj ∈ Aj

and a−j ∈ A−j . A preference P is a linear order over A. A marginal preference over
component j is a linear order over Aj .
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A preference P is separable if, for all aj , bj ∈ Aj , c−j , d−j ∈ A−j , and j ∈ M ,
(aj , c−j )P(bj , c−j ) implies (aj , d−j )P(bj , d−j ). Thus, every separable preference P in-
duces an m-tuple of marginal preferences (P1, � � � , Pm ).19 Let DS denote the set of all
separable preferences. Note that for every component j and any marginal preference Pj

over the component set Aj , there exists P ∈ DS such that P induces the marginal prefer-
ence Pj over Aj . There is a large literature on committee voting following Barberà et al.
(1991), which assumes separable preferences.

Another domain of preferences that we consider is that of multidimensional single-
peaked preferences introduced by Barberà et al. (1993). (See also Le Breton and Sen
(1999).) This notion generalizes the well known class of single-peaked preferences (see
Moulin (1980)). For this purpose, additional structure is introduced on each component
set.

Let ≺j denote a linear order over Aj for each j ∈ M . A grid is an m-tuple (≺1, � � � ,
≺m ).20 Let P be a preference over A whose first-ranked alternative is x. Then P is
multidimensional single-peaked with respect to the grid (≺1, � � � , ≺m ) if for all distinct
a, b ∈A, we have [xj �j aj ≺j bj or bj ≺j aj �j xj for all j ∈M with aj 	= bj ] ⇒ [aPb].21

The domain DMSP contains preferences that are not separable (see Section 3 in Le
Breton and Sen (1999)). However DS ∩ DMSP 	= ∅. To see this, pick an arbitrary m-tuple
of marginal preferences (P1, � � � , Pm ), where each Pj , j ∈ M , is single-peaked with re-
spect to ≺j . Construct P as follows. For all distinct c, d ∈ A with c 	= d, let j be the
integer in M such that cj 	= dj and cr = dr for all r < j. Then cPd if and only if cjPjdj .
It is easy to verify that P ∈ DS . We also claim P ∈ DMSP. Suppose x is the first-ranked
alternative in P . Pick distinct alternatives a, b ∈ A. Clearly, aj 	= bj for some j ∈ M .
Assume further that xj �j aj ≺j bj or bj ≺j aj �j xj for all j ∈ M with aj 	= bj . Let k ∈ M

be the lowest component such that ak 	= bk. By virtue of the single-peakedness of Pk,
xk �k ak ≺k bk or bk ≺k ak �k xk implies akPkbk. Then aPb follows directly from the
construction of P .

We introduce a new notion of neighbors that applies to any domain that includes
separable preferences. Let P , P ′ ∈ DS . We say that P and P ′ are separably adjacent (de-
noted by (P , P ′ ) ∈ ESA) if there exist j ∈ M and aj , bj ∈ Aj such that [{x, y} ∈ P � P ′] ⇒
[xj = aj , yj = bj and xk = yk for all k 	= j]. Thus, P and P ′ are separably adjacent if all
pairs of alternatives that are reversed between P and P ′ differ in the values of exactly

19The converse is not true however. Several preferences can induce the same tuple of marginal prefer-
ences. For instance, consider additively separable preferences. Preferences over each component j have
a utility representation uj : Aj → �. Utility representations over A are obtained by summing utilities over
components. By considering different affine transformations of uj , one can obtain different preferences
over A without changing marginal preferences. Details can be found in Le Breton and Sen (1999).

20A grid can be interpreted as a product of lines. The notion of multidimensional single-peakedness can
be generalized on a product of trees where our result still holds. For notational convenience, let aj �j bj
denote either aj ≺j bj or aj = bj .

21In the case where m = 1, multidimensional single-peakedness reduces to single-peakedness. The def-
inition of multidimensional single-peakedness is silent regarding the comparison of some alternatives.
For instance, suppose m = 2, ≺ is the < ordering on real numbers, and A1 = A2 = {0, 1}. Let (0, 0)
be the highest-ranked alternative in the multidimensional single-peaked preference P̄ . We must have
(0, 0)P̄(1, 0), (0, 0)P̄(0, 1), (0, 0)P̄(1, 1), (1, 0)P̄(1, 1), and (0, 1)P̄(1, 1) by definition.
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Table 3. Domains DS and DMSP.

P1 P2 P3 P4 P5 P6 P7 P8

(0, 0) (0, 0) (0, 1) (0, 1) (1, 0) (1, 0) (1, 1) (1, 1)
(0, 1) (1, 0) (0, 0) (1, 1) (0, 0) (1, 1) (0, 1) (1, 0)
(1, 0) (0, 1) (1, 1) (0, 0) (1, 1) (0, 0) (1, 0) (0, 1)
(1, 1) (1, 1) (1, 0) (1, 0) (0, 1) (0, 1) (0, 0) (0, 0)

one component.22 We emphasize that separable adjacency applies only to separable
preferences.

Separable adjacency does not cover the standard adjacency case. We, therefore, con-
sider a strengthened version of separable adjacency: P and P ′ are adjacent–separably
adjacent (denoted by (P , P ′ ) ∈ EASA)23 if either (P , P ′ ) ∈ Eadj or (P , P ′ ) ∈ ESA holds. Two
separable preferences P and P ′ are neighbors in the ASA sense if one can be obtained
from the other by a “minimal” change.

Example 3. Let A = A1 × A2 with A1 = A2 = {0, 1}. In the special case |Aj| = 2 for all
j ∈ M , we have DS = DMSP, implying that the environments 〈DS , EASA〉 and 〈DMSP, EASA〉
are the same. Table 3 lists the preferences in DS and DMSP. Note that the domain satisfies
minimal richness.

This environment is shown in Figure 4. The thicker lines in the figure show the en-
vironment 〈DS , Eadj〉, i.e., Eadj = {(P1, P2 ), (P3, P4 ), (P5, P6 ), (P7, P8 )}. The other edges
in the figure belong to ESA. Note that (P1, P2 ) /∈ ESA since P1 � P2 = {{(0, 1), (1, 0)}}.
Also P1 � P3 = {{(0, 0), (0, 1)}, {(1, 0), (1, 1)}}. Observe that the set of alternatives that
are reversed between P1 and P3 can be obtained by switching the value of component
2 from 0 to 1 at different values of component 1. Clearly (P1, P3 ) ∈ ESA. Alternatively,
(P2, P4 ) /∈ ESA since {(0, 0), (1, 1)} ∈ P2 � P4.

We show later that the environment 〈DMSP, EASA〉 satisfies Property L′. Clearly, part
(i) of Property L′ is satisfied as indicated by the four thick edges in Figure 4. Now con-
sider the preference P1 and the alternative (1, 1), which is not first-ranked in P1. We

Figure 4. 〈DS , EASA〉 and 〈DMSP, EASA〉.

22Separably adjacency is based on a notion of Kemeny distance that applies to separable preferences.
Two (separable) preferences are separably adjacent if they disagree on the relative ranking of two alterna-
tives that differ in the values of exactly one component. Further analysis of separable adjacency can be
found in Chatterji and Zeng (2019).

23The acronym ASA stands for adjacent–separably adjacent.
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have (1, 1) first-ranked in preference P8 and the path (P8, P7, P4, P3, P1 ) has no restora-
tion for (1, 1) and any other alternative. Consequently, the requirement of part (ii) of
Property L′ is satisfied in this case. ♦

Example 3 and Figure 4 also lead to the conclusion that the environments 〈DS , ESA〉,
〈DMSP, ESA〉, 〈DS , Eadj〉, and 〈DMSP, Eadj〉 fail LGE. The graphs in these environments are
not connected, which can be verified by inspection and by our earlier remarks.

According to the main result in this section, combining the adjacency and separable
adjacency notions of neighbors with the separable and multidimensional single-peaked
domains leads to LGE.

Proposition 2. The environments 〈DS , EASA〉 and 〈DMSP, EASA〉 satisfy LGE.

The proof of Proposition 2 can be found in the Appendix.

6. LGE and random social choice functions

In this section, we examine LGE in the context of random social choice functions. Our
result is that an environment that satisfies LGE for deterministic social choice functions
may not satisfy LGE for random social choice functions.

Let �(A) denote the set of probability distributions over A. An element λ ∈ �(A) is
referred to as a lottery. We let λa denote the probability with which a ∈A is selected by λ.
Thus, 0 ≤ λa ≤ 1 and

∑
a∈A λa = 1.

A random social choice function (RSCF) is a map ϕ : D → �(A) that associates a lot-
tery ϕ(P ) with each P ∈ D.

For every P ∈ D, and k = 1, 2, � � � , |A|, let rk(P ) ∈ A denote the kth ranked alter-
native in P , i.e., rk(P ) = a implies |{b ∈ A : bPa}| = k − 1. The lottery λ stochastically
dominates (sd) lottery λ′ at P ∈ D (denoted by λPsdλ

′) if
∑t

k=1 λrk(P ) ≥ ∑t
k=1 λ

′
rk(P ) for all

t = 1, � � � , |A|.
Let G = 〈D, E〉 be an environment. A RSCF ϕ : D → �(A) is locally sd-strategy-

proof if ϕ(P )Psdϕ(P ′ ) for all (P , P ′ ) ∈ E . A RCSF ϕ : D → �(A) is sd-strategy-proof if
ϕ(P )Psdϕ(P ′ ) for all P , P ′ ∈ D.

The environment G = 〈D, E〉 satisfies random local-global equivalence (RLGE) if ev-
ery locally sd-strategy-proof RSCF ϕ : D → �(A) is also sd-strategy-proof.

In the case where a RSCF is deterministic, local sd-strategy-proofness and sd-
strategy-proofness reduce to local strategy-proofness and strategy-proofness, respec-
tively. An immediate consequence of this observation is that an environment that satis-
fies RLGE also satisfies LGE. The results of Carroll (2012) and Cho (2016) show that the
converse is true for several special domains. The example below shows that LGE does
not imply RLGE.

Example 4. Let A = {a, b, c, v, w, x, y, z}. The domain D̃ is described in Table 4. The
environment G̃= 〈D̃, Eadj〉 is shown in Figure 5.

By using arguments similar to those in Example 2, we can show that G̃ satisfies Prop-
erty L. Therefore, Theorem 1 implies that G̃ satisfies LGE. We construct a RSCF that
satisfies local sd-strategyproofness but not sd-strategy-proofness.
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Figure 5. The environment G̃= 〈D̃, Eadj〉.

For any d ∈A, we let ed denote the degenerate lottery that picks d with probability 1.
Consider the RSCF ϕ : D̃ → �(A):

ϕ
(
Pk

) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2
ea + 1

2
eb if k ∈ {1, 10},

1
2
ea + 1

4
eb + 1

4
ec if k ∈ {2, 3, 4, 5},

1
4
ea + 1

2
eb + 1

4
ec if k ∈ {6, 7, 8, 9}.

So as to verify the local sd-strategy-proofness of ϕ, it suffices to show that the voter
cannot gain by manipulation in each of the following cases: (i) from P1 to P2 and vice
versa, (ii) from P5 to P6 and vice versa, and (iii) from P9 to P10 and vice versa. This
can be verified easily in each of the cases. Consider (i), for instance. Observe that c

locally overtakes b from P1 to P2. Correspondingly, probability 1
4 is transferred from

b to c (keeping other probabilities fixed) as we move from ϕ(P1 ) to ϕ(P2 ). Therefore,
ϕ(P2 )P2

sdϕ(P1 ) and, symmetrically, ϕ(P1 )P1
sdϕ(P2 ). The same argument can be made in

cases (ii) and (iii).
However, it is not the case that ϕ(P5 )P5

sdϕ(P1 ) (in fact, ϕ(P1 )P5
sdϕ(P5 )). Conse-

quently, ϕ is not sd-strategy-proof. ♦

We make two observations about Example 4.

Observation 1. As mentioned earlier, Carroll (2012) and Cho (2016) have established
the equivalence of local sd-strategy-proofness and sd-strategy-proofness in specific ad-
jacency environments. These environments all satisfy Property U. The environment G̃
in Example 4 violates Property U since both the clockwise and counterclockwise paths
between P1 and P5 have restorations.

Table 4. Domain D̃.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

a a a a a b b b b b

b c c c b a c c c a

c b b b c c a a a c

v v w w w w w w v v

w w v v v v v v w w

x x x x x x x x x x

y y y z z z z y y y

z z z y y y y z z z
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Observation 2. The key feature of the example in Example 4 that makes the LGE and
RLGE results differ is that some lotteries under ϕ have support {a, b, c}, e.g., ϕ(Pk ),
k = 2, � � � , 9. However, no locally strategy-proof SCF can have a range that includes
all three alternatives a, b, and c. To see this, let f : D̃ → A be a locally strategy-proof
SCF. Theorem 1 implies that f is strategy-proof. Suppose {a, b, c} ⊆ Range(f ) = {d ∈
A : f (P ) = d for some P ∈ D̃}. Thus, there exists a preference where f takes value a

and another preference where f takes value b. Strategy-proofness immediately implies
f (Pk ) = a for all 1 ≤ k ≤ 5 and f (Pl ) = b for all 6 ≤ l ≤ 10. Hence, we have a contradic-
tion.

A characterization for RLGE appears to be significantly more difficult than that for
LGE. In our companion paper Kumar et al. (2021), we derive a weak sufficient condition
for RLGE in multi-voter models where RSCFs satisfy the additional property of unanim-
ity.

Appendix: Proof of Proposition 2

We begin by observing that both the separable domain DS and the multidimensional
single-peaked (MSP) domain DMSP satisfy the minimal richness property. Applying The-
orem 1 and Proposition 1, it suffices to show that both domains satisfy Property L′. Fur-
thermore both domains satisfy part (i) of Property L′ as is shown in Appendices E.2 and
E.5 of Chatterji and Zeng (2019). Therefore, we only verify part (ii) of Property L′.24

We first investigate the separable domain DS . Next, we show part (ii) of Property L′
on the intersection of the separable domain and the multidimensional single-peaked
domain DS ∩ DMSP, and then extend the result to the multidimensional single-peaked
domain DMSP.

In the proofs, we occasionally employ a special type of separable preferences called
lexicographic separable preferences. Let (P1, � � � , Pm ) be an m-tuple of marginal pref-
erences and let P0 be strict order over the set M . The preference P is lexicograph-
ically separable with respect to the (m + 1)-tuple (P0, P1, � � � Pm ) if, for all a, b ∈ A,
[ajPjbj and ar = br for all r such that rP0j] ⇒ [aPb]. In other words, a is ranked strictly
better than b according to P if aj is ranked higher than bj according to the marginal pref-
erence Pj and ar = br for all components r that are ranked strictly higher than j accord-
ing to the component preference P0. We write a lexicographically separable preference
P as P ≡ (P0, P1, � � � , Pm ).

We first prove two preliminary lemmas.

Lemma 2. Let distinct P , P ′ ∈ DS induce the same marginal preferences. Then there exists
a path from P to P ′ in 〈DS , Eadj〉 such that there is no restoration for any pair of alterna-
tives.

This lemma follows from Fact 5 of Chatterji and Zeng (2019).

24Part (i) of Property L′ is the same as the interior+ property of Chatterji and Zeng (2019). Hence, we
can directly apply their result for this part. However, part (ii) of Property L′ is stronger than their exterior+
property, so we have to show this independently.
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Lemma 3. Fix marginal preferences P1, � � � , Pm. Let a be an alternative such that aj is not
the first-ranked element in Pj for some j ∈ M . For each component k, let Xk = {xk ∈ Ak :
xkPkak} ∪ {ak}. Let X = X1 × · · · × Xm. Pick component j and let bj , cj ∈ Xj or bj , cj ∈
Aj\Xj be consecutively ranked elements in Pj . Then there exists a separable ordering P̄(j)
that satisfies the properties

(i) P̄(j) induces the marginal preferences P1, � � � , Pm

(ii) [xP̄(j)a] ⇒ [for each k ∈M , either xkPkak or xk = ak, i.e., x ∈ X]

(iii) (bj , z−j ) and (cj , z−j ) are consecutively ranked in P̄(j) for all z−j ∈A−j .

Proof. We construct a partition of the set A. To do so, define the sets A−j = ×k	=jAk,
X−j = ×k	=jXk, Yj = Aj \ Xj , and Y−j = A−j \ X−j . The sets X , B = Xj × Y−j , C = Yj ×
X−j , and D = Yj × Y−j constitute a partition of the set A. The ordering P̄(j) is defined
by two conditions:

(a) We have that XP̄(j)BP̄(j)CP̄(j)D, i.e., all alternatives in X are ranked above those
in B, which in turn are ranked above those in C, while all alternatives in D are
ranked below those in C.

(b) We have that P̄(j) over X is lexicographically separable according to (P0(j), P1,
� � � , Pm ), where j is ranked last in the component preference P0(j), i.e., given x, y ∈
X , [xkPkyk and xr = yr for all rP0(j)k] ⇒ [xP̄(j)y]. Similarly, P̄(j) is lexicographi-
cally separable over alternatives in B, C, and D relative to (P0(j), P1, � � � , Pm ), re-
spectively.

Observe that ak is the lowest-ranked element in Xk according to Pk for all k ∈ M .
Therefore, by construction, a is the worst alternative in X according to P̄(j). As X is the
highest-ranked block according to P̄(j), it follows that all alternatives x that are ranked
higher than a according to P̄(j) must satisfy x ∈ X . This establishes part (ii) of Lemma 3.

To show that P̄(j) is a separable preference and satisfies part (i) of Lemma 3, it suf-
fices to show that for an arbitrary pair of alternatives that disagree in exactly one com-
ponent, say x= (xk, z−k ) and y = (yk, z−k ), we have [(xk, z−k )P̄(j)(yk, z−k )] ⇒ [xkPkyk].
If x and y both belong to one of the sets X , B, C, or D, the result follows immediately.
Henceforth, assume that x and y belong to two different sets of X , B, C, and D.

Suppose k = j. We know that either z−j ∈ X−j or z−j ∈ Y−j . If z−j ∈ X−j , (xk,
z−k )P̄(j)(yk, z−k ) implies x ∈ X and y ∈ C. Similarly, if z−j ∈ Y−j , (xk, z−k )P̄(j)(yk, z−k )
implies x ∈ B and y ∈ D. Consequently, in both cases, xj ∈ Xj and yj ∈ Yj , and, hence,
xjPjyj .

Suppose k 	= j. Let z−jk denote the vector z−k with its element of component j

deleted. Since xP̄(j)y, and x and y agree on component j, we know that either x ∈X and
y ∈ B or x ∈ C and y ∈D, both of which imply (xk, z−jk ) ∈X−j and (yk, z−jk ) ∈ Y−j . Since
X−j is a Cartesian product set, (xk, z−jk ) ∈ X−j implies xk ∈ Xk and z−jk ∈ ×r 	=j,kXr .
Last, since z−jk ∈ ×r 	=j,kXr , (yk, z−jk ) /∈X−j implies yk /∈Xk. Therefore, xkPkyk.

Hence, P̄(j) is a separable preference and induces marginal preferences P1, � � � , Pm.
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Part (iii) of Lemma 3 is an immediate consequence of the fact that P̄(j) over alterna-
tives of X and B, respectively, is lexicographically separable with respect to the compo-
nent preference P0(j), where component j is ranked last.

We now show that the separable domain DS satisfies part (ii) of Property L′.

Proof of Proposition 2 in the environment 〈DS, EASA〉. Consider P ′ ∈ DS and a ∈
A such that a is not the first-ranked alternative in P ′. Let P ′

1, � � � , P ′
m be the induced

marginal preferences of P ′. Without loss of generality, assume that a1, a2, � � � , ar , r ≤
m, are not first-ranked in P ′

1, P ′
2, � � � , P ′

r , respectively, while av = r1(P ′
v ) for all v = r +

1, � � � , m. We construct a sequence of preferences that are edges in 〈DS , EASA〉 with the
property that a keeps “rising” along the sequence. The sequence terminates in a pref-
erence P ∈ DS , where a is first-ranked. Then the reverse path from P to P ′ has no {a, b}
restoration for all b ∈ A\{a}, as required by part (ii) of Property L′.

We start from P ′
1. Let P1 denote the set of all marginal preferences over A1. Pick a

marginal ordering P1 such that a1 is first-ranked. By Proposition 4.1 of Sato (2013), we
have a path π1 = (P1

1 , � � � , Pt
1 ) from P ′

1 to P1 in 〈P1, Eadj〉 which has no restoration for
any pair of elements of A1.25 Since L(a1, P ′

1 ) ⊂ L(a1, P1 ), a1 must keep rising along the
path π1, i.e., L(a1, Pk

1 ) ⊆ L(a1, Pk+1
1 ) for all 1 ≤ k < t. Therefore, for all 1 ≤ k < t, if a1 is

involved in the local switching elements across Pk
1 and Pk+1

1 , it is true that x1P
k
1 a1 and

a1P
k+1
1 x1 for some x1 ∈A1.
For each k = 1, � � � , t, let Xk

1 = {x1 ∈ A1 : x1P
k
i a1} ∪ {a1}. For each k = 1, � � � , t − 1,

consider (Pk
1 , Pk+1

1 ) and let Pk
1 � Pk+1

1 = {{bk1 , ck1 }}. Since L(a1, Pk
1 ) ⊆ L(a1, Pk+1

1 ),
it must be the case that either bk1 , ck1 ∈ Xk

1 or bk1 , ck1 ∈ A1\Xk
1 . Next, for each k =

1, � � � , t, by Lemma 3, let P̄k(1) ∈ DS be such that (i) it induces the marginal prefer-
ences Pk

1 , P ′
2, � � � , P ′

m, (ii) if xP̄k(1)a, then for all j ∈ M , either xj = aj , or xj is strictly
better than aj according to the jth marginal ordering of P̄k(1), and (iii) (bk1 , z−1 ) and
(ck1 , z−1 ) are consecutively ranked in P̄k(1) for all z−1 ∈ A−1. Let P̂k(1) be the order-
ing obtained by switching all alternatives of the type (bk1 , z−1 ) and (ck1 , z−1 ) for some
z−1 ∈A−1. It is clear that P̂k(1) is a separable preference with the same marginal prefer-
ences as P̄k(1) for all components other than 1. For component 1, ck1 is now ranked
immediately above bk1 , while the rankings of other elements are unchanged. There-
fore, there are three properties of P̂k(1) that are important: (a) (P̄k(1), P̂k(1)) ∈ ESA and
P̄k(1) � P̂k(1) = {{(bk1 , z−1 ), (ck1 , z−1 )} : z−1 ∈ A−1}; (b) L(a, P̄k(1)) ⊆ L(a, P̂k(1)), where
the strict inclusion holds if and only if a1 = ck1 ; (c) P̂k(1) and P̄k+1(1) have the same
marginal preferences, and L(a, P̂k(1)) ⊆ L(a, P̄k+1(1)) by part (ii) of Lemma 3 in the
construction of P̄k+1(1).

Now, we have a sequence

P ′ → P̄1(1) → P̂1(1) → P̄2(1) → ·· · → P̄t−1(1) → P̂t−1(1) → P̄t(1).

25For instance, we generate P1 by moving a1 directly to the top of P ′
1 while keeping the rankings of other

elements unchanged, and then construct the path from P ′
1 to P1 in 〈P1, Eadj〉 by progressively moving a1 to

the top of P ′
1.
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Note that P̄t(1) has marginal preference P1, where a1 is the first-ranked element. Since
P ′ and P̄1(1) have the same marginal preferences P ′

1, P ′
2, � � � , P ′

m, we know that either
P = P̄1(1) or there exists a path π̄0 from P to P̄1(1) in 〈DS , Eadj〉 that has no restora-
tion for any pair of alternatives (by Lemma 2). Similarly, for all 1 ≤ k < t, we know
that either P̂k(1) = P̄k+1(1) or there exists a path π̄k from P̂k(1) to P̄k+1(1) in 〈DS , Eadj〉
that has no restoration for any pair of alternatives. Since (P̄k(1), P̂k(1)) ∈ ESA for all
k = 1, � � � , t − 1, we construct a concatenated path π̄ = (π̄0, π̄1, � � � , π̄t−1 ) from P ′ to
P̄t(1) in 〈DS , EASA〉.26 Recall that L(a, P ′ ) ⊆ L(a, P̄1(1)), L(a, P̄k(1)) ⊆ L(a, P̂k(1)), and
L(a, P̂k(1)) ⊆ L(a, P̄k+1(1)) for all k = 1, � � � , t − 1. Then no restoration on subpaths
π̄0, π̄1, � � � , π̄t−1 implies that a keeps rising along the path π̄.

We can clearly repeat this procedure, progressively moving a1 to the top in the
marginal preference P1 and then doing the same for a2 until ar . The procedure gener-
ates a path in 〈DS , EASA〉 that culminates in a preference P ∈ DS , where a is first-ranked.
Moreover if a overtakes some x at some preference on the path, it beats x at all prefer-
ences further along the path. It follows immediately that the reverse path from P to P ′
satisfies no {a, b} restoration for all b ∈ A\{a}. This establishes part (ii) of Property L′
and, hence, proves Proposition 2 for the separable domain DS .

To show part (ii) of Property L′ in the multidimensional single-peaked domain DMSP,
we first consider the domain DS ∩DMSP. We make several observations. First, DS ∩DMSP

satisfies part (i) of Property L′ by Appendix E.4 of Chatterji and Zeng (2019). Second,
Lemma 2 remains valid in DS ∩DMSP according to Fact 11 of Chatterji and Zeng (2019).
Third, Lemma 3 holds when we set the marginal preferences P1, � � � , Pm to be single-
peaked with respect to ≺1, � � � , ≺m, respectively, and change preference P̄(j) to be both
separable and multidimensional single-peaked. Finally, in the verification of part (ii) of
Property L′ in the separable domain, if we replace DS with DS ∩ DMSP, replace P1 with
S1, which is the set of all single-peaked marginal preferences with respect to ≺1, and
replace the reference to Proposition 4.1 of Sato (2013) with a reference to Proposition 4.2
of Sato (2013), our earlier proof works for verifying part (ii) of Property L′ in DS ∩ DMSP.
Therefore, DS ∩DMSP satisfies Property L′.

To extend the result to the multidimensional single-peaked domain, we use the fol-
lowing lemma, which follows from Lemma 8 of Chatterji and Zeng (2018).

Lemma 4. Given distinct P , P ′ ∈ DMSP, let r1(P ) = r1(P ′ ). Then there exists a path from P

to P ′ in 〈DMSP, Eadj〉 such that there is no restoration for any pair of alternatives.

We now show part (ii) of Property L′ in the multidimensional single-peaked domain
DMSP.

26The concatenated path π̄ has no repeated preference. Given two preferences P̂ and P̃ in π̄, we know

that P̂ ∈ π̄k and P̃ ∈ π̄k′
for some 0 ≤ k, k′ ≤ t − 1. If k = k′, it is evident that P̂ 	= P̃ by the definition of the

path π̄k. Next assume k < k′. Note that P̂k′
(1) and P̄k′+1(1) induce the same marginal preference Pk′+1

1 ,
and the path π̄k′

connecting P̂k′
(1) and P̄k′+1(1) has no restoration for any pair of alternatives. Then P̃ ∈ π̄k′

implies that P̃ induces the marginal preference Pk′+1
1 . Symmetrically, P̂ induces the marginal preference

Pk+1
1 , which is distinct from Pk′+1

1 . Therefore, P̂ and P̃ must be distinct.
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Proof of Proposition 2 in the environment 〈DMSP, EASA〉. Consider P ′ ∈ DMSP

and a ∈ A such that a is not the first-ranked alternative in P ′. Let r1(P ′ ) = ā. Fix k ∈ M .
If ak = āk, we pick an arbitrary single-peaked marginal preference P ′

k that has ak as the
first-ranked element. If ak 	= āk, we identify a particular single-peaked marginal pref-
erence P ′

k that satisfies the condition [xkP ′
kak] ⇒ [āk �k xk ≺k ak or ak ≺k xk �k āk].

The marginal preferences P ′
1, � � � , P ′

m are single-peaked by construction. Applying the
counterpart of Lemma 3, we have P̄ ′ ∈ DS ∩ DMSP such that P̄ ′ induces P ′

1, � � � , P ′
m,

and [xP̄ ′a] ⇒ [for all k ∈ M , either xk = ak or xkP ′
kak]. Note that L(a, P̄ ′ ) ⊇ L(a, P ′ ). By

Lemma 4, since r1(P ′ ) = r1(P̄ ′ ), we have a path π̂ from P̄ ′ to P ′ in 〈DMSP, Eadj〉 that has
no restoration for any pair of alternatives. Moreover, since DS ∩ DMSP satisfies Prop-
erty L′, we have P ∈ DS ∩ DMSP that has a first-ranked, and a path π̄ from P to P̄ ′ in
〈DS ∩DMSP, EASA〉 that has no {a, b} restoration for all b 	= a.

Now we have a concatenated path π = (π̄, π̂ ) from P to P ′ in 〈DMSP, EASA〉.27 We
show that π has no {a, b} restoration for all b 	= a. Fix an arbitrary b 	= a. If b overtakes a

on path π̄, then no {a, b} restoration on π̄ implies that b overtakes a on π̄ exactly once,
and bP̄ ′a. Then L(a, P̄ ′ ) ⊇ L(a, P ′ ) implies bP ′a, and no restoration on π̂ from P̄ ′ to P ′
implies bP̂a for all P̂ ∈ π̂. Hence, the concatenated path π has no {a, b} restoration. If b
does not overtake a on path π̄, then no {a, b} restoration on π̄ implies aP̄b for all P̄ ∈ π̄

and, hence, aP̄ ′b. Furthermore, no restoration on π̂ implies that b can overtake a on π̂

for at most once. Hence, the concatenated path π has no {a, b} restoration. This estab-
lishes part (ii) of Property L′ and, hence, proves Proposition 2 for the multidimensional
single-peaked domain DMSP.

References

Archer, A. and R. Kleinberg (2014), “Truthful germs are contagious: A local-to-global
characterization of truthfulness.” Games and Economic Behavior, 86, 340–366. [1198]

Barberà, S., F. Gul, and E. Stacchetti (1993), “Generalized median voter schemes and
committees.” Journal of Economic Theory, 61, 262–289. [1211]

Barberà, S., H. Sonnenschein, and L. Zhou (1991), “Voting by committees.” Economet-
rica, 59, 595–609. [1211]

Carroll, G. (2012), “When are local incentive constraints sufficient?” Econometrica, 80,
661–686. [1196, 1198, 1199, 1209, 1213, 1214]

Chatterjee, S. (2020), “Computational complexity of local-global equivalence.” Available
at https://drive.google.com/file/d/1XdHYBqxzc3CEXt2ahJP1giMSUoKQFOPp/view.
[1209]

Chatterji, S. and H. Zeng (2018), “On random social choice functions with the tops-only
property.” Games and Economic Behavior, 109, 413–435. [1218]

Chatterji, S. and H. Zeng (2019), “Random mechanism design on multidimensional do-
mains.” Journal of Economic Theory, 182, 25–105. [1212, 1215, 1218]

27By an argument similar to the earlier one, the concatenated path π has no repeated preference.

http://www.e-publications.org/srv/te/linkserver/setprefs?rfe_id=urn:sici%2F1933-6837%282021%2916%3A4%3C1195%3ALGEIVM%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:1/archer2014truthful&rfe_id=urn:sici%2F1933-6837%282021%2916%3A4%3C1195%3ALGEIVM%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:2/barbera1993generalized&rfe_id=urn:sici%2F1933-6837%282021%2916%3A4%3C1195%3ALGEIVM%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:3/barbera1991voting&rfe_id=urn:sici%2F1933-6837%282021%2916%3A4%3C1195%3ALGEIVM%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:4/carroll2012local&rfe_id=urn:sici%2F1933-6837%282021%2916%3A4%3C1195%3ALGEIVM%3E2.0.CO%3B2-5
https://drive.google.com/file/d/1XdHYBqxzc3CEXt2ahJP1giMSUoKQFOPp/view
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:6/CZ2018&rfe_id=urn:sici%2F1933-6837%282021%2916%3A4%3C1195%3ALGEIVM%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:7/CZ2019&rfe_id=urn:sici%2F1933-6837%282021%2916%3A4%3C1195%3ALGEIVM%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:1/archer2014truthful&rfe_id=urn:sici%2F1933-6837%282021%2916%3A4%3C1195%3ALGEIVM%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:2/barbera1993generalized&rfe_id=urn:sici%2F1933-6837%282021%2916%3A4%3C1195%3ALGEIVM%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:3/barbera1991voting&rfe_id=urn:sici%2F1933-6837%282021%2916%3A4%3C1195%3ALGEIVM%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:4/carroll2012local&rfe_id=urn:sici%2F1933-6837%282021%2916%3A4%3C1195%3ALGEIVM%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:6/CZ2018&rfe_id=urn:sici%2F1933-6837%282021%2916%3A4%3C1195%3ALGEIVM%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:7/CZ2019&rfe_id=urn:sici%2F1933-6837%282021%2916%3A4%3C1195%3ALGEIVM%3E2.0.CO%3B2-5


1220 Kumar, Roy, Sen, Yadav, and Zeng Theoretical Economics 16 (2021)

Cho, W. J. (2016), “Incentive properties for ordinal mechanisms.” Games and Economic
Behavior, 95, 168–177. [1198, 1213, 1214]

Cormen, T., C. E. Leiserson, R. L. Rivest, and C. Stein (2001), Introduction to Algorithms,
second edition. MIT Press, Boston. [1209]

Fischbacher, U. and F. Föllmi-Heusi (2013), “Lies in disguise—An experimental study on
cheating.” Journal of the European Economic Association, 11, 525–547. [1196]

Gibbard, A. (1973), “Manipulation of voting schemes: A general result.” Econometrica,
41, 587–601. [1196]

Gibbard, A. (1977), “Manipulation of schemes that mix voting with chance.” Economet-
rica, 45, 665–681. [1197]

Kumar, U., S. Roy, A. Sen, S. Yadav, and H. Zeng (2021), “Local global equivalence
for unanimous social choice functions.” Games and Economic Behavior, 130, 299–308.
[1198, 1215]

Le Breton, M. and A. Sen (1999), “Separable preferences, strategyproofness and decom-
posability.” Econometrica, 67, 605–628. [1211]

Mishra, D., A. Pramanik, and S. Roy (2016), “Local incentive compatibility with trans-
fers.” Games and Economic Behavior, 100, 149–165. [1198]

Moulin, H. (1980), “On strategy-proofness and single peakedness.” Public Choice, 35,
437–455. [1211]

Sato, S. (2013), “A sufficient condition for the equivalence of strategy-proofness and non-
manipulability by preferences adjacent to the sincere one.” Journal of Economic Theory,
148, 259–278. [1196, 1198, 1199, 1209, 1210, 1217, 1218]

Satterthwaite, M. A. (1975), “Strategy-proofness and Arrow’s conditions: Existence and
correspondence theorems for voting procedures and social welfare functions.” Journal
of Economic Theory, 10, 187–217. [1196]

Co-editor Federico Echenique handled this manuscript.

Manuscript received 11 March, 2020; final version accepted 17 November, 2020; available on-
line 6 December, 2020.

http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:8/cho2016incentive&rfe_id=urn:sici%2F1933-6837%282021%2916%3A4%3C1195%3ALGEIVM%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:10/fischbacher2013lies&rfe_id=urn:sici%2F1933-6837%282021%2916%3A4%3C1195%3ALGEIVM%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:11/gibbard1973manipulation&rfe_id=urn:sici%2F1933-6837%282021%2916%3A4%3C1195%3ALGEIVM%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:12/gibbard1977manipulation&rfe_id=urn:sici%2F1933-6837%282021%2916%3A4%3C1195%3ALGEIVM%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:13/kumarlge&rfe_id=urn:sici%2F1933-6837%282021%2916%3A4%3C1195%3ALGEIVM%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:14/breton1999separable&rfe_id=urn:sici%2F1933-6837%282021%2916%3A4%3C1195%3ALGEIVM%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:15/mishra2016local&rfe_id=urn:sici%2F1933-6837%282021%2916%3A4%3C1195%3ALGEIVM%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:16/moulin1980strategy&rfe_id=urn:sici%2F1933-6837%282021%2916%3A4%3C1195%3ALGEIVM%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:17/sato2013sufficient&rfe_id=urn:sici%2F1933-6837%282021%2916%3A4%3C1195%3ALGEIVM%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:18/satterthwaite1975strategy&rfe_id=urn:sici%2F1933-6837%282021%2916%3A4%3C1195%3ALGEIVM%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:8/cho2016incentive&rfe_id=urn:sici%2F1933-6837%282021%2916%3A4%3C1195%3ALGEIVM%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:10/fischbacher2013lies&rfe_id=urn:sici%2F1933-6837%282021%2916%3A4%3C1195%3ALGEIVM%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:11/gibbard1973manipulation&rfe_id=urn:sici%2F1933-6837%282021%2916%3A4%3C1195%3ALGEIVM%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:12/gibbard1977manipulation&rfe_id=urn:sici%2F1933-6837%282021%2916%3A4%3C1195%3ALGEIVM%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:13/kumarlge&rfe_id=urn:sici%2F1933-6837%282021%2916%3A4%3C1195%3ALGEIVM%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:14/breton1999separable&rfe_id=urn:sici%2F1933-6837%282021%2916%3A4%3C1195%3ALGEIVM%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:15/mishra2016local&rfe_id=urn:sici%2F1933-6837%282021%2916%3A4%3C1195%3ALGEIVM%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:16/moulin1980strategy&rfe_id=urn:sici%2F1933-6837%282021%2916%3A4%3C1195%3ALGEIVM%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:17/sato2013sufficient&rfe_id=urn:sici%2F1933-6837%282021%2916%3A4%3C1195%3ALGEIVM%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:17/sato2013sufficient&rfe_id=urn:sici%2F1933-6837%282021%2916%3A4%3C1195%3ALGEIVM%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:18/satterthwaite1975strategy&rfe_id=urn:sici%2F1933-6837%282021%2916%3A4%3C1195%3ALGEIVM%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:18/satterthwaite1975strategy&rfe_id=urn:sici%2F1933-6837%282021%2916%3A4%3C1195%3ALGEIVM%3E2.0.CO%3B2-5

	Introduction
	Related literature

	The model
	Preliminary observations

	The main result
	Discussion
	Computational complexity
	Relationship with earlier results

	Multidimensional voting: The separable domain and the multidimensional single-peaked domain
	LGE and random social choice functions
	Appendix: Proof of Proposition 2
	References

