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Costly miscalibration

Yingni Guo
Department of Economics, Northwestern University

Eran Shmaya
Department of Economics, Stony Brook University

We consider a platform that provides probabilistic forecasts to a customer using
some algorithm. We introduce a concept of miscalibration, which measures the
discrepancy between the forecast and the truth. We characterize the platform’s
optimal equilibrium when it incurs some cost for miscalibration, and show how
this equilibrium depends on the miscalibration cost: when the miscalibration cost
is low, the platform uses more distant forecasts and the customer is less respon-
sive to the platform’s forecast; when the miscalibration cost is high, the platform
can achieve its commitment payoff in an equilibrium and the only extensive-form
rationalizable strategy of the platform is its strategy in the commitment solution.
Our results show that miscalibration cost is a proxy for the degree of the platform’s
commitment power and, thus, provide a microfoundation for the commitment
solution.
Keywords. Calibration, miscalibration, cheap talk, commitment, Bayesian per-
suasion, e-commerce platform.

JEL classification. D81, D82, D83.

1. Introduction

E-commerce platforms often provide information to customers about their products.
For example, the fare aggregator Kayak.com provides forecasts of future prices. The
real estate aggregator Redfin.com identifies “hot homes” that are likely to sell quickly.
The platform generates information using some algorithm, which it applies to many
products. This algorithm is usually a trade secret and is, therefore, not observed by out-
siders. For example, Kayak states only that “our scientists develop these flight price trend
forecasts using algorithms and mathematical models.” Redfin states only that “the hot
homes algorithm automatically calculates the likelihood by analyzing more than 500 at-
tributes of each home.” In this paper, we develop a general model to analyze a platform’s
communication with its customers, in which customers trust the platform’s forecasts in
an equilibrium even though they do not observe the algorithm.
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Environment We model the interaction between the platform and a customer as a
sender–receiver game: the forecast is the sender’s message and the algorithm induces
a strategy for the sender. The sender provides information in the form of probabilistic
distributions. For example, Redfin defines a “hot home” as one that has a 70 percent
chance or higher of having an accepted offer within 2 weeks of its debut. Given the
sender’s strategy, for each claim that the sender makes, we can calculate the true con-
ditional distribution over the states. We say that the sender’s strategy is miscalibrated
if there is a discrepancy between what he claims and the true conditional distribution,
for example, if only 50 percent of the homes that Redfin identifies as hot homes have an
accepted offer within 2 weeks of their debut. Likewise, the sender’s strategy is calibrated
if what he claims is always the same as the true conditional distribution.

The sender incurs a cost that is a function of the miscalibration measure, which we
define in the paper. The sender’s cost also depends on a parameter, which we call the
cost intensity. The cost intensity indicates how severely the sender is punished for each
unit of miscalibration or how easy it is to collect data. The sender’s cost is a proxy for
the reputation damage from making incorrect assertions. The fact that platforms have
various degrees of reputation concern is well documented in the empirical literature.
Mayzlin et al. (2014) show that small or independent hotels are more likely to engage
in review manipulation than multi-unit or branded chain hotels, and Luca and Zervas
(2016) show that chain restaurants are less likely to commit review fraud. There is also
a large experimental literature showing that people have a preference for being seen as
honest (e.g., Abeler et al. 2019).

As in the cheap-talk literature, the receiver observes only the message, but not the
sender’s strategy. When the cost intensity is zero, our game is a cheap-talk game (e.g.,
Crawford and Sobel 1982, Green and Stokey 2007). When the cost intensity is positive,
the sender’s talk is not cheap, because of the miscalibration cost. As the cost intensity
increases, the sender becomes more concerned about the validity of his assertions. We
examine how this miscalibration cost affects the sender’s optimal equilibrium and the
receiver’s response to the messages.

Main results In the sender–receiver game between the platform and the customer, the
sender promotes a product and the receiver decides whether to buy it. We call such a
game a promotion game. In addition to our platform–customer application, promotion
games include many applications studied in recent papers, such as the interaction be-
tween a prosecutor and a judge as in Kamenica and Gentzkow (2011), the certification
game in Henry and Ottaviani (2019) and Perez-Richet and Skreta (2021), the informa-
tional lobbying game in Bardhi and Guo (2018), Guo and Shmaya (2019), and Minaudier
(2020), and the media censorship game in Gehlbach and Sonin (2014) and Kolotilin et al.
(2017).

Our first result is that the sender’s has an optimal equilibrium in which his strategy
is calibrated and has the support of two messages, one of which induces the receiver to
purchase with positive probability.

Using this characterization, we study how cost intensities affect the sender’s optimal
equilibrium. For high cost intensities, the commitment solution is an equilibrium, since
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even a small deviation incurs a big miscalibration cost. When the cost intensity is low,
the equilibrium exhibits two features that are distinct from the commitment solution.
First, the receiver purchases with only some probability after the purchase message.
Second, the sender uses messages that are more distant from each other than the mes-
sages that are used in the commitment solution. Both these features reduce the sender’s
incentive to deviate. These features show how the sender leverages his low commitment
power to gain credibility.

Our result suggests that the sender makes more “extreme” statements than in the
commitment solution, so as to lend himself credibility. For instance, Airbnb labels ex-
ceptional hosts as “superhosts.” One criterion is that superhosts cancel less than 1 per-
cent of the time (i.e., a maximum of 1 cancellation in 100 bookings). Given this extremely
high standard, a customer who experienced a cancellation can confidently suspect mis-
calibration if another customer recently experienced the same.1 Hence, Airbnb retains
the credibility of its superhost label.

We also show that the sender’s optimal equilibrium payoff is monotone-increasing
in the cost intensity. This is because the set of calibrated equilibria expands as the cost
intensity increases. Given that the sender’s optimal equilibrium is calibrated, a higher
cost intensity thus leads to a higher optimal equilibrium payoff for the sender. Recall
that the cost intensity models the degree of reputation damage to the sender from mak-
ing incorrect forecasts. The monotonicity result shows that the cost intensity can also be
interpreted as a proxy for the degree of the sender’s commitment power. The more the
sender is likely to suffer from making incorrect assertions, the more credible he becomes
in his communication with the receiver. A higher payoff to the sender thus results.

Our second result is that our model bridges the cheap-talk and the persuasion mod-
els. For any sender–receiver game, when the cost intensity is zero, our game is (by def-
inition) a cheap-talk game. We show that when the cost intensity is high, the sender’s
optimal equilibrium payoff is the payoff he could get if he could commit to a strategy.
This result asserts some lower hemicontinuity of the equilibrium correspondence. As
usual, lower hemicontinuity is not straightforward. In our setup, it requires a generic
assumption on the sender–receiver game. We also show that the only extensive-form
rationalizable strategy of the sender is his strategy in the commitment solution.

To summarize, our contribution is threefold. We develop a general framework to
analyze an e-commerce platform’s communication with its customer. We characterize
how miscalibration cost affects the platform’s optimal equilibrium and the customer’s
response to the messages. We provide a microfoundation for the commitment solution;
our model bridges the cheap-talk and the persuasion models, and can be used to ana-
lyze the middle ground where neither the talk is completely cheap nor the commitment
absolute.

Related literature Our paper contributes to the literature on strategic communication
with a lying cost (e.g., Kartik et al. 2007, Kartik 2009). The key difference is that in the

1For a case in which miscalibration occurred, see Patrick Collinson, “My Airbnb Superhost Stay Turned
into a Super Disaster,” The Guardian (https://www.theguardian.com/money/2019/dec/21/my-airbnb
-superhost-stay-turned-into-a-super-disaster), December 21, 2019.

https://www.theguardian.com/money/2019/dec/21/my-airbnb-superhost-stay-turned-into-a-super-disaster
https://www.theguardian.com/money/2019/dec/21/my-airbnb-superhost-stay-turned-into-a-super-disaster
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costly-lying model, the message space is typically the state space, so the sender’s only
option is to announce a state. Consequently, the only way for the sender to avoid a
lying cost is to reveal everything he knows. In contrast, our sender avoids a lying cost
as long as what he claims is true (i.e., his asserted distribution is the same as the true
distribution).

The implication of this modeling difference is best seen when the lying cost is high.
High lying costs translate into commitment power in our model, but into full disclosure
in the costly-lying model. These different high cost results capture different intuitions
about what happens when lying becomes very costly. In Remark 1 in Section 2, we for-
malize the notion that our model nests the costly-lying model.

Our notion of miscalibration differs from the notion of lying in Sobel (2020), where
the message space includes some subsets of the state space. The sender has lied if the
state does not belong to the subset of the state space that he has announced.

Our paper is also related to Perez-Richet and Skreta (2021), which characterizes the
receiver’s optimal test when the sender can falsify the state. In their baseline model,
the sender’s falsification is observable. Falsification improves the test results, but deval-
ues their meanings. They show that a receiver’s optimal test in which the sender does
not falsify always exists. In our paper, the sender can deviate to any communication
strategy. His strategy is not observable, but the potential miscalibration cost allows for
meaningful communication. We characterize an environment in which the sender does
not miscalibrate in his optimal equilibrium, and also show that this is not always the
case. Our paper is also related to Nguyen and Tan (2021). Their sender first publicly an-
nounces a test. Then he privately observes the message generated and can manipulate
the message at a cost. The receiver’s action depends on both the announced test and
the final message. They characterize how the chance of manipulation affects the test
design. Our model differs in that our sender chooses a test that is not observable, so the
receiver observes only the message (i.e., the customer sees only the platform’s message,
not its algorithm).

Our results show that our model bridges the cheap-talk and persuasion models (e.g.,
Rayo and Segal 2010, Kamenica and Gentzkow 2011). In this aspect, our paper is re-
lated to Fréchette et al. (2020), Lipnowski et al. (2019), and Min (2020). In these pa-
pers, the sender first publicly announces a test. With an exogenously given probability,
the message is given by this test. With complementary probability, the sender can se-
cretly choose a different message. The receiver in all their models observes both the an-
nounced test and the final message. Our model and results propose a different measure
of commitment and generate qualitatively different predictions than their probabilistic
commitment models. Lipnowski and Ravid (2020) is another recent paper that relates to
the relationship between the commitment world and the cheap-talk world, and models
cheap talk from a belief-based perspective.

The concept of calibration is central in the forecasting literature (e.g., Dawid 1982,
Murphy and Winkler 1987, Foster and Vohra 1998, Ranjan and Gneiting 2010). It is used
for two closely related ideas. The first is in the purely probabilistic sense, namely, that
a forecast (a message, in our setup) matches the conditional distribution over states
given the forecast. The second is the idea of calibration with the data, namely, that a
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forecast matches the realized distribution of states at those times in which the forecast
was given. Building on these ideas, we introduce the concept of calibration to sender–
receiver games and develop a miscalibration measure to study these games.2

This paper is also related to the empirical literature on firms’ online communication
with customers. Chevalier and Mayzlin (2006) show that information on platforms has a
significant impact on sales. Mayzlin et al. (2014) explore the difference between a web-
site on which faking is difficult and a website on which faking is relatively easy. They
show that the cost of review manipulation determines the amount of manipulation in
equilibrium and that different firms have different incentives to manipulate. We con-
tribute to this literature by developing a general framework to analyze platforms’ com-
munication with customers. The results shed light on how firms’ reputation concerns
affect the effectiveness of their communication.

Structure of the paper Section 2 presents the model. In Section 3, we characterize the
sender’s optimal equilibrium for promotion games. Section 4 presents our results when
the cost intensity is high. Section 5 extends our analysis to setups in which the sender
has some information on the state, but does not necessarily know it. Section 6 contains
the proofs.

2. Environment

We consider a game with incomplete information between two players, Sender and Re-
ceiver. Sender sends Receiver a message that depends on a state of nature that is unob-
served by Receiver. Receiver then chooses an action.

Let S be a finite set of states equipped with a prior distribution p with full support
and let M be a Borel space of messages. A Sender’s strategy with message space M is
given by a Markov kernel σ from S to M : when the state is s, Sender randomizes a mes-
sage from σ(·|s). For Sender’s strategy σ , let τσ : M → �(S) be such that τσ(m) is the
conditional distribution over states given m. We sometimes use τσ(s|m) for τσ(m)(s),
both of which denote the conditional probability of s given m.

We say that a strategy σ has finite support if σ(·|s) has finite support for every s,
in which case we let support(σ) = ⋃

s support(σ(·|s)). When σ has finite support, the
conditional probability τσ(s|m) is given by

τσ(s|m) = p(s)σ(m|s)∑
s′

p
(
s′

)
σ

(
m|s′)

for every m ∈ support(σ), and is defined arbitrarily for m /∈ support(σ).
For the rest of the paper, we assume that M = �(S). In Section 2.1, we introduce the

concepts of calibrated strategies and miscalibration. These concepts are independent
of Sender’s interaction with Receiver. In Section 2.2, we review the model of sender–
receiver games and the definition of a cheap-talk equilibrium. Section 2.3 presents our
definition of an equilibrium with costly miscalibration.

2There is also literature about the strategic manipulation of calibration tests. See, for instance, Foster
and Vohra (1998), Lehrer (2001), and Olszewski (2015).
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2.1 Sender’s calibrated strategies and miscalibration

Sender’s message m is an asserted distribution over states. We make the assumption
that M = �(S) for two reasons. First, it is hard to define a notion of costly miscalibration
when the message space is not specified. Second, the space of beliefs is exactly the space
that captures the finest grain of information needed by Receiver in a sender–receiver
game.

We thus refer to τσ(m) as the true conditional distribution over states given a mes-
sage m. We say that a strategy σ is calibrated if τσ(m) = m a.s.3 Under a calibrated
strategy, messages mean what they say, i.e., they can reliably be taken at face value.

We now introduce a key component of our model: a measure of miscalibration κ(σ)

for Sender’s strategy σ . To define this measure, let d : �(S)×�(S) →R+ be a continuous
function, where d(q�m) measures the distance between a message m ∈ �(S) and a truth
q ∈ �(S). We assume that d(q�m)= 0 if and only if m= q. Let

κ(σ) =
∑
s

p(s)

∫
d
(
τσ(m)�m

)
σ(dm|s)

be the expected distance between the distribution asserted by Sender’s message and the
true conditional distribution given that message, when Sender’s strategy is σ . A strategy
σ is calibrated if and only if κ(σ)= 0.

The following example illustrates the concept of miscalibration in the case of Redfin.
Redfin’s algorithm is not observed by Receiver or any third party. When the algorithm is
applied to many products, however, the true conditional distribution given a message
can be estimated.

Example 1. The Redfin example. Redfin defines a hot home as one that has a 70 percent
chance or higher of having an accepted offer within 2 weeks of its debut. Its hot home
algorithm “identifies hot homes based on real estate conditions in each market.” This
allows us to focus on a local market. We collected 2,150 hot homes and tracked their
status.4 When a home’s status becomes contingent, pending, or sold, it is considered to
have an accepted offer. The percentage of hot homes having an accepted offer within 2
weeks of its debut was 53�1. This is different from 70 percent.

Let τ be the true probability that a hot home has an accepted offer in 2 weeks. The
p-value for the null hypothesis τ ≥ 70% against the alternative hypothesis τ < 70% is
smaller than 0�0001. Redfin’s forecast was not calibrated.5 ♦

2.2 Sender–receiver games

Let A be a finite set of actions by Receiver. Let v�u : S ×A →R be, respectively, Sender’s
and Receiver’s payoff functions. Receiver’s strategy is given by a Markov kernel ρ from

3The term a.s. in our paper means “almost surely with respect to the probability distribution over mes-
sages induced by σ .” Recall that τσ is defined up to a set of messages with probability 0.

4We examined Cook County in Illinois, which includes 165 zip codes, and collected homes that Redfin
had identified as hot homes over 2 weeks (03/14/2018–03/27/2018).

5We thank Cassiano Alves and Samuel Goldberg for excellent research assistance.
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M to A, with the interpretation that Receiver randomizes an action from ρ(·|m) after
message m.

For a profile (σ�ρ) of Sender’s and Receiver’s strategies, we let πσ�ρ ∈ �(S×A) be the
induced distribution over states and actions when the players follow this profile. The
payoffs to Sender and Receiver under (σ�ρ) are given by

V0(σ�ρ) =
∫

vdπσ�ρ and U(σ�ρ) =
∫

udπσ�ρ�

respectively. The reason we add the subscript 0 in Sender’s payoff function V0 becomes
clear later when we define Vλ for every λ ≥ 0.

A Bayesian Nash equilibrium (BNE) for a cheap-talk game is a Nash equilibrium in
the normal-form game defined by the payoff functions V0 and U .

2.3 Equilibrium with costly miscalibration

We now define a BNE for the game with costly miscalibration. The definition is the same
as that for a cheap-talk game except that Sender’s payoff is given by

Vλ(σ�ρ) = V0(σ�ρ)− λκ(σ)�

where κ(σ) is the miscalibration measure and λ ≥ 0 is a parameter that indicates the
intensity of Sender’s miscalibration cost.

A BNE is a Nash equilibrium in the normal-form game defined by the payoff func-
tions Vλ and U . We say that an equilibrium is calibrated (or miscalibrated) if Sender’s
strategy is calibrated (or miscalibrated).

Before proceeding, we show that any calibrated equilibrium for λ is also an equi-
librium for a higher λ′ > λ. Intuitively, if Sender has no incentive to miscalibrate for a
low cost intensity, he surely has no incentive to do so when the cost is higher. However,
a miscalibrated equilibrium for λ is not necessarily an equilibrium for a higher λ′ > λ.
This is because moving to a higher intensity means a higher miscalibration cost, which
might prompt Sender to deviate.

Claim 1. For any sender–receiver game and any distance function, let (σ�ρ) be an equi-
librium for λ ≥ 0. If σ is calibrated so Sender pays no miscalibration cost on path, then
(σ�ρ) is an equilibrium for a higher λ′ > λ.

Proof. Since (σ�ρ) is an equilibrium for λ ≥ 0, ρ is a best response by Receiver to σ .
To show that (σ�ρ) is an equilibrium for λ′, we need to show that Sender’s payoff from
deviating to any σ ′ is smaller than his equilibrium payoff: Vλ′(σ ′�ρ) ≤ Vλ′(σ�ρ). This is
the case, since

Vλ′
(
σ ′�ρ

) = V0
(
σ ′�ρ

) − λ′κ
(
σ ′) ≤ V0

(
σ ′�ρ

) − λκ
(
σ ′) = Vλ

(
σ ′�ρ

) ≤ Vλ(σ�ρ) = Vλ′(σ�ρ)�

The first inequality follows from the fact that λ′ > λ and κ(σ ′) ≥ 0. The second inequality
follows from the fact that (σ�ρ) is an equilibrium for λ. The last equality follows from
the fact that σ is calibrated so κ(σ)= 0.
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Remark 1. We now formalize the relationship between our model and the costly-lying
model (Kartik et al. 2007, Kartik 2009). In the costly-lying model, Sender’s lying measure
is given by some d̂(s� s′) if the state is s and Sender declares some s′ ∈ S. For example,
d̂(s� s′) = (s − s′)2. In our model, if Sender is restricted to announce deterministic mes-
sages (i.e., m ∈ {δs′ : s′ ∈ S}) and for any such m the distance function d(q�m) is linear
in q,

d(q�δs′) =
∑
s

q(s)d̂
(
s� s′

)
�

then our model reduces to the costly-lying model.

3. Promotion games

Given our interest in platforms, we study a class of sender–receiver games that we call
promotion games: Receiver decides whether to buy, and Sender’s payoff is 1 if Receiver
buys and 0 otherwise. Formally, we assume that A = {B�NB}, and that v(s�B) = 1 and
v(s�NB) = 0 for each s. It is without loss to set u(s�NB) = 0 for each s. It is also without
loss to identify each state with Receiver’s payoff from action B in that state. Thus, we set
s = u(s�B) for each s.

Promotion games are rich enough to capture games with binary actions for Receiver
and state-independent payoff for Sender. To avoid triviality, we assume that

∑
s p(s)s < 0

and that s > 0 for some s. Hence, Receiver strictly prefers not to buy given the prior belief
and strictly prefers to buy for some state.

It is well known that in the cheap-talk case (i.e., λ = 0), no promotion is possible in
the sense that Receiver never buys. Indeed, suppose on the contrary that Receiver buys
with positive probability after some message. Then Sender will announce only those
messages that induce the highest buying probability. This means that Receiver is willing
to buy after every message on path, contradicting the assumption that Receiver strictly
prefers not to buy given the prior belief.

We now characterize Sender’s optimal equilibrium for any λ > 0, showing that
(i) even for a low λ, Sender gets a positive payoff, and (ii) for a high λ, Sender gets his
commitment payoff.

Before presenting our result, we introduce a promotion-game example to illustrate
the main concepts introduced in the previous section. We also use this example later to
illustrate our result.

Example 2. Consider a promotion game with S = {−2�−1�1} and the prior p =
(1/8�1/2�3/8).

Consider Sender’s strategy in Table 1. He sends either message m0 or m1. Message
m0 says that the state is −1. Message m1 says that the state distribution is (1/5�1/5�3/5).
Each column shows the probabilities with which Sender sends m0 or m1 in each state.

Under this strategy, the true conditional distribution given m0 is τ(m0) = (0�1�0).
The true conditional distribution given m1 is τ(m1) = (1/5�1/5�3/5). Each message co-
incides with the true conditional distribution given that message, so this strategy is cal-
ibrated.



Theoretical Economics 16 (2021) Costly miscalibration 485

State

Message −2 −1 1

m0 = (0�1�0) 0 3
4 0

m1 = ( 1
5 �

1
5 �

3
5 ) 1 1

4 1

Table 1. A calibrated strategy.

Figure 1. Strategy in Table 1.

State

Message −2 −1 1

m0 = (0�1�0) 0 1
2 0

m1 = ( 1
5 �

1
5 �

3
5 ) 1 1

2 1

Table 2. A miscalibrated strategy.

Figure 1 illustrates this strategy. Each point in the triangle represents a distribution
over states. Receiver is willing to buy if his belief after a message is in the light-gray area.
The black dot is the prior p. The gray dots m0 and m1 are the messages that Sender
uses. The black circles τ(m0) and τ(m1) are the true conditional distributions given the
messages. For a calibrated strategy, the black circles always coincide with the gray dots.

There are many other calibrated strategies. For example, Sender can choose to re-
veal no information by announcing the prior at every state or he can reveal all informa-
tion by announcing the messages (1�0�0), (0�1�0), and (0�0�1) in states −2, −1, and 1,
respectively.

Consider another strategy, shown in Table 2 and Figure 2. Sender uses the same
messages m0 and m1 as before. When the state is −2 or 1, he still announces m1 for
sure. However, when the state is −1, he announces m1 more often than before. The true
conditional distribution given m1 is τ(m1) = (1/6�1/3�1/2), which differs from m1. Thus,
this strategy is not calibrated.

If Sender uses this strategy to make recommendations, then the probability distri-
bution of the products about which Sender announces m1 is in fact τ(m1) in Figure 2.
Therefore, Sender’s claim about these products—that they are (1/5�1/5�3/5)—is not
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Figure 2. Strategy in Table 2.

true. If an outside group collects data and performs some statistical test, Sender might
be caught.

Whenever Sender sends a message that has a true conditional distribution that dif-
fers from its asserted distribution, Sender pays a miscalibration cost. We now use the
total-variation distance, |m− τ(m)|1/2, to measure how much a message m differs from
the true conditional distribution τ(m) given m. For the strategy in Figure 2, the total-
variation distance between m1 and τ(m1) is

1
2

∣∣∣∣
(

1
5
�

1
5
�

3
5

)
−

(
1
6
�

1
3
�

1
2

)∣∣∣∣
1
= 1

2

(∣∣∣∣1
5

− 1
6

∣∣∣∣ +
∣∣∣∣1
5

− 1
3

∣∣∣∣ +
∣∣∣∣3
5

− 1
2

∣∣∣∣
)

= 2
15

�

Since Sender announces message m1 with probability 3/4, the miscalibration measure
is 3/4 · 2/15 = 1/10 and the miscalibration cost is λ/10. ♦

Theorem 1 below enables us to fully characterize Sender’s optimal equilibrium for
any promotion game and any λ > 0. For this theorem, we assume that d is a Wasserstein
distance. Wasserstein distances are the natural distances over �(S) for a metric space S.
Let d be any metric on S; then the Wasserstein distance d over �(S) induced by d is given
by

d
(
q�q′) = infEd

(
Q�Q′)�

where the infimum ranges over all pairs Q and Q′ of S-valued random variables with
marginal distributions q and q′, respectively. (Such a pair Q and Q′ is called a coupling
of q and q′.) A Wasserstein distance d is a convex function of q and q′. It is itself a metric,
so it satisfies the triangular inequality.6

The total-variation distance is a Wasserstein distance when d is the discrete metric
so that d(s� s′) = 1 for any s �= s′. In a promotion game, it is also natural to choose the
metric d(s� s′) = |s − s′|, where s and s′ are Receiver’s payoffs from buying in states s and

6Wasserstein distance, also known as Kantorovich–Monge–Rubinstein distance and earth mover’s dis-
tance, is a central concept in optimal transport theory. It is equivalently defined as the cost of the optimal
transport plan for moving the mass in q to that in q′. (See Galichon 2018 for numerous applications in
economics.) In our setup, q and q′ correspond to a true conditional distribution and an asserted distribu-
tion. Frogner et al. (2015) provide a similar application of Wasserstein distance as a loss measure for online
learning algorithms.



Theoretical Economics 16 (2021) Costly miscalibration 487

s′, respectively. In this case, the cost of sending the message that “the state is s with
probability 1” when the state is s′ is increasing in Receiver’s payoff difference |s − s′|.
For instance, when the state is −2, sending the message that “the state is 1 with prob-
ability 1” is more costly for Sender than sending the message that “the state is −1 with
probability 1.” Among the frequently used distances, Kullback–Leibler and Euclidean
distances are not Wasserstein distances.

Theorem 1. Let λ > 0 and let d be a Wasserstein distance. In a promotion game, Sender’s
optimal equilibrium has the following properties:

(i) Sender’s strategy is calibrated and uses two messages, m0 and m1.

(ii) Receiver buys with a positive probability when the message is m1 and buys with
probability 0 for any other message.

(iii) Receiver is indifferent between buying and not buying when the distribution over
states is m1 and m0 is on the boundary of the simplex �(S).

Theorem 1 shows that Sender’s optimal equilibrium payoff can be generated by a
calibrated equilibrium. Therefore, according to Claim 1, Sender’s optimal, calibrated
equilibrium for λ is also an equilibrium for λ′ > λ. This implies that Sender’s optimal
equilibrium payoff is monotone-increasing in λ. We summarize this observation in the
following corollary.

Corollary 1. Let λ > 0 and let d be a Wasserstein distance. In a promotion game,
Sender’s optimal equilibrium payoff is monotone-increasing in λ.

Corollary 1 shows that the cost intensity λ can be interpreted as a proxy for the de-
gree of Sender’s commitment power. As Sender becomes more concerned about the va-
lidity of his assertions, he becomes more credible in his communication with Receiver.

Using Theorem 1, we can now explore how Sender’s optimal equilibrium differs as
the cost intensity varies. We start by describing Sender’s incentive to deviate. If there
is a message after which Receiver buys, Sender is tempted to announce this purchase
message more frequently so as to induce Receiver to buy more often. Doing so leads to
a discrepancy between the asserted and the true meanings of this purchase message. In
a calibrated equilibrium, Sender must be deterred from doing so.

When λ is sufficiently high, the commitment solution is an equilibrium, since even
a small deviation incurs a big miscalibration cost. When λ is low, the equilibrium ex-
hibits two features that are distinct from the commitment solution. First, Receiver pur-
chases with only some probability after the purchase message. This reduces Sender’s
gain from announcing this message more often. Second, Sender does not necessarily
use the messages that are used in the commitment solution. Instead, he uses messages
that are more distant from each other (like m0 and m1 in Figure 1 instead of m− and m+
in Figure 3 below). The rationale is that using messages that are distant from each other
increases Sender’s cost of miscalibration, which deters Sender from deviating. Suppose
that Sender splits the prior p into m0 and m1 such that Receiver buys after m1. We show
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in Example 2 that for any fixed increase in the probability of announcing m1, the miscal-
ibration measure is larger when the distance between m0 and m1 is larger.

To summarize, Sender gets a positive payoff even with a low commitment power (i.e.,
a low λ), and the optimal way to leverage the low commitment power is when Sender
uses distant messages and Receiver randomizes. Thus, a less credible platform will use
forecasts that are more distinct from each other than what a more credible platform
would use, and its customers are less responsive to the purchase message in the sense
that they buy only occasionally after the purchase message.

Example 2 (Continued). According to Theorem 1, Sender splits the prior into two pos-
teriors: one on the line between A and B in Figure 1, and the other on the boundary of
the simplex �(S). He announces those posteriors truthfully. Figure 1 gives an example
of such a strategy used by Sender. On path, Sender announces m1 with probability 5/8
and m0 with probability 3/8.

Receiver buys with a positive probability if m1 is sent and does not buy after any
other message. Hence, Sender is tempted to say m1 more often. When the cost inten-
sity λ is low, we must lower Receiver’s buying probability after m1 so as to lower Sender’s
temptation to say m1 more often. This lowered temptation, combined with the miscali-
bration cost, prevents Sender from deviating.

To illustrate, suppose that Sender deviates by saying m1 with probability 5/8 + ε (in-
stead of 5/8) for some small ε > 0. The true distribution τ(m1) given m1 solves

(
3
8

− ε

)
m0 +

(
5
8

+ ε

)
τ(m1) = p� =⇒ τ(m1)=

(
1

8ε+ 5
�

8ε+ 1
8ε+ 5

�
3

8ε+ 5

)
�

The miscalibration measure is the probability that m1 is sent times the distance
d(m1� τ(m1)):

(
5
8

+ ε

)
d
(
m1� τ(m1)

) =
(

5
8

+ ε

)
1
2

∣∣m1 − τ(m1)
∣∣
1 = 4

5
ε� (1)

The corresponding miscalibration cost is λ times this miscalibration measure, so it is
4λε/5.

This deviation strategy increases by ε the probability that m1 is sent, and also in-
creases the miscalibration cost by 4λε/5. To deter Sender from taking this deviation,
Receiver’s buying probability after m1 cannot be higher than 4λ/5.

For λ ∈ (0�5/4], the calibrated strategy in Figure 1, combined with a buying proba-
bility of 4λ/5 after m1, constitutes an equilibrium. Sender’s equilibrium payoff is λ/2. It
can be readily verified that other calibrated equilibria that are consistent with Theorem 1
give Sender a lower payoff, so Sender’s optimal equilibrium payoff is λ/2.

For λ ≥ 2, we argue that Sender obtains his commitment payoff 3/4 by using the
strategy in Figure 3. He splits the prior into m− = (1/2�1/2�0) and m+ = (0�1/2�1/2),
and announces those posteriors truthfully. Receiver buys for sure after m+ and does not
buy after any other message. On path, Sender announces m+ with probability 3/4 and
m− with probability 1/4.



Theoretical Economics 16 (2021) Costly miscalibration 489

Figure 3. Sender’s optimal equilibrium when λ ≥ 2.

Suppose that Sender deviates by saying m+ with probability 3/4 + ε for some small
ε > 0.7 The true distribution τ(m+) given m+ solves

(
1
4

− ε

)
m− +

(
3
4

+ ε

)
τ(m+) = p� =⇒ τ(m+) =

(
2ε

4ε+ 3
�

1
2
�

3
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)
�

The miscalibration measure is the probability that m+ is sent times the distance
d(m+� τ(m+)):

(
3
4

+ ε

)
d
(
m+� τ(m+)

) =
(

3
4

+ ε

)
1
2

∣∣m+ − τ(m+)
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1 = 1

2
ε� (2)

The corresponding miscalibration cost is λ times this miscalibration measure, so it is
λε/2. For any λ ≥ 2, this miscalibration cost suffices to deter Sender from deviating,
even if Receiver buys for sure after m+.

For λ ∈ (5/4�2), Sender’s optimal equilibrium strategy shifts gradually from the strat-
egy in Figure 1 to that in Figure 3. His optimal equilibrium payoff increases in the inten-
sity λ.

Interestingly, for a low cost intensity, Sender uses messages m0 and m1 instead of
m− and m+; the latter pair is used in the commitment solution and in Sender’s optimal
equilibrium when λ ≥ 2. With two distant messages like m0 and m1, if Sender increases
the probability of saying m1 by ε, he has to incur a larger miscalibration measure, com-
pared with the case having two nearby messages like m− and m+. This can be seen by
observing that the miscalibration measure in (1) is larger than that in (2).

Figure 4 uses a seesaw analogue to illustrate the idea that more distant messages im-
ply a larger miscalibration measure. In a calibrated strategy, Sender splits the prior p

into posteriors m0 and m1. The two squares, m0 and m1, are balanced around a pivot at
the prior. The size of each square corresponds to the probability of saying that message.
If Sender increases the probability of saying m1 by ε, this causes the posterior to change
to τ(m1). The more distant m0 and m1 are from each other (i.e., the longer the seesaw
is), the larger the miscalibration measure is from this move of ε probability. Thus, when
the cost intensity is low, Sender uses distant messages to compensate for his low com-
mitment power to deter himself from deviating. ♦

7The probabilities with which Sender sends m+ in states −2, −1, and 1 are 4ε, 3/4+ε, and 1, respectively.
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Figure 4. More distant messages imply larger miscalibration measure.

The result in Theorem 1, namely, that Sender gets his optimal payoff in a calibrated
equilibrium, may look familiar from the cheap-talk case. Indeed, in the cheap-talk
case (i.e., λ = 0), a simple revelation-principle argument implies that for every equi-
librium (which is not necessarily Sender’s optimal equilibrium), there exists a calibrated
equilibrium that induces the same distribution over states and actions. However, this
revelation-principle argument does not apply when λ > 0. Example 3 below provides a
miscalibrated equilibrium that induces a distribution over states and actions that can-
not be induced by any calibrated equilibrium. Moreover, Theorem 1 does not hold for all
distance functions. In Section 4.1, we show that when d is the Kullback–Leibler distance,
Sender’s optimal equilibrium is not calibrated.

Example 3. Consider a promotion game with S = {−1�1} and the prior p = (3/4�1/4).
Let d be the total-variation distance and let the cost intensity λ be 1. Since M = �(S) is
one-dimensional, we use the probability of state 1 to represent the state distribution.

Consider Sender’s optimal equilibrium in Theorem 1. He splits the prior 1/4 into
0 and 1/2, and announces the posterior beliefs truthfully, so his strategy is calibrated.
Receiver buys after message 1/2 with probability λ/2 = 1/2 and does not buy otherwise.
Sender’s equilibrium payoff is 1/4.

A sender-optimal, miscalibrated equilibrium also exists. Sender still splits the prior
into 0 and 1/2. When 0 is realized, he announces message 0. However, when 1/2 is
realized, he announces message 1. Receiver buys after message 1 with probability λ = 1
and does not buy otherwise. Sender’s equilibrium payoff is the total probability that
Receiver buys, namely, 1/2, minus the miscalibration cost 1/4.

Both equilibria generate the same payoff of 1/4 to Sender, but different distributions
over states and actions. Conditional on state 1, Receiver buys more often under the
second than under the first equilibrium. In fact, no calibrated equilibrium generates
the same distribution over states and actions that the second equilibrium does, since
otherwise Sender’s equilibrium payoff would be 1/2, which is higher than his optimal
equilibrium payoff of 1/4. ♦

3.1 Intuition for the proof of Theorem 1

Theorem 1 relies on the triangular inequality and also on the following property of
Wasserstein distances, which makes them well behaved under the splitting of proba-
bility distributions.
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Lemma 1. Let d be a Wasserstein distance over �(S) and let q�q′ ∈ �(S). Let q = t1q1 +
· · · + tnqn be a splitting of q, where ti ≥ 0, qi ∈ �(S) for all i, and

∑n
i=1 ti = 1. Then there

exists a splitting q′ = t1q
′
1 + · · · + tnq

′
n of q′ with the same weights such that

d
(
q�q′) = t1d

(
q1� q

′
1
) + · · · + tnd

(
qn�q

′
n

)
� (3)

To prove Theorem 1, we begin with an arbitrary equilibrium and construct a new
equilibrium that has the properties in Theorem 1 and generates the same payoff for
Sender. Roughly speaking, the proof can be divided into two steps. In the first, we make
the equilibrium calibrated. In the second, we combine into a single message all the mes-
sages under which Receiver buys. Both steps use the same logic. We first construct a new
strategy profile that has the desired property and generates the same payoff for Sender.
We then show that for every deviation of Sender from the new profile he has a more prof-
itable deviation from the original profile. Since the original profile was an equilibrium,
the new profile must also be an equilibrium.

The first step uses the fact that Wasserstein distances satisfy the triangular inequal-
ity. Consider, for example, an equilibrium under which (i) with some probability, Sender
announces a message m, after which Receiver buys with probability 1, and (ii) the true
conditional distribution given m is q = τσ(m). So Sender’s payoff when he announces
m is 1 − λd(q�m). Now we change Receiver’s strategy so that he buys with probability
1 − λd(q�m) after message q, and we change Sender’s strategy so that he announces the
true distribution q instead of m. This new strategy profile gives Sender the same payoff
and his message is now calibrated. We now argue that Sender has no profitable devi-
ation. Suppose that Sender considers deviating to some miscalibrated strategy, so that
the true conditional distribution when he announces q is in fact q′. Sender then suffers
a miscalibration cost of λd(q′� q), so his payoff when he sends q is

1 − λd(q�m)− λd
(
q′� q

) ≤ 1 − λd
(
q′�m

)
�

where the inequality follows from the triangular inequality. The right-hand side is the
payoff to Sender under the original profile if Sender deviates by announcing message m

when the truth is q′, and he suffers a miscalibration cost of λd(q′�m). Since the original
profile was an equilibrium, this implies that the new profile must also be an equilib-
rium. We note that this argument is not completely accurate, because if Receiver strictly
prefers to buy when his belief about the states is q, then he must buy with probability 1
after message q in a calibrated equilibrium. Because of this nuisance, the proof has an
additional modification to the equilibrium profile: it replaces q with a belief that makes
Receiver indifferent.

The second step of the proof combines all the messages under which Receiver buys
into a single message. Assume that, for example, we had a calibrated equilibrium in
which there are n messages q1� � � � � qn, after which Receiver buys with probability 1.
Sender announces message qi with probability ri. We replace this strategy profile with a
new profile. In the new profile, Sender announces the message q = t1q1 + · · · + tnqn with
probability r = r1 + · · · + rn, where ti = ri/r, and Receiver buys with probability 1 after
message q. We need to show that the new profile is an equilibrium. We again construct,
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for every deviation that Sender has in the new profile, a deviation strategy in the origi-
nal profile that is more profitable. Suppose Sender deviates to a miscalibrated strategy,
under which he sends the message q with some probability r′, but the true distribution
when he sends q is q′. Under this deviation, Sender will suffer a miscalibration cost of
λd(q′� q) when he sends q. Lemma 1 states that Sender has a deviation strategy in the
original profile such that he sends message qi with probability r′ti and the true distri-
bution when he sends qi is q′

i. Moreover, the overall miscalibration cost Sender suffers,
conditional on sending one of q1� � � � � qn, is also λd(q′� q). Hence, the aforementioned
deviation to the new profile cannot be profitable.

4. High cost intensity

We now turn to general sender–receiver games, in which the set A of Receiver’s actions is
finite and Sender’s payoff v(s�a) can depend on s. The next two propositions formalize
the intuition that when the cost intensity is high, Sender gains the commitment power
not to make false assertions. Proposition 1 shows that Sender can achieve his commit-
ment payoff in an equilibrium. Proposition 2 shows that if the distance function has
a kink, the only extensive-form rationalizable strategy of Sender is his strategy in the
commitment solution.

Formally, the commitment payoff is given by CP = maxV0(σ�ρ), where the maximum
ranges over all profiles (σ�ρ) such that ρ is a best response to σ . We call a profile (σ�ρ)

that achieves the maximum a commitment solution.

4.1 Equilibrium result

On the surface, Proposition 1 can be understood from the following two observations.
First, if Sender were exogenously restricted to using only calibrated strategies, then Re-
ceiver could take messages at face value. Hence, Sender’s optimal commitment strategy,
along with Receiver’s best response to the face value of each message, would be an equi-
librium. Second, as the cost intensity increases, in any equilibrium Sender uses only
strategies that are close to being calibrated, in the sense that each message is close to
the true posterior over states given that message. Thus, our result asserts some lower
hemicontinuity of the equilibrium correspondence. As usual, lower hemicontinuity is
not straightforward. The difficulty is that Sender’s payoff is not a continuous function
of his strategy, because Receiver’s strategy is typically not a continuous function of the
message. Therefore, a small deviation from the optimal commitment strategy might
have a big impact on Sender’s payoff.

We make the assumption that the sender–receiver game is generic. By “a generic set
of games,” we mean that the set of payoff functions u : S × A → R for which the asser-
tion does not hold (viewed as a subset of RS×A) is a closed set with an empty interior
and a Lebesgue measure of 0. Our generic assumption requires that every Receiver’s
action be a unique best response to some beliefs over the states. The following propo-
sition requires only that d be convex in q. Wasserstein, Kullback–Leibler, and Euclidean
distances all satisfy this condition.
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Proposition 1. Assume that d is convex in q. In a generic set of games, for every ε >

0, there exists λ̄ such that for every λ > λ̄, there exists an equilibrium in the game with
intensity λ such that Sender’s payoff is at least CP − ε.

To illustrate the proof idea, consider the simplifying assumption that Receiver has
some “punishment” action that yields a bad payoff for Sender in every state. For a
generic game, any approximation for the commitment payoff can be achieved by a cali-
brated strategy for which Receiver’s best response is unique. Then we construct an equi-
librium in which Receiver best responds to the face value of each message in the support
of this strategy and uses the punishment action for any other message. Sender’s equi-
librium strategy may well be miscalibrated, but for a high cost intensity, the amount of
miscalibration will be small enough so that Receiver’s response is still uniquely optimal.
Sender thus gets an equilibrium payoff close to the commitment payoff. The proof for
the case in which the simplifying assumption does not hold is more involved, but relies
on a similar idea.

In the following example, Sender’s optimal equilibrium must be miscalibrated, yet
his optimal equilibrium payoff converges to his commitment payoff.

Example 4 (With a different distance function). Consider the promotion game in Ex-
ample 3, but with this difference: the distance between a message and a truth is the
Kullback–Leibler distance

d
(
τ(m)�m

) =
∑
s∈S

τ(m)(s) log
τ(m)(s)

m(s)
�

As in Example 3, we use the probability of state 1 to represent the state distribution.
In the commitment solution, Sender splits the prior 1/4 into 0 and 1/2. Receiver

buys for sure after the message 1/2. However, for any intensity λ≥ 0, this strategy profile
cannot be an equilibrium: Sender will deviate by announcing 1/2 more often. This is
because, in the case of the smooth Kullback–Leibler distance, for any message with full
support, a small amount of miscalibration has no first-order impact on the miscalibra-
tion cost.

Sender has to “overshoot” to gain credibility. Consider the following equilibrium.
Sender splits the prior into 0 and 1/2. When 1/2 is realized, Sender overshoots by saying
(1 − e−1/λ/2) > 1/2. Receiver buys for sure after (1 − e−1/λ/2) and does not buy after
other messages. Sender’s equilibrium payoff is λ log(2e1/λ − 1)/4, which goes from 0 to
the commitment payoff 1/2 as λ goes from 0 to ∞. Our Example 1 shows that Redfin
indeed overshoots. ♦

We have shown that Sender achieves his commitment payoff (up to ε) in an equilib-
rium with some generic assumption about the game. Example 5 is a nongeneric game
in which Sender’s optimal equilibrium payoff for any λ is bounded away from his com-
mitment payoff.
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Example 5. Consider a promotion game with S = {0�−1} and the prior p = (p0�1 −
p0). Sender’s commitment payoff is p0: Sender fully reveals the state and Receiver takes
action B if the state is 0 and action NB if the state is −1.

Unlike Example 4, there exists no belief over the states such that B is uniquely op-
timal for Receiver, so there is no room for Sender to overshoot. Hence, for a smooth
distance function d, in every equilibrium, Receiver chooses only the safe action NB, so
Sender’s payoff is 0. ♦

4.2 A rationalizablility result

Up to now, following the cheap-talk literature, we used equilibrium as our solution con-
cept. We argued that Sender’s optimal equilibrium achieves the commitment solution
for a high λ, but the game still admits other equilibria. For example, even for a high λ,
there exists an uninformative equilibrium. Under this equilibrium, Sender always an-
nounces the prior, and after every possible Sender’s message, Receiver believes that the
state is distributed according to the prior and best responds to the prior.

There is, however, an unsatisfactory aspect to the uninformative equilibrium in our
context. Consider Example 2 with a high λ. Assume that Receiver plays according to
the uninformative equilibrium and that the message (0�0�1), which says that the state
is 1 with probability 1, arrives. What should Receiver do? The message is a surprise,
but given the high λ, Sender suffers a very high cost if the truth is far away from this
message. It seems reasonable that Receiver will deduce that the truth is close enough to
this message, in which case Receiver will buy the product.

BNE and refinements such as the perfect Bayesian equilibrium do not capture this
intuition because they allow arbitrary behaviors or beliefs off-path. These behaviors do
not have to be rationalizable. To incorporate this earlier intuition, we turn to extensive-
form rationalizability (hereafter, EFR; see Pearce 1984, Battigalli 1997, and Battigalli and
Siniscalchi 2002). EFR dispenses with the assumption that players’ beliefs are correct,
but requires that, at every point in the game, each player form a belief that is, as much
as possible, consistent with the opponent being rational.

EFR is usually defined in an environment with only countable information sets. How
to extend such a definition to sender–receiver games with a continuum message space
is not obvious. (See Remark 2 in the Appendix and Friedenberg 2019, for example, where
similar issues arise.) However, the issue is somewhat simpler in our setup, because each
player takes action only once. The important assumption behind EFR is that Receiver
strongly believes that Sender does not use strictly dominated strategies. This means that
after observing a message, Receiver has a belief about Sender’s strategies that is concen-
trated on Sender’s strategies that are not strictly dominated.

Let BR(q) be the set of all of Receiver’s best actions when his belief about the state
is q:

BR(q) = arg max
a

∑
s

q(s)u(s�a)� (4)
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Proposition 2. Assume that there exists some γ > 0 such that d(q�m) ≥ γ|q−m|1. Then,
in a generic set of games, there exists λ̄ such that for every λ > λ̄, the following statements
hold:

(i) Receiver’s extensive-form rationalizable strategies are those that satisfy

support
(
ρ(·|m)

) ⊆ BR(m)�

(ii) Sender’s extensive-form rationalizable strategies are his calibrated strategies σ such
that Vλ(σ�ρ) = CP for some best response ρ of Receiver to σ .

To prove this result, we use the result (Lemma 5 in the Appendix) that if the distance
function d has a kink, then for sufficiently high λ, a Sender’s strategy σ is not strictly
dominated if and only if it is calibrated.8 Therefore, only Sender’s calibrated strategies
survive the first round of elimination. Given that Sender uses only calibrated strate-
gies, Receiver takes any message at face value and best responds to the face value. In a
generic game, any approximation for the commitment payoff can be achieved by a cali-
brated strategy for which Receiver’s best response is unique. Therefore, the only Sender’s
strategy that will survive is one that gives him the commitment payoff against some Re-
ceiver’s best response. Note that Proposition 2 does not hold in the nongeneric game in
Example 5 even when d has a kink. In that game, Receiver’s strategy to always take NB is
rationalizable and, therefore, every calibrated strategy is rationalizable for Sender.

5. Discussion: Partial information on the state

By allowing Sender to choose any strategy σ : S → �(S), we implicitly assume that
Sender knows the state. This assumption is natural since our main focus is on Sender’s
incentives. However, because we use terminology from the forecasting literature and
because of our interest in e-commerce platforms like Redfin, it would be more realistic
to assume that Sender has some information on the state, but does not necessarily know
it. We argue that our analysis and results extend to this environment as well.

To model such an environment, we can add an exogenous set T of Sender’s types and
an exogenous information structure σE : S → �(T), such that σE(s) is the distribution
over Sender’s types. When Sender’s type is t, his belief about the state is τσE(t). Our
definitions and results carry through mutatis mutandis if we assume that the message
space M is the convex hull of {τσE(t) : t ∈ T } and that Sender is restricted to strategies
that are less informative than σE (in Blackwell’s sense).

6. Proofs

6.1 Preliminaries

We extend the distance function d to a function d : RS+ ×�(S) →R+ given by d(γq�m)=
γd(q�m) for every q ∈ �(S) and γ ≥ 0. We extend the best-response correspondence
BR(·) to a correspondence from R

S+ to A given by the same formula (4).

8The assumption that d(q�m) ≥ γ|q −m|1 for some γ > 0 holds for Wasserstein distances and, in partic-
ular, the total-variation distance. It also holds for the Euclidean distance d(q�m) = |q − m|2 and any other
distance that is derived from a norm.
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For a Sender’s strategy σ , we let

χσ =
∑
s

p(s)σ(·|s) (5)

be the distribution over messages induced by σ . Lemma 2 below is essentially Aumann
and Maschler’s splitting lemma (see, for example, Zamir 1992, Proposition 3.2). It says
that a distribution over messages in �(S) is induced by some calibrated strategy if and
only if its barycenter is the prior p.

Lemma 2. (i) For every strategy σ , we have
∫

τσ(m)χσ(dm)= p� (6)

(ii) If χ is a distribution over messages in �(S) such that
∫
mχ(dm) = p, then a cali-

brated strategy σ such that χσ = χ exists.

We also say that a finite splitting of a probability measure p ∈ �(S) is a representation
p = ∑

i tiqi such that qi ∈ �(S), ti ≥ 0 and
∑

i ti = 1. We sometimes call ti the weights.
The splitting lemma implies that for every such finite splitting, there exists a calibrated
strategy that announces the message qi with probability ti.

6.2 Proof of Theorem 1

6.2.1 Preliminaries We can assume without loss that λ = 1, since all properties of the
distance function d that are used in the proof still hold if we replace d by λd.

We denote a Receiver’s strategy by a function ρ : �(S) → [0�1], so that ρ(m) is the
probability that Receiver buys after message m.

For a bounded function f : �(S) →R, let Lip f : �(S) →R be given by

Lip f (q) = sup
m∈�(S)

{
f (m)− d(q�m)

}
�

Note that if d satisfies the triangular inequality, then Lip f is the least 1-Lipschitz (w.r.t. d)
majorant of f .

For a bounded function f : �(S)→ R, we denote by Cav f the least concave majorant
of f , sometimes called the concave envelope of f .

The following proposition summarizes several properties of the operators Lip
and Cav. For functions f�g : �(S) → R, we denote f ≤ g when f (q) ≤ g(q) for every
q ∈ �(S).

Proposition 3. Let f�g : �(S) → R be bounded. Then the following statements hold:

(i) If d satisfies the triangular inequality, then Lip Lip f = Lip f .

(ii) We have Cav Cav f = Cav f .

(iii) If f ≤ g, then Lip f ≤ Lipg and Cav f ≤ Cavg.
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Claim 2. If d(q�m) is convex in q, then Sender’s optimal payoff against a Receiver’s strat-
egy ρ : �(S) → [0�1] when the prior distribution over states is p is Cav Lipρ(p).

Proof. Consider some Sender’s strategy σ . Then Sender’s payoff under (σ�ρ) is

V1(σ�ρ) =
∫ (

ρ(m)− d
(
τσ(m)�m

))
χσ(dm) ≤

∫
Lipρ

(
τσ(m)

)
χσ(dm)≤ Cav Lipρ(p)�

where the first inequality follows from ρ(m) − d(τσ(m)�m) ≤ Lipρ(τσ(m)) by the defi-
nition of Lipρ, and the second follows from (6) and the definition of the concave enve-
lope Cav.

For the converse, fix ε > 0. From the definition of Cav and Lip, it follows that there
exist elements qi ∈ �(S), weights ti ≥ 0, and messages mi, such that p = ∑

i tiqi,
∑

i ti = 1,
and ∑

i

ti
(
ρ(mi)− d(qi�mi)

) ≥ Cav Lipρ(p)− ε� (7)

We can assume that mi �= mj if i �= j; otherwise, if mi = mj = m, we let t = ti + tj and
q = (tiqi + tjqj)/t. Since d is convex in q, we can replace the elements qi and qj with a
single element q, whose weight and corresponding message are, respectively, t and m,
without violating (7).

We now consider Sender’s strategy σ such that χσ = ∑
i tiδmi and τσ : �(S) → �(S) is

a function such that τσ(mi) = qi. Such a strategy exists by Lemma 2. Then (7) implies
that Sender’s payoff when using σ is at least Cav Lipρ(p)− ε.

Lemma 1 shows that Wasserstein distances are well behaved under the splitting of
probability distributions. See Laraki (2004) for related results on other metrics and gen-
eralizations to infinite-dimensional spaces, including implications for Lipschitz conti-
nuity as in our Corollary 2.

Proof of Lemma 1. The direction d(q�q′) ≤ t1d(q1� q
′
1)+ · · · + tnd(qn�q

′
n) follows from

convexity of d for every splitting q′ = t1q
′
1 + · · · + tnq

′
n of q′ with the weights t1� � � � � tn.

For the other direction, let Q and Q′ be S-valued random variables with marginal
distributions q and q′, respectively, such that d(q�q′) = Ed(Q�Q′). Let X be a random
variable that assumes values in {1� � � � � n} such that ti = P(X = i) and such that qi(s) =
P(Q = s|X = i) for every i ∈ {1� � � � � n} and s ∈ S. The existence of such a variable follows
from the splitting lemma. Finally, let q′

i(s) = P(Q′ = s|X = i). Then

q′(s) = P
(
Q′ = s

) =
∑
i

P(X = i)P
(
Q′ = s|X = i

) =
∑
i

tiq
′
i(s)�

∑
i

tid
(
qi�q

′
i

) ≤
∑
i

P(X = i)Ed
(
Q�Q′|X = i

) = Ed
(
Q�Q′) = d

(
q�q′)�

where the inequality follows from the definition of d(qi� q′
i), since the marginal distribu-

tions of Q and Q′ conditioned on the event X = i are qi and q′
i, respectively.
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Corollary 2. Let d be a Wasserstein distance. Then, for every function f : �(S) → [0�1]
that is 1-Lipschitz w.r.t. d, the concave envelope Cav f is also 1-Lipschitz w.r.t. d.

Proof. Let q�q′ ∈ �(S) and let q = t1q1 +· · ·+ tnqn be a splitting of q such that Cav f (q) =
t1f (q1)+· · ·+ tnf (qn). By Lemma 1, there exists a splitting q′ = t1q

′
1 +· · ·+ tnq

′
n of q′ such

that (3) holds. Therefore,

Cav f
(
q′) ≥

∑
i

tif
(
q′
i

) ≥
∑
i

ti
(
f (qi)− d

(
qi�q

′
i

)) = Cav f (q)− d
(
q�q′)�

where the first inequality follows from the definition of Cav f and the second from the
fact that f is 1-Lipschitz.

6.2.2 Proof of Theorem 1 Let (σ�ρ) be an equilibrium. From the equilibrium condition
for Sender and Claim 2, it follows that

Cav Lipρ(p)=
∫ (

ρ(m)− d
(
τσ(m)�m

))
χσ(dm)� (8)

since the right-hand side is Sender’s payoff under the profile (σ�ρ).
Let A = {q ∈ �(S) : ∑s q(s)s ≥ 0} be the set of beliefs over states under which Receiver

is willing to buy.
Let t = χσ(τ

−1
σ (A)), and let χσ = χσ(·|τ−1

σ (A)) and χ
σ

= χσ(·|τ−1
σ (Ac)). Let q =∫

τσ dχσ and q = ∫
τσ dχ

σ
. Then

χσ = (1 − t)χ
σ

+ tχσ� (9)

p = (1 − t)q+ tq� (10)

From the equilibrium condition for Receiver, it follows that ρ = 0, χ
σ

-almost surely.
Therefore, from (8) and (9), it follows that

Cav Lipρ(p) ≤ t

∫ (
ρ(m)− d

(
τσ(m)�m

))
χσ(dm)� (11)

It follows from the definition of q and the convexity of A that q ∈ A. Since p /∈ A,
there exists a belief q∗ on the interval [p�q] that is on the boundary of A, i.e.,

∑
s q

∗(s)s =
0. From (10),

q∗ = (
1 − t∗

)
q+ t∗q = (

1 − t∗
)
q+ t∗

∫
τσ dχσ (12)

for some t∗ ≥ t. Also,

p =
(

1 − t

t∗
)
q+ t

t∗
q∗�

We now define a strategy profile as follows:

(i) Receiver’s strategy ρ∗ is given by ρ∗(q∗)= Cav Lipρ(q∗) and ρ∗(m) = 0 for m �= q∗.
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(ii) Sender’s strategy σ∗ is the calibrated strategy induced by the distribution over
messages given by χ∗ = (1 − t/t∗)δq + t/t∗δq∗ .

We claim that this is an equilibrium that gives Sender the same payoff Cav Lipρ(p) as
the original equilibrium.

First, note that the equilibrium condition on Receiver’s side is satisfied since Sender’s
strategy is calibrated, q /∈ A, and Receiver is indifferent under q∗.

Second, Sender’s payoff under the strategy profile (σ∗�ρ∗) satisfies

V1
(
σ∗�ρ∗) = t

t∗
ρ∗(q∗) = t

t∗
Cav Lipρ

(
q∗)

≥ t

∫
Lipρ

(
τσ(m)

)
χσ(dm)≥ t

∫ (
ρ(m)− d

(
τσ(m)�m

))
χσ(dm)

≥ Cav Lipρ(p)�

where the first inequality follows from (12), the second inequality follows from the defi-
nition of Lip, and the third inequality follows from (11).

Last, since ρ∗(q) ≤ Cav Lipρ(q) for every q ∈ �(S), then

Cav Lipρ∗(p)≤ Cav Lip Cav Lipρ(p) = Cav Cav Lipρ(p) = Cav Lipρ(p)�

The first inequality and the last equality follow from Proposition 3(iii) and (ii), respec-
tively. For the second equality, according to Corollary 2, Cav Lipρ(p) is 1-Lipschitz
w.r.t. d. Therefore, Lip Cav Lipρ(p) = Cav Lipρ(p). By Claim 2 this implies that Sender’s
optimal payoff against ρ∗ is at most Cav Lipρ(p), as desired.

6.3 Proving Proposition 1

6.3.1 Lemmas

Lemma 3. In a generic set of games, for every ε > 0, there exists xa ∈ �(S) for each
a ∈ A and a Sender’s calibrated strategy σ , such that (i) BR(xa) = {a} for each a ∈ A,
(ii) support(σ) = {xa}a∈A, and (iii) if ρ is Receiver’s best response to σ , then Vλ(σ�ρ) >

CP − ε.

We prove Lemma 3 with the help of Lemma 4 below. The assertion in Lemma 4 is
standard. See Balkenborg et al. (2015) and Brandenburger et al. (2021) for similar argu-
ments.

Lemma 4. In a generic set of games, for every action a that is not strictly dominated for
Receiver, there exists a belief q ∈ �(S) such that BR(q) = {a}.

Returning to the proof of Lemma 3, since strictly dominated actions are not played in
any equilibrium or commitment solution, we can discard them and consider a generic
game with no strictly dominated strategies. We divide the proof into two claims.

Claim 3. There exists ya ∈R
S+ \ {0} such that p = ∑

a∈A ya and BR(ya) = {a}.
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Proof. By Lemma 4, for every action a, there exists some belief qa ∈ �(S) such that a
is the unique best response to the belief qa, i.e., BR(qa) = {a}. Since p has full support,
there exists a small t > 0 such that p � ∑

a∈A tqa. Let ā be such that ā ∈ BR(p−∑
a tqa).

Let yā = p− ∑
a tqa + tqā and ya = tqa for every a �= ā.

Claim 4. There exists xa ∈ �(S), ta > 0, for each a ∈ A such that p = ∑
a∈A taxa,∑

a∈A ta = 1, BR(xa) = {a}, and
∑

a�s taxa(s)v(s�a) > CP − ε.

Proof. Let (σ�ρ) be a commitment solution such that CP = ∑
s�a v(s�a)πσ�ρ(s�a),

where πσ�ρ is the distribution induced by the profile (σ�ρ) over S × A. Let za(s) =
ε/(2B)ya(s) + (1 − ε/(2B))πσ�ρ(s�a), where ya is given by Claim 3 and B is the bound
on Sender’s payoff function v. Then za ∈ R

S+ \ {0}, BR(za) = {a}, and
∑

s�a v(s�a)za(s) >

CP − ε. Let xa ∈ �(S) and ta > 0 be such that za = taxa. Since p ∈ �(S), xa ∈ �(S) for
a ∈A, and p = ∑

a∈A taxa, it follows that
∑

a∈A ta = 1.

By the splitting lemma, exists a calibrated strategy σ such that χσ = ∑
a taδxa exists.

From Claim 4, the strategy σ satisfies the requirements in Lemma 3.

6.3.2 Proof of Proposition 1 We consider the following auxiliary game, in which
Sender’s set of messages is A ∪ {�}, where � is a message that says “silent.” In the auxil-
iary game, if Sender sends message a ∈ A, then Receiver must play action a and Sender
pays a miscalibration cost relative to xa given in Claim 4; alternatively, if Sender sends
the silent message �, then Receiver can choose any action from A and Sender pays no
miscalibration cost. Sender’s strategies can be represented by w = {wm ∈ R

S+}m∈A∪{�}
such that

∑
m∈A∪{�}wm = p, with the interpretation that wm(s) is the probability that

(i) the state is s and (ii) Sender sends m. Receiver’s strategies are given by elements
ρ(·|�) ∈ �(A) (mixed actions, to be played after the silent message). The payoff to Sender
in the auxiliary game under the profile (w�ρ(·|�)) is given by

Ṽλ
(
w�ρ(·|�)) =

∑
a∈A�s∈S

(
wa(s)+w�(s)ρ(a|�))v(s�a)− λ

∑
a∈A

d(wa�xa)�

The payoff to Receiver under this profile is given by

Ũ
(
w�ρ(·|�)) =

∑
a∈A�s∈S

(
wa(s)+w�(s)ρ(a|�))u(s�a)�

In the auxiliary game, Sender has a convex, compact set of strategies and a concave
payoff function (which follows from the convexity of the distance function d), and Re-
ceiver has a finite set of pure actions. Therefore, the auxiliary game admits a Nash equi-
librium. Let w∗ = {w∗

m ∈ R
S+}m∈A∪{�} be Sender’s strategy under the Nash equilibrium

and let ρ∗(·|�) ∈ �(A) be Receiver’s strategy.
For Sender’s equilibrium strategy w∗, we let |w∗

m| = ∑
s w

∗
m(s) be the probability that

Sender sends m. If |w∗
m| > 0, then the posterior distribution over states conditioned on

Sender announcing m is w∗
m/|w∗

m|. The following claim says that in the auxiliary game,
Sender does not miscalibrate too much.
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Claim 5. In the BNE of the auxiliary game, d(w∗
a/|w∗

a|�xa) ≤ 2B/λ for every a ∈ A such
that |w∗

a|> 0. Here, B > 0 is the bound on Sender’s payoff function v.

Proof. Fix a ∈ A such that |w∗
a| > 0. Let w′ be the strategy given by w′

m = w∗
m for m ∈

A \ {a}, w′
a = 0, and w′� = w∗� +w∗

a. Therefore, under w′, Sender plays like w∗ except that
he is silent every time he was supposed to announce a. It follows that

Ṽλ
(
w′�ρ(·|�)) − Ṽλ

(
w∗�ρ(·|�)) =

∑
s

w∗
a(s)

( ∑
a′∈A

ρ
(
a′|�)

v
(
s� a′) − v(s�a)

)
+ λd

(
w∗
a�xa

)

≥ −2B
∣∣w∗

a

∣∣ + λd
(
w∗
a�xa

)
�

where the inequality follows from the bounds on v. The assertion follows from the fact
that w′ is not a profitable deviation for Sender.

Claim 6. Sender’s payoff in the Nash equilibrium of the auxiliary game is at least CP −ε.

Proof. Sender can use the strategy wa = taxa for every a ∈ A and w� = 0. By Claim 4,
Sender’s payoff is at least CP − ε.

We now define the BNE (σ∗�ρ∗) in the original game. Let w̄ = w∗�/|w∗�| be the poste-
rior distribution over states if Sender announces � in the auxiliary game. If |w∗�| = 0, then
w̄ is not defined. Sender’s strategy σ∗ has finite support {xa}a∈A ∪ {w̄} and satisfies

p(s)σ∗(xa|s)=w∗
a(s) and p(s)σ(w̄|s)=w∗�(s)�

Thus, Sender plays the same as in the auxiliary game except that (i) instead of sending
the message a as he did in the auxiliary game, he now sends xa, and (ii) instead of being
silent as he was in the auxiliary game, he now announces w̄. Receiver’s strategy is given
by ρ∗(xa) = δa for every a ∈ A such that |w∗

a| > 0, and ρ∗(·|m) = ρ∗(·|�) for any other m.
Thus, Receiver’s strategy is to play a when Sender announces xa and to play the mixed
action ρ∗(·|�) otherwise.

We claim that this is the desired equilibrium. First, note that Sender’s situation in
the original game is the same as in the auxiliary game: when he announces xa, Receiver
plays a; when he announces anything else, Receiver plays ρ∗(·|�). Therefore, playing the
same strategy in the original game is also an equilibrium, with the payoff at least CP − ε

by Claim 6. Let λ be sufficiently high such that a ∈ BR(q) for every q ∈ �(S) such that
d(q�xa) ≤ 2B/λ. Such a λ exists by the continuity of d and the fact that a is the unique
best response to belief xa. Then, by Claim 5, it follows that for every belief on-path,
Receiver best responds to that belief.

6.4 Proof of Proposition 2

Lemma 5. Assume that there exists some γ > 0 such that d(q�m)≥ γ|q−m|1. There exists
λ̄ such that for every λ > λ̄, a Sender’s strategy σ is not strictly dominated if and only if it
is calibrated.
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Proof. We first prove that any calibrated strategy is not strictly dominated. This follows
from the fact that if Receiver ignores the message and plays some constant action a, then
all calibrated strategies give the same payoff and all miscalibrated strategies give lower
payoffs.

Let L = 1/min{p(s) : s ∈ S}. (Here we use the full-support assumption about p.) The
choice of L is such that, for every q ∈ �(S), p can be split into a convex combination of
q and some other belief q′ ∈ �(S), where L bounds the weight on q′. More explicitly, for
every belief q, we have

(
1 −L|p− q|1

)
q(s)≤ (

1 −L|p− q|∞
)
q(s) ≤ p(s)

for every state s. This implies that we can find some q′ ∈ �(S) such that

p = (
1 −L|p− q|1

) · q+L|p− q|1 · q′� (13)

We now fix a Sender’s strategy σ that is not strictly dominated. We need to prove that
σ is calibrated. First, let σ ′ be any calibrated strategy of Sender and let ρ be a strategy of
Receiver. From the bound on v, there exists B > 0 such that Vλ(σ ′�ρ) = V0(σ

′�ρ) ≥ −B

and Vλ(σ�ρ) ≤ B − λκ(σ). Since σ is not strictly dominated by σ ′, we can choose ρ such
that Vλ(σ ′�ρ)≤ Vλ(σ�ρ), which implies that

κ(σ) ≤ 2B/λ� (14)

Let χσ given by (5) be the distribution over messages induced by σ and let

q =
∫

mχσ(dm) (15)

be the barycenter of χσ . It then follows from (6), (15), the convexity of the norm | · |1, and
(17) that

|p− q|1 =
∣∣∣∣
∫ (

τσ(m)−m
)
χσ(dm)

∣∣∣∣
1
≤

∫ ∣∣τσ(m)−m
∣∣
1χσ(dm)≤ 1

γ
κ(σ)� (16)

Let λ ≥ 2BL/γ. It then follows from (16) and (14) that |p − q|1 ≤ 1/L. Consider now
the calibrated strategy σ ′ that is induced (via part (ii) of Lemma 2) by the distribution

(
1 −L|p− q|1

)
χσ +L|p− q|1δq′ ∈ �

(
�(S)

)
�

where q′ is given by (13) and δq′ is the Dirac measure over q′. Thus, according to σ ′,
with probability L|p − q|1, Sender sends q′, and with the complementary probability
1−L|p−q|1, Sender uses χσ . (Note that, from (13) and (15), it follows that the barycenter
of this distribution is indeed p.)

Fix a Receiver’s strategy ρ and let η : �(S) × �(S) → R be such that η(q�m) =∑
s�a q(s)ρ(a|m)v(s�a) is Sender’s expected payoff when the distribution over states is

q, the message is m, and Receiver follows ρ. From the bound on v, there exists B > 0
such that η is bounded |η(q�m)| ≤ B for every q, m and satisfies the Lipschitz condition
|η(q�m)−η(q′�m)| ≤ B|q− q′|1 for every q�q′ ∈ �(S).
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The payoff V0(σ�ρ) and κ(σ) satisfy

V0(σ�ρ) =
∫

η
(
τσ(m)�m

)
χσ(dm)�

κ(σ)≥ γ

∫ ∣∣τσ(m)−m
∣∣
1χσ(dm)�

(17)

and the payoff under σ ′ satisfies

Vλ
(
σ ′�ρ

) = (
1 −L|p− q|1

)∫
η(m�m)χσ(dm)+L|p− q|1η

(
q′� q′)

≥
∫ (

η
(
τσ(m)�m

) −B
∣∣τσ(m)−m

∣∣
1

)
χσ(dm)− 2L|p− q|1B

≥ Vλ(σ�ρ)+
(
λ− B

γ

)
κ(σ)− 2L|p− q|1B

≥ Vλ(σ�ρ)+
(
λ− B(1 + 2L)

γ

)
κ(σ)� (18)

where the first inequality follows from the Lipschitz condition and the bound on η, the
second inequality follows from (17), and the third inequality follows from (16). Since σ

is not strictly dominated by σ ′, we choose ρ such that such that Vλ(σ ′�ρ) ≤ Vλ(σ�ρ). If
λ > B(1 + 2L)/γ. Then it follows from (18) that κ(σ) = 0, i.e., that σ is calibrated.

Lemma 5 states that for λ > λ̄, a Sender’s strategy σ is not strictly dominated if and
only if it is calibrated. Hence, in the first round of elimination, calibrated Sender’s strate-
gies remain. Since any message m is on the path of some calibrated strategy of Sender,
it follows that after observing a message m, Receiver’s action must be in BR(m).

Finally, by Lemma 3, for every Receiver’s strategy ρ such that support(ρ(·|m)) ⊆
BR(m), Sender believes that he can get at least CP − ε against ρ for every ε > 0. There-
fore, a rationalizable strategy of Sender must be calibrated and give him the commit-
ment payoff against some such strategy ρ of Receiver.

Remark 2. The idea of strong belief in rationality is that if a message m is on the path
of some strategy of Sender that is not strictly dominated, then Receiver’s rationalizable
actions for this message are the best responses against the conditional beliefs over states
under such strategies of Sender. Thus, EFR requires that, for each message m and each
Sender’s strategy σ , we define what it means for m to be on the path of σ . The problem is
that when the set of messages is a continuum, it is possible that every message m is pro-
duced with probability 0. In this case, it is not obvious what it means for a message to be
on-path. One extreme approach is that a message is on-path if it appears with a strictly
positive probability under the strategy. Another extreme approach is that every message
is on-path. In our model, both these approaches require that Receiver believe, after ev-
ery message, that Sender plays a calibrated strategy. Since Receiver’s best responses to
all calibrated strategies are the same, any reasonable definition of EFR in our setup will
give the same conclusion.
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