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Mechanism design with financially constrained agents and
costly verification

Yunan Li
Department of Economics and Finance, City University of Hong Kong

A principal distributes an indivisible good to budget-constrained agents when
both valuation and budget are agents’ private information. The principal can ver-
ify an agent’s budget at a cost. The welfare-maximizing mechanism can be imple-
mented via a two-stage scheme. First, agents report their budgets, receive cash
transfers, and decide whether to enter a lottery over the good. Second, recipients
of the good can sell it on a resale market but must pay a sales tax. Low-budget
agents receive a higher cash transfer, pay a lower price to enter the lottery, and
face a higher sales tax. They are also randomly inspected.

Keywords. Mechanism design, budget constraints, efficiency, costly verification.

JEL classification. D45, D61, D82, H42.

1. Introduction

Governments worldwide allocate a variety of valuable resources to agents who are finan-
cially constrained. In Singapore, for example, 80% of the population’s housing needs are
met by the Housing and Development Board (HDB), a government agency founded in
1960 to provide affordable housing. Similar public housing programs prevail in many
other countries. In China, several cities limit the supply of vehicle licenses to curb
growth in the number of private vehicles, and various cities have implemented differ-
ent mechanisms. For example, Shanghai allocates vehicle licenses through an auction-
like mechanism, while Beijing uses a vehicle license lottery (see Rong et al. 2019). The
evaluation of existing mechanisms has attracted attention from researchers and policy-
makers.1
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One justification for governments assuming this role is that a competitive market
outcome will not maximize welfare if households are financially constrained. Financial
constraints mean that in a competitive market, some households with high valuations
will not obtain resources, while households with low valuations but access to cash will.
A question then naturally arises: What is the welfare-maximizing (or optimal) mecha-
nism in circumstances when both valuations and financial constraints are households’
private information?

The mechanism design literature concerning this question has focused on mecha-
nisms with only monetary transfers and has ignored the possibility of governments (or
the principal) verifying the private information supplied by households (or agents). In-
deed, in many instances, governments rely on household reports of their ability to pay
when determining allocations, and governments can verify this information and pun-
ish a household that makes a false statement. For example, applicants for HDB flats in
Singapore are subject to a set of eligibility conditions concerning age, family nucleus,
monthly income, etc. Verification presumably allows governments to more accurately
target those in need of help. However, the verification process is often costly, as govern-
ments may need to verify an applicant’s employment history over the past few months
or years or examine the business records of self-employed applicants. Even if the veri-
fication cost for one individual is low, the total cost can be substantial for a large pop-
ulation. For example, in 2018, the HDB of Singapore received over 47,000 applications,
which accounts for 0�8% of Singapore’s population.

Hence, it is important to explore how the option of costly verification affects the opti-
mal mechanism. Verification allows the principal to better target financially constrained
agents, but it is costly and reduces the amount of money available for subsidies. The
principal faces a tradeoff between allocative efficiency and verification cost.

To study these questions, I consider a mechanism design problem in which there is
a unit mass of a continuum of agents and a limited supply of indivisible goods. Each
agent has two-dimensional private information—his valuation v ∈ [v� v] and his bud-
get b. Agents cannot be compelled to pay more than their budget. For simplicity, I as-
sume that there are only two possible budgets, b2 > b1. The principal can verify an
agent’s budget at a cost and impose a penalty if the agent is found to have lied about his
budget. The principal is also subject to a budget balance (BB) constraint requiring that
the revenue from selling the good must exceed the total verification cost. This constraint
rules out the possibility that the principal can offer an unlimited subsidy and relieve all
budget constraints. I characterize the optimal mechanism that maximizes utilitarian
efficiency.

In the optimal direct mechanism, there exist three cutoffs v∗
1 ≤ v∗

2 ≤ v∗∗
2 , as illustrated

in Figure 1. High-budget agents whose valuations exceed v∗∗
2 (those in A) receive the

good at the full price. High-budget agents whose valuations lie in the range [v∗
2� v

∗∗
2 ] and

low-budget agents whose valuations exceed v∗
1 (those in B + C) receive the good with

probability a∗ ∈ (0�1] at a discount price, with low-budget agents receiving a deeper dis-
count. The remaining low-valuation agents receive no good but do receive a cash trans-
fer, with low-budget agents receiving a higher cash transfer. Finally, only low-budget
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Figure 1. Illustration of the optimal mechanism.

agents are inspected randomly, and the inspection probability increases with the prob-
ability of assignment.

This paper is closely related to Che et al. (2013) (hereafter CGK), who also consider
the problem of assigning resources to budget-constrained agents but do not consider
the possibility that the principal can verify agent budget at a cost. Their optimal mech-
anism can be viewed as a special case of the above optimal mechanism in which the
cost of verification precludes the principal from ever using it. In this case, all agents
receive the same cash transfer, and agents in B + C in Figure 1 receive the same price
discount regardless of their budget (which implies that v∗

1 = v∗
2). Thus, verification af-

fects the optimal mechanism in a simple way: low-budget agents are favored in terms
of higher cash transfers or lower payments. A rough intuition is that high-budget agents
prefer to receive the good with the same probability as low-budget agents but at a higher
price rather than receiving the good with a lower probability but at the same price. Thus,
favoring low-budget agents in terms of the payment saves verification cost.2

Similar to CGK, the optimal mechanism here involves both cash and in-kind trans-
fers (the provision of goods at discount prices). Verification allows the principal to bet-
ter target low-budget agents and to provide them more transfers. If verification is cheap,
the principal subsidizes low-budget agents mainly by offering them more cash trans-
fers, which do not distort allocation. As verification becomes costlier, the difference in
cash transfers declines, but that in in-kind transfers increases. This is because in-kind
transfers are cheaper in terms of verification costs, as they are attractive only to high-
valuation agents. Eventually, when verification becomes sufficiently costly, agents of
both budgets receive the same amount of cash and in-kind transfers, and the optimal
mechanism collapses to that in CGK.

The above findings thus have useful implications for the optimal method of sub-
sidizing financially constrained people. First, it provides an explanation for the
widespread observation that in many transfer programs, governments give benefits in
kind, but they also expend considerable resources verifying income (Currie and Gah-
vari 2008). That is, an in-kind transfer may be an important aspect of transfer programs
when verifying an agent’s financial information is costly. Second, if we interpret veri-
fication cost as a measure of institutional quality (such as bureaucratic efficiency and

2CGK characterize the optimal mechanism in a simple 2×2 model, in which each agent has two possible
valuations and two possible budgets. Therefore, by assumption, region B does not exist in their model, and
only low-budget agents are induced to consume a random amount. They also consider a different form of
budget constraint, which, as will become clear later, does not qualitatively affect the optimal mechanism.
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information availability), the above findings suggest that countries with better institu-
tions should rely more on cash transfers, while those with worse institutions should rely
more on in-kind transfers.

In a direct mechanism, agents report their budgets and valuations, which is unre-
alistic because households are rarely asked to report their valuations in practice. As
the second main result of this paper, I show that the optimal direct mechanism can be
implemented via random assignment with regulated resale and cash subsidy, which is
based on a similar scheme in CGK. The implementation consists of two stages. In the
first stage, agents report only their budgets. The principal then provides them with cash
transfers and the opportunity to participate in a lottery. Those who report low budgets
receive more cash transfers and pay a lower price to enter the lottery. The principal then
assigns the good at random (with uniform probability) among all lottery participants. In
the second stage, a resale market opens, but the principal regulates the market by im-
posing a sales tax. Sellers who report low budgets in the first stage are subject to a higher
sales tax. Finally, only agents who report low budgets are inspected randomly.

An important feature of this implementation is that low-budget agents receive a
higher subsidy for their initial purchase and face more restrictions in the resale mar-
ket. Intuitively, low-valuation agents may also want to participate in the lottery for the
opportunity to sell the good later, which lowers the probability that low-budget high-
valuation agents obtain the good. To reduce arbitrage, the principal imposes restric-
tions on resale. Since low-budget agents pay a lower price to enter the lottery and have
a stronger incentive to engage in arbitrage, they face more restrictions in the resale
market. As I will discuss in Section 4, this feature is present in the affordable housing
program in Singapore. This feature also distinguishes this paper from CGK, in whose
implementation agents of both budgets receive the same subsidy and face the same
restriction. Therefore, CGK cannot explain the observed positive correlation between
subsidies and restrictions in the Singapore program.

Introducing costly verification is technically challenging because it is no longer suf-
ficient to consider “local” incentive compatibility (IC) constraints. Since the IC con-
straints between distant types can also bind, one cannot anticipate a priori the set of
binding IC constraints. Specifically, if only valuations are private information, it is suf-
ficient to consider adjacent IC constraints; if budgets are also private information, but
the principal cannot verify budgets, it is sufficient to consider two one-dimensional de-
viations. These, however, no longer apply when both valuations and budgets are private
information and the principal can verify budgets at a cost. In this case, in addition to ad-
jacent IC constraints of underreporting values, one must consider deviations in which
an agent misreports both dimensions of his private information. As a result, the local
approach commonly used does not work here.

To solve this problem, I develop a novel method. First, I restrict attention to a class
of allocation rules that have sufficient structure to help me track binding IC constraints
and that are also rich enough to approximate any general allocation rule well. Specifi-
cally, I approximate the allocation rule of each budget type using step functions. When
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restricting attention to step functions, the binding IC constraints corresponding to the
underreporting of budgets are between different budget types whose valuations are the
jump discontinuity points of their allocation rules. This structure allows me to write the
optimal verification rule as a function of the possible values and the jump discontinuity
points of the allocation rule. I then solve a modified version of the principal’s problem
in which the allocation rule of low-budget types is restricted to take at most M distinct
values. Finally, because step functions can approximate the optimal allocation rule ar-
bitrarily well when M is sufficiently large, I can obtain a characterization of the optimal
mechanism in the limit.

The remainder of the paper is organized as follows. Section 1.1 discusses related
work. Section 2 presents the model. Section 3 characterizes the direct optimal mecha-
nism. Section 4 provides a simple implementation. Section 5 studies the per-unit price
constraint considered in CGK. All proofs are relegated to the Appendix.

1.1 Related literature

Financially constrained agents This paper is closely related to the literature on mech-
anism design problems with financially constrained agents. There is much work ana-
lyzing the revenue or efficiency of standard auctions when agents are financially con-
strained. Che and Gale (1998, 2006) study the revenue and efficiency of first-price,
second-price, and all-pay auctions. Benoît and Krishna (2001) study multiple-object
auctions and compare sequential and simultaneous ascending auctions. Brusco and
Lopomo (2008) study strategic demand reduction in simultaneous ascending auctions
and show that inefficiencies can arise even if the probability of bidders being budget
constrained goes to zero.

Relatively fewer works study the design of an optimal mechanism. Laffont and
Robert (1996) and Maskin (2000) study the revenue-maximizing and efficiency-maxi-
mizing mechanisms, respectively, when agents have the same commonly known bud-
get. Malakhov and Vohra (2008) study the revenue-maximizing mechanism when one
agent has a commonly known budget constraint, and the other agent is not budget con-
strained. Che and Gale (2000) characterize the revenue-maximizing mechanism when
selling a good to a single buyer with a privately known budget constraint. Pai and Vohra
(2014) generalize Che and Gale (2000) to the case of multiple buyers when a buyer’s val-
uation and budget are drawn independently. Richter (2019), similar to this paper, con-
siders a setting in which there is a unit mass of a continuum of agents and a limited
supply of goods. In Richter (2019), agents have linear preferences for an unlimited sup-
ply of goods. He finds that the surplus-maximizing mechanism features a linear price
for goods with a uniform cash subsidy to all agents.

This paper contributes to the literature by considering the possibility that the prin-
cipal can verify an agent’s budget at a cost.

Costly state verification The paper is related to the costly state verification literature.
The first significant contribution to this series is from Townsend (1979), who studies a
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model with a principal and a single agent. In Townsend (1979), verification is determin-
istic. Border and Sobel (1987) and Mookherjee and Png (1989) generalize it by allowing
random verification. Gale and Hellwig (1985) consider the effects of costly verification
in the context of credit markets. In a recent contribution, Ben-Porath et al. (2014) study
the allocation problem in a costly state verification framework when there are multiple
agents and monetary transfer is not possible. Li (2020) extends Ben-Porath et al. (2014)
to environments in which the principal’s ability to punish an agent is sufficiently lim-
ited. Erlanson and Kleiner (2020) consider a model with costly verification in which a
principal chooses between implementing a new policy and maintaining the status quo.
In the above papers, each agent has only one-dimensional private information. By con-
trast, in this paper, both valuation and budget are private information, and the principal
can verify only budget.

Costless or ex post verification This paper is also related to the literature on costless
or ex post verification. Glazer and Rubinstein (2004) can be interpreted as a model of
a principal and one agent with limited but costless verification and no monetary trans-
fers. Mylovanov and Zapechelnyuk (2017) study a model of multiple agents with costless
verification but sufficiently limited punishments. This paper differs from these earlier
studies in that verification is costly and there are monetary transfers.

2. Model

There is a unit mass of a continuum of agents and a mass S ∈ (0�1) of indivisible goods.
Each agent has two-dimensional private information, a private valuation (v) of the good
and a privately known budget (b). His private valuation can take a continuum of possible
values, that is, v ∈ [v� v] ⊂ R+. For tractability, there are only two possible budgets, that
is, b ∈ {b1� b2}. For ease of exposition, assume b2 > v > b1 > v, so that a high-budget
agent is never budget constrained in an individually rational mechanism. The type of
agent is a pair consisting of his valuation and his budget, t := (v�b), and the type space
is T := [v� v] × {b1� b2}. v and b are independent. Each agent has a high budget with
probability π and a low budget with probability 1 − π. The valuation v is distributed
with cumulative distribution function F and strictly positive density f .

The principal can verify an agent’s budget at a cost k ≥ 0 and can impose a non-
transferable penalty c > 0. Verification perfectly reveals an agent’s budget. The penalty
c is large enough that an agent never finds it optimal to misreport his budget if he is
certain that he will be inspected. For later use, let ρ := k/c. As will become clear, ρ
measures the “effective” verification cost to the principal. The cost to an agent of having
his report verified is zero. This assumption is reasonable if the goods are valuable to
agents and disclosure costs are negligible.

The usual version of the revelation principle (see, e.g., Myerson 1979 and Harris and
Townsend 1981) does not apply to models with verification. However, it is not difficult
to extend the argument to this type of environment.3 Specifically, I show in Appendix A

3See Townsend (1988) and Ben-Porath et al. (2014) for further discussion and the extension of the revela-
tion principle to various verification models, not including the environment considered in this paper. This
result is also related to Green and Laffont (1986), who study implementation with evidence. In their paper,
agents, rather than the principal, bear the burden of proof.
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that attention can be restricted to direct mechanisms without loss of generality. Fur-
thermore, I assume that the principal can only punish an agent who is inspected and
found to have lied about his budget in a direct mechanism. This assumption, however,
is not without loss of generality. Roughly, if we relax this assumption, in an optimal
mechanism, the principal will sometimes punish a low-budget agent without verifying
his budget. In this case, punishment plays a role similar to that of “red tape” in Baner-
jee (1997) and can be used to screen agents with different valuations when their valu-
ation exceeds their ability to pay. I abstract away from this role of punishment in the
paper.

A direct mechanism is thus a triple (a�p�q), where a : T → [0�1] is the allocation
rule, p : T →R is the payment rule, and q : T → [0�1] is the verification rule. Specifically,
for each reported type t ∈ T , a(t) denotes the probability that an agent obtains the good,
p(t) denotes the payment that an agent must make, and q(t) denotes the probability of
verification. In this definition, I implicitly assume that payment rules are deterministic.
This assumption is without loss of generality based on an argument similar to that in
Pai and Vohra (2014). Note further that the mechanisms considered here allow for the
possibility of cross-subsidization.

The utility of an agent who has type t = (v�b) and reports t̂ is

u(t̂� t) :=

⎧⎪⎪⎨
⎪⎪⎩
a(t̂)v −p(t̂) if b̂ = b and p(t̂) ≤ b�

a(t̂)v − q(t̂)c −p(t̂) if b̂ �= b and p(t̂) ≤ b�

−∞ if p(t̂) > b�

That is, an agent has a standard quasilinear utility up to his budget constraint and can-
not pay more than his budget. If an agent who lies about his budget is inspected, he will
receive a penalty (c).

With transferable utilities, the welfare criterion I use is simply utilitarian efficiency.4

Given quasilinear preferences, the total value realized minus the total verification cost
is an equivalent criterion. The principal’s problem is

max
a�p�q

Et
[
a(t)v − q(t)k

]
� (P)

subject to

u(t) := u(t� t) ≥ 0� ∀t ∈ T� (IR)

u(t) ≥ u(t̂� t)� ∀t ∈ T� t̂ ∈{
t̂ ∈ T |p(t̂) ≤ b

}
� (IC)

p(t)≤ b� ∀t ∈ T� (BC)

Et
[
p(t)− q(t)k

] ≥ 0� (BB)

Et
[
a(t)

] ≤ S� (S)

4For why utilitarian efficiency is a reasonable welfare criterion, see Vickrey (1945) and Harsanyi (1955).
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The individual rationality (IR) constraint requires that each agent receives a nonnega-
tive expected payoff from participating in the mechanism. The (IC) constraint requires
that it is weakly better for an agent to report his true type than any other type whose
payment he can afford. The budget constraint (BC) states that an agent cannot be asked
to make a payment larger than his budget b. Note that (BC) follows from (IR). This bud-
get constraint is the same as that found in Che and Gale (2000) and Pai and Vohra (2014)
but different from that in CGK, who adopt a per-unit price constraint. I discuss the dif-
ferences between the two frameworks in Section 5. The principal’s budget balance (BB)
constraint requires that the revenue raised from selling the good must exceed the verifi-
cation cost. (BB) rules out the possibility that the principal can subsidize without limit
and relieve all budget constraints. Finally, the limited supply (S) constraint requires that
the amount of the good assigned cannot exceed the supply. A mechanism (a�p�q) is
feasible if it satisfies (IR), (IC), (BC), (BB), and (S).

I impose the following two assumptions throughout the paper.

Assumption 1. 1−F
f is nonincreasing.

Assumption 2. f is nonincreasing.

Assumption 1 is the standard monotone hazard rate condition, which is often
adopted in the mechanism design literature. This assumption ensures that allocat-
ing more goods to agents with higher valuations rather than to those with lower val-
uations yields higher revenues for the principal. Assumption 2 states that agents are
less likely to have higher valuations than to have lower valuations. As will become clear
later, these two regularity assumptions rule out complicated pooling regions in the op-
timal mechanism. These two assumptions are also imposed in Richter (2019) and Pai
and Vohra (2014) and are satisfied by some commonly used distributions, such as uni-
form distributions, exponential distributions, and left truncations of a normal distribu-
tion.

I briefly discuss some other assumptions of the model here. In the model, I assume
that the penalty is nontransferable for ease of exposition. If the penalty is transferable,
then (BC) also requires that an agent must be able to afford the payment and the penalty.
As will become clear, in the optimal mechanism, the penalty is only used as an incentive
to prevent high-budget agents from under-reporting their budgets. Therefore, the above
constraint will not be binding, and the analysis in this paper still applies. I also assume
that verification is perfect. If verification is imperfect in the sense that the principal
cannot detect a lie with some probability, then it can be viewed as the case where c is
the expected penalty (i.e., the actual penalty times the probability of detection). Finally,
I assume that the principal’s budget and the supply of the good is fixed. In practice, a
government can increase the budget of a transfer program or increase the supply of the
good (e.g., building more flats or providing more hospital beds) at some cost. The model
can be easily modified to accommodate these possibilities. Allowing for the principal to
raise money or increase the supply at some social cost will not qualitatively change the
optimal mechanism.
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2.1 Competitive market

Before proceeding to solve the optimal mechanism, I first illustrate the potential inef-
ficiency caused by the budget constraint by considering the competitive market as an
assignment method. I also allow for cash transfers from the principal subject to the (BB)
constraint.

In a competitive market, the supply is S at any nonnegative price. The demand at
price p ≥ 0 is given by the mass of agents willing and able to pay p after receiving the
cash transfer from the principal. The equilibrium price is the maximum price at which
demand exceeds supply.

Let vFB denote the critical value such that 1 − F(vFB) = S. If all agents with valua-
tions above vFB consume the good, the total value is maximized. Clearly, this first-best
allocation will arise as the competitive market outcome with market-clearing price vFB

if supply is abundant or agents have ample budgets so that low-budget agents are able
to pay vFB.

Proposition 1. The first-best can be attained if and only if b1 + vFB(1 − F(vFB)) ≥ vFB,
where vFB is the solution to 1 − F(vFB) = S and strictly decreasing in S.

Throughout the remainder of the paper, I maintain Assumption 3 so that the first-
best is not attainable. In particular, a competitive market combined with cash transfers
will not maximize welfare.

Assumption 3. b1 + vFB(1 − F(vFB)) < vFB.

To illustrate why the competitive market outcome may be inefficient, consider Fig-
ure 2, where the supply is assumed to be sufficiently limited so that only high-budget
agents are able to pay the competitive market price. As a result, only high-budget
agents with valuations above vCM consume the good, where π[1 − F(vCM)] = S and
b1 < vCM < b2 for S sufficiently small. Clearly, vCM < vFB. In Figure 2, the first-best
allocation would give the good to agents in region B + C, whereas the market assigns it
to those in A + B. Compared with the first-best allocation, in the competitive market,
some low-budget agents with high valuations will not consume the good, while some
high-budget agents with lower valuations will.

Figure 2. Competitive market fails to achieve efficiency.
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3. Optimal mechanism

In this section, I solve for the optimal mechanism. First, the (IC) constraints can be
separated into two categories:

a(v�b)v −p(v�b)≥ a(v̂� b)v −p(v̂� b)� ∀v� v̂� b� (IC-v)

a(v�b)v −p(v�b)≥ a(v̂� b̂)v − q(v̂� b̂)c −p(v̂� b̂)�

∀v�b� (v̂� b̂) ∈ {
(v̂� b̂)|p(v̂� b̂)≤ b

}
� (1)

(IC-v) corresponds to a misreport only of value, and (1) corresponds to a misreport of
both value and budget. By the standard argument, (IC-v) holds if and only if, for all
b, a(v�b) is nondecreasing in v and the envelope condition holds: p(v�b) = va(v�b) −∫ v
v a(ν�b)dν − u(v�b) for all v. The difficulty arises from (1), which allows for the pos-

sibility to underreport or overreport budgets. In what follows, I first consider a relaxed
problem by replacing (1) with the constraint corresponding to the underreporting of
budgets:

a(v�b2)v −p(v�b2) ≥ a(v̂� b1)v − q(v̂� b1)c −p(v̂� b1)� ∀v� v̂� (IC-b)

This relaxation formalizes the intuition that the principal’s main concern is preventing
high-budget agents from falsely claiming to be low-budget agents. Clearly, in the op-
timal solution to the relaxed problem, agents reporting high budget will never be in-
spected (i.e., q(v�b2) = 0 for all v). Later, I verify that the optimal mechanism of the
relaxed problem automatically satisfies the IC constraints corresponding to the overre-
porting of budgets. In other words, a solution to the relaxed problem also solves the
original problem.

To summarize, the principal’s relaxed problem is

max
a�p�a

Et
[
a(t)v − q(t)k

]
� (P ′)

subject to (IR), (IC-v), (IC-b), (BC), (BB), and (S).

3.1 No verification

Before solving the general model, I first consider the benchmark case in which the prin-
cipal does not verify agent budgets (i.e., q = 0), which is optimal if the verification cost is
sufficiently high. In this case, as will become clear in the discussion below, it is sufficient
to consider two one-dimensional deviations, which greatly simplifies the analysis. Al-
though some of the results may be familiar, it helps to highlight the technical challenge
arising from introducing costly verification. Denote the principal’s problem in this case
by PNV and the corresponding relaxed problem ignoring the overreporting of budgets
by P ′

NV .
Observe first that in this case, (IC-b) holds if and only if (IC-v) holds and a high-

budget agent has no incentives to misreport only his budget:

a(v�b2)v −p(v�b2) ≥ a(v�b1)v −p(v�b1)� ∀v� (2)
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To see this, note that

a(v�b2)v −p(v�b2)≥ a(v�b1)v −p(v�b1)≥ a(v̂� b1)v −p(v̂� b1)�

where the first inequality follows from (2) and the second follows from (IC-v). Thus, it is
sufficient to consider the two one-dimensional deviations: misreport only the value and
misreport only the budget. The above inequality states that if a type-(v�b2) agent has no
incentive to report (v�b1), then he has no incentive to report (v̂� b1). This argument does
not hold when there is verification because it is possible that types (v�b1) and (v̂� b1) are
inspected with different probabilities. Instead, to determine the set of binding (IC-b)
constraints, one must identify for each low-budget type (v̂� b1), the high-budget type
who benefits most from mimicking (v̂� b1), which depends on the allocation rule. As a
result, one cannot anticipate, a priori, which (IC-b) constraint binds. I will discuss this
in more detail in Section 3.2.

Theorem 1 characterizes the optimal direct mechanism in the absence of verifica-
tion.

Theorem 1. Suppose the principal does not verify agent budgets. The optimal mecha-
nism of PNV satisfies the following properties: There exist two thresholds v∗ and v∗∗ with
v∗ ≤ v∗∗.

(i) Low-valuation agents of both budgets do not receive the good but do receive posi-
tive cash transfers:

a(v�b)= 0 and p(v�b)= u∗ > 0 ∀v < v∗�

(ii) High-budget intermediate-valuation agents and low-budget agents with interme-
diate or high valuations receive the good with probability a∗ ∈ (0�1] at a discount
price: {

a(v�b2) = a∗ and p(v�b2)= b1 ∀v ∈ [v∗� v∗∗)
a(v�b1) = a∗ and p(v�b1)= b1 ∀v ∈ [

v∗� v
]
�

(iii) High-budget high-valuation agents receive the good at the full price:

a(v�b2) = 1 and p(v�b2) = b1 + (
1 − a∗)v∗∗ ∀v ≥ v∗∗�

The optimal mechanism obtained here shares features similar to those found in
CGK and Pai and Vohra (2014). First, similar to CGK, low-valuation agents receive the
same positive cash transfer regardless of their budgets. Second, similar to Pai and Vohra
(2014), high-budget agents whose valuations are in [v∗� v∗∗] are pooled with low-budget
agents whose valuations are at least v∗. They are both offered a random assignment at a
discount price. To understand this pooling result, consider two agents with the same val-
uation v but different budgets b2 > b1. Then, (IC-b) implies that as long as agent (v�b2)’s
payment is less than b1, he must receive the good with the same probability as (v�b1).
By a similar argument, they must make the same payment as well. Their consumption
is distorted downward to ensure IC for high-budget high-valuation agents who pay a
higher price to finance the cash transfer.
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3.2 The general case

I now turn to the general model with costly verification. Using the envelope condition,
(IC-b) becomes the following: for all v and v̂,

u(v�b2)+
∫ v

v
a(ν�b2)dν ≥ u(v�b1)+ a(v̂� b1)(v − v̂)− q(v̂� b1)c

+
∫ v̂

v
a(ν�b1)dν� (IC-b)

First, for each v̂, I identify the type of high-budget agents whose gain from falsely claim-
ing to be type-(v̂� b1) is the largest. (IC-b) holds if and only if for each v̂, q(v̂� b1)c ≥
supv �(v� v̂), where

�(v� v̂) := u(v�b1)− u(v�b2)−
∫ v

v
a(ν�b2)dν + a(v̂� b1)(v − v̂)+

∫ v̂

v
a(ν�b1)dν

is what type-(v�b2) expects to gain by reporting (v̂� b1) in the absence of punishment.
Since ∂�(v� v̂)/∂v = −a(v�b2)+ a(v̂� b1) is nonincreasing in v, �(v� v̂) is concave in v and
achieves its maximum at v = vd(v̂), where

vd(v̂) := inf
{
v|a(v�b2) ≥ a(v̂� b1)

}
�

If the allocation rules for both budgets are continuous in v, the high-budget agents who
benefit most from mimicking (v̂� b1) are those who obtain the goods with the same prob-
ability as type-(v̂� b1). This point is illustrated by Figure 3, which plots an allocation rule
for high-budget agents, a(·� b2), and an allocation rule for low-budget agents, a(·� b1), as
a function of their valuations v. Consider type-(v�b2) who receives the good with prob-
ability a(v�b2) < a(v̂� b1). Then his expected gain from reporting (v̂� b1) can be rewritten
as

�(v� v̂)= �(v̂)−
∫ v

v̂
a(ν�b2)dν + a(v̂� b1)(v − v̂)� (3)

where �(v̂) is a constant depending only on v̂. In (3), the second term is the information
rent that type-(v�b2) loses (region A), and the last term is his gain due to the increased
probability of receiving the good (region A + B). Thus, the expected gain (region B)
increases as v increases as long as a(v�b2) < a(v̂� b1) and is maximized when a(v�b2) =
a(v̂� b1).

Since the principal’s objective function is strictly decreasing in q, the optimal verifi-
cation rule satisfies

q(v̂� b1) = 1
c

max
{
0��

(
vd(v̂)� v̂

)}
� (4)

Note that from the principal’s perspective, the “effective” cost of inspecting type (v̂� b1)

is ρ = k/c since kq(v̂� b1) = ρmax{0��(vd(v̂)� v̂)}. Note also that vd(·) depends on the al-
location rule. As a result, one cannot anticipate, a priori, which (IC-b) constraint binds.
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Figure 3. The set of binding (IC-b) constraints.

Furthermore, it is not only among local types that (IC-b) constraints are frequently bind-
ing. These difficulties are inherent in all multidimensional problems, and as a result, the
existing approaches in the mechanism design literature do not apply to this problem.5

To track the binding (IC-b) constraints, I solve the principal’s problem by first ap-
proximating the allocation rule using step functions. An allocation rule is a step allo-
cation rule if for each b, a(·� b) is a step function. I can further narrow down the focus
to a special class of step allocation rules. Let M ≥ 2 be an integer. A step allocation
rule a is an M-step allocation rule if it has the following structure: Let {vm1 }M+1

m=0 with

v = v0
1 < v1

1 < · · · < vM1 = v and {vm2 }M+1
m=0 with v ≤ v0

2 ≤ v1
2 ≤ · · · ≤ vM2 ≤ v be two partitions

of the interval [v� v], respectively. For i = 1�2 and m= 1� � � � �M ,

a(v�bi)= am for v ∈ [vm−1
i � vmi )�

where 0 ≤ a1 < a2 < · · · < aM ≤ 1, v0
1 = v, vM1 = v, a(v�b2) = 0 for v < v0

2, and a(v�b2) = 1
for v ≥ vM2 . Roughly speaking, if a is an M-step allocation rule, a(·� b1) and a(·� b2) take
the same set of M possible values, and in addition, a(·� b2) can take the values of 0 or 1.

It is useful to focus on M-step allocation rules since they make it easy to track the
set of binding (IC-b) constraints. To see this, consider v ∈ [vm−1

1 � vm1 ); the high-budget
agents who benefit most from misreporting type (v�b1) are those with valuation vd(v) =
vm−1

2 (i.e., those who also obtain the good with probability am). Therefore, the optimal
verification rule satisfies q(v�b1) = qm for all v ∈ [vm−1

1 � vm1 ) and all m= 1� � � � �M , where

qm = 1
c

max

{
0�u(v�b1)− u(v�b2)+

m∑
j=1

(
aj − aj−1)(vj−1

2 − v
j−1
1

)}
� (5)

where a0 = 0 and aM+1 = 1. In other words, it is sufficient to consider (IC-b) between
(vm−1

1 � b1) and (vm−1
2 � b2) for m = 1� � � � �M . This set of (IC-b) constraints can be tracked

by tracking the jump discontinuity points of the allocation rule, making the problem
tractable.

5See Rochet and Stole (2003) for a survey on the multidimensional mechanism design problem.
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Figure 4. Proof sketch of Lemma 1.

Lemma 1 shows that it is without loss of generality to focus on M-step allocation
rules among all step allocation rules.

Lemma 1. If a is an optimal step allocation rule of P ′, then a is an M-step allocation rule
for some integer M ≥ 2.

To prove Lemma 1, I prove something stronger. Consider a feasible allocation rule
where a(·� b1) is a nondecreasing step function and a(·� b2) is any nondecreasing func-
tion. Suppose that there exists a payment rule and a verification rule to be used in con-
junction with the allocation rule such that the resulting mechanism is feasible. Then we
can construct another feasible mechanism whose allocation rule is an M-step allocation
rule and strictly improves welfare. The construction follows a weight-shifting argument
and is illustrated in Figure 4. In Figure 4, a(·� b1) (the dash–dotted line) takes three dis-
tinct values {a1� a2� a3} with 0 = a1 < a2 < a3 < 1, and a(·� b2) is a continuous increasing
function (the dotted curve). Let v̂m2 be such that a(v̂m2 � b2) = am for m = 1�2�3. For each
m, reduce the probability that high-budget agents in [v̂m2 � vm2 ] receive the good to am and
increase the probability that those in [vm2 � v̂m+1

2 ] receive the good to am+1. The choice
of vm2 is uniquely determined such that the supply to high-budget agents in [v̂m2 � v̂m+1

2 ]
remains unchanged. The resulting new a(·� b2) (the solid line) is a step function, taking
four distinct values {a1� a2� a3�1}. As a result, the new allocation rule is a 3-step allo-
cation rule. Clearly, this change strictly improves welfare. Redefine the payment rule
using the envelope condition, and let the verification rule remain unchanged. It can
be verified that the new mechanism is feasible if f satisfies the two regularity assump-
tions. In particular, Assumption 1 ensures that the revenue goes up so that (BB) holds.
Under both mechanisms, the binding (IC-b) constraints are from (v̂m2 � b2) to (v�b1) for
v ∈ [vm−1

1 � vm1 ). Assumption 2 ensures that the information rent accrued to (v̂m2 � b2) goes
up so that (IC-b) holds.

Consider the principal’s problem (P ′) with two modifications:

max
a�p�q

Et
[
a(t)v − q(t)k

]
� (P ′(M�d))
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subject to (IR), (IC-v), (IC-b), (BC), (S),

a is an M ′-step allocation rule for some M ′ ≤M�

E
[
p(t)− q(t)k

] ≥ −d� (BB-d)

The first modification restricts attention to M-step allocation rules for which the num-
ber of steps is bounded from above. The second modification is to relax the BB con-
straint by d ≥ 0 and is made for technical reasons. As will become clear below, an opti-
mal mechanism of P ′ can be approximated arbitrarily well by a feasible mechanism of
P ′(M�d) for M sufficiently large and d sufficiently small. In what follows, I first solve
P ′(M�d) for all M ≥ 2 and d > 0 and then take M → ∞ and d → 0.

3.2.1 Solve P ′(M�d) In this section, I solve P ′(M�d). Let V (M�d) denote the value of
P ′(M�d). The main result of this section is showing that V (M�d)= V (2� d) for all M ≥ 2
and d ≥ 0. In other words, for all M ≥ 2, the optimal allocation rule of P ′(M�d) is a 2-
step allocation rule. Readers who are not interested in the technical details can skip this
section with little loss of continuity.

First, remember that the optimal verification rule of P ′(M�d) is given by (5). The
optimization problem is nonlinear due to the presence of the maximum operator. To
make the problem linear, I show the following.

Lemma 2. Under an optimal mechanism of P ′(M�d), for any v ∈ [v� v], some high-budget
type exists that weakly prefers to falsely claim to be the low-budget type (v�b1) in the ab-
sence of verification.

Hence, the optimal verification rule satisfies q(v�b1) = qm for all v ∈ [vm−1
1 � vm1 ) and

all m= 1� � � � �M , where

qm = 1
c

[
u(v�b1)− u(v�b2)+

m∑
j=1

(
aj − aj−1)(vj−1

2 − v
j−1
1

)]
� (6)

Using (6), P ′(M�d) can be written as a linear problem in terms of u(v�b1), u(v�b2), and
the allocation rule a.

Next, I show that the optimal verification probability is nondecreasing in a low-
budget agent’s reported value.

Lemma 3. In an optimal mechanism of P ′(M�d), v1
2 − v1

1 ≥ 0. If V (M�d) > V (M − 1� d)
for M ≥ 3, then

vM−1
2 − vM−1

1 > · · · > v1
2 − v1

1 ≥ 0�

As a result, the verification probability in an optimal mechanism of P ′(M�d) is non-
decreasing in the reported value, that is, qM > · · · > q2 ≥ q1 ≥ 0.

To understand this monotonicity result, consider a low-budget agent and a high-
budget agent, both receiving the good with probability am. Let pm

1 and pm
2 denote their
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a

p2 −p1

am−1 am am+1

pm−1
2 −pm−1

1

pm
2 −pm

1

pm+1
2 −pm+1

1

Figure 5. Illustration of Lemma 3.

payments, respectively. The difference in their payments, to which the verification prob-
ability is proportional, is

pm
2 −pm

1 = u(v�b1)− u(v�b2)+
m∑
j=1

(
aj − aj−1)(vj−1

2 − v
j−1
1

)
�

Figure 5 graphs the payment difference against the assignment probability. The three
bold-faced points correspond to the assignment probabilities am−1, am, and am+1,
respectively. Note that the difference in marginal prices ([(pm+1

2 − pm
2 ) − (pm+1

1 −
pm

1 )]/(am+1 − am) = vm2 − vm1 ) is represented by the slope of the line connecting two ad-
jacent points. By Lemma 3, this difference increases with the probability of assignment.
Hence, the linear envelope of the three points is convex. Intuitively, low-budget agents
with higher valuations are more likely to receive the good and are also more likely to be
budget constrained. The optimal mechanism subsidizes them by prescribing a larger
difference in marginal prices.

Using the monotonicity result, I can further simplify the principal’s problem. For
fixed jump discontinuity points vmi s, P ′(M�d) is linear in u(v�b1), u(v�b2), and ams.
Hence, an optimal solution can be obtained at an extreme point of the feasible region.
The monotonicity of the verification probability implies that in addition to the mono-
tonicity constraints on the ams, there are only finitely many other constraints binding.
As a result, for an M sufficiently large, there are finitely many distinct ams in an optimal
mechanism. More formally, V (M�d) = V (M − 1� d) for M sufficiently large. Under As-
sumptions 1 and 2, I can further prove that the optimal allocation rule of P ′(M�d) is a
2-step allocation rule, that is, V (M�d) = V (M − 1� d) for M ≥ 3. To obtain a rough in-
tuition for this result, consider an M-step allocation rule. We can reduce the number of
steps by reducing the assignment probability for agents with relatively low values and
increasing that for agents with relatively high values. This change clearly improves the
total value. It also raises the revenue by Assumption 1 and relaxes the budget constraint
by Assumption 2. However, this change can make the underreporting of budgets more
attractive and increase the total verification cost. The two regularity assumptions ensure
that the benefit exceeds the cost.
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Lemma 4. For all M ≥ 2 and d ≥ 0, the optimal allocation rule of P ′(M�d) is a 2-step
allocation rule, that is, V (M�d)= V (2� d).

3.2.2 Optimal mechanism In this section, I characterize the optimal mechanism of the
original problem (P) by proving that an optimal mechanism of P ′(2�0) is also an optimal
mechanism of P . In other words, the optimal allocation rule is a 2-step allocation rule.

Intuitively, an allocation rule can be well approximated by some step allocation rule.
We know from Lemma 1 that an optimal step allocation rule of P ′ must be an M-step
allocation rule for some integer M . Thus, an optimal allocation rule of P ′ can be well
approximated by some M-step allocation rule. Let V denote the value of P ′. Then, for
any d > 0 there exists M(d) > 0 such that for all M >M(d),

V − V (2� d) = V − V (M�d)≤ (1 −π)(1 + ρ)
E[v]
M

�

where the equality holds by Lemma 4. By the standard argument, one can show that
V = V (2�0) by first letting M go to infinity and then letting d go to zero. That is, an
optimal mechanism of P ′(2�0) also solves P ′. It is easy to verify that an optimal solution
to P ′(2�0) satisfies the (IC) constraints corresponding to the over-reporting of budgets
and, therefore, solves P .

Finally, the optimal mechanism is unique. To understand this result, suppose on
the contrary, that there are two optimal mechanisms. Since P ′ is linear in (a�p�q), the
convex combination of these two optimal mechanisms would also be optimal. However,
the convex combination of two 2-step allocation rules is not a 2-step allocation rule in
general, so it cannot be optimal. Hence, there exists a unique optimal mechanism.

Theorem 2. The unique optimal mechanism of P satisfies the following properties:
There exist three thresholds v∗

1(ρ), v∗
2(ρ), and v∗∗

2 (ρ) with v∗
1(ρ) ≤ v∗

2(ρ) ≤ v∗∗
2 (ρ).

(i) Low-valuation agents of both budgets do not receive the good but do receive cash
transfers: {

a(v�b2)= 0 and p(v�b2) = −u∗
2(ρ) ∀v < v∗

2(ρ)

a(v�b1)= 0 and p(v�b1) = −u∗
1(ρ) ∀v < v∗

1(ρ)
�

where low-budget agents receive a higher cash transfer, that is, u∗
1(ρ) > u∗

2(ρ) ≥ 0.

(ii) High-budget intermediate-valuation agents and low-budget agents with interme-
diate or high valuations receive the good with probability a∗(ρ) ∈ (0�1] at a dis-
count price:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a(v�b2) = a∗(ρ) and p(v�b2) = −u∗
2(ρ)+ a∗(ρ)v∗

2(ρ) > b1

∀v ∈ [v∗
2(ρ)� v

∗∗
2 (ρ))

a(v�b1) = a∗(ρ) and p(v�b1) = −u∗
1(ρ)+ a∗(ρ)v∗

1(ρ) = b1

∀v ∈ [
v∗

1(ρ)� v
]

�

where low-budget agents receive a deeper discount.
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(iii) High-budget high-valuation agents receive the good at the full price:

a(v�b2) = 1 and p(v�b2) = −u∗
2(ρ)+ a∗(ρ)v∗

2(ρ)+ (
1 − a∗(ρ)

)
v∗∗

2 (ρ)

∀v ≥ v∗∗(ρ)�

Only low-budget agents are inspected randomly, and the inspection probability increases
with the probability of assignment:

q(v�b1) =

⎧⎪⎨
⎪⎩

1
c

[
u∗

1(ρ)− u∗
2(ρ)

]
if v < v∗

1(ρ)

1
c

[
u∗

1(ρ)− u∗
2(ρ)+ a∗(ρ)

(
v∗

2(ρ)− v∗
1(ρ)

)]
if v ≥ v∗

1(ρ)
�

Comparing the optimal mechanism with that in Theorem 1, verification affects the
optimal mechanism in a simple way: low-budget agents are favored in terms of higher
cash transfers or lower payments. This result can be illustrated via Figure 6. In each graph
of Figure 6, the solid line represents the allocation rule for high-budget agents and the
dashed line represents the allocation rule for low-budget agents. The mechanism in
Figure 6a favors low-budget agents in terms of the probability of assignment. We can
increase the probability of assignment and the payment for high-budget intermediate-
valuation agents as in Figure 6b so that low-budget agents are favored in terms of the
payment. Consider type (v�b1) with v ≥ v∗

1 . In Figure 6a, type (v∗∗
2 � b2) has the strongest

incentive to report (v�b1), and its gain is equal to the difference in cash transfers plus
the difference in information rents (area A). In Figure 6b, type (v∗

2� b2) has the strongest
incentive to report (v�b1), and its gain is equal to the difference in cash transfers plus
area B. Assumption 2 ensures that area A is larger than area B as high-budget agents
receive more information rents in the latter case. Hence, favoring low-budget agents in
terms of the payment improves allocative efficiency while saving verification cost.

Similar to the case without verification, the optimal mechanism involves both cash
transfers and in-kind transfers (the provision of goods at discount prices). Measure

Figure 6. Favoring low-budget agents in terms of payment improves allocative efficiency while
saving verification cost. (a) Favor low-budget agents in terms of the probability of assignment.
(b) The optimal mechanism favors low-budget agents in terms of payment.
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the value of an in-kind transfer by the additional price paid by high-budget high-
valuation agents to receive the good (i.e., p(v�b2) − p(v�b2) = a∗v∗

2 + (1 − a∗)v∗∗
2 ).6

Then, the in-kind transfer received by high-budget intermediate-valuation agents is
a∗[a∗v∗

2 + (1 − a∗)v∗∗
2 ] − a∗v∗

2 , and that received by low-budget agents with intermedi-
ate or high valuations is a∗[a∗v∗

2 + (1 − a∗)v∗∗
2 ] − a∗v∗

1 . Thus, low-budget agents receive
more in-kind transfers as well as more cash transfers. This is in contrast to the case with-
out verification, where agents receive the same amount of cash transfers and the same
amount of in-kind transfers regardless of their budgets.

To understand the difference, consider how the change in the effective verification
cost (ρ) would affect the optimal mechanism. High-budget agents are tempted to un-
derreport their budgets precisely because of the differences in cash and in-kind trans-
fers. To sustain IC, all agents reporting low budgets are inspected with some probability.
Intuitively, as verification becomes more costly (i.e., ρ increases), the principal wants
to inspect agents less frequently to save verification cost. To maintain IC, the principal
must reduce the differences in cash and in-kind transfers. Proposition 2 shows that for
sufficiently large ρ, agents of both budget types receive the same amount of cash and
in-kind transfers, no one is inspected, and Theorem 2 reduces to Theorem 1.

Proposition 2. (i) If ρ≥ π/(1−π), then agents of both budgets receive the same amount
of cash transfers, that is, u∗

1 = u∗
2. (ii) If ρ ≥ π/[S(1 − π)], then agents of both budgets

also receive the same amount of in-kind transfers, that is, v∗
1 = v∗

2 . In this case, no one is
inspected.

Figure 7 plots the impact of an increase in ρ on the difference in cash transfers
(u∗

2 − u∗
1) and the difference in in-kind transfers (a∗(v∗

2 − v∗
1)) for a numerical example.

Figure 7. The impact of an increase in the effective verification cost (ρ) on the differences in
cash and in-kind transfers. In this numerical example, v is uniformly distributed on [0�1], S = 0�4,
b1 = 0�2, π = 0�5, and ρ ∈ [0�0�2].

6In the literature, the value of an in-kind transfer is often measured by its market value. Since the paper
does not explicitly model the private market, I use the additional price paid by high-budget high-valuation
agents as a proxy.
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Interestingly, the difference in in-kind transfers does not change monotonically. As ρ

increases, the difference in cash transfers declines, but the difference in in-kind trans-
fers first increases and then decreases. This is because although cash transfer is more
efficient in the sense that it does not introduce any distortion in allocation, it is more ex-
pensive in terms of the verification cost, as it is attractive to everyone regardless of their
valuations. By contrast, an in-kind transfer is attractive only to agents whose valuations
are sufficiently high. Therefore, the principal optimally subsidizes low-budget agents
by offering them more in-kind transfers instead of more cash transfers as ρ increases.
The differences in cash and in-kind transfers reflect the amount of benefits accrued to
low-budget agents. Thus, as discussed in the Introduction, the above findings have use-
ful implications for the optimal method of subsidizing financially constrained people.
First, in-kind transfers may be employed when verifying the financial information of an
agent is costly. Second, countries with higher verification costs or worse institutions
should rely more on in-kind transfers.

4. Implementation

The optimal direct mechanism has a simple implementation, which exhibits some of
the features of the affordable housing program in Singapore.

Consider the following random assignment with regulated resale and cash subsidy
(RwRRC) scheme, which is based on the RwRRC scheme in CGK. The scheme consists
of two stages.

1. In the first stage, agents report their budgets. Those who report a low budget are
inspected with probability (u∗

1 −u∗
2)/c. The principal offers cash transfers u∗

1 to low-
budget agents and u∗

2 to high-budget agents. The principal also offers agents the
choice of participating in a lottery over the good. To enter the lottery, low-budget
agents pay a price of p∗

1 := a∗v∗
1 and high-budget agents pay a price of p∗

2 := a∗v∗
2 .

The principal distributes the good at random with a uniform probability among all
participants. Each participant receives the good with a probability of no more than
a∗.

2. In the second stage, a resale market opens, in which agents can purchase goods
from one another (and from the principal if not all goods are distributed in the first
stage). The sales taxes are τ∗

1 := v∗∗
2 − v∗

1 for low-budget sellers and τ∗
2 := v∗∗

2 − v∗
2 for

high-budget sellers. Agents who report low budgets in the first stage and choose
not to sell the good they received in the second stage are inspected with probability
(v∗

2 − v∗
1)/c.

Under the RwRRC scheme, lottery participants expect to receive the good with
probability a∗ in equilibrium, and the unique equilibrium price in the resale market is
ps = v∗∗

2 . Then, in equilibrium, an agent makes zero profit by participating in the lottery
and selling the good he received. Let v̂ be such that a∗[1 −F(v̂)] = S. It is an equilibrium
in which in the first stage, all agents report their budgets truthfully and opt into the lot-
tery when their valuations exceed v̂. In the second stage, all low-budget recipients with
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valuations below v∗
1 and all high-budget recipients with valuations below v∗

2 will sell the
good. Resale demand comprises those high-budget agents who did not receive the good
initially but who are willing to pay ps = v∗∗

2 . The equilibrium outcome coincides with
that of the optimal direct mechanism.

Proposition 3. The optimal direct mechanism is implemented by RwRRC with u∗
1, u∗

2,
v∗

1 , v∗
2 , v∗∗

2 , and a∗ given by Theorem 2.

The RwRRC scheme exhibits some of the features of Singapore’s affordable housing
program. In Singapore, the affordable housing program is administered by the HDB,
which develops and sells new flats to eligible buyers and regulates an open market in
which buyers can directly purchase resale flats from existing owners.7 To purchase an
HDB flat, a household needs to meet several eligibility conditions. The HDB also offers
financial aid to buyers in the form of housing grants. For example, for a 3-room flat, the
monthly household income ceiling for an eligible buyer is 12,000 SGD, and a first-time
buyer whose monthly household income is no more than 8,500 SGD can receive a hous-
ing grant of up to 80,000 SGD. Applicants for HDB flats are required to submit documents
to verify their eligibility. Any person who provides false information is liable on convic-
tion to a fine not exceeding 5,000 SGD or to imprisonment for a term not exceeding 6
months or to both.8

Similar to the RwRRC scheme, the allocation of HDB flats consists of two stages.
The HDB periodically launches sales of new flats, and a lottery is held to decide the
allocation of flats among the applicants. Once sold, HDB resale flats can be purchased
on the open market at any time, and these flats are usually more expensive. This resale
market is regulated. Unlike the RwRRC scheme, owners of HDB flats do not pay sales
taxes, but they must have resided in their flats for some time, referred to as the minimum
occupation period (MOP), before they are eligible to resell or sublet their flats.

If we interpret the sales tax in the RwRRC scheme as a form of restriction on resale,
low-budget agents who receive more financial aid in their initial purchases are subject
to more severe restrictions on resale. This feature is also present in the Singapore pro-
gram. In the Singapore program, the length of MOP positively depends on the finan-
cial aid received. If a flat is purchased with a housing grant, the owner is required to
reside in their flat for at least 5 years before they can resell or sublet. By contrast, a
flat purchased without a housing grant is subject to no MOP requirement or a shorter
one.9,10

7In Singapore, 90% of HDB flats are owned by their residents. The remainder are rental flats for people
who cannot afford to purchase the cheapest form of HDB flats despite financial aid.

8The HDB of Singapore. (2019, May 10). [Resale procedures of HDB flats]. Retrieved from https://www.
hdb.gov.sg/cs/infoweb/e-resale/resale-procedures

9The HDB of Singapore. (2018, Jan 1). [Eligibility conditions for flat owners to sell their HDB flats].
Retrieved from http://www.hdb.gov.sg/cs/infoweb/residential/selling-a-flat/eligibility

10The HDB of Singapore. (2018, Jan 8). [Eligibility conditions for flat owners to rent out their HDB flats].
Retrieved from http://www.hdb.gov.sg/cs/infoweb/residential/renting-out-a-flat-bedroom/renting-out
-your-flat/eligibility

https://www.hdb.gov.sg/cs/infoweb/e-resale/resale-procedures
http://www.hdb.gov.sg/cs/infoweb/residential/selling-a-flat/eligibility
http://www.hdb.gov.sg/cs/infoweb/residential/renting-out-a-flat-bedroom/renting-out-your-flat/eligibility
http://www.hdb.gov.sg/cs/infoweb/residential/renting-out-a-flat-bedroom/renting-out-your-flat/eligibility
https://www.hdb.gov.sg/cs/infoweb/e-resale/resale-procedures
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Another difference between the Singapore program and the RwRRC scheme is that
in the Singapore program, an applicant pays only if they win the lottery and purchase
a flat. By contrast, agents in the RwRRC scheme pay for the lottery ticket regardless of
whether they receive the good, which some may consider unrealistic. I discuss this issue
in Section 5.

5. Per-unit price constraint

In the optimal direct mechanism, agents make payments to the principal regardless of
whether they receive the good, which some may consider unrealistic.11 The question,
then, is whether this direct mechanism can be implemented by a mechanism in which
agents pay if and only if they receive the good and the payment is within their bud-
gets. Such an implementation is impossible if a∗ < 1. To guarantee that such an imple-
mentation always exists, we can replace (BC) with the following per-unit price constraint
considered by CGK:

p(t) ≤ a(t)b� ∀t = (v�b)� (PC)

The optimal mechanisms in these two settings share qualitatively similar features.
The key observation is that for an mechanism to be incentive compatible, the per-

unit price paid by an agent must be nondecreasing in his reported value. Thus, similar
to (BC), (PC) holds if and only if it holds for low-budget agents with the highest possi-
ble valuation. Using this observation, the results of Theorem 1 extend and characterize
the optimal mechanism when the principal does not verify agent budgets. This result
extends the results in Section 3 of CGK by allowing for an agent’s valuation to take a
continuum of possible values.

If the principal can verify an agent’s budget at a cost, then by an approximation ar-
gument similar to that in Section 3.2, I can prove that the optimal allocation rule is an
M-step allocation rule for some integer 2 ≤ M ≤ 5. However, it may not be a 2-step
allocation rule even if we impose the regularity conditions. Intuitively, with the more
stringent (PC) constraint, more benefits accrue to low-budget agents, especially those
with low valuations, making it more attractive to underreport budgets and making ver-
ification more costly. Thus, the principal may benefit from increasing the number of
steps, which saves verification cost. To restore the optimality of a 2-step allocation rule,
I need an additional assumption ruling out in-kind transfers to agents with sufficiently
low valuations, that is, a(v�b) = 0 for all v < b1. Note that this assumption is satisfied if
either (BC) holds or the principal does not verify agent budgets.12

This optimal mechanism can be implemented by a modified RwRRC scheme, in
which a lottery participant in the first stage pays only if he receives the good. If ver-
ification is sufficiently costly or the principal does not verify agent budgets, then this
implementation is identical to the RwRRC scheme in CGK.

11Such an “all-pay” feature is common in optimal mechanisms with financially constrained agents. For
example, in Laffont and Robert (1996), Maskin (2000), and Pai and Vohra (2014), the optimal mechanism
can be implemented by an all-pay or a modified all-pay auction.

12A more detailed analysis can be found in the working paper version of this paper (Li 2017).
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Appendix A: The revelation principle

Consider a general mechanism that consists of a message space M and a quadruplet
(a�p�q�θ), where a : M → [0�1] maps a message to the probability that an agent obtains
the good, p : M →R maps a message to the payment an agent must make, q : M → [0�1]
maps a message to the probability of verification and θ : M × {n�b1� b2} → [0�1] denotes
the punishment rule. In particular, θ(m� n) denotes the probability that an agent is pun-
ished if his budget is not inspected and θ(m� b) denotes the probability that an agent is
punished if his budget is inspected and revealed to be b.

Given a mechanism, an agent with type t = (v�b) chooses m ∈ M to maximize his
expected payoff:

a(m)v −p(m)− (
1 − q(m)

)
θ(m� n)c − q(m)θ(m� b)c

subject to the constraint that p(m) ≤ b. Let m∗(t) denote the solution to the agent’s
payoff maximization problem. For ease of exposition, I assume that m∗(t) is determin-
istic, but it is easy to accommodate mixed strategies. If the agent’s problem has multi-
ple solutions, then some deterministic selection rule is used. Consider a new mecha-
nism with message space T . Let a∗(t) = a(m∗(t)), p∗(t) = p(m∗(t)), q∗(t) = a(m∗(t)),
and θ∗(t� ·) = θ(m∗(t)� ·). Then the new mechanism is incentive compatible. Clearly, an
agent has no incentive to report t̂ such that p∗(t̂) > b. For t̂ such that p∗(t̂) ≤ b, we have

a
(
m∗(t)

)
v −p

(
m∗(t)

) − (
1 − q

(
m∗(t)

))
θ
(
m∗(t)�n

)
c − q

(
m∗(t)

)
θ
(
m∗(t)� b

)
c

≥ a
(
m∗(t̂)

)
v −p

(
m∗(t̂)

) − (
1 − q

(
m∗(t̂)

))
θ
(
m∗(t̂)� n

)
c − q

(
m∗(t̂)

)
θ
(
m∗(t̂)� b

)
c�

The inequality simply follows from the fact that m∗(t) maximizes type t’s payoff in the
original mechanism. Furthermore, the principal’s payoff in the truth telling equilibrium
is as same as that in the original mechanism.

Hence, it is without loss of generality to focus on direct mechanisms in which M = T .
In the main body of the paper, I assume that the principal can only punish an agent who
is inspected and found to have lied about his budget. That is, θ(t�n) = 0, θ(t� b̂) = 1 if
b̂ �= b, and θ(t� b̂) = 0 if b̂ = b.

Appendix B: Omitted proofs

This section is organized as follows. Appendix B.1 proves Proposition 1. Appendix B.2
consists of proofs in Section 3.1. Appendix B.3 consists of proofs in Section 3.2. Ap-
pendix B.4 proves Proposition 3.

B.1 Proof of Proposition 1

Let vFB denote the critical value such that 1 −F(vFB) = S. If b1 + vFB(1 −F(vFB)) ≥ vFB,
then the first-best outcome will arise as the competitive market outcome with market-
clearing price vFB and a uniform cash transfer of vFB − b1 to all agents.

Next, we prove the “only if” part. If the first-best is achieved, the allocation rule
satisfies: a(v�b) = 1 if v ≥ vFB and a(v�b) = 0 otherwise. By the standard argument, (IC)
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implies that p(v�b) = vFB − u(v�b) if v ≥ vFB and p(v�b) = −u(v�b) otherwise. Since
p(v�b1) ≤ b1 by (BC), and the total verification cost is zero in the first-best, u(v�b2) =
u(v�b1)≥ vFB − b1. Then (BB) holds only if

b1 + vFB
(
1 − F

(
vFB

)) ≥ vFB�

B.2 No verification

To prove Theorem 1, I first prove Lemmas 5 and 6. Lemma 5 says that in an optimal
mechanism, agents receive the same amount of cash transfers regardless of their bud-
gets. One implication of Lemma 5 is that in an optimal mechanism agents receive posi-
tive cash transfers regardless of their budgets.

Lemma 5. Suppose the principal does not verify agent budgets. In an optimal mechanism
of P ′

NV , u(v�b1) = u(v�b2).

Proof. Let (a�p) be an optimal mechanism of P ′
NV . Using the envelope condition, (2)

can be rewritten as

u(v�b2)+
∫ v

v
a(ν�b2)dν ≥ u(v�b1)+

∫ v

v
a(ν�b1)dν� ∀v� (7)

If v = v, (7) reduces to u(v�b2) ≥ u(v�b1). Suppose, on the contrary, that u(v�b2) >

u(v�b1). Then we can construct another feasible mechanism (a∗�p∗) strictly improving
welfare.

We construct the new mechanism by giving low-budget agents more cash transfers
and fewer goods. Specifically, let u∗(v�b1) = u∗(v�b2) = (1 − π)u(v�b1) + πu(v�b2). Let
v− and v+ be such that

v− = sup
{
v|

∫ v

v
a(ν�b1)dν + u(v�b1)− (1 −π)u(v�b1)−πu(v�b2)≤ 0

}
� and

v+ = sup
{
v ≥ v−|(1 −π)

∫ v−

v
a(ν�b1)f (ν)dν −π

∫ v

v−

[
a(v�b2)− a(ν�b2)

]
f (ν)dν ≥ 0

}
�

Assume without loss of generality that

(1 −π)

∫ v−

v
a(ν�b1)f (ν)dν −π

∫ v+

v−

[
a
(
v+� b2

) − a(ν�b2)
]
f (ν)dν = 0� (8)

We construct the new allocation rule by reducing the assignment probability for low-
budget agents whose valuations are below v− and increasing that for high-budget agents
whose valuations lie in [v−� v+]. Let

a∗(v�b1) =
{

0 if v ≤ v−

a(v�b1) if v > v− � and
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a∗(v�b2) =

⎧⎪⎪⎨
⎪⎪⎩
a(v�b2) if v ≤ v−

a
(
v+� b2

)
if v− < v ≤ v+

a(v�b2) if v > v+
�

Clearly, a∗(v�b) is nondecreasing in v for both b. Letp∗(v�b)= va∗(v�b)−∫ v
v a∗(ν�b)dν−

u∗(v�b) for all v and b. By construction, the new mechanism (a∗�p∗) satisfies (IR), (IC-v),
and (S), and strictly improves welfare. In what follows, I verify that (a∗�p∗) satisfies (BC),
(BB), and (IC-b) in turn.

By the definition of v−,

p∗(v�b1)= va∗(v�b1)−
∫ v

v
a∗(ν�b1)dν − u∗(v�b1)

≤ va(v�b1)−
∫ v

v−
a(ν�b1)dν −

∫ v−

v
a(ν�b1)dν − u(v�b1)= p(v�b1)≤ b1�

Hence, the new mechanism (a∗�p∗) satisfies (BC).
Using the envelope condition,

E
[
p∗(v�b)

] = − (1 −π)u∗(v�b1)−πu∗(v�b2)+E

[(
v − 1 − F(v)

f (v)

)
a∗(v�b)

]

≥ − (1 −π)u(v�b1)−πu(v�b2)+E

[(
v − 1 − F(v)

f (v)

)
a(v�b)

]
= E

[
p(v�b)

]
�

where the inequality holds by Assumption 1. Therefore, (a∗�p∗) satisfies (BB).
Define

�(v) := u∗(v�b2)+
∫ v

v
a∗(ν�b2)dν − u∗(v�b1)−

∫ v

v
a∗(ν�b1)dν� ∀v�

To show that (IC-b) holds, it suffices to show that (a∗�p∗) satisfies (7), that is, �(v) ≥ 0 for
all v. For all v ≤ v−, since u∗(v�b2) = u∗(v�b1) and a∗(ν�b2) ≥ 0 = a∗(ν�b1) for all ν ≤ v,
�(v) ≥ 0. For v = v+,

�
(
v+) = u∗(v�b2)+

∫ v+

v
a∗(ν�b2)dν − u∗(v�b1)−

∫ v+

v
a∗(ν�b1)dν

≥ u(v�b2)+
∫ v−

v
a(ν�b2)dν +

∫ v+

v−
a
(
v+� b2

)
dν − u(v�b1)

−
∫ v+

v−
a(ν�b1)dν − 1

π

∫ v+

v−
a(ν�b1)dν

≥ u(v�b2)+
∫ v−

v
a(ν�b2)dν +

∫ v+

v−
a
(
v+� b2

)
dν − u(v�b1)

−
∫ v+

v−
a(ν�b1)dν −

∫ v+

v−
a(ν�b1)dν −

∫ v+

v−

[
a
(
v+� b2

) − a(v�b2)
]

dv
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= u(v�b2)+
∫ v+

v
a(ν�b2)dν − u(v�b1)−

∫ v+

v
a(v�b1)dν ≥ 0�

where the first inequality holds by the definition of v−. To see that the second inequality
holds, observe that

π

∫ v+

v−

[
a
(
v+� b2

) − a(v�b2)
]

dv

≥ π

∫ v+

v−

[
a
(
v+� b2

) − a(v�b2)
]
f (v)

1
f
(
v−) dv

= (1 −π)

∫ v−

v
a(v�b1)f (v)

1
f
(
v−) dv

≥ (1 −π)

∫ v−

v
a(v�b1)dv�

where the first and the third lines hold by Assumption 2 and the second line holds by
(8). Since a∗(v�b) = a(v�b) for all v ≥ v+ and b, �(v) ≥ 0 for all v ≥ v+. Finally, �′(v) =
a(v+� b2)− a(v�b1) for v ∈ (v−� v+), which is nonincreasing. Hence, �(v) is concave over
(v−� v+). Since �(v−) ≥ 0 and �(v+) ≥ 0, we have �(v) ≥ 0 for all v ∈ (v−� v+). Hence,
(IC-b) holds.

Thus, (a∗�p∗) is a feasible mechanism and strictly improves welfare, which contra-
dicts the optimality of (a�p). Hence, it must be that u(v�b2) = u(v�b1).

Lemma 6 says that for any given v, an optimal mechanism on average allocates more
resources to high-budget agents whose valuations are below v than to low-budget agents
whose valuations are below v.

Lemma 6. Suppose the principal does not verify agent budgets. In an optimal mechanism
of P ′

NV , the allocation rule satisfies

∫ v

v
a(ν�b2)f (ν)dν ≥

∫ v

v
a(ν�b1)f (ν)dν� ∀v� (9)

Proof. Given Lemma 5, (7) becomes∫ v

v
a(ν�b2)dν ≥

∫ v

v
a(ν�b1)dν� ∀v� (10)

For each b ∈ {b1� b2}, we have∫ v

v
a(ν�b)f (ν)dν = f (v)

∫ v

v
a
(
ν′� b

)
dν′ −

∫ v

v

[∫ ν

v
a
(
ν′� b

)
dν′

]
f ′(ν)dν�

Since f ≥ 0 and −f ′ ≥ 0, (9) follows from (10).
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Proof of Theorem 1. We first solve the optimal mechanism of P ′
NV and then verify

that the optimal mechanism satisfies the (IC) constraints corresponding to the overre-
porting of budgets.

Let (a�p) be a feasible mechanism that satisfies the conditions in Lemmas 5 and 6.
Consider another mechanism (a∗�p∗) constructed as follows.

Let v̂ = inf{v|a(v�b2) ≥ a(v�b1)}. Note that v̂ = v if a(v�b1) > a(v�b2) and v̂ = v if
a(v�b1) ≤ a(v�b2). Let a∗ be as follows:

a∗(v�b1)=
{
a(v�b1) if v ≥ v∗

1�

0 otherwise�

where v∗
1 satisfies a(v�b1)[1 − F(v∗

1)] = ∫ v
v a(v�b1)f (v)dv, and

a∗(v�b2) =

⎧⎪⎪⎨
⎪⎪⎩

1 if v ≥ v∗∗
2 �

a(v�b1) if v∗
2 ≤ v < v∗∗

2 �

0 otherwise�

where v∗
2 ≤ v̂ satisfies a(v�b1)[F(v̂) − F(v∗

2)] = ∫ v̂
v a(v�b2)f (v)dv and v∗∗

2 ≥ v̂ satisfies

1 − F(v∗∗
2 ) + a(v�b1)[F(v∗∗

2 ) − F(v̂)] = ∫ v
v̂ a(v�b2)f (v)dv. Let p∗(v�b) = va∗(v�b) −∫ v

v a∗(ν�b)dν − u(v�b) for all v and b. By construction, the new mechanism (a∗�p∗)
satisfies (IR), (IC-v), and (S), and strictly improves welfare unless a∗ = a almost surely.
By Assumption 1, (a∗�p∗) satisfies (BB). By Assumption 2, (a∗�p∗) satisfies (BC):

p(v�b1)−p∗(v�b1)

=
∫ v∗

1

v

[
a(v�b1)− a(v�b1)

]
dv +

∫ v

v∗
1

[
0 − a(v�b1)

]
dv

≥
∫ v∗

1

v

[
a(v�b1)− a(v�b1)

]
f (v)

1
f
(
v∗

1
) dv +

∫ v

v∗
1

[
0 − a(v�b1)

]
f (v)

1
f
(
v∗

1
) dv

= 1
f
(
v∗

1
){

a(v�b1)
[
1 − F

(
v∗

1
)] −

∫ v

v
a(v�b1)f (v)dv

}
= 0�

Next, we verify that (a∗�p∗) also satisfies (IC-b). It suffices to show that v∗
1 ≥ v∗

2 . If
v∗

1 ≥ v̂, then v∗
1 ≥ v∗

2 . If v∗
1 < v̂, then

a(v�b1)
[
F(v̂)− F

(
v∗

1
)] =

∫ v̂

v
a(v�b1)f (v)dv +

∫ v

v̂

[
a(v�b1)− a(v�b1)

]
f (v)dv

≤
∫ v̂

v
a(v�b1)f (v)dv

≤
∫ v̂

v
a(v�b2)f (v)dv = a(v�b1)

[
F(v̂)− F

(
v∗

2
)]
�
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where the second inequality holds by Lemma 6. In this case, it must be that a(v�b1) > 0
since otherwise a(v�b1) = 0 ≤ a(v�b2), which implies v̂ = v ≤ v∗

1 . Hence, v∗
2 ≤ v∗

1 . Thus,
(a∗�p∗) satisfies (IC-b).

Therefore, (a∗�p∗) is a feasible mechanism and strictly improves welfare unless
a∗ = a almost surely. Suppose v∗

2 < v∗
1 , it is welfare improving to increase v∗

2 and re-
duce v∗

1 without affecting any constraint. Hence, it is optimal to set v∗
1 = v∗

2 = v∗. Let
v∗∗ = v∗∗

2 ≥ v∗ and u∗ = u(v�b1) = u(v�b2). Then, the optimal allocation rule must

satisfy a(v�b1) = χ{v≥v∗} min{u∗+b1
v∗ �1} and a(v�b2) = χ{v≥v∗} min{u∗+b1

v∗ �1} + χ{v≥v∗∗}(1 −
min{u∗+b1

v∗ �1}), where χV is the indicator function of set V . Let p(v�b) = va(v�b) −∫ v
v a(ν�b)dν − u∗ for all v and b. This completes the characterization of the optimal

mechanism of P ′
NV . Finally, it is easy to see that low-budget agents have no incentive

to overreport their budget.

B.3 The general case

In this section, I first prove Lemmas 1 and 2. Appendix B.3.1 proves Lemma 3, Ap-
pendix B.3.2 proves Lemma 4, and Appendix B.3.3 contains the proof of Theorem 2.
Appendix B.3.4 contains the proof of Proposition 2.

Proof of Lemma 1. Let (a�p�q) be a feasible mechanism of (P ′). Suppose a(·� b1) is a
non-decreasing step function. That is, there exist an integer M ≥ 2, v = v0

1 < v1
1 < · · · <

vM1 = v and 0 ≤ a1 < a2 < · · · < aM ≤ 1 such that a(v�b1) = am if v ∈ [vm−1
1 � vm1 ) for m =

1� � � � �M . Consider another mechanism (a∗�p∗� q∗) constructed as follows.
Let v̂m2 = inf{v|a(v�b2) ≥ am} for m = 1� � � � �M , v̂0

2 = 0 and v̂M+1
2 = v. For each m =

1� � � � �M + 1, there exists vm−1
2 ∈ [v̂m−1

2 � v̂m2 ] such that

∫ v̂m2

v̂m−1
2

a(v�b2)f (v)dv = am−1[F(
vm−1

2

) − F
(
v̂m−1

2

)] + am
[
F

(
v̂m2

) − F
(
vm−1

2

)]
� (11)

where a0 = 0 and aM+1 = 1. Let a∗(v�b2) = am for v ∈ [vm−1
2 � vm2 ) and m = 1� � � � �M ,

a∗(v�b2) = 0 for v < v0
2, and a∗(v�b2) = 1 for v ≥ vM2 . Note that if a1 = 0, then v0

2 = v.
If aM = 1, then any vM2 ∈ [v̂M2 � v] satisfies (11), and in this case let vM2 = vM−1

2 . Let
a∗(·� b1) = a(·� b1), p∗(v�b) = va∗(v�b) − ∫ v

v a∗(ν�b)dν − u(v�b) for all v and b, and
q∗(·� b1) = q(·� b1). By construction, (a∗�p∗� q∗) satisfies (IR), (IC-v), (BC), and (S), and
strictly improves welfare unless a∗ = a almost surely. By Assumption 1, (a∗�p∗� q∗) sat-
isfies (BB).

Next, we verify that (a∗�p∗� q∗) satisfies (IC-b). Since (a�p�q) satisfies (IC-b),
q(v�b1) ≥ qm for v ∈ (vm−1

1 � vm1 ) for m= 1� � � � �M , where

qm = 1
c

max
{

0�u(v�b1)− u(v�b2)−
∫ v̂m2

v
a(ν�b2)dν

+ am
(
v̂m2 − vm−1

1

) +
∫ vm−1

1

v
a(ν�b1)dν

}
�
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Hence, it suffices to show that, for m= 1� � � � �M ,

qmc ≥ u(v�b1)− u(v�b2)−
∫ vm−1

2

v
a∗(ν�b2)dν

+ am
(
vm−1

2 − vm−1
1

) +
∫ vm−1

1

v
a(ν�b1)dν� (12)

By Assumption 2,

∫ v̂m2

vm−1
2

[
a∗(ν�b2)− a(ν�b2)

]
dν ≥

∫ v̂m2

vm−1
2

[
a∗(ν�b2)− a(ν�b2)

]
f (ν)

1

f
(
vm−1

2

) dν

=
∫ vm−1

2

v̂m−1
2

[
a(ν�b2)− a∗(ν�b2)

]
f (ν)

1

f
(
vm−1

2

) dν

≥
∫ vm−1

2

v̂m−1
2

[
a(ν�b2)− a∗(ν�b2)

]
dν�

Therefore, for m= 1� � � � �M ,

∫ v̂m2

v̂m−1
2

[
a∗(ν�b2)− a(ν�b2)

]
dν ≥ 0� (13)

Then we have

RHS of (12)

= u(v�b1)− u(v�b2)−
∫ v̂m2

v
a∗(ν�b2)dν + am

(
v̂m2 − vm−1

1

) +
∫ vm−1

1

v
a(ν�b1)dν

≤ u(v�b1)− u(v�b2)−
∫ v̂m2

v
a(ν�b2)dν + am

(
v̂m2 − vm−1

1

) +
∫ vm−1

1

v
a(ν�b1)dν

≤ qmc�

where the equality holds since a∗(v�b2) = am for v ∈ (vm−1
2 � v̂m2 ), and the first inequality

holds by (13).
Thus, (a∗�p∗� q∗) is a feasible mechanism, and strictly improves welfare unless a∗ =

a almost surely. Observe that a∗ is an M-step allocation rule.

Proof of Lemma 2. To prove Lemma 2, I first prove that under an optimal mechanism
of P ′(M�d), either no high-budget type has incentives to mimic low budget type, or
for any low-budget type, some high-budget type exists that weakly prefers to mimic the
low-budget type in the absence of verification.

Lemma 7. An optimal mechanism of P ′(M�d) satisfies one of the following two condi-
tions:
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(C1) For all m= 1� � � � �M ,

u(v�b1)− u(v�b2)+
m∑
j=1

(
aj − aj−1)(vj−1

2 − v
j−1
1

) ≥ 0� (14)

(C2) For all m= 1� � � � �M ,

u(v�b1)− u(v�b2)+
m∑
j=1

(
aj − aj−1)(vj−1

2 − v
j−1
1

) ≤ 0�

Clearly, if (C2) holds, the optimal verification rule is q = 0. In this case, the optimal
mechanism of (P ′) given in Section 3.1 is also a feasible mechanism of P ′(M�d) and
satisfies (C1) with equality. Thus, an optimal mechanism of P ′(M�d) satisfies (C1).

Proof of Lemma 7. The proof is by contradiction. Let (a�p�q) be an optimal mech-
anism of P ′(M�d). Assume without loss that a is an M-step allocation rule, and q is
given by (5). Suppose (a�p�q) satisfies neither (C1) nor (C2). Then we show that one
can construct another feasible mechanism (a∗�p∗� q∗), which strictly improves welfare.
This contradicts the optimality of (a�p�q). Therefore, (a�p�q) must satisfy either (C1)
or (C2).

We break the proof into three cases.
Case 1. Suppose u(v�b1)− u(v�b2)+ a1(v0

2 − v0
1) < 0. Let m> 1 be such that vm

′−1
2 −

vm
′−1

1 ≤ 0 for all m′ <m and vm−1
2 − vm−1

1 > 0. If there is no such m, then (a�p�q) satisfies
(C2). Define v̂ ∈ [vm−1

1 � vm−1
2 ] as follows. If F(vm1 ) > πF(vm−1

2 ) + (1 − π)F(vm−1
1 ), let v̂

be such that F(v̂) = πF(vm−1
2 ) + (1 − π)F(vm−1

1 ); otherwise, let v̂ = vm1 . Clearly, v̂ ≤ vm1 .
Consider two different cases in turn: (i) (am − am−1)(v̂ − vm−1

1 ) ≥ π[u(v�b2)− u(v�b1)−
a1(v0

2 − v0
1)] and (ii) (am − am−1)(v̂− vm−1

1 ) < π[u(v�b2)− u(v�b1)− a1(v0
2 − v0

1)]. In each
of these two cases, we construct a new mechanism by increasing the cash transfers to
low-budget agents while reducing the amount of goods allocated to them.

(i) Suppose (am − am−1)(v̂ − vm−1
1 ) ≥ π[u(v�b2)− u(v�b1)− a1(v0

2 − v0
1)]. Let ṽm−1

1 ∈
[vm−1

1 � v̂] be such that

(
am − am−1)(ṽm−1

1 − vm−1
1

) = π
[
u(v�b2)− u(v�b1)− a1(v0

2 − v0
1
)]
�

Let ṽm−1
2 ∈ [v̂� vm−1

2 ] be such that π[F(vm−1
2 ) − F(ṽm−1

2 )] = (1 − π)[F(ṽm−1
1 ) − F(vm−1

1 )].
Let ṽm

′
i = vm

′
i for i = 1�2 and m′ �= m − 1. Let a∗(v�b1) = am−1 if v ∈ (vm−1

1 � ṽm−1
1 ) and

a∗(v�b1) = a(v�b1) otherwise. Let a∗(v�b2) = am if v ∈ [ṽm−1
2 � vm−1

2 ) and a∗(v�b2) =
a(v�b2) otherwise. Let u∗(v�b1) = (1 − π)u(v�b1) + πu(v�b2) − πa1(v0

2 − v0
1) and

u∗(v�b2) = (1 − π)u(v�b1) + πu(v�b2) + (1 − π)a1(v0
2 − v0

1). Let p∗(v�b) = va∗(v�b) −∫ v
v a∗(ν�b)dν−u∗(v�b) for all v and b. By construction, p∗(v�b1) = p(v�b1)≤ b1. Hence,

(BC) is satisfied. Let q∗(v�b1) = q(v�b1) for all v. By construction, (a∗�p∗� q∗) also satis-
fies (IR), (IC-v), and (S) and strictly improves welfare. By Assumption 1, (BB) holds.
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Next, we verify that (a∗�p∗� q∗) satisfies (IC-b). For v̂ ∈ [ṽm′−1
1 � ṽm

′
1 ), m′ = 1� � � � �m− 1,

(IC-b) holds since

u∗(v�b1)− u∗(v�b2)+
m′∑
j=1

(
aj − aj−1)(ṽj−1

2 − ṽ
j−1
1

) ≤ 0 ≤ q∗(v̂� b1)c�

For v̂ ∈ [ṽm′−1
1 � ṽm

′
1 ), m′ =m� � � � �M , we have q∗(v̂� b1)= qm. Then (IC-b) holds since

u∗(v�b1)− u∗(v�b2)+
m′∑
j=1

(
aj − aj−1)(ṽj−1

2 − ṽ
j−1
1

)

=
m′∑
j=1

(
aj − aj−1)(vj−1

2 − v
j−1
1

) + (
am − am−1)(ṽm−1

2 − ṽm−1
1 − vm−1

2 + vm−1
1

)

− a1(v0
2 − v0

1
)

≤
m′∑
j=1

(
aj − aj−1)(vj−1

2 − v
j−1
1

) +
(
am − am−1)(vm−1

1 − ṽm−1
1

)
π

− a1(v0
2 − v0

1
)

=
m′∑
j=1

(
aj − aj−1)(vj−1

2 − v
j−1
1

) + u(v�b1)− u(v�b2)= qm
′
c�

where the inequality holds since by Assumption 2,

vm−1
2 − ṽm−1

2 ≥ 1

f
(
ṽm−1

2

)[
F

(
vm−1

2

) − F
(
ṽm−1

2

)]

≥1 −π

π

1

f
(
ṽm−1

1

)[
F

(
ṽm−1

1

) − F
(
vm−1

1

)] ≥ 1 −π

π

(
ṽm−1

1 − vm−1
1

)
�

Thus, (a∗�p∗� q∗) is feasible and strictly improves welfare.
(ii) Suppose (am−am−1)(v̂−vm−1

1 ) < π[u(v�b2)−u(v�b1)+a1(v0
2 −v0

1)]. Let ṽm−1
1 = v̂.

Let ṽm−1
2 ∈ [v̂� vm−1

2 ] be such that π[F(vm−1
2 ) − F(ṽm−1

2 )] = (1 − π)[F(ṽm−1
1 ) − F(vm−1

1 )].
Let ṽm

′
i = vm

′
i for i = 1�2, and m′ �= m − 1. Let a∗(v�b1) = am−1 if v ∈ (vm−1

1 � ṽm−1
1 ), and

a∗(v�b1) = a(v�b1) otherwise. Let a∗(v�b2) = am if v ∈ [ṽm−1
2 � vm−1

2 ) and a∗(v�b2) =
a(v�b2) otherwise. Let u∗(v�b1) = u(v�b1) + (am − am−1)(v̂ − vm−1

1 ) and u∗(v�b2) =
u(v�b2)− (1 −π)(am − am−1)(v̂ − vm−1

1 )/π. Then u∗(v�b2) > u∗(v�b1)+ a1(v0
2 − v0

1) ≥ 0.
Let p∗(v�b) = va∗(v�b) − ∫ v

v a∗(ν�b)dν − u∗(v�b) for all v and b. Let q∗(v�b1) = q(v�b1)

for all v. By a similar argument to that of case (i), (a∗�p∗� q∗) is feasible and strictly
improves welfare.

Case 2. Suppose u(v�b1) − u(v�b2) + a1(v0
2 − v0

1) ≥ 0. Let m ≥ 2 be such that (14)
holds for all m′ <m and

u(v�b1)− u(v�b2)+
m∑
j=1

(
aj − aj−1)(vj−1

2 − v
j−1
1

)
< 0�
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If there is no such m, then (a�p�q) satisfies (C1). It must be the case that vm−1
2 < vm−1

1 .
Suppose vm−1

2 < vM2 in Case 2. We discuss the case of vM2 = vm−1
2 < vm−1

1 in Case 3.
Let m∗ ≥ m be the smallest m′ such that vm

′
2 > vm−1

2 . That is, vm
∗

2 > vm−1
2 and vm

′
2 =

vm−1
2 for m′ = m� � � � �m∗ − 1. Let v̂ ∈ [vm−1

2 � vm−1
1 ] be such that

u(v�b1)− u(v�b2)+
m−1∑
j=1

(
aj − aj−1)(vj−1

2 − v
j−1
1

) + (
am − am−1)(v̂− vm−1

1

) = 0�

Consider two different cases in turn: (i) (am
∗ − am−1)[F(v̂) − F(vm−1

2 )] ≤ (am
∗+1 −

am
∗
)[F(vm∗

2 ) − F(v̂)] and (ii) (am
∗ − am−1)[F(v̂) − F(vm−1

2 )] > (am
∗+1 − am

∗
)[F(vm∗

2 ) −
F(v̂)].

(i) Suppose (am
∗ − am−1)[F(v̂)−F(vm−1

2 )] ≤ (am
∗+1 − am

∗
)[F(vm∗

2 )−F(v̂)]. Let ṽm
∗

2 ∈
[v̂� vm∗

2 ) be such that(
am

∗ − am−1)[F(v̂)− F
(
vm−1

2

)] = (
am

∗+1 − am
∗)[

F
(
vm

∗
2

) − F
(
ṽm

∗
2

)]
� (15)

Let ṽm
′

2 = v̂ for m′ = m − 1� � � � �m∗ − 1 and ṽm
′

2 = vm
′

2 if m′ < m − 1 or m′ > m∗. Let
ṽm

′
1 = vm

′
1 for all m′. Let a∗(v�b1) = a(v�b1). Let a∗(v�b2) = am−1 if v ∈ (vm−1

2 � ṽm−1
2 ),

a∗(v�b2) = am
∗+1 if v ∈ [ṽm∗

2 � vm
∗

2 ), and a∗(v�b2) = a(v�b2) otherwise. Let p∗(v�b) =
va∗(v�b)−∫ v

v a∗(ν�b)dν−u(v�b) for all v and b. Clearly, p∗(v�b1) = p(v�b1) ≤ b1. Hence,
(BC) is satisfied. Let q∗(v�b1) = q(v�b1) for all v. By construction, (a∗�p∗� q∗) satisfies
(IR), (IC-v), and (S), and strictly improves welfare. By Assumption 1, (BB) holds.

Next, we show that (a∗�p∗� q∗) satisfies (IC-b). That is, for m′ = 1� � � � �M

u(v�b1)− u(v�b2)+
m′∑
j=1

(
aj − aj−1)(ṽj−1

2 − ṽ
j−1
1

) ≤ qm
′
c�

This is trivial for m′ ≤ m. For m′ = m + 1� � � � �m∗, we have ṽm
′−1

2 = ṽm−1
2 ≤ vm−1

1 < vm
′−1

1 .
Hence,

u(v�b1)−u(v�b2)+
m∑
j=1

(
aj −aj−1)(vj−1

2 −v
j−1
1

)+
m′∑

j=m+1

(
aj −aj−1)(ṽj−1

2 −v
j−1
1

)
< 0 ≤ qm

′
c�

Finally, consider m′ ≥m∗ + 1. It suffices to show that

u(v�b1)− u(v�b2)+
m∗+1∑
j=1

(
aj − aj−1)(ṽj−1

2 − ṽ
j−1
1

)

≤ u(v�b1)− u(v�b2)+
m∗+1∑
j=1

(
aj − aj−1)(vj−1

2 − v
j−1
1

)
�

which holds if and only if(
am

∗ − am−1)(ṽm−1
2 − vm−1

2

) ≤ (
am

∗+1 − am
∗)(

vm
∗

2 − ṽm
∗

2
)
�

The above inequality holds by (15) and Assumption 2.
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Thus, (a∗�p∗� q∗) is feasible and strictly increases welfare.
(ii) Suppose (am

∗ − am−1)[F(v̂)−F(vm−1
2 )] > (am

∗+1 − am
∗
)[F(vm∗

2 )−F(v̂)]. Let ṽm−1
2

be such that(
am

∗ − am−1)[F(
ṽm−1

2

) − F
(
vm−1

2

)] = (
am

∗+1 − am
∗)[

F
(
vm

∗
2

) − F
(
ṽm−1

2

)]
�

Let ṽm
′

2 = ṽm−1
2 for m′ =m� � � � �m∗ and ṽm

′
2 = vm

′
2 if m′ <m−1 or m′ >m∗. Let ṽm

′
1 = vm

′
1 for

all m′. Let a∗(v�b1) = a(v�b1). Let a∗(·� b2) such that a∗(v�b2) = am−1 if v ∈ (vm−1
2 � ṽm−1

2 ),
a∗(v�b2) = am

∗+1 if v ∈ [ṽm−1
2 � vm

∗
2 ), and a∗(v�b2) = a(v�b2) otherwise. Let p∗(v�b) =

va∗(v�b)− ∫ v
v a∗(ν�b)dν−u(v�b) for all v and b. Let q∗(v�b1) = q(v�b1) all v. By a similar

argument to that of case (ii), (a∗�p∗� q∗) is feasible and strictly improves welfare.
Case 3. Suppose u(v�b1) − u(v�b2) + a1(v0

2 − v0
1) ≥ 0 and vM2 = vm−1

2 < vm−1
1 , where

m≥ 2 is such that (14) holds for allm′ <m and u(v�b1)−u(v�b2)+∑m
j=1(a

j−aj−1)(v
j−1
2 −

v
j−1
1 ) < 0.

Let ṽm−1
1 = vm−1

1 − ε for some ε > 0 and ṽm
′

2 = vm−1
2 + δ for m′ = m− 1� � � � �M , where

δ > 0 is such that

(1 −π)
(
am − am−1)[F(

vm−1
1

) − F
(
ṽm−1

1

)] = π
(
1 − am−1)[F(

ṽm−1
2

) − F
(
vm−1

2

)]
�

Let ṽm
′

i = vm
′

i for m′ �=m− 1 and i = 1�2. Let ε > 0 be such that

min

{
ṽm−1

1 − vm−2
1 �u(v�b1)− u(v�b2)+

m∑
j=1

(
aj − aj−1)(ṽj−1

2 − ṽ
j−1
1

)} = 0�

Since u(v�b1) − u(v�b2) + ∑m−1
j=1 (aj − aj−1)(ṽ

j−1
2 − ṽ

j−1
1 ) ≥ 0, we have ṽm

′
2 ≤ ṽm

′
1 for all

m′ ≥ m − 1. Let a∗(v�b2) = am−1 if v ∈ (vm−1
2 � ṽm−1

2 ), a∗(v�b1) = am if v ∈ [ṽm−1
1 � vm−1

1 )

and a∗(v�b)= a(v�b) otherwise. Let p∗(v�b)= va∗(v�b)− ∫ v
v a∗(ν�b)dν−u(v�b) for all v

and b. Since a∗(v�b1) = a(v�b1) and a∗(v�b1) ≥ a(v�b1) for all v, we have p∗(v�b1) ≤
p(v�b1) ≤ b1. Hence, (BC) is satisfied. Let q∗(v�b1) = qm if v ∈ [ṽm−1

1 � ṽm1 ) for m =
1� � � � �M . Then the change of the verification cost is

k
(
qm − qm−1)[F(

vm−1
1

) − F
(
ṽm−1

1

)]
�

Since qm = 0 ≤ qm−1, the verification cost is reduced. Furthermore, by Assumption 1,
the revenue increases. Hence, (BB) holds. By construction, (a∗�p∗� q∗) also satisfies
(IR), (IC-v), and (S) and strictly improves welfare.

Next, we show that (IC-b) is satisfied. That is, for m′ = 1� � � � �M ,

u(v�b1)− u(v�b2)+
m′∑
j=1

(
aj − aj−1)(ṽj−1

2 − ṽ
j−1
1

) ≤ qm
′
c�

This is trivial for m′ <m. For m′ ≥m, this holds since

u(v�b1)− u(v�b2)+
m′∑
j=1

(
aj − aj−1)(ṽj−1

2 − ṽ
j−1
1

) ≤ 0 = qm
′
c�

Thus, (a∗�p∗� q∗) is feasible and strictly increases welfare.
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B.3.1 Proof of Lemma 3 We prove Lemma 3 by proving Lemmas 8 and 9.

Lemma 8. An optimal mechanism of P ′(M�d) satisfies that v1
2 ≥ v1

1.

Lemma 9. Suppose V (M�d) > V (M − 1� d) for some M ≥ 3. An optimal mechanism of
P ′(M�d) satisfies that vM−1

2 − vM−1
1 > · · · > v1

2 − v1
1.

Proof of Lemma 8. Let (a�p�q) be an optimal mechanism of P ′(M�d). Assume with-
out loss that a is an M-step allocation rule, and q is given by (6). Suppose, on the con-
trary, that v1

2 < v1
1. Since (14) holds for m = 2, it must be that u(v�b1)− u(v�b2)+ a1(v0

2 −
v0

1) > 0. Hence, it is either (i) u(v�b1) > u(v�b2) ≥ 0, or (ii) a1 > 0 and v0
2 > v0

1. In what
follows, we consider these two cases in turn. In each case, we show that one can con-
struct another feasible mechanism (a∗�p∗� q∗), which strictly improves welfare. This
contradicts the optimality of (a�p�q). Therefore, v1

2 ≥ v1
1.

(i) Suppose u(v�b1) > u(v�b2) ≥ 0. Let ε > 0 be sufficiently small. Let ṽ1
1 = v1

1 −
πε/(1 −π) and ṽ1

2 > v1
2 be such that (1 −π)[F(v1

1)−F(ṽ1
1)] = π[F(ṽ1

2)−F(v1
2)]. For ε > 0

sufficiently small, ṽ1
2 ≤ ṽ1

1. By Assumption 2,

ṽ1
2 − v1

2 ≤ [
F

(
ṽ1

2
) − F

(
v1

2
)] 1

f
(
ṽ1

2
)

≤ 1 −π

π

[
F

(
v1

1
) − F

(
ṽ1

1
)] 1

f
(
ṽ1

1
)

≤ 1 −π

π

(
v1

1 − ṽ1
1
) = ε�

Let u∗(v�b2) = u(v�b2)+(a2 −a1)ε and u∗(v�b1)= u(v�b1)−π(a2 −a1)ε/(1−π). For ε >
0 sufficiently small, u∗(v�b1) ≥ u∗(v�b2) > 0. Let a∗(v�b1) = a2 if v ∈ [ṽ1

1� v
1
1), a∗(v�b2) =

a1 if v ∈ (v1
2� ṽ

1
2) and a∗(v�b)= a(v�b) otherwise. Letp∗(v�b)= va∗(v�b)−∫ v

v a∗(ν�b)dν−
u∗(v�b) for all v and b. By construction, p∗(v�b1) = p(v�b1). Hence, (BC) is satisfied. Let
q∗(v�b1) = q(v�b1) for all v. By construction, (a∗�p∗� q∗) satisfies (IR), (IC-v), and (S),
and strictly improves welfare. By Assumption 1, (a∗�p∗� q∗) satisfies (BB).

Finally, we show that (a∗�p∗� q∗) satisfies (IC-b). Let ṽmi = vmi for i = 1�2, and m �= 1.
For v̂ < ṽ1

1, q∗(v̂� b1)= q1 and we have

u∗(v�b1)− u∗(v�b2)+ a1(ṽ0
2 − ṽ0

1
) = u(v�b1)− u(v�b2)+ a1(v0

2 − v0
1
) −

(
a2 − a1)ε

1 −π

≤ q1c�

For v̂ ∈ (ṽ1
1� v

2
1), we have

u∗(v�b1)− u∗(v�b2)+ a1(ṽ0
2 − ṽ0

1
) + (

a2 − a1)(ṽ1
2 − ṽ1

1
)

= u(v�b1)− u(v�b2)+ a1(v0
2 − v0

1
) + (

a2 − a1)(v1
2 − v1

1
)

−
(
a2 − a1)ε

1 −π
+ (

a2 − a1)(ṽ1
2 − v1

2 + v1
1 − ṽ1

1
)
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≤ u(v�b1)− u(v�b2)+ a1(v0
2 − v0

1
) + (

a2 − a1)(v1
2 − v1

1
)

−
(
a2 − a1)ε

1 −π
+ (

a2 − a1)(ε+ πε

1 −π

)

= u(v�b1)− u(v�b2)+ a1(v0
2 − v0

1
) + (

a2 − a1)(v1
2 − v1

1
)

≤ min
{
q2c�q1c

} = q∗(v̂� b1)c�

where the first inequality holds since ṽ1
2 − v1

2 ≤ ε and the last inequality holds since v1
2 <

v1
1. For m ≥ 3, q∗(v̂� b1) = qm for v̂ ∈ [vm−1

1 � vm1 ). Since ṽmi = vmi for i = 1�2, and m ≥ 3, we
have

u∗(v�b1)− u∗(v�b2)+ a1(ṽ0
2 − ṽ0

1
) + (

a2 − a1)(ṽ1
2 − ṽ1

1
) +

m∑
j=3

(
aj − aj−1)(ṽj−1

2 − ṽ
j−1
1

)

≤ u(v�b1)− u(v�b2)+ a1(v0
2 − v0

1
) + (

a2 − a1)(v1
2 − v1

1
) +

m∑
j=3

(
aj − aj−1)(vj−1

2 − v
j−1
1

)

≤ qmc�

Hence, (IC-b) is satisfied. Thus, (a∗�p∗� q∗) is feasible and strictly improves welfare.
(ii) Suppose a1 > 0 and v0

2 > v0
1. Let ε ∈ (0� a1] be sufficiently small. Let ṽ0

1 = v0
1 = v,

and

ṽ1
1 =

(
a2 − a1)v1

1 + εv0
1

a2 − a1 + ε
< v1

1�

By Assumption 2, we have

(
a2 − a1)[F(

v1
1
) − F

(
ṽ1

1
)] ≤(

a2 − a1)(v1
1 − ṽ1

1
)
f
(
ṽ1

1
)

=ε
(
ṽ1

1 − v0
1
)
f
(
ṽ1

1
) ≤ ε

[
F

(
ṽ1

1
) − F

(
v0

1
)]
�

Let � = ε[F(ṽ1
1)− F(v0

1)] − (a2 − a1)[F(v1
1)− F(ṽ1

1)] ≥ 0. If v1
2 > v0

2, then let ṽ0
2 = v0

2 and ṽ1
2

be such that

π
(
a2 − a1)[F(

v1
2
) − F

(
ṽ1

2
)] = πε

[
F

(
ṽ1

2
) − F

(
v0

2
)] + (1 −π)��

For ε > 0 sufficiently small, ṽ1
2 ≥ ṽ0

2 ≥ v0
1. If v1

2 = v0
2, then let ṽ1

2 = ṽ0
2 be such that

π
(
a2 − a1)[F(

v1
2
) − F

(
ṽ1

2
)] = (1 −π)��

For ε > 0 sufficiently small, ṽ1
2 = ṽ0

2 ≥ v0
1. Let ṽmi = vmi for i = 1�2, and m ≥ 2. For i = 1�2,

let a∗(v�bi) = a1 − ε if v ∈ [ṽ0
i � ṽ

1
i ), a∗(v�bi) = a2 if v ∈ [ṽ1

i � v
1
i ), and a∗(v�bi) = a(v�bi)

otherwise. Let u∗(v�b)= u(v�b) and p∗(v�b)= va∗(v�b)− ∫ v
v a∗(ν�b)dν−u∗(v�b) for all

v and b. By construction, p∗(v�b1) = p(v�b1). Hence, (BC) is satisfied. Let q∗(v�b1) =
q(v�b1) for all v. By construction, (a∗�p∗� q∗) satisfies (IR), (IC-v), and (S), and strictly
improves welfare. By Assumption 1, (a∗�p∗� q∗) satisfies (BB).
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Finally, we show that (a∗�p∗� q∗) satisfies (IC-b). Suppose v1
2 > v0

2. For v̂ < ṽ1
1,

u∗(v�b1)− u∗(v�b2)+ (
a1 − ε

)(
v0

2 − v0
1
)
< u(v�b1)− u(v�b2)+ a1(v0

2 − v0
1
)

= q1c = q∗(v̂� b1)c�

For v̂ ∈ [ṽ1
1� ṽ

2
1),

u∗(v�b1)− u∗(v�b2)+ (
a1 − ε

)(
v0

2 − v0
1
) + (

a2 − a1 + ε
)(
ṽ1

2 − ṽ1
1
)

= u(v�b1)− u(v�b2)+ a1(v0
2 − v0

1
) + (

a2 − a1)(v1
2 − v1

1
)

+ (
a2 − a1 + ε

)
ṽ1

2 − εv0
2 − (

a2 − a1)v1
2

≤ u(v�b1)− u(v�b2)+ a1(v0
2 − v0

1
) + (

a2 − a1)(v1
2 − v1

1
)

≤ min
{
q1c�q2c

} ≤ q∗(v̂� b1)c�

where the first inequality holds by Assumption 2, and the second inequality holds since
v1

2 < v1
1. For m≥ 2 and v̂ ∈ [vm−1

1 � vm1 ), since ṽmi = vmi for i = 1�2, and m≥ 2,

u∗(v�b1)− u∗(v�b2)+ (
a1 − ε

)(
v0

2 − v0
1
) + (

a2 − a1 + ε
)(
ṽ1

2 − ṽ1
1
)

+
m∑
j=3

(
aj − aj−1)(ṽj−1

2 − ṽ
j−1
1

)

≤ qmc = q∗(v̂� b1)c�

Hence, (IC-b) is satisfied.
Suppose v0

2 = v1
2. For v < ṽ1

1,

u∗(v�b1)− u∗(v�b2)+ (
a1 − ε

)(
ṽ0

2 − v0
1
)
< u(v�b1)− u(v�b2)+ a1(v0

2 − v0
1
)

= q1c = q∗(v̂� b1)c�

For v ∈ [ṽ1
1� ṽ

2
1),

u∗(v�b1)− u∗(v�b2)+ (
a1 − ε

)(
ṽ0

2 − v0
1
) + (

a2 − a1 + ε
)(
ṽ1

2 − ṽ1
1
)

= u(v�b1)− u(v�b2)+ a1(v0
2 − v0

1
) + (

a2 − a1)(v1
2 − v1

1
) + a2(ṽ1

2 − v1
2
)

≤ u(v�b1)− u(v�b2)+ a1(v0
2 − v0

1
) + (

a2 − a1)(v1
2 − v1

1
)

≤ min
{
q1c�q2c

} ≤ q∗(v̂� b1)c�

where the first inequality holds since ṽ1
2 ≤ v1

2 and the second inequality holds since v1
2 <

v1
1. For m≥ 2 and v̂ ∈ [vm−1

1 � vm1 ), since ṽmi = vmi for i = 1�2, and m ≥ 2,

u∗(v�b1)− u∗(v�b2)+ (
a1 − ε

)(
ṽ0

2 − v0
1
) + (

a2 − a1 + ε
)(
ṽ1

2 − ṽ1
1
)

+
m∑
j=3

(
aj − aj−1)(ṽj−1

2 − ṽ
j−1
1

)
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≤ qmc = q∗(v̂� b1)c�

Hence, (IC-b) is satisfied.
Thus, (a∗�p∗� q∗) is feasible and strictly improves welfare.

Before proving Lemma 9, we first write down the first-order conditions of P ′(M�d)

for later use. By Lemma 2, P ′(M�d) can be written as follows, where ϕ(v) = v − [1 −
F(v)]/f (v) denotes the virtual value function and the Greek letters in parentheses denote
the corresponding Lagrangian multipliers:

max
u(v�b1)�u(v�b2)�

{am}Mm=1�{vm1 }M−1
m=1 �{vm2 }Mm=0

π

M+1∑
m=1

∫ vm2

vm−1
2

amvf (v)dv + (1 −π)

M∑
m=1

∫ vm1

vm−1
1

amvf (v)dv

− (1 −π)ρ

M∑
m=1

∫ vm1

vm−1
1

[
u(v�b1)− u(v�b2)+

m∑
j=1

(
aj − aj−1)(vj−1

2 − v
j−1
1

)]
f (v)dv�

subject to

π

M+1∑
m=1

am
[
F

(
vm2

) − F
(
vm−1

2

)] + (1 −π)

M∑
m=1

am
[
F

(
vm1

) − F
(
vm−1

1

)] ≤ S� (β)

aMvM−1
1 −

M−1∑
j=1

aj
(
v
j
1 − v

j−1
1

) − u(v�b1) ≤ b1� (η)

− (1 −π)u(v�b1)+ (1 −π)

M∑
m=1

∫ vm1

vm−1
1

amϕ(v)f (v)dv

− (1 −π)ρ

M∑
m=1

∫ vm1

vm−1
1

[
u(v�b1)− u(v�b2)+

m∑
j=1

(
aj − aj−1)(vj−1

2 − v
j−1
1

)]
f (v)dv

−πu(v�b2)+π

M+1∑
m=1

∫ vm2

vm−1
2

amϕ(v)f (v)dv ≥ −d� (λ)

u(v�b1) ≥ 0�u(v�b2) ≥ 0� (ξ1� ξ2)

u(v�b1)− u(v�b2)+
m∑
j=1

(
aj − aj−1)(vj−1

2 − v
j−1
1

) ≥ 0� m= 1� � � � �M� (μm)

0 = a0 ≤ a1 ≤ a2 ≤ · · · ≤ aM ≤ aM+1 = 1� (α1� � � � �αM+1)

v = v0
1 ≤ v1

1 ≤ · · · ≤ vM1 = v� (γ1
1� � � � � γ

M
1 )

v ≤ v0
2 ≤ v1

2 ≤ · · · ≤ vM2 ≤ v� (γ0
2� � � � � γ

M+1
2 )

Let M ≥ 3 be an integer. We note that if a mechanism is a feasible solution to P ′(M −
1� d), it is also a feasible solution to P ′(M�d). Clearly, V (M − 1� d) ≤ V (M�d). Suppose
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V (M − 1� d) < V (M�d), then in an optimal solution to P ′(M�d) the allocation rule must

be an M-step allocation rule, that is,

0 = a0 ≤ a1 < a2 < · · · < aM ≤ aM+1 = 1�

v = v0
1 < v1

1 < · · · < vM1 = v�

Hence, α2 = · · · = αM = 0 and γ1
1 = · · · = γM

1 = 0. Then the first-order conditions of

P ′(M�d) are

π

[∫ vm2

vm−1
2

[
v + λϕ(v)

]
dv−β

[
F

(
vm2

) − F
(
vm−1

2

)]]

+ (1 −π)

[∫ vm1

vm−1
1

[
v + λϕ(v)

]
f (v)dv −β

[
F

(
vm1

) − F
(
vm−1

1

)]]

− (1 −π)(1 + λ)ρ
(
vm−1

2 − vm−1
1

)[
F

(
vm1

) − F
(
vm−1

1

)]
+ (1 −π)(1 + λ)ρ

(
vm2 − vm1 − vm−1

2 + vm−1
1

)[
1 − F

(
vm1

)]
+η

(
vm1 − vm−1

1

) +μm
(
vm−1

2 − vm−1
1

)

− (
vm2 − vm1 − vm−1

2 + vm−1
1

) M∑
j=m+1

μj

+ αm − αm+1 = 0� (am�1 ≤m≤M − 1)

π

[∫ vM2

vM−1
2

[
v + λϕ(v)

]
f (v)dv −β

[
F

(
vM2

) − F
(
vM−1

2

)]]

+ (1 −π)

[∫ vM1

vM−1
1

[
v + λϕ(v)

]
f (v)dv −β

[
F

(
vM1

) − F
(
vM−1

1

)]]

− (1 −π)(1 + λ)ρ
(
vM−1

2 − vM−1
1

)[
F

(
vM1

) − F
(
vM−1

1

)]
−ηvM−1

1 +μM
(
vM−1

2 − vM−1
1

) + αM − αM+1 = 0� (aM )

(
am+1 − am

){
(1 −π)

[(
β− (1 + λ)vm1

)
f
(
vm1

) + (λ+ ρ+ λρ)
(
1 − F

(
vm1

))

+ (1 + λ)ρ
(
vm2 − vm1

)
f
(
vm1

)] −
M∑

j=m+1

μj −η

}
= 0� (vm1 �1 ≤m≤M − 1)

a1

{
π

[(
β− (1 + λ)v0

2
)
f
(
v0

2
) + λ

[
1 − F

(
v0

2
)]] − (1 −π)(1 + λ)ρ+

M∑
j=1

μj

}

+ γ0
2 − γ1

2 = 0� (v0
2)
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(
am+1 − am

){
π

[(
β− (1 + λ)vm2

)
f
(
vm2

) + λ
[
1 − F

(
vm2

)]]

− (1 −π)(1 + λ)ρ
[
1 − F

(
vm1

)] +
M∑

j=m+1

μj

}

+ γm
2 − γm+1

2 = 0� (vm2 �1 ≤m≤M − 1)

π
(
aM+1 − aM

)[(
β− (1 + λ)vM2

)
f
(
vM2

) + λ
[
1 − F

(
vM2

)]]
+ γM

2 − γM+1
2 = 0� (vM2 )

η+
M∑

m=1

μm − (1 −π)(λ+ ρ+ λρ)+ ξ1 = 0� (u(v�b1))

−
M∑

m=1

μm −πλ+ (1 −π)(1 + λ)ρ+ ξ2 = 0� (u(v�b2))

The variables in the parentheses denote the variables with respect to which the first-
order conditions are taken.

Proof of Lemma 9. Let (a�p�q) be an optimal solution of P ′(M�d). We show that
vm+1

2 − vm+1
1 > vm2 − vm1 for all m= 1� � � � �M − 2.

For m= 1� � � � �M − 1, since am+1 > am, the first-order condition of vm1 becomes

(1 −π)
[(
β− (1 + λ)vm1

)
f
(
vm1

) + (λ+ ρ+ λρ)
(
1 − F

(
vm1

)) + (1 + λ)ρ
(
vm2 − vm1

)
f
(
vm1

)]

−
M∑

j=m+1

μj −η= 0�

Then, for m= 1� � � � �M − 1,

vm2 − vm1 = 1
ρ
vm1 − λ+ ρ+ λρ

(1 + λ)ρ

1 − F
(
vm1

)
f
(
vm1

) − β

(1 + λ)ρ
+

η+
M∑

j=m+1

μj

(1 −π)(1 + λ)ρf
(
vm1

) �
where the right-hand side is strictly increasing in vm1 by Assumptions 1 and 2. If μm+1 =
0, then vm+1

2 − vm+1
1 > vm2 − vm1 since vm+1

1 > vm1 .
Suppose μm+1 > 0. Then vm+1

2 − vm+1
1 ≥ 0 ≥ vm2 − vm1 since (14) holds for m and m+ 2

and (14) holds with equality for m + 1. We show that vm+1
2 − vm+1

1 > vm2 − vm1 . Suppose,
on the contrary, that vm+1

2 −vm+1
1 = vm2 −vm1 = 0. Then we can construct another feasible

mechanism (a∗�p∗� q∗), which strictly improves welfare. Let v̂ ∈ (vm1 � vm+1
1 ) be such that(

am+2 − am+1)[F(
vm+1

1

) − F(v̂)
] = (

am+1 − am
)[
F(v̂)− F

(
vm1

)]
�

For each b, let a∗(v�b) = am if v ∈ (vm1 � v̂), a∗(v�b) = am+2 if v ∈ [v̂� vm+1
1 ) and a∗(v�b) =

a(v�b) otherwise. Let p∗(v�b) = va∗(v�b) − ∫ v
v a∗(ν�b)dν − u(v�b) for all v and b and
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q∗(·� b1) = q(·� b1). Clearly, (a∗�p∗� q∗) is feasible and strictly improves welfare, which
contradicts the optimality of (a�p�q).

B.3.2 Proof of Lemma 4 Let M ≥ 3 be an integer. We want to show that V (M − 1� d) =
V (M�d). Suppose, on the contrary, that V (M − 1� d) < V (M�d) (i.e., v = v0

1 < v1
1 < · · · <

vM1 = v and a1 < a2 < · · · < aM ). An optimal solution to P ′(M�d) satisfies the first-order
conditions given in Appendix B.3.1. In what follows, we show that these first-order con-
ditions imply that M ≤ 2, which contradicts the assumption that M ≥ 3. Hence, it must
be the case that V (M − 1� d)= V (M�d) for all M ≥ 3.

We first provide a proof sketch of Lemma 4. Assume, for ease of exposition, that

u(v�b1)− u(v�b2)+ a1(v0
2 − v0

1
)
> 0� (μ1)

v = v0
1 < v1

1 < · · · < vM1 = v� (γ1
1� � � � � γ

M
1 )

0 ≤ v0
2 < v1

2 < · · · < vM2 < v� (γ0
2� � � � � γ

M+1
2 )

Then μ1 = · · · = μM = 0, γ1
1 = · · · = γM

1 = 0 and γ1
2 = · · · = γM+1

2 = 0. The first-order con-
ditions for vm1 and vm2 (m= 1� � � � �M − 1) are

(1 −π)

{[
β− vm1 − λϕ(vm1 )

]
f
(
vm1

) + (1 + λ)ρ
[
1 − F

(
vm1

)]
+ (1 + λ)ρ

(
vm2 − vm1

)
f
(
vm1

)
}

−η= 0� (16)

π
(
β− vm2 − λϕ

(
vm2

))
f
(
vm2

) − (1 −π)(1 + λ)ρ
[
1 − F

(
vm1

)] = 0� (17)

We show below that if f satisfies Assumptions 1 and 2, then the above system of equa-
tions has at most one solution. Hence, V (M�d)= V (2� d).

We break the formal proof into several claims. In all claims, we assume, without
explicitly repeating these, that u(v�b1), u(v�b2), {am}Mm=1, {vm1 }M−1

m=1 , and {vm2 }Mm=0 define

an optimal mechanism of P ′(M�d) and β, η, λ, ξ1, ξ2, {μm}Mm=1, {αm}M+1
m=1 , {γm

1 }Mm=1,

and {γm
2 }M+1

m=0 are the associated Lagrangian multipliers. By Lemma 3, μm = 0 for m =
3� � � � �M .

For later use, we note here that the sum of the first-order conditions of am
′

from m+1
to M (m= 0� � � � �M − 1) is given by

π

[∫ vM2

vm2

[
v + λϕ(v)

]
f (v)dv −β

[
F

(
vM2

) − F
(
vm2

)]]

+ (1 −π)

[∫ vM1

vm1

[
v + λϕ(v)

]
f (v)dv − (1 + λ)ρ

(
vm2 − vm1

)[
1 − F

(
vm1

)] −β
[
1 − F

(
vm1

)]]

−ηvm1 + (
vm2 − vm1

) M∑
j=m+1

μj + αm+1 − αM+1 = 0� (18)

where α2 = · · · = αM = 0 since a1 < a2 < · · · < aM .

Claim 1. vm2 > vm−1
2 and γm

2 = 0 for m= 2� � � � �M − 1.
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Proof. For m= 1� � � � �M − 1, since am+1 > am, the first-order condition of vm1 becomes

(1 −π)
[(
β− (1 + λ)vm1

)
f
(
vm1

) + (λ+ ρ+ λρ)
[
1 − F

(
vm1

)] + (1 + λ)ρ
(
vm2 − vm1

)
f
(
vm1

)]

−
M∑

j=m+1

μj −η= 0�

Then, for m= 1� � � � �M − 1,

vm2 = 1 + ρ

ρ
vm1 − λ+ ρ+ λρ

(1 + λ)ρ

1 − F
(
vm1

)
f
(
vm1

) − β

(1 + λ)ρ
+

η+
M∑

j=m+1

μj

(1 −π)(1 + λ)ρf
(
vm1

) �
where the right-hand side is strictly increasing in vm1 by Assumptions 1 and 2. Let m ∈
{1� � � � �M − 2}. If μm+1 = 0, then vm+1

2 > vm2 since vm+1
1 > vm1 . If μm+1 > 0, then vm+1

2 ≥
vm+1

1 > vm1 ≥ vm2 since (14) holds for m and m+ 2 and (14) holds with equality for m+ 1.
Hence, γm+1

2 = 0.

Claim 2. v+ λϕ(v) > β ≥ vM−1
2 + λϕ(vM−1

2 ).

Proof. Since μM = 0, the first-order condition of vM−1
2 implies that β ≥ vM−1

2 +
λϕ(vM−1

2 ). Since vM−1
2 > vM−1

1 and μM = 0, the first-order condition of aM implies that

π

∫ vM2

vM−1
2

[
v + λϕ(v)−β

]
f (v)dv + (1 −π)

∫ vM1

vM−1
1

[
v + λϕ(v)−β

]
f (v)dv ≥ 0�

Hence, β< v + λϕ(v).

Claim 3. γM
2 = γM+1

2 = 0 and vM2 + λϕ(vM2 )≤ β.

Proof. First, we show that γM
2 = 0. Suppose vM2 +λϕ(vM2 ) > β≥ vM−1

2 +λϕ(vM−1
2 ), then

vM2 > vM−1
2 and, therefore, γM

2 = 0. Suppose vM2 + λϕ(vM2 ) ≤ β < v + λϕ(v), then vM2 < v

and, therefore, γM+1
2 = 0. Since γM+1

2 = 0 and vM2 +λϕ(vM2 ) ≤ β, the first-order condition
of vM2 implies that γM

2 = 0. Hence, γM
2 = 0.

Next, we show that vM2 + λϕ(vM2 ) ≤ β. If aM+1 > aM , then the first-order condition
of vM2 implies that β ≥ vM2 + λϕ(vM2 ). If aM = aM+1 = 1, then by construction vM2 = vM−1

2
and, therefore, vM2 + λϕ(vM2 )≤ β by Claim 2. Hence, vM2 + λϕ(vM2 ) ≤ β.

Finally, since vM2 + λϕ(vM2 )≤ β< v + λϕ(v), vM2 < v and, therefore, γM+1
2 = 0.

In what follows, we consider two cases in turn: u(v�b1) − u(v�b2) + a1(v0
2 − v0

1) = 0
and u(v�b1)− u(v�b2)+ a1(v0

2 − v0
1) > 0.

B.3.2.1 Case 1: u(v�b1)− u(v�b2)+ a1(v0
2 − v0

1)= 0.

Claim 4. Suppose u(v�b1)− u(v�b2)+ a1(v0
2 − v0

1) = 0, then γ1
2 = 0.
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Proof. Suppose γ0
2 > 0, then v0

2 = v. Since (14) holds for m= 2, we have v1
2 ≥ v1

1 > v = v0
2.

Hence, γ1
2 = 0. Suppose γ0

2 = 0 and a1 = 0, then the first-order condition of v0
2 implies

that γ1
2 = γ0

2 = 0.
Assume for the rest of the proof that γ0

2 = 0 and a1 > 0. Suppose, on the contrary, that
γ1

2 > 0, then we can construct another feasible mechanism (a∗�p∗� q∗), which strictly
improves welfare. Since γ1

2 > 0, we have v0
2 = v1

2 ≥ v1
1. We consider two different cases: (i)

v0
2 = v1

2 = v1
1 and (ii) v0

2 = v1
2 > v1

1.
(i) Suppose v0

2 = v1
2 = v1

1. Let ṽ1
1 be such that a2(v1

1 − ṽ1
1) = a1(v1

1 − v). Then, by As-
sumption 2, we have

a2[F(
v1

1
) − F

(
ṽ1

1
)] = (

a2 − a1 + a1)[F(
v1

1
) − F

(
ṽ1

1
)]

≤ a1[F(
v1

1
) − F

(
ṽ1

1
)] + (

a2 − a1)f (
ṽ1

1
)(
v1

1 − ṽ1
1
)

= a1[F(
v1

1
) − F

(
ṽ1

1
)] + a1f

(
ṽ1

1
)(
ṽ1

1 − v
) ≤ a1F

(
v1

1
)
�

Let ṽ0
2 = v and ṽ1

2 be such that πa2[F(v1
2)−F(ṽ1

2)] = (1 −π)[a1F(v1
1)−a2[F(v1

1)−F(ṽ1
1)]].

Let a(v�bi) = a2 if v ∈ [ṽ1
i � v

1
i ) and a∗(v�bi) = 0 if v ∈ [v� ṽ1

i ) for i = 1�2, and a∗(v�b) =
a(v�b) otherwise. Let p∗(v�b) = va∗(v�b)− ∫ v

v a∗(ν�b)dν − u(v�b) for all v and b. Then,
by construction, p∗(v�b1) = p(v�b1) ≤ b1. Hence, (BC) is satisfied. Let q∗(v�b1) =
q(v�b1) for all v. By Assumption 1, (a∗�p∗� q∗) satisfies (BB). Clearly, (a∗�p∗� q∗) satisfies
(IR), (IC-v), and (S), and strictly improves welfare.

Finally, we show that (a∗�p∗� q∗) satisfies (IC-b). Let ṽm1 = vm1 and ṽm2 = vm2 for all
m≥ 2. For v̂ ∈ [v� ṽ1

1), we have

u(v�b1)− u(v�b2) < u(v�b1)− u(v�b2)+ a1(v0
2 − v0

1
) = q1c = q∗(v̂� b1)c�

For v̂ ∈ [ṽ1
1� v

1
1), we have

u(v�b1)− u(v�b2)+ a2(ṽ1
2 − ṽ1

1
) ≤ u(v�b1)− u(v�b2)+ a1(v0

2 − v0
1
) = q1c = q∗(v̂� b1)c�

where the inequality holds since a2(ṽ1
2 − ṽ1

1) ≤ a2(v1
1 − ṽ1

1) = a1(v1
1 − v) = a1(v0

2 − v0
1). For

m≥ 2 and v̂ ∈ [vm−1
1 � vm−2

1 ), since v1
2 = v1

1, we have

u(v�b1)− u(v�b2)+ a2(ṽ1
2 − ṽ1

1
) +

m∑
j=3

(
aj − aj−1)(vj−1

2 − v
j−1
1

)

≤ u(v�b1)− u(v�b2)+
m∑
j=1

(
aj − aj−1)(vj−1

2 − v
j−1
1

) = qmc = q∗(v̂� b1)c�

where the last inequality holds by construction. Hence, (IC-b) is satisfied. Thus,
(a∗�p∗� q∗) is feasible and strictly improves welfare, a contradiction.

(ii) Suppose v0
2 = v1

2 > v1
1. Let ε > 0 be sufficiently small. Let a∗(v�b1)= a1 −ε if v < v1

1
and a∗(v�b1) = a(v�b1) otherwise. Let ṽ0

2 < v0
2 be such that π(a1 − ε)[F(v0

2) − F(ṽ0
2)] =

(1 − π)εF(v1
1). For ε > 0 sufficiently small, v1

1 < ṽ0
2. Let a∗(v�b2) = a1 − ε if v ∈ [ṽ0

2� ṽ
1
2)

and a∗(v�b2) = a(v�b2) otherwise. Let u∗(v�b1) = u(v�b1) + ε(v1
1 − v0

1) and u∗(v�b2) =
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u(v�b2) − (1 − π)ε(v1
1 − v0

1)/π. For ε > 0 sufficiently small, u∗(v�b2) ≥ u∗(v�b1) > 0.
Let p∗(v�b) = va∗(v�b) − ∫ v

v a(ν�b)dν − u(v�b) for all v and b. Then, by construction,
p∗(v�b1) = p(v�b1) ≤ b1. Hence, (BC) is satisfied. Let q∗(v�b1) = q(v�b1) for all v. Then
(a∗�p∗� q∗) satisfies (BB) by Assumption 1. Clearly, (a∗�p∗� q∗) satisfies (IR), (IC-v), and
(S), and strictly improves welfare.

Finally, we show that (a∗�p∗� q∗) satisfies (IC-b). Note that, by Assumption 2, we
have

(
a1 − ε

)(
v0

2 − ṽ0
2
) ≥ (

a1 − ε
) 1

f
(
ṽ0

2
)[
F

(
v0

2
) − F

(
ṽ0

2
)]

≥ 1 −π

π
ε

1

f
(
v1

1
)F(

v1
1
) ≥ 1 −π

π
ε
(
v1

1 − v0
1
)
�

Then, for v̂ < v1
1, we have

u∗(v�b1)− u∗(v�b2)+ (
a1 − ε

)(
ṽ0

2 − v0
1
)

= u(v�b1)− u(v�b2)+ a1v0
2 + ε

(
v1

1 − v0
1
)

π
+ (

a1 − ε
)(
ṽ0

2 − v0
2
) − εv0

2 − (
a1 − ε

)
v0

1

≤ u(v�b1)− u(v�b2)+ a1v0
2 + ε

(
v1

1 − v0
1
)

π
− (1 −π)ε

(
v1

1 − v0
1
)

π
− εv0

2 − (
a1 − ε

)
v0

1

≤ u(v�b1)− u(v�b2)+ a1(v0
2 − v0

1
) + ε

(
v1

1 − v0
2
)

< u(v�b1)− u(v�b2)+ a1(v0
2 − v0

1
) = q1c = q∗(v̂� b1)c�

For v̂ ∈ [vm−1
1 � vm1 ) for m= 2� � � � �M , we have

u∗(v�b1)− u∗(v�b2)+ (
a1 − ε

)(
ṽ0

2 − v0
1
) + (

a2 − a1 + ε
)(
v1

2 − v1
1
)

+
m∑
j=3

(
aj − aj−1)(vj−1

2 − v
j−1
1

)

≤ u(v�b1)− u(v�b2)+
m∑
j=1

(
aj − aj−1)(vj−1

2 − v
j−1
1

) + ε
(
v1

1 − v0
2
) + ε

(
v1

2 − v1
1
)
�

= u(v�b1)− u(v�b2)+
m∑
j=1

(
aj − aj−1)(vj−1

2 − v
j−1
1

) = qmc = q∗(v̂� b1)c�

Hence, (IC-b) is satisfied. Thus, (a∗�p∗� q∗) is feasible and strictly improves welfare,
a contradiction.

Hence, γ1
2 = 0.

By Claims 1, 3, and 4, we have γm
2 = 0 for m= 1� � � � �M+1. Thus, for m= 1� � � � �M−1,

vm1 and vm2 satisfy

(1 −π)
[(
β− vm1 − λϕ

(
vm1

))
f
(
vm1

) + (1 + λ)ρ
[
1 − F

(
vm1

)] + (1 + λ)ρ
(
vm2 − vm1

)
f
(
vm1

)]
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−
M∑

j=m+1

μj −η= 0� (19)

π
(
β− vm2 − λϕ

(
vm2

))
f
(
vm2

) − (1 −π)(1 + λ)ρ
[
1 − F

(
vm1

)] +
M∑

j=m+1

μj = 0� (20)

where (19) and (20) are the first-order conditions of vm1 and vm2 , respectively.

Claim 5. Suppose u(v�b1)− u(v�b2)+ a1(v0
2 − v0

1) = 0, then M = 2.

Proof. Let m̂ = 1 if μ2 = 0 and m̂ = 2 if μ2 > 0. For m = m̂� � � � �M − 1, (19) and (20)
become

(1 −π)
{(
β− vm1 − λϕ

(
vm1

))
f
(
vm1

) + (1 + λ)ρ
[
1 − F

(
vm1

)]
+ (1 + λ)ρ

(
vm2 − vm1

)
f
(
vm1

)} −η= 0� (16)

π
(
β− vm2 − λϕ

(
vm2

))
f
(
vm2

) − (1 −π)(1 + λ)ρ
[
1 − F

(
vm1

)] = 0� (17)

Let m ∈ {m̂� � � � �M − 1}. Given β, η and λ, (16) and (17) define vm2 as functions of vm1 ,
denoted by g1 and g2, respectively. By Assumptions 1 and 2, g′

1(v
m
1 ) > 1. By the implicit

function theorem, we have

g′
2
(
vm1

) = 1 −π

π

(1 + λ)ρf
(
vm1

)
−(

β− (1 + λ)vm2
)
f ′(vm2 ) + (1 + 2λ)f

(
vm2

) > 0�

To see that the inequality holds, note that (β − v − λϕ(v))f (v) is strictly decreasing in
v for v < vM2 . Taking the derivative with respect to v yields (β − (1 + λ)v)f ′(v) − (1 +
2λ)f (v) < 0 for v < vM2 .

Since vm2 ≥ vm1 ≥ v ≥ 0 by Lemma 3, v + λϕ(v) < β for all v < vM2 by Claim 3,∑M
j=m+1 μ

j = 0, η≥ 0, αm+1 = 0 and αM+1 ≥ 0, (18) implies that

∫ v

vm1

[
v + λϕ(v)−β

]
f (v)dv ≥ 0�

which holds if and only if vm1 ≥ v̂(β), where

v̂(β) = inf
{
v̂|

∫ v

v̂

[
v + λϕ(v)−β

]
f (v)dv ≥ 0

}
� (21)

Next, we show that if vm1 ≥ v̂(β) and vm2 = g2(v
m
1 ) ≥ vm1 , then g′

2(v
m
1 ) ≤ 1, where the in-

equality holds strictly if vm1 > v̂(β). First, we have

− (
β− (1 + λ)vm2

)
f ′(vm2 ) + (1 + 2λ)f

(
vm2

)
= −(

β− vm2 − λϕ
(
vm2

))
f ′(vm2 ) + λ

{[
1 − F

(
vm2

)]
f ′(vm2 )

f
(
vm2

) + f
(
vm2

)} + (1 + λ)f
(
vm2

)
≥ (1 + λ)f

(
vm2

)
�
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where the last inequality holds since β − vm2 − λϕ(vm2 ) > 0, f ′ ≤ 0 by Assumption 2 and
[1 − F(vm2 )]f ′(vm2 )+ f 2(vm2 )≥ 0 by Assumption 1. Then we have

g′
2
(
vm1

) = 1 −π

π

(1 + λ)ρf
(
vm1

)
−(

β− (1 + λ)vm2
)
f ′(vm2 ) + (1 + 2λ)f

(
vm2

) ≤ (1 −π)ρf
(
vm1

)
πf

(
vm2

) �

By Assumption 1,

f (v) ≥ f
(
vm1

) 1 − F(v)

1 − F
(
vm1

) � ∀v ≥ vm1 � (22)

Then, for vm1 ≥ v̂(β), we have

1 − F
(
vm1

) ≥ f
(
vm1

)
1 − F

(
vm1

) ∫ v

vm1

(
1 − F(v)

)
dv

= f
(
vm1

)
1 − F

(
vm1

)[
(1 + λ)

∫ v

vm1

(
1 − F(v)

)
dv − λ

∫ v

vm1

(
1 − F(v)

)
dv

]

= f
(
vm1

)
1 − F

(
vm1

)[
−(1 + λ)vm1

[
1 − F

(
vm1

)] +
∫ v

vm1

[
v + λϕ(v)

]
f (v)dv

]

≥ (
β− (1 + λ)vm1

)
f
(
vm1

)
�

where the first line holds by (22), the third line holds by integration by parts, and the last
line holds since vm1 ≥ v̂(β). Combining this inequality and (17) yields

(
β− vm2 − λϕ

(
vm2

))
f
(
vm2

) = 1 −π

π
(1 + λ)ρ

[
1 − F

(
vm1

)]
= 1 −π

π
ρ
[[

1 − F
(
vm1

)] + λ
[
1 − F

(
vm1

)]]
≥ 1 −π

π
ρ
[(
β− (1 + λ)vm1

)
f
(
vm1

) + λ
[
1 − F

(
vm1

)]]
= 1 −π

π
ρ
[
β− vm1 − λϕ

(
vm1

)]
f
(
vm1

)
�

Hence,

g′
2
(
vm1

) ≤ 1 −π

π

ρf
(
vm1

)
f
(
vm2

) ≤ β− vm2 − λϕ
(
vm2

)
β− vm1 − λϕ

(
vm1

) ≤ 1�

Note that g′
2(v

m
1 ) < 1 if vm1 > v̂(β) or vm1 < g2(v

m
1 ).

Thus, there exists at most one vm1 ≥ v̂(β) such that g1(v
m
1 ) = g2(v

m
1 )≥ vm1 , that is, (16)

and (17) have at most one solution such that vm2 ≥ vm1 ≥ v̂(β). Hence, M ≤ m̂+ 1.
If m̂ = 1, then M ≤ m̂+ 1 ≤ 2. Assume for the rest of the proof that m̂ = 2 and μ2 > 0.

In this case, M ≤ m̂+ 1 ≤ 3. We want to show that M = 2. Suppose this is not true, then
M = 3. Since μ2 > 0, v1

2 = v1
1. By the same argument proving that vm1 ≥ v̂(β) for m ≥ m̂,

we have v1
1 ≥ v̂(β). Then we have v2

1 > v1
1 ≥ v̂(β), and g2(v

2
1) = v2

2 > v2
1. Since g′

2(v) < 1 if
v > v̂(β) and g2(v) ≥ v, we have g2(v) > v for all v1

1 ≤ v < v2
1. Hence, v1

2 = g2(v
1
1) > v1

1, a
contradiction to that v1

2 = v1
1. Hence, M = 2.
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B.3.2.2 Case 2: u(v�b1) − u(v�b2) + a1(v0
2 − v0

1) > 0. In this case, by Lemma 3, μ1 =
μ2 = 0.

Claim 6. Suppose u(v�b1)− u(v�b2)+ a1(v0
2 − v0

1) > 0, then γ1
2 = 0.

Proof. Since u(v�b1) − u(v�b2) + a1(v0
2 − v0

1) > 0, μ1 = 0. Suppose, on the contrary,
that γ1

2 > 0. Then v1
2 = v0

2. Suppose γ0
2 > 0, then v1

2 = v0
2 = v = v0

1 < v1
1, a contradiction to

Lemma 3. Hence, γ0
2 = 0.

Suppose a1 = 0, then the first-order condition of v0
2 implies that γ1

2 = 0. Suppose
a1 > 0. Then the first-order conditions of v0

2 and v1
2 imply that

π
(
β− (1 + λ)v0

2
)
f
(
v0

2
) +πλ

[
1 − F

(
v0

2
)]

≥ (1 −π)(1 + λ)ρ

> (1 −π)(1 + λ)ρ
[
1 − F

(
v1

1
)]

≥ π
(
β− (1 + λ)v1

2
)
f
(
v1

2
) +πλ

[
1 − F

(
v1

2
)]
�

Since (β− (1 + λ)v)f (v)+ λ[1 − F(v)] is strictly decreasing in v when v + λϕ(v) < β, we
have v1

2 > v0
2 and, therefore, γ1

2 = 0.

By Claims 1, 3, and 6, we have γm
2 = 0 for m= 1� � � � �M+1. Thus, for m= 1� � � � �M−1,

vm1 and vm2 satisfies (16), (17), and (18). By an argument similar to that of Claim 5, we have
the following.

Claim 7. Suppose u(v�b1)− u(v�b2)+ a1(v0
2 − v0

1) > 0, then M = 2.

To summarize, we have shown in both cases that M = 2. However, this contradicts
the assumption that M ≥ 3. Hence, it must be that V (M�d) = V (M − 1� d) for all M ≥ 3.
This completes the proof of Lemma 4.

B.3.3 Proof of Theorem 2 To prove Theorem 2, we first prove Lemmas 10 and 11.

Lemma 10. In an optimal allocation rule of P ′(2�0), v0
2 = v and a1 = 0.

Proof. First, we show that v0
2 = v. We consider two different cases: (i) u(v�b1) −

u(v�b2)+ a1(v0
2 − v0

1) = 0 and (ii) u(v�b1)− u(v�b2)+ a1(v0
2 − v0

1) > 0.
(i) Suppose u(v�b1)−u(v�b2)+a1(v0

2 −v0
1)= 0. Suppose, on the contrary, that v0

2 > v.
Then we can construct another feasible mechanism (a∗�p∗� q∗), which strictly improves
welfare. Since v0

2 > v = v0
1, we have u(v�b2) > u(v�b1), a1 > 0 and v1

1 > v.
Let ε > 0 be sufficiently small. Let ṽ0

1 = v + ε and ṽ0
2 < v0

2 be such that π[F(v0
2) −

F(ṽ0
2)] = (1 − π)F(ṽ0

1). For ε > 0 sufficiently small, ṽ0
1 < min{v1

1� ṽ
0
2}. Let u∗(v�b1) =

u(v�b1) + a1ε and u∗(v�b2) = u(v�b2) − (1 − π)a1ε/π. For ε > 0, sufficiently small,
u∗(v�b2) ≥ u∗(v�b1) > 0. Let a∗(v�b1) = 0 if v < ṽ0

1 and a∗(v�b1) = a(v�b1) otherwise. Let
a∗(v�b2) = a1 if v ∈ (ṽ0

2� v
0
2) and a∗(v�b2) = a(v�b2) otherwise. Let p∗(v�b) = va∗(v�b) −∫ v

v a∗(ν�b)dν−u∗(v�b) for all v and b. By construction, p∗(v�b1) = p(v�b1)≤ b1. Hence,



Theoretical Economics 16 (2021) Financial constraints and verification 1185

(BC) is satisfied. Let q∗(v�b1)= q(v�b1) for all v. Clearly, (a∗�p∗� q∗) satisfies (IR), (IC-v),
and (S), and strictly improves welfare. By Assumption 1, (a∗�p∗� q∗) satisfies (BB).

Finally, we show that (a∗�p∗� q∗) satisfies (IC-b). For v̂ < ṽ0
1, we have u∗(v�b1) −

u∗(v�b2) ≤ 0 ≤ q∗(v̂� b1)c. For v̂ ∈ [ṽ0
1� v

1
1),

u∗(v�b1)− u∗(v�b2)+ a1(ṽ0
2 − ṽ0

1
)

= u(v�b1)− u(v�b2)+ a1(v0
2 − v0

1
) + a1ε

π
+ a1(ṽ0

2 − v0
2
) − a1ε

≤ u(v�b1)− u(v�b2)+ a1(v0
2 − v0

1
) = q1c = q∗(v̂� b1)c�

where the inequality holds since by Assumption 2,

v0
2 − ṽ0

2 ≥ 1

f
(
ṽ0

2
)[
F

(
v0

2
) − F

(
ṽ0

2
)]

≥ 1 −π

π

F(v + ε)

f (v + ε)
≥ 1 −π

π
ε�

For v̂ ∈ [v1
1� v],

u∗(v�b1)− u∗(v�b2)+ a1(ṽ0
2 − ṽ0

1
) + (

a2 − a1)(v1
2 − v1

1
)

≤ u(v�b1)− u(v�b2)+
2∑

j=1

(
aj − aj−1)(vj−1

2 − v
j−1
1

) = q2c = q∗(v̂� b1)c�

Hence, (IC-b) is satisfied. Thus, (a∗�p∗� q∗) is feasible and strictly improves welfare, a
contradiction. Hence, v0

2 = v.
(ii) Suppose u(v�b1)− u(v�b2)+ a1(v0

2 − v0
1) > 0. Suppose, on the contrary, that v0

2 >

v. In this case, γ0
2 = 0. By construction, we have a1 > 0 and v1

1 > v. Hence, α1 = 0. Since
u(v�b1)− u(v�b2)+ a1(v0

2 − v0
1) > 0 and v1

2 ≥ v1
1, we have μ1 = μ2 = 0. Let

�(v1� v2)= π

∫ vM2

v2

[
v+ λϕ(v)−β

]
f (v)dv −ηv1 − αM+1

+ (1 −π)

[∫ vM1

v1

[
v + λϕ(v)−β

]
f (v)dv − (1 + λ)ρ(v2 − v1)

[
1 − F(v1)

]]
�

Then �(v0
1� v

0
2) = �(v1

1� v
1
2) = 0 by (18). Since v0

2 > v0
1, and v + λϕ(v) < β for v < vM2 by

Claim 3 in the proof of Lemma 4, �(v0
1� v

0
2) = 0 implies that

∫ vM1
v0

1
[v+λϕ(v)−β]f (v)dv ≥ 0,

that is, v̂(β) = v, where v̂(β) is given by (21).
It follows from the proof of Lemma 4 that the first-order conditions of v1

1 and v1
2 can

be reduced to (16) and (17). Given β, η, and λ, (16) and (17) define v1
2 as functions of v1

1,
denoted by g1 and g2, respectively. By an argument similar to that in the proof of Claim 5
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in the proof of Lemma 4, g′
1(v) > 1, and g′

2(v) < 1 if v > v and g2(v)≥ v. Note that

∂�

∂v1
= (1 −π)

[(
β− v1 − λϕ(v1)

)
f (v1)+ (1 + λ)ρ(v2 − v1)f (v1)

+ (1 + λ)ρ
[
1 − F(v1)

]] −η�

∂�

∂v2
= π

(
β− v2 − λϕ(v2)

)
f (v2)− (1 −π)(1 + λ)ρ

[
1 − F(v1)

]
�

Clearly, ∂�(v1� g1(v1))/∂v1 = 0 by (16) and ∂�(v1� g2(v1))/∂v2 = 0 by (17). Since v1
2 ≥ v1

1,
g2(v) > g1(v) for all v < v1

1. Then ∂�(v1� g2(v1))/∂v1 >�(v1� g1(v1))/∂v1 = 0 for all v1 < v1
1.

Hence,

0 = �
(
v1

1� v
1
2
) = �

(
v0

1� v
0
2
) +

∫ v1
1

v0
1

∂�
(
v1� g2(v1)

)
∂v1

dv1 >�
(
v0

1� v
0
2
) = 0�

a contradiction. Hence, v0
2 = v.

Next, we show that a1 = 0. Suppose, on the contrary, that a1 > 0, then α1 = 0. Then
v0

2 satisfies

a1

{
π

[
β− v0

2 − λϕ
(
v0

2
)]
f
(
v0

2
) − (1 −π)(1 + λ)ρ+

2∑
j=1

μj

}
+ γ0

2 = 0� (23)

π

∫ vM2

v0
2

[
v + λϕ(v)−β

]
f (v)dv + (1 −π)

∫ vM1

v0
1

[
v + λϕ(v)−β

]
f (v)dv

−ηv0
1 − αM+1 = 0� (24)

where (23) is the first-order condition of v0
2, and (24) is (18) when m = 0. Since v0

2 > v0
1

and v + λϕ(v) < β for v < vM2 by Claim 3 in the proof of Lemma 4, (24) implies that∫ vM1
v0

1
[v + λϕ(v)]f (v)dv − β ≥ 0, that is, v̂(β) = v. Since g′

2(v) < 1 if v > v and g2(v) ≥
v, and g2(v

1
1) = v1

2 ≥ v1
1, we have g2(v

0
1) > v0

1 = v = v0
2. However, by (23), v0

2 ≥ g2(v
0
1),

a contradiction. Hence, a1 = 0.

Lemma 11. For any d > 0, there exists M(d) such that for all M >M(d),

V − V (M�d)≤ (1 −π)(1 + ρ)
E[v]
M

�

Proof. Let (a�p�q) be an optimal mechanism of (P ′). Then p(v�b) = va(v�b) −∫ v
v a(ν�b)dν − u(v�b) for all v and b, and q is defined by (4). Fix M ≥ 2. Construct

(a∗�p∗� q∗) as follows. Let a0 = 0, aM+1 = 1 and am = (m−1)a(v�b1)/M for m= 1� � � � �M .
Let v0

1 = v, vM1 = v and

vm1 = inf
{
v|a(v�b1) ≥ am+1} for m= 0� � � � �M − 1�

Then v = v0
1 ≤ v1

1 ≤ · · · ≤ vM1 = v and 0 = a0 ≤ a1 < a2 < · · · < aM ≤ aM+1 = 1. Let
a∗(v�b1) = am if v ∈ [vm−1

1 � vm1 ) for m = 1� � � � �M . Then a(v�b1) − 1/M ≤ a∗(v�b1) ≤
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a(v�b1) for all v. Let v̂m2 = inf{v|a(v�b2) ≥ am} for m = 1� � � � �M , v̂0
2 = 0 and v̂M+1

2 = v.
For each m= 1� � � � �M + 1, there exists vm−1

2 ∈ [v̂m−1
2 � v̂m2 ] such that

∫ v̂m2

v̂m−1
2

a(v�b2)f (v)dv = am−1[F(
vm−1

2

) − F
(
v̂m−1

2

)] + am
[
F

(
v̂m2

) − F
(
vm−1

2

)]
�

Let a∗(v�b2) = am if v ∈ [vm−1
2 � vm2 ) for m= 1� � � � �M , a∗(v�b2)= 0 if v < v0

2 and a∗(v�b2) =
1 if v ≥ vM2 . Clearly, a∗ satisfies (S). Let p∗(v�b) = va∗(v�b) − ∫ v

v a∗(ν�b)dν − u(v�b) for
all v and b. Let q∗(v�b1) = q(v�b1) + v/(cM) for all v. Clearly, (a∗�p∗� q∗) satisfies (IR)
and (IC-v).

We show that (IC-b) is satisfied, that is, for m= 1� � � � �M and v ∈ [vm−1
1 � vm1 ),

cq∗(v�b1)≥ u(v�b1)− u(v�b2)−
∫ vm−1

2

v
a∗(ν�b2)dν + am

(
vm−1

2 − v
) +

∫ v

v
a∗(ν�b1)dν�

Let m ∈ {1� � � � �M}. Recall that for v ∈ [vm−1
1 � vm1 ), we have

cq(v�b1) ≥ u(v�b1)− u(v�b2)−
∫ v̂m2

v
a(ν�b2)dν + a(v�b1)

(
v̂m2 − v

) +
∫ v

v
a(ν�b1)dν�

Then, for v ∈ [vm−1
1 � vm1 ),

cq∗(v�b1)= cq(v�b1)+ v

M

≥ u(v�b1)− u(v�b2)−
∫ v̂m2

v
a(ν�b2)dν + a(v�b1)v̂

m
2 −

(
a(v�b1)− 1

M

)
v

+
∫ v

v
a(ν�b1)dν

≥ u(v�b1)− u(v�b2)−
∫ v̂m2

v
a(ν�b2)dν + am

(
v̂m2 − v

) +
∫ v

v
a(ν�b1)dν

≥ u(v�b1)− u(v�b2)−
∫ v̂m2

v
a∗(ν�b2)dν + am

(
v̂m2 − v

) +
∫ v

v
a∗(ν�b1)dν

= u(v�b1)− u(v�b2)−
∫ vm−1

2

v
a∗(ν�b2)dν + am

(
vm−1

2 − v
) +

∫ v

v
a∗(ν�b1)dν�

where the second inequality holds since a(v�b)− 1/M ≤ a∗(v�b) ≤ a(v�b) and the third
inequality holds by an argument similar to that in the proof of Lemma 1.

Finally, we show that (a∗�p∗� q∗) satisfies (BB-d) for M sufficiently large:

Et
[
p∗(t)− q∗(t)k

] −Et
[
p(t)− q(t)k

]
= π

∫ v

v
ϕ(v)

[
a∗(v�b2)− a(v�b2)

]
f (v)dv



1188 Yunan Li Theoretical Economics 16 (2021)

+ (1 −π)

∫ v

v
ϕ(v)

[
a∗(v�b1)− a(v�b1)

]
f (v)dv

− (1 −π)

∫ v

v
k
[
q∗(v�b1)− q(v�b1)

]
f (v)dv

≥ −E[v]
M

− (1 −π)
E[v]
M

ρ�

For any d > 0, there exists M(d) such that for all M >M(d), we have

E[v]
M

+ (1 −π)
E[v]
M

ρ< 0�

Thus, (a∗�p∗� q∗) is a feasible solution to P ′(M�d) for M >M(d). Hence,

V − V (M�d)

≤ (1 −π)

[∫ v

v
v
[
a(v�b1)− a∗(v�b1)

]
f (v)dv −

∫ v

v

[
q(v�b1)− q∗(v�b1)

]
kf(v)dv

]

≤ (1 −π)(1 + ρ)
E[v]
M

�

Proof of Theorem 2. By Lemmas 4 and 11, we have

V − V (2� d) = V − V (M�d)≤ (1 −π)(1 + ρ)
E[v]
M

�

Let M go to infinity and we have V (2�0) ≤ V ≤ V (2� d) for all d > 0. By the standard
argument, V (2� ·) is continuous. Let d go to zero and we have V = V (2�0).

By Lemma 10, there exist u(v�b1) ≥ 0, u(v�b2) ≥ 0, v ≤ v1
1 ≤ v, v ≤ v1

2 ≤ v2
2 ≤ v and

0 < a2 ≤ 1 such that an optimal mechanism of (P ′) is given by

a(v�b1) = χ{v≥v1
1}a

2�

a(v�b2) = χ{v≥v1
2}a

2 +χ{v≥v2
2}

(
1 − a2)�

p(v�b1) = −u(v�b1)+χ{v≥v1
1}a

2v1
1�

p(v�b2) = −u(v�b2)+χ{v≥v1
2}a

2v1
2 +χ{v≥v2

2}
(
1 − a2)v2

2�

q(v�b1) = 1
c

[
u(v�b1)− u(v�b2)+χ{v≥v1

1}a
2(v1

2 − v1
1
)]
�

q(v�b2) = 0�

where χV is the indicator function of set V . By Lemma 8, v1
2 ≥ v1

1. It is easy to verify that
the above mechanism satisfies the IC constraints corresponding to the overreporting of
budgets and, therefore, solves (P). Let a∗(ρ) = a2, v∗

1(ρ) = v1
1, v∗

2(ρ) = v1
2, v∗∗

2 (ρ) = v2
2,

u∗
1(ρ) = u(v�b1), and u∗

2(ρ) = u(v�b2).
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Finally, we show the optimal mechanism is unique. Observe that in an optimal
mechanism of (P), (S), (BB), and (BC) hold with equality.

Suppose, on the contrary, that there are two different optimal mechanisms (a∗�p∗�
q∗) and (â� p̂� q̂). Then there exist (u∗

1�u
∗
2� a

∗� v∗
1� v

∗
2� v

∗∗
2 ) and (û∗

1� û
∗
2� â

∗� v̂∗
1� v̂

∗
2� v̂

∗∗
2 ) that

characterize the two optimal mechanisms, respectively.
First, it is easy to verify that the convex combination of the two mechanisms (κa∗ +

(1 − κ)â�κp∗ + (1 − κ)p̂�κq∗ + (1 − κ)q̂), where κ ∈ (0�1), is also optimal. Denote this
convex combination by (a�p�q). Second, v∗

1 = v̂∗
1 since otherwise a is a 3-step function,

a contradiction to Lemma 4.
Third, we show that v∗

2 = v̂∗
2 , v∗∗

2 = v̂∗∗
2 and a∗ = â∗. Suppose a∗ = â∗ = 1. Since (S)

holds with equality in an optimal mechanism, v∗
2 = v∗∗

2 = v̂∗
2 = v̂∗∗

2 .
Suppose a∗ < 1 and â∗ = 1. Since (S) holds with equality in the two original mech-

anisms, v∗
2 < v̂∗

2 . Then a(v�b1) = χ{v≥v∗
1}[κa∗ + (1 − κ)]. If v ∈ (v∗

2�min{v∗∗
2 � v̂∗∗

2 }), then
a(v�b2) = κa∗ < κa∗ + (1 −κ), which is a contradiction to Lemma 1. Hence, it cannot be
the case that a∗ < 1 and â∗ = 1.

Suppose a∗ < 1 and â∗ < 1. In this case, a(v�b1) = χ{v≥v∗
1}[κa∗ + (1 − κ)â∗]. Suppose,

on the contrary, that v∗
2 < v̂∗

2 . If v ∈ (v∗
2�min{v∗∗

2 � v̂∗
2}), then a(v�b2) = κa∗ < κa∗ + (1 −

κ)â∗, which is a contradiction to Lemma 1. Hence, v∗
2 = v̂∗

2 . Suppose, on the contrary,
that v∗∗

2 < v̂∗∗
2 . If v ∈ (v∗∗

2 � v̂∗∗
2 ), then a(v�b2) = κ+ (1 − κ)â∗ > κa∗ + (1 − κ)â∗, a contra-

diction to Lemma 1. Hence, v∗∗
2 = v̂∗∗

2 . Finally, since (S) holds with equality in the two
original mechanisms, it must be the case a∗ = â∗.

Lastly, we show that u∗
1 = û∗

1 and u∗
2 = û∗

2. Since (BC) holds with equality in the two
original mechanisms, u∗

1 = a∗v∗
1 − b1 = â∗v̂∗

1 − b1 = û∗
1. Note that in (BB) the coefficient

in front of u∗
2 is (1−π)ρ−π. If ρ �= π/(1−π), then u∗

2 = û∗
2 since (BB) holds with equality

in the two original mechanisms. If ρ = π/(1 − π), then any u∗
2� û

∗
2 ∈ [0�u∗

1] satisfy (BB)
in the two original mechanisms. Since the objective function is strictly increasing in u∗

2
and û∗

2, we have u∗
2 = u∗

1 = û∗
1 = û∗

2.

B.3.4 Proof of Proposition 2 Theorem 2 also greatly simplifies the analysis of the op-
timal mechanism’s properties. Now the principal’s problem (P) can be reduced to the
following, where the Greek letters in parentheses denote the corresponding Lagrangian
multipliers:

max
u(v�b1)�u(v�b2)�

a2�v1
1�v

1
2�v

2
2

π

[∫ v2
2

v1
2

a2vf (v)dv +
∫ v

v2
2

vf (v)dv
]

+ (1 −π)

∫ v

v1
1

a2vf (v)dv

− (1 −π)ρ
[
u(v�b1)− u(v�b2)

]
F

(
v1

1
)

− (1 −π)ρ

∫ v

v1
1

[
u(v�b1)− u(v�b2)+ a2(v1

2 − v1
1
)]
f (v)dv�

subject to

πa2[F(
v2

2
) − F

(
v1

2
)] +π

[
1 − F

(
v2

2
)] + (1 −π)a2[1 − F

(
v1

1
)] ≤ S� (β)

a2v1
1 − u(v�b1) ≤ b1� (η)
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− (1 −π)u(v�b1)+ (1 −π)

∫ v2
1

v1
1

a2ϕ(v)f (v)dv

− (1 −π)ρ
[
u(v�b1)− u(v�b2)

]
F

(
v1

1
)

− (1 −π)ρ

∫ v

v1
1

[
u(v�b1)− u(v�b2)+ a2(v1

2 − v1
1
)]
f (v)dv −πu(v�b2)

+π

∫ v2
2

v1
2

a2ϕ(v)f (v)dv +π

∫ v

v2
2

ϕ(v)f (v)dv ≥ 0� (λ)

u(v�b1) ≥ 0�u(v�b2) ≥ 0� (ξ1� ξ2)

u(v�b1)− u(v�b2) ≥ 0� (μ1)

u(v�b1)− u(v�b2)+ a2(v1
2 − v1

1
) ≥ 0� (μ2)

0 ≤ a2 ≤ a3 = 1� (α2�α3)

v ≤ v1
1 ≤ v� (γ1

1�γ
2
1)

v ≤ v1
2 ≤ v2

2 ≤ v� (γ1
2�γ

2
2�γ

3
2)

Let a∗ = a2, v∗
1 = v1

1, v∗
2 = v1

2, v∗∗
2 = v2

2, u∗
1 = u(v�b1), and u∗

2 = u(v�b2) denote an op-
timal solution of (P). Let β, η, λ, μ1, μ2, α3, ξ1, and ξ2 denote the corresponding La-
grangian multipliers. Then v∗

1 , v∗
2 , v∗∗

2 , a∗, u∗
1, u∗

2, β, η, λ, μ1, μ2, α3, ξ1, and ξ2 satisfy the
following first-order conditions:

(1 −π)
[(
β− v∗

1 − λϕ
(
v∗

1
))
f
(
v∗

1
) + (1 + λ)ρ

[
1 − F

(
v∗

1
)] + (1 + λ)ρ

(
v∗

2 − v∗
1
)
f
(
v∗

1
)]

−η−μ2 = 0� (25)

π
(
β− v∗

2 − λϕ
(
v∗

2
))
f
(
v∗

2
) − (1 −π)(1 + λ)ρ

[
1 − F

(
v∗

1
)] +μ2 = 0� (26)(

1 − a∗)(β− v∗∗
2 − λϕ

(
v∗∗

2
))
f
(
v∗∗

2
) = 0�

π

∫ v∗∗
2

v∗
2

[
v + λϕ(v)−β

]
f (v)dv

+ (1 −π)

[∫ v

v∗
1

[
v + λϕ(v)−β

]
f (v)dv − (1 + λ)ρ

(
v∗

2 − v∗
1
)[

1 − F
(
v∗

1
)]]

−ηv∗
1 +μ2(v∗

2 − v∗
1
) − α3 = 0�

η+μ1 +μ2 − (1 −π)(λ+ ρ+ λρ)+ ξ1 = 0� (27)

−μ1 −μ2 −πλ+ (1 −π)(1 + λ)ρ+ ξ2 = 0� (28)

Furthermore, in the optimal mechanism, (S) and (BB) hold with equality:

(1 −π)a∗[1 − F
(
v∗

1
)] +πa∗[F(

v∗∗
2

) − F
(
v∗

2
)] +π

[
1 − F

(
v∗∗

2
)] = S�



Theoretical Economics 16 (2021) Financial constraints and verification 1191

− (1 −π)u∗
1 + (1 −π)a∗v∗

1
[
1 − F

(
v∗

1
)] −πu∗

2 +πa∗v∗
2
[
1 − F

(
v∗

2
)]

+π
(
1 − a∗)v∗∗

2
[
1 − F

(
v∗∗

2
)] − (1 −π)ρ

(
u∗

1 − u∗
2
) − (1 −π)ρa∗(v∗

2 − v∗
1
)[

1 − F
(
v∗

1
)] = 0�

Proof of Proposition 2. Part (i): Suppose, on the contrary, that u∗
1 > u∗

2 ≥ 0. In this
case, ξ1 = μ1 = μ2 = 0. (28) implies that ξ2 = πλ− (1 −π)(1 +λ)ρ. Since ξ2 ≥ 0, we have
λ[π − ρ(1 −π)] ≥ ρ(1 −π) > 0, which implies that ρ < π/(1 −π), a contradiction.

Part (ii): By Proposition 2 part (i), u∗
1 = u∗

2. It suffices to show that v∗
1 = v∗

2 . Suppose,
on the contrary, that v∗

2 > v∗
1 . In this case, μ2 = 0. Adding (27) and (28) yields η−λ+ξ1 +

ξ2 = 0. Since ξ1� ξ2 ≥ 0, we have η ≤ λ. Divide (25) by (1 − π)f (v∗
1) and (26) by πf(v∗

2),
and take differences, we have

[
1 + (1 + λ)ρ

](
v∗

2 − v∗
1
) + λ

[
ϕ

(
v∗

2
) −ϕ

(
v∗

1
)] + (1 + λ)ρ

1 − F
(
v∗

1
)

f
(
v∗

1
)

+ (1 + λ)ρ
1 −π

π

1 − F
(
v∗

1
)

f
(
v∗

2
) − η

(1 −π)f
(
v∗

1
) = 0�

Since v∗
2 > v∗

1 , f (v∗
2)≤ f (v∗

1), ϕ(v∗
2) > ϕ(v∗

1) and η≤ λ, we have

0 ≥[
1 + (1 + λ)ρ

](
v∗

2 − v∗
1
) + λ

[
ϕ

(
v∗

2
) −ϕ

(
v∗

1
)] + (1 + λ)

ρ

π

1 − F
(
v∗

1
)

f
(
v∗

1
) − λ

(1 −π)f
(
v∗

1
)

>
ρ

π

1 − F
(
v∗

1
)

f
(
v∗

1
) + λ

[
ρ

π

1 − F
(
v∗

1
)

f
(
v∗

1
) − 1

(1 −π)f
(
v∗

1
)]

≥ 0�

where the last inequality holds since 1−F(v∗
1)≥ S and ρ≥ π/[S(1−π)], a contradiction.

Hence, v∗
1 = v∗

2 .

B.4 Proof of Proposition 3

Let a denote the probability that a lottery participant receives the good in the first stage
and ps denote the expected price that a buyer pays in the resale market. Assume without
loss of generality that ps > b1 + u∗

1, so a low-budget agent cannot afford the good in the
resale market. Consider a low-budget agent whose valuation is v and who reports his
budget truthfully. His payoff is u∗

1 if he does not enter the lottery. If he enters the lottery,
there are two possibilities. If he retains the good he received, then his payoff is u∗

1 + av−
p∗

1 = u∗
1 + av − a∗v∗

1 ; otherwise, his payoff is u∗
1 − p∗

1 + a(ps − τ∗
1) = u∗

1 − a∗v∗
1 + a(ps −

v∗∗
2 + v∗

1). Clearly, it is optimal for him to retain the good if and only if v ≥ ps − v∗∗
2 + v∗

1 ,
and it is optimal for him to enter the lottery if and only if amax{v�ps − v∗∗

2 + v∗
1} ≥ a∗v∗

1 .
Similarly, consider a high-budget agent whose valuation is v and who reports his

budget truthfully. First, note that if it is optimal for him not to enter the lottery, then
it is also optimal for him not to buy the good in the resale market, and his payoff is u∗

2
in this case. Next, if it is optimal for him to sell the good in the resale market, then it
is optimal for him not to buy the good in the resale market provided he did not receive
it in the lottery. Then, if he enters the lottery, we need to consider three possibilities.
If he retains the good when he receives it and buys it when he does not receive it, his
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payoff is u∗
2 −p∗

2 +av+ (1 −a)(v−ps) = u∗
2 −a∗v∗

2 +av+ (1 −a)(v−ps); if he retains the
good when he receives it and does not buy it when he does not receive it, his payoff is
u∗

2 +av−p∗
2 = u∗

2 +av−a∗v∗
2 ; if he sells the good, then his payoff is u∗

2 −p∗
2 +a(ps −τ∗

2) =
u∗

2 − a∗v∗
2 + a(ps − v∗∗

2 + v∗
2). Clearly, in the second stage, it is optimal for him to retain

the good if and only if v ≥ ps − v∗∗
2 + v∗

2 and buy the good if and only if v ≥ ps. In the first
stage, it is optimal for him to enter the lottery if and only if amax{v�ps − v∗∗

2 + v∗
2} ≥ a∗v∗

2 .
Hence, in the second stage, the demand at price ps is equal to the measure of high-

budget agents who did not receive the good in the lottery and whose value is above ps ,

π(1 − a)
[
1 − F

(
ps

)]
�

and the supply is equal to the total supply S minus the measure of agents who retain the
good they received in the lottery:

S − a(1 −π)

[
1 − F

(
max

{
ps − v∗∗

2 + v∗
1�

a∗v∗
1

a

})]

− aπ

[
1 − F

(
max

{
ps − v∗∗

2 + v∗
2�

a∗v∗
2

a

})]
�

For each a, there is a unique ps such that demand is equal to supply. By construction,
a ≤ a∗. Suppose a < a∗, then the market-clearing condition implies that ps < v∗∗

2 . This
implies that agents make a loss if they enter the lottery and sell the good they received.
Hence, a low-budget agent enters the lottery only if v > v∗

1 and a high-budget agent buys
the lottery only if v > v∗

2 , which in turn implies that a = a∗, a contradiction. Thus, a = a∗
and ps = v∗∗

2 in equilibrium.
In equilibrium, an agent makes zero profit by participating in the lottery and selling

the good he received. All low-budget agents whose valuations are above v∗
1 strictly prefer

to participate in the lottery and retain the good they received. All high-budget agents
whose valuations are above v∗

2 strictly prefer to participate in the lottery and retain the
good they received. In addition, all high-budget agents whose valuations are above v∗∗

2
will buy the good in the second stage if they do not receive any via the lottery. Therefore,
the RwRRC scheme implements the optimal direct mechanism.
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