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S1. Analysis in Section 6

S1.1 Equilibrium system

As in Section 5, we derive the equilibrium system in four steps.

Step 1. Derive the Wold representation for the signal system under Assumption 3.

Given the AR(1) processes for at and ut , the signal representation follows

Xit =H(L)ηit ≡

⎡⎢⎢⎢⎣
1

1 − ρaL 1 0

π1(L)(
1 −π2(L)

)
(1 − ρaL)

0
1(

1 −π2(L)
)
(1 − ρuL)

⎤⎥⎥⎥⎦
⎡⎢⎣εatεit
εut

⎤⎥⎦ �

and so the spectral density for the signal is

Sx(z)=H(z)�ηH
(
z−1)ᵀ

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

σ2
a

(1 − ρaz)
(
1 − ρaz−1) + σ2

i

π1
(
z−1)

1 −π2
(
z−1) 1

(1 − ρaz)
(
1 − ρaz−1)σ2

a

π1(z)

1 −π2(z)

1

(1 − ρaz)
(
1 − ρaz−1)σ2

a

π1(z)π1
(
z−1)

(1 − ρaz)
(
1 − ρaz−1)σ2

a + σ2
u

(1 − ρuz)
(
1 − ρuz−1)(

1 −π2(z)
)(

1 −π2
(
z−1))

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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Using the method presented in Appendix S3, we can first factorize the spectral density
in a lower triangular form


̃(z)=

⎡⎢⎢⎣ σw
z− λw
1 − ρaz 0

σ2
a

σw

π1(z)z(
1 −π2(z)

)
(1 − λwz)(1 − ρaz)

1
σw

π̃1(z)

1 −π2(z)

1 − ρaz
1 − λwz

⎤⎥⎥⎦ �
where the constants λw ∈ (0�1) and σw are determined by the univariate spectral factor-
ization of the first signal ait in the frequency domain,

σ2
w

(1 − λwz)
(
1 − λwz−1)

(1 − ρaz)
(
1 − ρaz−1) = σ2

a

(1 − ρaz)
(
1 − ρaz−1) + σ2

i 	

It follows that

σ2
w(1 − λwz)

(
1 − λwz−1) = σ2

a + σ2
i (1 − ρaz)

(
1 − ρaz−1)	

Matching coefficients on the two sides of the equality yields

λw = 1
2ρa

[(
1 + τ+ ρ2

a

) −
√
τ2 + 2τ+ 2τρ2

a + 1 − 2ρ2
a + ρ4

a

]
�

and σ2
w = ρaσ

2
i

λw
. Here τ ≡ σ2

a/σ
2
i ∈ (0�∞) denotes the relative volatility of the aggre-

gate shock to the idiosyncratic shock. It is easy to verify that 0 < λw < ρa < 1 and
limσi→∞ λw = ρa.

Define the function π̃1(z) by

π̃1(z)π̃1
(
z−1) = π1(z)π1

(
z−1)σ2

aσ
2
i

(1 − ρaz)
(
1 − ρaz−1)

+ (1 − λwz)
(
1 − λwz−1)σ2

uσ
2
w

(1 − ρaz)
(
1 − ρaz−1)(1 − ρuz)

(
1 − ρuz−1) 	 (S1.1)

A stationary equilibrium requires that the endogenous function π1 ∈ H2(D). It is then
clear that the right-hand side of (S1.1) is a well defined spectral density supported
by a stationary process. Then by the Paley–Wiener theorem (e.g., Lindquist and Picci
2015, Theorem 4.4.1), there exists a Wold spectral factor π̃1(z) ∈ H2(D) that satisfies
the factorization (S1.1). Using a similar argument, we can show that the function
π̃1(z)

1−π2(z)
∈ H2(D). Hence, the matrix 
̃(z) is a valid spectral factor in H2(D) that satisfies

Sx(z)= 
̃(z)
̃ᵀ(z−1). The determinant of 
̃(z) is given by

det 
̃(z)= π̃1(z)

1 −π2(z)

z− λw
1 − λwz 	

As in Section 5, we restrict our attention to the equilibrium such that π̃1(z)
1−π2(z)

has no
roots in the open unit disk. To derive the Wold fundamental representation, we need



Supplementary Material Macro-financial volatility 3

to remove the root at z = λw ∈ (0�1). Using the Blaschke matrix B(z) in Step 2 of Ap-
pendix S3, we set


(z)= 
̃(z)V −1B(z)�

where

V =

⎡⎢⎢⎢⎢⎢⎣

√
h2

1 + h2

√
1

1 + h2√
1

1 + h2 −
√

h2

1 + h2

⎤⎥⎥⎥⎥⎥⎦ =
[
V11 V12

V12 V22

]
� B(z)=

⎡⎣1 0

0
1 − λwz
z− λw

⎤⎦ 	

Here the constant

h≡ π1(λw)λwσ
2
a

π̃1(λw)(1 − ρaλw)2
is endogenous and will be determined in equilibrium. The unitary matrix V is symmet-
ric and satisfies V = V ᵀ = V −1, and detV = −1. We then obtain the Wold fundamental
matrix


(z)=
⎡⎢⎣σw z− λw

1 − ρazV11 σw
1 − λwz
1 − ρaz V12


(1)π (z) 
(2)π (z)

⎤⎥⎦ �
where we define


(1)π (z)≡ σ2
a

σw

π1(z)z(
1 −π2(z)

)
(1 − λwz)(1 − ρaz)

V11 + 1
σw

π̃1(z)

1 −π2(z)

1 − ρaz
1 − λwzV12


(2)π (z)≡ σ2
a

σw

π1(z)z(
1 −π2(z)

)
(z− λw)(1 − ρaz)

V12 + 1
σw

π̃1(z)

1 −π2(z)

1 − ρaz
z− λw V22	

We compute that


−1(z)=

⎡⎢⎢⎢⎣
G1(z)

σ2
a

σw

π1(z)

π̃1(z)
+G2(z)

1
σw

−1 −π2(z)

π̃1(z)
σwG3(z)

−
[
G4(z)

σ2
a

σw

π1(z)

π̃1(z)
+G5(z)

1
σw

]
1 −π2(z)

π̃1(z)
σwG6(z)

⎤⎥⎥⎥⎦ �
where we define

G1(z)= −V12
z

(z− λw)(1 − ρaz)� G2(z)= −V22
1 − ρaz
z− λw

G3(z)= −V12
1 − λwz
1 − ρaz � G4(z)= −V11

z

(1 − λwz)(1 − ρaz)

G5(z)= −V12
1 − ρaz
1 − λwz � G6(z)= −V11

z− λw
1 − ρaz 	
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Note that allG1(z)� 	 	 	 �G6(z) are independent of the endogenous price signal except for
the constant in V . We also define the functions that will be repeatedly used later:



(1)
I (z)=G1(z)

σ2
a

σw

π1(z)

π̃1(z)
+G2(z)

1
σw
� 


(3)
I (z)≡ σwG3(z)

π1(z)

π̃1(z)


(2)I (z)=G4(z)
σ2
a

σw

π1(z)

π̃1(z)
+G5(z)

1
σw
� 
(4)I (z)≡ σwG6(z)

π1(z)

π̃1(z)
	

By the Paley–Wiener theorem and the fact that π̃1(z) is analytic in the open unit disk and
Wold fundamental, these functions are analytic in the open unit disk.1

Step 2. Solve for the equilibrium quantities. We conjecture that yit =My(L)ηit , where
My(z)= [Ma

y (z)�M
i
y(z)�M

u
y (z)] andMa

y (z),M
i
y(z), andMu

y (z) are all in H2(D). Aggrega-
tion leads to aggregate output yt = My(z)Iyηit , where Iy is defined earlier. Using the
Wiener–Hopf prediction formula, we derive that

Eit[yt] = [
ψ(1)y (L)�ψ(2)y (L)

]
+


−1(L)H(L)ηit

in terms of innovations, where the z-transform of the operator ψy = [ψ(1)y �ψ
(2)
y ] is given

by

ψy(z)= z−1Syx(z)
(

−1(z−1))ᵀ	 (S1.2)

The annihilation is given by [ψ(1)y (z)]+ = ψ
(1)
y (z) − P

(1)
y (z) and [ψ(2)y (z)]+ = ψ

(2)
y (z) −

P
(2)
y (z), where P(1)y (z) and P(2)y (z) denote the negative powers of z in the Laurent se-

ries expansions of ψ(1)y (z) and ψ(2)y (z), respectively. There are no explicit formulas for

P
(1)
y (z) and P(2)y (z) in general.

Using (S1.2), yt =My(z)Iyηit , and the cross-spectrum

Syx =My(z)Iy�ηH
ᵀ(
z−1)

= [
Ma
y �0�Mu

y

]⎡⎢⎣σ2
a

σ2
u

σ2
u

⎤⎥⎦
⎡⎢⎢⎢⎢⎢⎣

1

1 − ρaz−1

π1
(
z−1)(

1 −π2
(
z−1))(1 − ρaz−1)

1 0

0
1(

1 −π2
(
z−1))(1 − ρuz−1)

⎤⎥⎥⎥⎥⎥⎦ �

we can derive

ψ(1)y (z)=Ma
y (z)σ

2
aA

(1)
n (z)−Mu

y (z)σ
2
uA

(2)
n (z)

ψ(2)y (z)= −Ma
y (z)σ

2
aA

(3)
n (z)+Mu

y (z)σ
2
uA

(4)
n (z)�

1Sayed and Kailath (2001) summarized the property of the Wold fundamental matrix implied by the
Paley–Wiener theorem.
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where we define

A(1)n (z)= 1

1 − ρaz−1

[

(1)I

(
z−1) − 
(3)I

(
z−1)]� A(2)n (z)= 1

1 − ρuz−1
1

π1
(
z−1)
(3)I (

z−1)
A(3)n (z)= 1

1 − ρaz−1

[

(2)I

(
z−1) − 
(4)I

(
z−1)]� A(4)n (z)= 1

1 − ρuz−1
1

π1
(
z−1)
(4)I (

z−1)	
Substituting the preceding expression for Eit[yt] into (19) and matching coefficients

for ηit , we obtain

Ma
y (z) = 1

ξ

1
1 − ρaz + 1

1 − ρaz
[
G(1)y (z)−A(1)y (z)+G(2)y (z)−A(2)y (z)

]
θ (S1.3)

Mi
y(z) = 1

ξ
+ [
G(1)y (z)−A(1)y (z)

]
θ (S1.4)

Mu
y (z) = 1

1 − ρuz
θ

π1(z)

[
G(2)y (z)−A(2)y (z)

]
� (S1.5)

where we define

G(1)y (z)=ψ(1)y (z)

(1)
I (z)−ψ(2)y 


(2)
I (z)� A(1)y (z)= P(1)y (z)


(1)
I (z)− P(2)y 


(2)
I (z)

G(2)y (z)=ψ(2)y (z)

(4)
I (z)−ψ(1)y (z)


(3)
I (z)� A(2)y (z)= P(2)y (z)


(4)
I (z)− P(1)y 


(3)
I (z)	

Here 
(1)I (z)� 	 	 	 �

(4)
I (z) are defined earlier.

Using equations (S1.3) and (S1.5) and the definition of G(1)y (z) and G(2)y (z), we can
derive that [

Q1(z) Q2(z)

Q3(z) Q4(z)

][
Ma
y (z)

Mu
y (z)

]
=

⎡⎣ 1
ξ

−A(1)y (z)θ−A(2)y (z)θ

−A(2)y (z)θ

⎤⎦ � (S1.6)

where we define

Q1(z)= (1 − ρaz)− θσ2
aHa(z)� Q2(z)= θσ2

uHu(z)

Q3(z)= θσ2
aHd(z)� Q4(z)= (1 − ρuz)π1(z)− θσ2

uHc(z)

and

Ha(z)=A(1)n (z)
(


(1)
I (z)− 
(3)I (z)

) +A(3)n (z)
(


(2)
I (z)− 
(4)I (z)

)
Hu(z)=A(2)n (z)

(


(1)
I (z)− 
(3)I (z)

) +A(4)n (z)
(


(2)
I (z)− 
(4)I (z)

)
Hc(z)=A(4)n (z)
(4)I (z)+A(2)n 
(3)I (z)

Hd(z)=A(3)n (z)

(4)
I (z)+A(1)n 


(3)
I (z)	

Once π1(z) and π2(z) are known, we can use the system (S1.6) to determine Ma
y (z) and

Mu
y (z). Equation (S1.4) then determinesMi

y(z).
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As in the proof of Theorem 2, we deduce that dt = Md(L)ηit , nit = Mn(L)ηit , and
bit =Mb(L)ηit , where

Md(z) =
[

1
α6

(
1 − α7

α

)
Ma
y (z)+ α7

αα6

1
1 − ρaz �0�

1
α6

(
1 − α7

α

)
Mu
y (z)

]
Mn(z) = 1

α

[
Ma
y (z)− 1

1 − ρaz �M
i
y(z)− 1�Mu

y (z)

]
Mb(z) = α4Md(z)+ α5Mn(z)	

Each component of these vectors is in H2(D).
Step 3. We proceed to the financial side of the model. We need to compute several

conditional expectations for χit in (31). First, we use the Wiener–Hopf formula to derive

α3Eit
[
shit+2

] = α3
[
ψs(L)

]
+


−1(L)Xit�

where the z-transform of the operator ψs is given by ψs(z)= z−1Ssx(z)(

−1(z−1))ᵀ and

α3
[
ψ(1)s (z)

]
+ = α3ψ

(1)
s (z)− P(1)s (z)� α3

[
ψ(2)s (z)

]
+ = α3ψ

(2)
s (z)− P(2)s (z)	

HereP(1)s (z) andP(2)s (z) denote the negative powers of z in the Laurent series expansions
of α3ψ

(1)
s (z) and α3ψ

(2)
s (z), respectively. It follows that

α3
[
ψ(1)s (z)�ψ(2)s (z)

]
+


−1(z)=
[
G(1)s (z)−A(1)s (z)�

1 −π2(z)

π1(z)

(
G(2)s (z)−A(2)s (z)

)]
�

where

G(1)s (z)= σ2
i z

−1α3M
i
s(z)

[


(1)
I (z)


(1)
I

(
z−1) + 
(2)I (z)


(2)
I

(
z−1)]

G(2)s (z)= σ2
i z

−1α3M
i
s(z)

[−
(3)I (z)
(1)I
(
z−1) − 
(4)I (z)
(2)I

(
z−1)]

and

A(1)s (z)= P(1)s (z)
(1)I (z)− P(2)s (z)
(2)I (z)� A(2)s (z)= P(2)s (z)
(4)I (z)− P(1)s (z)
(3)I (z)	

It is easy to verify that Lemma 3 continues to hold, which implies

G(1)s (z)= σ2
i

1 − λs
z(1 − λsz)π1(z)

[

(1)I (z)
(1)I

(
z−1) + 
(2)I (z)
(2)I

(
z−1)]

G(2)s (z)= σ2
i

1 − λs
z(1 − λsz)π1(z)

[−
(3)I (z)

(1)
I

(
z−1) − 
(4)I (z)


(2)
I

(
z−1)]	

Second, the Wiener–Hopf formula gives

Eit[qt+1] = [
ψq(L)

]
+


−1(L)Xit�

where the z-transform of the operator ψq is given by

ψq(z)= 1
z
[0�1]Sx(z)

(

−1(z−1))ᵀ = 1

z
[0�1]
(z)= z−1[
(1)π (z)�
(2)π (z)

]
�
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where 
(1)π (z) and 
(2)π (z) are defined earlier. Since z = 0 is the only inside pole of ψq(z),
it follows from the lemma in Appendix A of Hansen and Sargent (1980) that[

ψq(L)
]
+


−1(z)= z−1[0�1] − Pq(z)
−1(z)�

where

Pq(z)= z−1
[

1
σw

π̃1(0)
1 −π2(0)

V12�
1
σw

π̃1(0)
1 −π2(0)

(
− 1
λw

)
V22

]
	

Thus,

Eit[qt+1] = −z−1 1
σw

π̃1(0)
1 −π2(0)

[
V12


(1)
I (z)+ 1

λw
V22


(2)
I (z)

]
ait

+ z−1 1
σw

π̃1(0)
1 −π2(0)

[
V12


(3)
I (z)+ 1

λw
V22


(4)
I (z)

]
1 −π2(z)

π1(z)
qt 	

Third, the Wiener–Hopf formula gives

Eit[dt+1] = [
ψd(L)

]
+


−1(L)Xit�

where the z-transform of the operator ψd is given by

ψd(z)= [
ψ(1)d (z)�ψ(2)d (z)

] = z−1Sdx(z)
(

−1(z−1))ᵀ�

and [ψ(1)d (z)]+ = ψ(1)d (z) − P(1)d (z) and [ψ(2)d (z)]+ = ψ(2)s (z) − P(2)d (z). Here P(1)d (z) and

P(2)d (z) denote the negative powers of z in the Laurent series expansions of ψ(1)d (z) and

ψ(2)d (z), respectively. As in Step 2, we can compute that

ψ(1)d (z)= z−1[Ma
d(z)A

(1)
n (z)σ2

a −Mu
d (z)A

(2)
n (z)σ2

u

]
ψ
(2)
d (z)= z−1[−Ma

d(z)A
(3)
n (z)σ2

a +Mu
d (z)A

(4)
n (z)σ2

u

]
	

It follows that

Eit[dt+1] =
[
G(1)d (L)−A(1)d (L)�

1 −π2(z)

π1(z)

(
G(2)d (L)−A(2)d (L)

)]
Xit�

where

G(1)d (z)=ψ(1)d (z)
(1)I (z)−ψ(2)d 
(2)I (z)� G(2)d (z)=ψ(2)d (z)
(4)I (z)−ψ(1)d (z)
(3)I (z)

and

A(1)d (z)= P(1)d (z)
(1)I (z)− P(2)d (z)
(2)I (z)� A(2)d (z)= P(2)d (z)
(4)I (z)− P(1)d (z)
(3)I (z)	

Finally, the Wiener–Hopf formula gives

Eit[�bit+1] = [
ψb(L)

]
+


−1(L)Xit�
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where the z-transform of the operator ψb is given by

ψb(z)= [
ψ(1)b (z)�ψ(2)b (z)

] = z−1(z− 1)Sbx(z)
(

−1(z−1))ᵀ�

and [ψ(1)b (z)]+ = ψ(1)b (z) − P(1)b (z) and [ψ(2)b (z)]+ = ψ(2)b (z) − P(2)b (z). Here P(1)b (z) and

P
(2)
b (z) denote the negative powers of z in the Laurent series expansions of ψ(1)b (z) and

ψ(2)b (z), respectively. It follows that

[
ψ(1)b (z)�ψ(2)b (z)

]
+


−1(z)=
[
G(1)b (z)−A(1)b (z)�

1 −π2(z)

π1(z)

(
G(2)b (z)−A(2)b (z)

)]
�

where

G
(1)
b (z)=ψ(1)b (z)


(1)
I (z)−ψ(2)b 


(2)
I (z)� G

(2)
b (z)=ψ(2)b (z)


(4)
I (z)−ψ(1)b (z)


(3)
I (z)

and

A(1)b (z)= P(1)b (z)
(1)I (z)− P(2)b (z)
(2)I (z)� A(2)b (z)= P(2)b (z)
(4)I (z)− P(1)b (z)
(3)I (z)	

As in Step 2, we can also derive that

ψ
(1)
b (z)= z−1(z− 1)

[
Ma
b(z)A

(1)
n (z)σ2

a −Mu
b (z)A

(2)
n (z)σ2

u + 
(1)I
(
z−1)Mi

b(z)σ
2
i

]
ψ(2)b (z)= z−1(z− 1)

[−Ma
b(z)A

(3)
n (z)σ2

a +Mu
b (z)A

(4)
n (z)σ2

u − 
(2)I
(
z−1)Mi

b(z)σ
2
i

]
	

Step 4. Derive the equilibrium system for π1(z) and π2(z). By Step 3, we obtain an
expression for χit . Matching coefficients of Xit = [ait� qt]ᵀ with those in (32), we obtain
the equilibrium conditions for π1(z) and π2(z),

π1(z)= (1 − λs)
z(1 − λsz)

[


(1)
I (z)


(1)
I

(
z−1) + 
(2)I (z)


(2)
I

(
z−1)]σ2

i π1(z)

−A(1)s (z)+ R(1)(z)

z(1 − λsz) (S1.7)

and

π2(z) = 1 −π2(z)

z(1 − λsz)π1(z)

{
(λs − 1)

[

(1)I

(
z−1)
(3)I (z)+ 
(2)I

(
z−1)
(4)I (z)

]
σ2
i π1(z)

− z(1 − λsz)A(2)s (z)+R(2)(z)} + z−1β� (S1.8)

where R(1)(z) and R(2)(z) are defined as

R(1)(z)=
{
−β 1

σw

π̃1(0)
1 −π2(0)

z−1
(
V12


(1)
I (z)+ 1

λw
V22


(2)
I (z)

)
+ (1 −β)[G(1)d (z)−A(1)d (z)

] + [
G(1)b (z)−A(1)b (z)

]}
z(1 − λsz)
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and

R(2)(z)=
{
β

1
σw

π̃1(0)
1 −π2(0)

z−1
(
V12


(3)
I (z)+ 1

λw
V22


(4)
I (z)

)
+ (1 −β)[G(1)d (z)−A(1)d (z)

] + [
G(2)b (z)−A(2)b (z)

]}
z(1 − λsz)	

Define an operator T that maps the vector of functions [π1(z)�π2(z)] to the vector of

functions that are equal to the expressions on the right-hand sides of (S1.7) and (S1.8).

Since the signal system contains endogenous prices, many variables in these expres-

sions depend on [π1(z)�π2(z)] in a complicated way. Thus, the operator T is nonlinear

in general. The equilibrium functions π1(z) and π2(z) correspond to the fixed point of

T in H2(D). Moreover, we use (S1.8) to derive that

π1(z)

1 −π2(z)

= 1
(1 − λsz)(z−β)

{−z(1 − λsz)A(2)s (z)+R(2)(z)

+ [
z(1 − λsz)− (1 − λs)

(


(1)
I

(
z−1)
(3)I (z)+ 
(2)I

(
z−1)
(4)I (z)

)
σ2
i

]
π1(z)

}
	 (S1.9)

We also have to ensure that π1(z)
1−π2(z)

∈ H2(D) in equilibrium. Note that our triangular

spectral factorization method also sheds light on the rationale behind the nonlinear-

ity and the nonrational representation of the equilibrium. Specifically, the nonlinearity

arises from the first step of the spectral factorization in which a new function π̃1(z) is

created and the integrity of the original function π1(L)
(1−π2(L))

cannot be preserved. By com-

parison, Assumption 2 in Section 5 leads to a spectral factorization with no additional

endogenous function. It also preserves the integrity of the original functions π1(L)
(1−π2(L))

as a whole. A similar argument also applies to Kasa et al. (2014), as their signal sys-

tem is square so that factorization does not need the first step, avoiding the complica-

tion.

S1.2 Numerical methods

The equilibrium is characterized by the fixed point of the operator T . Due to the en-

dogeneity of the price signal, this operator is nonlinear and, thus, the model does not

admit a solution in the form of rational functions. We now approximate the true model

solution, which is in the form of MA(∞), by finite-order ARMA(p�q) processes in the

time domain or by rational functions in the frequency domain. Rational functions

also allow us to evaluate the annihilation operator tractably using the lemma in Ap-

pendix A of Hansen and Sargent (1980). The numerical method involves the following

steps.
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Step 1. We begin by an initial guess for π1(z) in the form of an irreducible rational
function,

π1(z)= σπ

q∏
i=1

(1 + θiz)
p∏
j=1

(1 − ρjz)
� (S1.10)

where p and q are the orders of the ARMA representation, and σπ , θi, and |ρj| < 1 are
constants. Given the initial guess, we solve for the canonical factorization (S1.1) to ob-
tain

π̃1(z)= σπ̃

m+1∏
i=1

(1 + θ̂iz)

(1 − ρaz)(1 − ρuz)
p∏
j=1

(1 − ρjz)
� (S1.11)

wherem= max(p�q), and σπ̃ and θ̂i are determined by the factorization

σ2
π̃

m+1∏
i=1

(1 + θ̂iz)
(
1 + θ̂iz−1)

= σ2
aσ

2
i σ

2
π

q∏
i=1

(1 + θiz)
(
1 + θiz−1)(1 − ρuz)

(
1 − ρuz−1)

+ σ2
uσ

2
w(1 − λwz)

(
1 − λwz−1) p∏

j=1

(1 − ρjz)
(
1 − ρjz−1)	 (S1.12)

In particular, set |θ̂i|< 1 ∀i= 1�2� 	 	 	 �m+ 1.
In addition, we take an initial guess for the constant π̃1(0)

1−π2(0)
.

Step 2. Solve for the decision rules for quantities on the real side of the economy.
We use (S1.6) to derive Ma

y (z) and Mu
y (z). We need to compute P(1)y (z) and P(2)y (z) by

using the lemma in Hansen and Sargent (1980). Given the guess for π1(z) in (S1.10) and
(S1.11), and the expressions for ψ(1)y (z) and ψ(2)y (z) derived in Step 2 of Section S1.1, we

deduce that −θ̂1� 	 	 	, and −θ̂m+1 are the poles of ψ(1)y (z) and ψ(2)y (z) that are inside the
unit disk. Thus, we have

P(1)y (z)=
m+1∑
k=1

ψk�y

z+ θ̂k
� P(2)y (z)=

m+1∑
k=1

fk
ψk�y

z+ θ̂k

fk ≡ V11

V12

1 + λwθ̂k
θ̂k + λw

� k= 1�2� 	 	 	 �m+ 1�
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where each ψk�y is a constant defined as

ψk�y = lim
z→−θ̂k

(z+ θ̂k)
[
Ma
y (z)σ

2
aA

(1)
n (z)−Mu

y (z)σ
2
uA

(2)
n (z)

]
�

provided that all poles {−θ̂k}m+1
k=1 inside the unit disk are distinct. No constantψk�y can be

solved numerically using the preceding formula becauseMa
y (z) andMu

y (z) are unknown
functions to be determined. We use the method below to determine all ψk�y .

Plugging the guess forπ1(z) and the expressions above for P(1)y (z) and P(2)y (z) (taking
all unknown constant ψk�y as given) into (S1.6), we obtain the linear system

[
Q1(z) Q2(z)

Q̃3(z) Q̃4(z)

][
Ma
y (z)

Mu
y (z)

]
=

⎡⎢⎢⎢⎣
1
ξ

−A(1)y (z)θ−A(2)y (z)θ

−
p∏
j=1

(1 − ρjz)A(2)y (z)θ

⎤⎥⎥⎥⎦ ≡
[
C(1)y (z)

C(2)y (z)

]
�

where

Q̃3(z) = θσ2
a

p∏
j=1

(1 − ρjz)Hd(z)

Q̃4(z) =
q∏
i=1

(1 + θiz)(1 − ρuz)σπ − θσ2
u

p∏
j=1

(1 − ρjz)Hc(z)	

Solving this linear system yields[
Ma
y (z)

Mu
y (z)

]
= 1

D2
1(z)

[
Q̃4(z)Q1(z)−Q2(z)Q̃3(z)

]
×

[
D1(z)Q̃4(z)C

(1)
y (z)−D1(z)Q2(z)C

(2)
y (z)

−D1(z)Q̃3(z)C
(1)
y (z)+D1(z)Q1(z)C

(2)
y (z)

]
�

where we define

D1(z)=
m+1∏
i=1

(1 + θ̂iz)(z+ θ̂i)	

We can verify that the above solutions forMa
y (z) andMu

y (z) are irreducible rational func-
tions. That is, the numerator and denominator are pure polynomial functions.

The denominator function Dy(z) ≡ D2
1(z)[Q̃4(z)Q1(z) − Q2(z)Q̃3(z)] determines

the existence and uniqueness of a stationary equilibrium. The necessary condition
for the existence requires that Dy(z) has precisely m + 1 roots inside the open unit
disk. We verify this condition in every iteration in our numerical computations. Let
{zj}m+1

j=1 denote all the inside roots of Dy(z). To pin down the vector of constants
ψy = [ψ1�y� 	 	 	 �ψm+1�y ]ᵀ, we use the system ofm+ 1 equations

D1(zj)Q̃4(zj)C
(1)
y (zj)−D1(zj)Q2(zj)C

(2)
y (zj)= 0� j = 1�2� 	 	 	 �m+ 1�



12 Miao, Wu, and Young Supplementary Material

which gives a linear system for ψy ,

Acψy = Cc�
where Ac is an (m+ 1)× (m+ 1) matrix of constants and Cc is an (m+ 1)-dimensional
vector of constants. We derive this system by substituting P(1)y (z) and P(2)y (z) (which

depend on ψy ) into A(i)y (z) and C(i)y (z), i = 1�2. For simplicity, we omit the detailed
algebra here. The idea is that the solution for ψy must remove the poles of Dy(z) inside
the open unit disk so that the solutions forMa

y (z) andMu
y (z) are analytic inside the open

unit disk. If the matrix Ac is invertible, the solution is unique. We verify this condition
in every iteration of our numerical computations. Given the solutions for Ma

y (z) and
Mu
y (z), we solve for Mi

y(z) using (S1.4). We can also solve for Mb(z), Mn(z), and Md(z)

using the formulas derived in Step 2 of Section S1.1.
Step 3. We compute all annihilated functions of negative powers of z on the financial

side of the model using the Hansen–Sargent lemma. Let {zk}m+2
k=1 = {0�−θ̂1� 	 	 	 �−θ̂m+1}

denote the set of poles inside the unit disk. Provided that all poles are distinct, we have

P(1)s (z)=
m+2∑
k=1

ψ(1)k�s
z− zk � P(2)s (z)= −

m+2∑
k=1

ψ(2)k�s
z− zk

P
(1)
d (z)=

m+2∑
k=1

ψ(1)k�d
z− zk � P

(2)
d (z)=

m+2∑
k=1

ψ(2)k�d
z− zk

P(1)b (z)=
m+2∑
k=1

ψ
(1)
k�b

z− zk � P(2)b (z)=
m+2∑
k=1

ψ
(2)
k�b

z− zk �

where the constants are given by

ψ(1)k�s = lim
z→zk

(z− zk)
[
z−1α3M

i
s(z)


(1)
I

(
z−1)]σ2

i

ψ
(2)
k�s = lim

z→zk
(z− zk)

[
z−1α3M

i
s(z)


(2)
I

(
z−1)]σ2

i �

and

ψ(1)k�d = lim
z→zk

(z− zk)z−1[Ma
d(z)A

(1)
n (z)σ2

a −Mu
d (z)A

(2)
n (z)σ2

u

]
ψ
(2)
k�d = lim

z→zk
(z− zk)z−1[Mu

d (z)A
(4)
n (z)σ2

u −Ma
d(z)A

(3)
n (z)σ2

a

]
ψ(1)k�b = lim

z→zk
(z− zk)(z− 1)z−1[Ma

b(z)A
(1)
n (z)σ2

a −Mu
b (z)A

(2)
n (z)σ2

u +Mi
b(z)


(1)
I

(
z−1)σ2

i

]
ψ(2)k�b = lim

z→zk
(z− zk)(z− 1)z−1[Mu

b (z)A
(4)
n (z)σ2

u −Ma
b(z)A

(3)
n (z)σ2

a −Mi
b(z)


(2)
I

(
z−1)σ2

i

]
	

Given the guess of π1(z) in (S1.10) and the solutions for My(z), Md(z), Mn(z), and

Mb(z) in the previous step, we can compute the constants ψ(1)k�d , ψ(2)k�d , ψ(1)k�b, and ψ(2)k�b
for k= 1�2� 	 	 	 �m+ 2. The other constants ψ(1)k�s and ψ(2)k�s are solved in the next step. We
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cannot use the formulas above to determineψ(1)k�s andψ(2)k�s becauseMi
s(z) is an unknown

function to be determined in equilibrium. We can verify that

ψ(2)k�s = hkψ(1)k�s

hk =

⎧⎪⎨⎪⎩
V12

V22

1 − λwzk
zk − λw � if zk = 0

V11

V12

1 − λwzk
zk − λw � else	

Thus, we only need to solve for ψ(1)k�s , k= 1� 	 	 	 �m+ 2.
Step 4. Solve for the update of π1(z) and π2(z) using (S1.7) and (S1.8). Given the

guess for π1(z) in (S1.10), we can verify that R(1)(z) is an analytic rational function. Let
R(1)D (z) denote the denominator polynomial function of R(1)(z) in its irreducible form.

Since R(1)(z) is analytic, R(1)D (z) �= 0 inside the open unit disk. We can write

R(1)D (z)=R(1)D (0)
g∏
i=1

(1 + ziz)�

where g denotes the degree of R(1)D (z) and −z−1
i � 	 	 	 �−z−1

g are the g roots of R(1)D (z) that
are outside the open unit disk. Using the definition of the unitary matrix V , we can show
that the denominator of the rational function z(1 − λsz)− (1 − λs)σ2

i [
(1)I (z)
(1)I (z−1)+

(2)I (z)
(2)I (z−1)] in the irreducible form is given by

D1(z)=
m+1∏
k=1

(1 + θ̂kz)(z+ θ̂k)	

Notice that some factors inD1(z) and R(1)D (z)may be identical. We defineD2(z) as their
least common multiple.

We now rewrite (S1.7) as

π1(z)= D2(z)
[
R(1)(z)− z(1 − λsz)A(1)s (z)

]
D2(z)

[
z(1 − λsz)− (1 − λs)σ2

i

[

(1)I (z)
(1)I

(
z−1) + 
(2)I (z)
(2)I

(
z−1)]] � (S1.13)

where both the numerator and the denominator are pure polynomial functions. Let
πD1 (z) denote the denominator function. The existence and uniqueness of a stationary
equilibrium solution for π1(z) is determined by the roots of πD1 (z). More specifically, to

determine them+2-dimensional vector of unknown constantsψs = [ψ(1)1�s � 	 	 	 �ψ
(1)
m+2�s]ᵀ,

we need πD1 (z) to have preciselym+ 2 distinct roots inside the open unit disk. We verify
this condition in every iteration of the numerical computation. Without risk of confu-
sion, let {ẑk}m+2

k=1 denote the set of distinct roots of πD1 (z) that are inside the open unit
disk.

We then pin down ψs by removing the poles {ẑk}m+2
k=1 and evaluating the numerator

polynomial

D2(ẑk)
[
R(1)(ẑk)− ẑk(1 − λsẑk)A(1)s (ẑk)

] = 0 ∀k= 1�2� 	 	 	 �m+ 2�
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which leads to the linear system

Aπψs = Cπ�
where we have used the definition of A(1)s (z) and the expression of P(1)s (z) derived in
Step 2. We deduce thatAπ is an (m+ 2)× (m+ 2)matrix with elements given by

Aπ(k� i)= 
(1)I (ẑk)D2(ẑk)

ẑk − zi + 
(2)I (ẑk)D2(ẑk)

ẑk − zi hi

for k= 1�2� 	 	 	 �m+ 2 and i = 1�2� 	 	 	 �m+ 2, and zi ∈ {0�−θ̂1� 	 	 	 �−θ̂m+1}. The kth ele-
ment of (m+ 2)× 1 vector Cπ is given by

Cπ(k)=R(1)(ẑk)D2(ẑk) ∀k= 1�2� 	 	 	 �m+ 2	

If Aπ is full rank, the solution is indeed unique. Again, we verify this condition in every
iteration.

Once we determine ψs, we update the guess for π1(z) using the solution in (S1.13).
Given this solution forπ1(z), we use (S1.9) to solve for π1(z)

1−π2(z)
. Observe that the numera-

tor on the right-hand side of (S1.9) is analytic inside the open unit disk, but we still need
to remove the pole at z = β. We set the constant π̃1(0)

1−π2(0)
to remove this pole. That is,

φ(β)π1(β)−β(1 − λsβ)A(2)s (β)+R(2)(β)= 0�

where

φ(z)= z(1 − λsz)− (1 − λs)
[

(1)I

(
z−1)
(3)I (z)+ 
(2)I

(
z−1)
(4)I (z)

]
σ2
i 	

This leads to the solution for the constant:

π̃1(0)
1 −π2(0)

= σw

β(1 − λsβ)
[
V12


(3)
I (β)+ 1

λw
V22


(4)
I (β)

]
× {
β(1 − λsβ)

(
A(2)s (β)− (1 −β)[G(1)d (β)−A(1)d (β)

]
− [
G
(2)
b (β)−A(2)b (β)

]) −φ(β)π1(β)
}
	 (S1.14)

We use this solution to update the initial guess for π̃1(0)
1−π2(0)

. Finally, we iterate until con-
vergence.

In summary, we employ the following iterative algorithm (Algorithm 1) to solve the
model.

S1.3 Macro-financial disconnection

In the extension of Section 6.2, information is segregated between groups as agents in
one group receive no signal about the other group’s shocks. Let Ipit and Int denote the
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Algorithm 1 Numerical Approximation of Equilibrium.

Step 0. Begin with a guess for p, q, σπ , πc ≡ π̃1(0)
1−π2(0)

, {θi}qi=1, {ρj}pj=1 with |ρj|< 1 ∀j.

Step 1. Setm= max{p�q} and compute σπ̂ and {θ̂i}mi=1 using (S1.12).

Step 2. Solve for the functionsMy(z),Md(z),Mb(z), andMn(z).

Step 3. Let πA1 (z) and π+
c be the expressions on the right-hand sides of (S1.13) and

(S1.14), respectively.

Step 4. Update the initial guess using

π+
1 (z)= σ+

π

q∏
i=1

(
1 + θ+

i z
)

p∏
j=1

(
1 − ρ+

j z
) �

where σ+
π , θ+

i , and ρ+
j are the solution to the problem

min
σπ�θi�ρj

N∑
n=1

∣∣π+
1 (n)−πA1 (n)

∣∣2
�

where π+
1 (n) and πA1 (n) are the coefficients of the moving average expansion

of π+
1 (z) and πA1 (z), withN = 70.

Step 5. Iterate Steps 0–4 until max{|ρ+
j − ρj|� |θ+

i − θi|� |σ+
π − σπ |}< 10−3 ∀i� j.

Step 6. Compute ε= max{||π+
1 (z)−πA1 (z)||H2� |π+

c −πc|}; if ε < 10−5, stop; otherwise,
set p := p+ 1, q := q+ 1, and repeat Steps 0–5.

information set for agents in participating island i and any nonparticipating island, re-
spectively. Then conditional expectations of the other group’s shocks are equal to their
unconditional mean, i.e.,

Ej
[
�(L)ε

p
at |Int

] = 0; Ej
[
�(L)εit |Int

] = 0 ∀i ∈ Ip� j ∈ In
Ei

[
�(L)εnat |Ipit

] = 0; Ei
[
�(L)εjt |Ipit

] = 0 ∀i ∈ Ip� j ∈ In
(S1.15)

for any square-summable lag polynomial �(L). Then we can use (26) to characterize
the equity market equilibrium2

qt =
∫
i∈Ip

Ei
[
α3s

h
it+2 +�bit+1|Ipit

]
di+

∫
i∈Ip

Ei
[
βqt+1 + (1 −β)dt+1|Ipit

]
di+ ut	 (S1.16)

2The log-linearized coefficients determined by the steady state will be different from the basic model. In
particular, the production side remains the same, while a redistriburion of consumption occurs between
participating and nonparticipating islands.
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Given property (S1.15) and our information structure, (S1.16) implies that we can focus
on the equilibrium in which the equity prices are driven by

qt =Mp
q (L)ε

p
at +Mu

q (L)εut�

which resembles (33). Intuitively, the stock price does not respond to fluctuations of
nonparticipants’ TFP shocks. Moreover, the information structure and the dynamic in-
teractions between shareholding choices shit and qt ((35) and (36)) remains the same as
in the basic model. Therefore, the unit root result in the equity price volatility is still
valid, although the quantitative outcome depends on the participation measure κ and
the modified real equilibrium.

Next, we characterize the log-linearized equilibrium in the real economy,

yit = 1
ξ

(
a
p
t + εit

) + θEi
[
κy
p
t + (1 − κ)ynt |Ipit

] ∀i ∈ Ip

yjt = 1
ξ

(
ant + εjt

) + θEj
[
κy
p
t + (1 − κ)ynt |Int

] ∀j ∈ In�

where yt = κy
p
t + (1 − κ)ynt , and y

p
t = 1

κ

∫
i∈Ip yit di and ynt = 1

1−κ
∫
j∈In yjt dj are log-

linearized group aggregates. We conjecture that the “segregated” equilibrium decision
rules follow

yit =Mp
y (L)ε

p
at +Mi�p

y (L)εit +Mu
y (L)εut ∀i ∈ Ip

yjt =Mn
y (L)ε

n
at +Mj�n

y (L)εjt ∀j ∈ In	

We then use (S1.15) and the fact that Ej[εut |Int ] = 0 to get

yit = 1
ξ

(
a
p
t + εit

) + θκEi
[
y
p
t |Ipit

] ∀i ∈ Ip (S1.17)

yjt = 1
ξ

(
ant + εjt

) + θ(1 − κ)ynt ∀j ∈ In	 (S1.18)

Note that (S1.17) resembles (19), which leads to the decision rule for total output on
participating islands,

y
p
t = 1

κ

∫
i∈Ip

yit di=Mp
y (L)ε

p
at +Mu

y (L)εut 	

Meanwhile, aggregating (S1.18) produces a simple solution for ynt :

ynt = 1
1 − κ

∫
j∈In

Mn
y (L)ε

n
at dj = 1

ξ
[
1 − θ(1 − κ)](1 − ρaL)

εnat 	

It is then more transparent to write the equilibrium aggregate output as

yt = κ
[
M
p
y (L)ε

p
at +Mu

y (L)εut
] + (1 − κ) 1

ξ
[
1 − θ(1 − κ)](1 − ρaL)

εnat 	
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Since Mp
y (L) and Mu

y (L) are determined by (S1.17), which is almost equivalent to the
equilibrium condition in the basic model except for the appearance of the κ parameter,
the solution for Mp

y (L) and Mu
y (L) is invariant up to the changes in κ and the steady-

state coefficients.

S2. Frequency domain methods

In this section, we introduce some mathematical background for the frequency domain
methods. We study casual covariance stationary real-valued equilibrium processes that
have an MA(∞) representation. For example, the aggregate output process in the model
of Section 3 can be written as

yt =
∞∑
j=0

Mjεa�t−j� (S2.1)

where {Mj}∞j=0 is square summable, i.e.,
∑∞
j=0 |Mj|2 < ∞. Solving for the infinite se-

quence of {Mj}∞j=0 is a daunting task. The idea of the frequency domain method is to
transform this problem into an equivalent problem of solving for an analytical function
in the Hardy space. To define this space, we recall that C denotes the complex plan, T
denotes the unit circle, and D denotes the open unit disk.

Definition S1. The Hardy space H2(D) is the class of analytical functions g in the unit
disk D satisfying {

1
2π

sup
0≤r<1

∫ π

−π
∣∣g(reiω)∣∣2

dω

}1/2
<∞	

It can be verified that the expression on the preceding inequality defines a norm on
H2(D), denoted as ‖g‖H2 . The Hardy space can also be viewed as a certain closed vector
subspace of the complex L2 space for the unit circle T. This connection is provided by
the fact that the radial limit

g̃
(
eiω

) = lim
r↑1
g
(
reiω

)
exists for almost all ω ∈ [−π�π]. The function g̃ belongs to the space L2(T) of functions
f : T → C with the inner product

〈f1� f2〉 = 1
2π

∫ π

−π
f
(
eiω

)
f2

(
eiω

)
dω� f1� f2 ∈L2(T)	

Then we have

‖g‖H2 = ‖g̃‖L2 = lim
r↑1

{
1

2π

∫ π

−π
∣∣g(reiω)∣∣2

dω

}1/2
<∞	

Denote by H2(T) the vector subspace of L2(T), consisting of all limit functions g̃,
when g varies in H2(D).
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Theorem S1 (Katznelson (1976)). We have f ∈ H2(T) if and only if f ∈L2(T) and f̂n = 0
for all n < 0, where f̂n is the Fourier coefficient of a function that is f integrable on the unit
circle:

f̂n = 1
2π

∫ π

−π
f
(
eiω

)
e−iωn dω� n= 0�±1�±2� 	 	 	 	

Suppose that g̃ ∈ H2(T) and g̃ has Fourier coefficients {an} with an = 0 for all n < 0.
We define

g(z)=
∞∑
n=0

anz
n� |z|< 1	

The following theorem ensures that g ∈ H2(D). Thus, we have a bijection between H2(D)

and H2(T).

Theorem S2. If f (z) is an analytic function in D and its Laurent expansion is

f (z)=
∞∑
n=0

bnz
n�

then f ∈ H2(D) if and only if {bn}∞n=0 is square summable, i.e.,
∑∞
n=0 |bn|2 <∞. When this

condition is satisfied,
∞∑
n=0

|bn|2 = ‖f‖H2 	

We call the map from the sequence {bn}∞n=0 to f (z) a z-transform. Theorem S2 also
allows us to give an equivalent definition of the Hardy space H2(D) as the class of an-
alytical functions f : D → C, which are the z-transforms of some square-summable se-
quences. Thus, solving for {Mj}∞j=0 in (S2.1) is equivalent to solving for a function M(z)

in the hardy space H2(D). In particular, we can write yt =M(L)εat , whereM(z) ∈ H2(D)

is the object we solve for. We can use Theorem S2 to compute the variance of yt easily
because

Var(yt)= σ2
a

∞∑
j=0

M2
j = σ2

a

∥∥M(z)∥∥H2 	

Finally, a rational function f (z) ∈ H2(D) if and only if f (z) is analytic in the closed
unit disk. In particular, poles are not allowed on the unit circle.

S3. Computing expectations in the frequency domain

We present our approach in a general framework. Suppose that the signal is an �-
dimensional variable Xt , defined in terms of infinite-order moving average processes.3

3We can extend the definition to contain information about future innovations (e.g., Bacchetta and van
Wincoop 2008).
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Let C denote the complex plane, let T denote the unit circle {z ∈ C : |z| = 1}, and let D
denote the open unit disk {z ∈C : |z|< 1}.

Definition S2 (Signal representation). The �-dimensional real-valued signal process
{Xt} is linearly regular and admits representation

Xt
�×1

=H(L)
�×k

ηt
k×1
� �≤ k�

where L denotes the lag operator, {ηt} represents structural Gaussian innovations with
mean zero and covariance matrix �η, and H(z) is an �× k matrix analytic function de-
fined on the open unit disk D in the matrix-valued Hardy space H2(D).4

We call H(·) the signal matrix or the transfer function as in the mathematics liter-
ature. To simplify the signal extraction problem, it is useful to assume a maximal rank
condition for the signal process so that no redundant information is contained inXt .

Assumption 4. The �-dimensional signal processXt has maximal rank, i.e., the rank of
its associated spectral density fx(ω) equals its dimension,

rank
(
fx(ω)

) = �

for almost all ω ∈ [−π�π].

An methodological contribution of our paper is that we study a non-square signal
representation in that � < k. The existing literature focuses on the case of square sig-
nal representations with �= k (e.g., Kasa et al. 2014 and Rondina and Walker 2020). To
use the Wiener–Hopf prediction formula, we need the Wold fundamental representa-
tion for the signal process. For the case of non-square signal representation, finding the
Wold representation is nontrivial. We use spectral factorization techniques to solve this
problem.

S3.1 A two-step spectral factorization procedure

Our goal is to find a Wold representation for {Xt}. We are looking for an outer analytic
matrix function 
(·) in the Hardy space H2(D) such that5

Xt
�×1

= 
(L)
�×�

et
�×1
� fx(ω)= 
(

e−iω
)

∗(e−iω)

� ω ∈ [−π�π]�

4See the Appendix S2 for the definition of the Hardy space. This definition can be easily extended to
matrix cases; see Lindquist and Picci (2015, Appendix B.2).

5The function 
(z) is also called a canonical or fundamental spectral factor. We refer readers to Lindquist
and Picci (2015, Chapter 4) for characterizations of outer functions. One prominent feature of outer func-
tions is that they cannot have zeros inside the unit disk. Note that Lindquist and Picci 2015 use the engi-
neering definition of z = eiω so that the analytic region is reversed compared with this paper, but all analytic
results remain valid.
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where the asterisk denotes the conjugate transpose, {et} is some mutually uncorrelated
Wold (fundamental) innovation process with mean zero and an identity covariance ma-
trix, fx is the spectral density, and 
(·) is an outer analytic function.6

For the square signal case with � = k, we can directly apply the Beurling–Blaschke
factorization method to derive the Wold representation as in Kasa et al. (2014) and Ron-
dina and Walker (2020). However, this method does not apply to the non-square case
with � < k. We propose a two-step spectral factorization procedure. In Step 1 we apply
the convolution theorem to find the spectral density fx(ω) of the signal process {Xt}.
Then we use the Rozanov (1967) theorem to find a lower triangular decomposition of
fx(ω). In Step 2 we apply the Beurling–Blaschke factorization method to the lower tri-
angular matrix. Due to the length constraints, we omit the algebraic derivations in this
section. These details are contained in the Appendix S4.

Before describing the two-step procedure, we start with the following well known
result in time series, the proof of which is omitted for brevity.

Lemma S1. Suppose that Xt is the vector of signals defined in Definition S2 and that As-
sumption 4 holds. Moreover, the transfer function H(z) is a non-square matrix function
with dimension k> �. Then the spectral density fx(ω) is an �× �matrix function defined
on [−π�π] and

fx(ω)=H(
e−iω

)
�ηH

∗(e−iω) =H(z)�ηH
(
z−1)ᵀ� z = e−iω�

where the superscript ᵀ denotes the transpose of a matrix. Furthermore, fx(ω) is a Her-
mitian normal matrix that is nonnegative definite for almost all ω ∈ [−π�π]. If we ex-
tend the definition of z to the entire complex plane C, then the autocovariance generating
function is given by Sx(z)=H(z)�ηH(z−1)ᵀ, but without the Hermitian nonnegativeness
property for general z ∈C.

Lemma S1 allows us to transform the non-square signal transfer matrix function into
the square spectral density matrix fx(ω). Based on this lemma, the first step of the spec-
tral factorization procedure is to decompose fx(ω) into triangular matrix functions us-
ing Rozanov’s (1967) analytical method.

Step 1. Given an �×� spectral density matrix fx(ω)with full rank almost everywhere,
construct an �× � lower triangular matrix function 
̃(e−iω) such that

fx(ω)= 
̃(
e−iω

)̃

∗(e−iω)

�

where


̃(z)=

⎡⎢⎢⎢⎢⎣

̃11(z) 0 	 	 	 0

̃21(z) 
̃22(z) 	 	 	 0
			

			
	 	 	

			


̃�1(z) 
̃�2(z) 	 	 	 
̃��(z)

⎤⎥⎥⎥⎥⎦ 	
6Note that the Wold fundamental innovations can have nondiagonal, nonnormalized covariance matri-

ces. Using the unitary eigendecomposition of the covariance matrix, we can obtain the orthonormal Wold
representations with an identity covariance matrix.
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If fx(ω) is rational, then all elements of the matrix function are rational and analytic in
the closed unit disk T ∪ D, and, hence, in the H2(D) space. Moreover, 
̃(e−iω) has full
rank in D except for at most a finite number of points.

If the determinant of the analytic matrix 
̃(z) vanishes at finitely many points inside
the unit disk, it is not a Wold spectral factor. Without loss of generality, let {z1� z2� 	 	 	 � zn}
be the finite set of distinct points such that det(̃
(zj)) = 0, |zj| < 1, j ∈ {1�2� 	 	 	 � n}. Let
zj denote the conjugate of zj . We assume that all zeros are of order 1 (this property is
generic).

The second step of our spectral factorization method employs a multivariate version
of the Beurling–Blaschke factorization theorem to remove any zeros inside the unit disk.

Step 2. The Wold spectral factor 
(z) can be obtained by the factorization for Hardy
space functions as


(z)= 
̃(z)
n∏
j=1

V −1
j Bj(z)�

where the �× � Blaschke matrices Bj(z) are (inverse) inner matrix functions of the form

Bj(z)=

⎡⎢⎢⎢⎢⎢⎣
1 0 	 	 	 0
0 1 	 	 	 0
			

			
	 	 	

			

0 0 	 	 	
1 − z̄jz
z− zj

⎤⎥⎥⎥⎥⎥⎦ �

and the constant unitary matrix Vj is given by the singular value decomposition of 
̃(z)
evaluated at the zeros


̃(zj)=UjDVj�
whereD is a diagonal matrix containing the singular values.

The constant unitary matrices Vj remove the unwelcome poles brought in by the
Blaschke factors. There are different ways to compute these matrices, and we use the
eigendecomposition method. In particular, the orthonormal column vectors of Vj can
be directly picked from normalized linear independent eigenvectors of the Hermitian
matrix Gj(zj) = 
̃∗(zj)̃
(zj), which are automatically pairwise-orthogonal for distinct
eigenvalues. For more complicated systems, the eigenvectors can be found easily using
symbolic toolboxes in Matlab or Mathematica.

S3.2 Wiener–Hopf prediction formula

Using the Wold representation for the signal process, we can compute the conditional
expectations given the history of signals. Since agents in our model need to perform op-
timal linear filtering to estimate unobserved shocks, we use the Wiener–Hopf prediction
formula, a generalization of the Wiener–Kolmogorov forecasting formula.

Consider any random vector �t satisfying �t =G(L)ηt , whereG(z) is a matrix ana-
lytic function in some matrix-valued Hardy space. We wish to compute the conditional
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expectation E[Lm�t |{Xt−n}∞n=0] given the history of signals {Xt−n}∞n=0, where m is any
integer. The Wiener–Hopf prediction formula gives

E
[
Lm�t |{Xt−n}∞n=0

] =�(L)Xt�

where the analytic matrix function �(z) is given by

�(z)= [
zmS�x(z)

(

−1(z−1))ᵀ]

+

−1(z)	

Here 
(z) is the Wold spectral factor derived in the previous subsection and S�x(z) =
G(z)�ηH(1/z)ᵀ is the covariance generating function. The annihilation operator [·]+ is
linear and is used to remove the principal part of the Laurent series expansion of the
analytic functions around a common region of convergence.7 This formula reduces to
the Wiener–Kolmogorov formula when �t =Xt so that �(z) = [zm
(z)]+
−1(z). If the
forecast objects follow geometrically discounted processes, the formula reduces to the
Hansen–Sargent optimal prediction formula.

S4. Algebraic derivation on spectral factorization in Appendix S3

Derivations in step 1 Since fx(ω) is rational, it has a constant, maximal rank of � except
at a finite number of points on the unit circle T. To develop the triangular factorization
of the spectral density, we need the following lemma from Rozanov (1967) on rational
functions.

Lemma S2. Every nonnegative (real) rational function f (ω) of e−iω can be represented in
the form

f (ω)=
∣∣P(
e−iω

)∣∣2∣∣Q(
e−iω

)∣∣2 = P
(
e−iω

)
P

(
e−iω

)
Q

(
e−iω

)
Q

(
e−iω

) = P(z)P(z)

Q(z)Q(z)

for z ∈ T. The polynomial functions P(z) and Q(z) have no zeros in the open unit disk. If
f satisfies

f (ω)= f (−ω)�
then the coefficients of P(z) andQ(z) can be chosen all real.

See Rozanov (1967, Lemma 10.1) for the proof.
If we extend f (z) to be a complex function in the entire complex plane, the preceding

lemma implies that it can be factorized in a “symmetric” way such that if λi is a root for
f (z), so is the conjugate inverse 1/λi.

7See Kailath et al. (2000) for a textbook proof of the Wiener–Hopf prediction formula. Hansen and Sar-
gent (1980) provide a practical method of computing the annihilation operator using elementary complex
analysis.
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Now consider the �× � spectral density matrix fx(ω). By definition it is Hermitian,

normal, and nonnegative definite for almost all ω. For simplicity, we drop the x sub-

script and write the f matrix as

f (ω)=

⎡⎢⎢⎢⎢⎣
f11 f12 	 	 	 f1�

f21 f22 	 	 	 f2�
			

			
	 	 	

			

f�1 f�2 	 	 	 f��

⎤⎥⎥⎥⎥⎦ 	

Using Sylvester’s criterion for the nonnegative definite matrix, define the family of lead-

ing principal minors asMj(ω), j = 1�2� 	 	 	 � �. By definition,Mj(ω)≥ 0 a.e. andM1(ω)=
f11 ≥ 0 a.e.

Next we implement elementary row operations on the matrix. Adding to the rth row

(r = 2�3� 	 	 	 � �) the first row, multiplied by − fr1
f11

, yields

f (ω)=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f11 f12 	 	 	 f1�

0 f22 − f12
f21

f11
	 	 	 f2� − f1�

f21

f11
			

			
	 	 	

			

0 f�2 − f12
f�1
f11

	 	 	 f�� − f1�
f�1
f11

⎤⎥⎥⎥⎥⎥⎥⎥⎦
	

Similarly, adding to the jth column (j = 2�3� 	 	 	 � �) from the first column multiplied by

− f1j
f11

, we have

f (2)(ω)=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f11 0 	 	 	 0

0 f22 − f12
f21

f11
	 	 	 f2� − f1�

f21

f11
			

			
	 	 	

			

0 f�2 − f12
f�1
f11

	 	 	 f�� − f1�
f�1
f11

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

[
f11 0
0 g(2)

]
�

where the elements of matrix g(2) = [g(2)rj ] have the form g(2)rj = frj − fr1f1j
f11

.

Notice that the diagonal element g(2)22 satisfies g(2)22 (ω)= M2(ω)
M1(ω)

a.e. If we denote g(1) =
f (1) = f , then f (2) is obtained by using the row–column transformations on f (1). Now

consider the matrix

g(2) =

⎡⎢⎢⎢⎢⎢⎣
f22 − f12

f21

f11
	 	 	 f2� − f1�

f21

f11
			

	 	 	
			

f�2 − f12
f�1
f11

	 	 	 f�� − f1�
f�1
f11

⎤⎥⎥⎥⎥⎥⎦ 	
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We apply the same transformation for g(2) to eliminate its first row and column except
the leading coefficient, yielding

g(2) =
⎡⎣f22 − f12

f21

f11
0

0 g(3)

⎤⎦ 	
It is easy to verify that g(3)33 (ω)= M3(ω)

M2(ω)
. We then arrive at a new �× �matrix:

f (3)(ω)=

⎡⎢⎢⎣
f11 0 0

0 f22 − f12
f21

f11
0

0 0 g(3)

⎤⎥⎥⎦ 	
Continue this process until we reach a diagonal matrix f (�)(ω), admitting the form

f (�)(ω)=

⎡⎢⎢⎢⎢⎣
h11

h22
	 	 	

h��

⎤⎥⎥⎥⎥⎦ 	

It is easy to see that the diagonal elements are

h11(ω)=M1(ω)� hrr(ω)= Mr(ω)

Mr−1(ω)
� r = 2�3� 	 	 	 � �	

It follows that f (ω) admits the following logical disk unit-like (LDU-like) decomposition.
The spectral density fx(ω) can be decomposed as fx = gf (�)g∗, where the matrix

function g(ω) is lower triangular with diagonal elements equal to 1:

g(ω)=

⎡⎢⎢⎢⎢⎣
1 0 	 	 	 0
g21 1 	 	 	 0
			

			
	 	 	

			

g�1 g�2 	 	 	 1

⎤⎥⎥⎥⎥⎦ 	

The off-diagonal nonzero elements are defined as grj = g
(j)
rj

hjj
, r > j, where g(l)rl is deter-

mined by the recursion

g
(1)
rj = frj� g

(i)
rj = g(i−1)

rj −
g(i−1)
r�i−1 − g(i−1)

i−1�j

g
(i−1)
i−1�i−1

� i= 2�3� 	 	 	 � j	

Since the elements of fx(ω) are rational functions, the matrix transformation implies

that elements of g and f (�) are rational as well. Next we define grj(ω) = Prj(z)
Qrj(z)

, where

z = e−iω. We extend the definition of z to the entire complex plane and fix a column
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j ∈ {1�2� 	 	 	 � �}. Let α(j)p , p= 1�2� 	 	 	, denote the roots of the set of polynomials {Qrj(z) :
r = 1� 	 	 	 � �} that are located inside the unit circle, counting multiplicities. Define

cj(z)=
∏
p

(
z− α(j)p

)
� Dj(z)= hjj(z)∣∣cj(z)∣∣2 	

Note that Dj(z) is nonnegative by construction. We can use Lemma S2 to decompose
Dj(z) as

Dj(z)=
∣∣∣∣�j(z)�j(z)

∣∣∣∣2
=
�j(z)�j

(
1
z

)
�j(z)�j

(
1
z

)
on the unit circle, where we can choose �j(z) and �j(z) such that they have no zeros
inside the unit disk (when extending the definition of z to the entire complex plane).
The second equality follows from the real-coefficients assumption. If the polynomials
have complex-valued coefficients, we need to conjugate the coefficients accordingly.

Now set


̃rj(z)= grj(z)cj(z)�j(z)
�j(z)

� r = 1� 	 	 	 � ��

where z = e−iω. Continuing this construction for all columns of g, we obtain the desired
matrix 
̃(z) such that fx(ω)= 
̃(e−iω)̃
∗(e−iω), where all elements of the matrix function


̃(z)=

⎡⎢⎢⎢⎢⎣

̃11(z) 0 	 	 	 0

̃21(z) 
̃22(z) 	 	 	 0
			

			
	 	 	

			


̃�1(z) 
̃�2(z) 	 	 	 
̃��(z)

⎤⎥⎥⎥⎥⎦
are analytic in the closed unit disk and, hence, in the H2(D) space.

Derivations of step 2 In Step 1, we obtain

fx(ω)= 
̃(
e−iω

)̃

∗(e−iω)

	

The Beurling–Blaschke factorization theorem states that every 
̃(z) ∈ H2(D) can be writ-
ten in the form


̃(z)= 
(z)Q(z)� (S4.1)

where Q(z) is an � × � matrix inner function. The proof of this theorem can be found
in Rudin (1986, Theorem 17.17); the matrix generalization of this theorem can be found
in Lindquist and Picci (2015, Theorem 4.6.5–4.6.8). The factorization is unique up to
constant unitary matrices.8 Since 
̃(z) is rational, the outer function 
(z) is also rational

8The conditional uniqueness corresponds only to orthonormal Wold innovations. In fact, given a Wold
representation Xt = 
(L)vt , the transformation Xt = 
(L)��−1vt is also Wold fundamental provided that
the constant matrix � is invertible. In this case, the Wiener–Hopf formula is modified to contain �.
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as well. A rational outer function is completely characterized by the location of its zeros.
That is, a rational function 
(z) is an outer function if and only if det(
(z)) �= 0 ∀|z|< 1.
Hence, the inner functionQ(z) can be reduced to the Blaschke matrices satisfying

Q(z)=
n∏
j=1

B̃j(z)Vj� (S4.2)

where B̃j satisfies

B̃j(z)=

⎡⎢⎢⎢⎢⎢⎣
1 0 	 	 	 0
0 1 	 	 	 0
			

			
	 	 	

			

0 0 	 	 	
z− zj
1 − z̄jz

⎤⎥⎥⎥⎥⎥⎦ = B−1
j (z)�

and zj are zeros of det(Q(z)) or det(̃
(z)) satisfying |zj| < 1. Here Vj are constant uni-
tary matrices. In other words, the singular part of the rational inner function is absent
(see Rudin 1986, Theorem 17.9 and Lindquist and Picci 2015, Theorem 4.6.11). Com-
pared with the general definition of the Blaschke factors, we implicitly assume there are

no zeros at z = 0 and omit the norm terms
z̄j
|zj | since finite Blaschke products have no

convergence issues. Combining (S4.1) and (S4.2), we have


(z)= 
̃(z)
n∏
j=1

V −1
j

[
B̃j(z)

]−1 = 
̃(z)
n∏
j=1

V −1
j Bj(z)	

Note that the Blacheke inner function satisfies Q(z)Q∗(z)= I ∀|z| = 1 on the unit circle.
The spectral density is preserved under the factorization


(z)
∗(z)= 
̃(z)
n∏
j=1

V −1
j Bj(z)

n∏
j=1

B∗
j (z)

(
V −1
j

)∗

̃∗(z)= fx(ω)�

where z = e−iω. Moreover, all zeros inside the unit disk are removed because

det
(

(z)

) = det
(̃

(z)

) n∏
j=1

det
(
V −1
j

) n∏
j=1

1 − z̄jz
z− zj

= ϒ(z)

n∏
j=1

(z− zj)
n∏
j=1

det
(
V −1
j

) n∏
j=1

1 − z̄jz
z− zj

= ϒ(z)

n∏
j=1

det
(
V −1
j

) n∏
j=1

(1 − z̄jz)

�= 0 ∀|z|< 1�
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whereϒ(z)= det(̃
(z))∏n
j=1(z−zj) has no zeros inside the unit disk by construction. Unfortunately,

the right multiplication of the Blaschke matrices also brought poles (z = zj) for the ele-

ment in the 
̃(z) matrix that has no inside zeros. To maintain the analyticity inside the

unit disk so that 
(z) ∈ H2
�×�(D), we need to get rid of these by-product poles. We remove

these poles inside the unit disk by setting appropriate constant unitary matrices Vj .

In practice, Vj can be obtained by the singular value decomposition in a sequential

procedure. For j = 1, we have


1(z)= 
̃(z)V −1
1 B1(z)	

Without the constant unitary matrix V1, the matrix transformation is


̃(z)B1(z)=

⎡⎢⎢⎢⎢⎣

̃11(z) 0 	 	 	 0

̃21(z) 
̃22(z) 	 	 	 0
			

			
	 	 	

			


̃�1(z) 
̃�2(z) 	 	 	 
̃��(z)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

1 0 	 	 	 0
0 1 	 	 	 0
			

			
	 	 	

			

0 0 	 	 	
1 − z̄1z

z− z1

⎤⎥⎥⎥⎥⎥⎦ 	

It is clear the potential poles can only appear in the last column if we assume that 
̃��(z)

has no zeros at z = z1. To remove this pole, we follows Rozanov (1967) by employing the

singular value decomposition (SVD) for 
̃(z) at z = z1:


̃(z1)=U1D1V1 =U1

⎡⎢⎢⎢⎢⎣
λ1 0 	 	 	 0
0 λ2 	 	 	 0
			

			
	 	 	

			

0 0 	 	 	 0

⎤⎥⎥⎥⎥⎦V1	

By definition, the unitary matrices U1 and V1 are given by the (unitary) eigendecompo-

sition

G(z1)= 
̃(z1)̃

∗(z1)=U1D̄1U

∗
1 � Ĝ(z1)= 
̃∗(z1)̃
(z1)= V1D̂1V

∗
1 	

Such decomposition always exists as G(z1) and Ĝ(z1) are Hermitian and nonnegative

definite by construction. The diagonal matrices D̄1 and D̂1 contain eigenvalues ofG(z1)

and Ĝ(z1), which are not necessarily distinct. The diagonal matrix D1 in the SVD con-

tains the singular values of 
̃(z). The nonzero singular values {λ1�λ2� 	 	 	 � λp} are the

square root of the nonzero eigenvalues of G(z1) and Ĝ(z1), which are not necessarily

distinct. Since we know that det(̃
(z1))= 0,

det(G(z1))= det
(̃

(z1)

)
det

(̃

(z1)

∗) = 0	
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Therefore, there exists at least one singular value in D1 that is zero, i.e., p < d.9 Now
evaluate 
1(z) at z = z1:


1(z1)= 
̃(z1)V
−1

1 B1(z1)=U1D1V1V
−1

1 B1(z1)

=U1

⎡⎢⎢⎢⎢⎣
λ1 0 	 	 	 0
0 λ2 	 	 	 0
			

			
	 	 	

			

0 0 	 	 	 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

1 0 	 	 	 0
0 1 	 	 	 0
			

			
	 	 	

			

0 0 	 	 	
1 − z̄1z1

z1 − z1

⎤⎥⎥⎥⎥⎥⎦ 	

Since the last column of D1 is identically zero, the pole at 1−z̄1z1
z1−z1

vanishes at z = z1. In

other words, 
(i�j)1 (z1) <∞ are all well defined without poles. Alternatively, condition
(S4.3) ensures that zeros at z = z1 are removed as well.

Now consider the second step j = 2:


2(z)= 
1(z)V
−1

2 B2(z)	

Without the constant unitary matrix V2,


1(z)B2(z)= 
1(z)

⎡⎢⎢⎢⎢⎢⎣
1 0 	 	 	 0
0 1 	 	 	 0
			

			
	 	 	

			

0 0 	 	 	
1 − z̄2z

z− z2

⎤⎥⎥⎥⎥⎥⎦
would have poles in the last column. Note that 
1(z) is no longer lower triangular after
the first step transformation. To remove these poles at z = z2, we employ the SVD again,


2(z2)= 
1(z2)V
−1

2 B1(z2)=U2D2V2V
−1

2 B2(z2)

=U2

⎡⎢⎢⎢⎢⎣
λ̃1 0 	 	 	 0
0 λ̃2 	 	 	 0
			

			
	 	 	

			

0 0 	 	 	 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

1 0 	 	 	 0
0 1 	 	 	 0
			

			
	 	 	

			

0 0 	 	 	
1 − z̄2z2

z2 − z2

⎤⎥⎥⎥⎥⎥⎦ �

where {̃λ1� λ̃2� 	 	 	 � λ̃p̃} are the nonzero singular values. Again, there exists at least one
zero in the diagonal of the D2 matrix (p̃ < d), since det(
1(z2))= 0. Arranging the zeros
in the last positions of the diagonal, it follows immediately that 
(i�j)2 (z1) < ∞ are all
well defined without poles, since the last column of D2 is identically zero and the poles
introduced by 1−z̄2z2

z2−z2
vanish.

9The rank loss generally depends on the multiplicity of zeros in det(̃
(z1)).
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Continuing this sequential procedure for all zj , it follows that 
(z) is analytic (com-
ponentwise) at z = {z1� z2� 	 	 	 � zn} inside the unit disk. By (S4.3), we conclude that 
(z)
is indeed a Wold (outer) spectral factor. The underlying construction can be trivially ex-
tended to the case with higher-order zeros; see Rozanov (1967, p. 47). In particular, the

location of the Blaschke factor
1−z̄jz
z−zj (along the diagonal) is inconsequential as long as

we put the zero in the corresponding diagonal position ofDj .

A working example of a 2 × 3 signal system To illustrate the use of our method, we con-
sider an alternative specification of the 2 × 3 signal system. Let the signal representation
be

Xit =H(L)ηit ≡
⎡⎣ 1

1 − ρaL 1 0

F(L) 0 F(L)

⎤⎦
⎡⎢⎣εatεit
εut

⎤⎥⎦ �
where F(z) is some an outer function in H2(D).

Step 1. The spectral density fx(ω) is given by

fx(ω)≡

⎡⎢⎢⎢⎣
1

(1 − ρaz)
(
1 − ρaz−1)σ2

a + σ2
i

F
(
z−1)

(1 − ρaz)σ
2
a

F(z)(
1 − ρaz−1)σ2

a F(z)F
(
z−1)[σ2

a + σ2
u

]
⎤⎥⎥⎥⎦ �

where z = e−iω. The leading principal minors are given by

M1(ω)= f11(ω)= (1 − λwz)
(
1 − λwz−1)

(1 − ρaz)
(
1 − ρaz−1) σ2

w

M2(ω)= det
(
fx(ω)

) = F(z)F
(
z−1)

(1 − ρaz)
(
1 − ρaz−1)[

σ2
g(1 − λw)

(
1 − λwz−1) − σ4

a

]
�

where we define σ2
p = σ2

a + σ2
u and σ2

g = σ2
wσ

2
p, λw ∈ (0�1). Using Lemma S2,

σ2
g(1 − λw)

(
1 − λwz−1) − σ4

a = σ2
h(1 − λhz)

(
1 − λhz−1)	

The new parameters σh and λh satisfy λh = λwσ
2
g

σ2
h

and σ2
h(1 + λ2

h) = σ2
g(1 + λ2

w)− σ4
a . In

particular, we can pick a real λh ∈ (0�1). Then the spectral density admits the decompo-
sition

fx(ω)=
[

1 0
g21(ω) 1

][
h11(ω) 0

0 h22(ω)

][
1 g∗

21(ω)

0 1

]
	

The diagonal elements h11 and h22 are given by

h11(ω)=M1(ω); h22(ω)= M2(ω)

M1(ω)
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In addition, we use the recursion formula to get g21(ω)= g
(1)
21
h11 = f21

h11
. Therefore,

g21(ω)= σ2
a

σ2
w

F(z)(1 − ρaz)
(1 − λwz)

(
1 − λwz−1) 	

Now fix the first column j = 1. We know the only inside pole is at z = λw in g21. This
implies

C1(z)= (z− λw)� D1(z)= h11(z)∣∣C1(z)
∣∣2 =

∣∣∣∣�1(z)

�1(z)

∣∣∣∣2
	

Hence �1(z)
�1(z)

= σw
1−ρaz . This in turn implies


̃11(z)= g11C1(z)
�1(z)

�1(z)
= σw z− λw

1 − ρaz � 
̃21(z)= g21C1(z)
�1(z)

�1(z)
= σ2

a

σw

F(z)z

(1 − λwz) 	

We repeat this procedure for the second column. Notice that the second column of g
is constants; therefore, C2(z) = 1 and �2(z)

�2(z)
= σh

σw
F(z)(1−λhz)
(1−λwz) . In the end, we obtain the

lower triangular matrix


̃(z)=

⎡⎢⎢⎢⎣
σw

z− λw
1 − ρaz 0

σ2
a

σw

F(z)z

(1 − λwz)
σh
σw

F(z)(1 − λhz)
(1 − λwz)

⎤⎥⎥⎥⎦ 	

Clearly, 
̃(z) ∈ H2
2×2(D).

Step 2. We remove the inside zeros at z = λw to achieve the Wold fundamental rep-
resentation. Using the Blaschke factorization, we have 
(z)= 
̃(z)V −1

1 B(z), where

B(z)=
⎡⎣1 0

0
1 − λwz
z− λw

⎤⎦
and V1 satisfies the unitary eigendecomposition of Ĝ(λw)= 
̃∗(λw)̃
(λw)= V1D̂1V

∗
1 . It is

easy to check that eigenvalues of the Hermitian matrix Ĝ(λw) are distinct. Therefore, we
can pick two eigenvectors from the two eigenvalues, which are necessarily orthogonal
by the spectral theorem. Normalizing these two eigenvectors yields the unitary matrix
as desired,

V1 =

⎡⎢⎢⎢⎢⎢⎣

√
h2

1 + h2

√
1

1 + h2√
1

1 + h2 −
√

h2

1 + h2

⎤⎥⎥⎥⎥⎥⎦ �



Supplementary Material Macro-financial volatility 31

where h= σ2
a
σh

λw
(1−λhλw) . The resulting matrix 
(z) is the Wold fundamental matrix


(z)=

⎡⎢⎢⎢⎣
σw

z− λw
1 − ρazV

(11)
1 σw

1 − λwz
1 − ρaz V

(12)
1

F(z)
σhV

(12)
1
σw

F(z)
V (12)

1 σ2
a

σw(1 − λhλw)

⎤⎥⎥⎥⎦ 	
Finally, we can transform 
(z) into an upper triangular form by right multiplication

of another unitary matrix V2,

V2 =

⎡⎢⎢⎢⎢⎢⎣
√

1

1 + x2

√
x2

1 + x2

−
√

x2

1 + x2

√
1

1 + x2

⎤⎥⎥⎥⎥⎥⎦ �

where x= σh(1−λhλw)
σ2
a

. After some algebraic simplifications, we obtain


(z)=
⎡⎢⎣σhσp 1 − λhz

1 − λwz
σ2
a

σp

1
1 − ρaz

0 F(z)σp

⎤⎥⎦ 	
Since we assume F(z) is outer, i.e., has no roots in the open unit disk, 
(z) is the Wold
representation.
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