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1. Introduction

Cooperative solution concepts in game theory often rely on coordinated deviations by
large groups of agents, including, in some cases, all the agents in the economy. A natural
question when considering coordinated deviations is how (and whether) such coalitions
can, in fact, form. Do all the agents in the economy need to consider all the possible
deviations by all the possible coalitions? Alternatively, is it perhaps sufficient for agents
to consider only smaller or more structured types of deviations? Do the agents need to
reason about the structure of the entire economy to discover a profitable deviation, or is
it sufficient for each of them to consider only his or her “local” environment?

Shapley and Shubik (1971), Crawford and Knoer (1981), Kelso and Crawford (1982),
and Roth (1984) have shown that in two-sided matching environments with substi-
tutable preferences, one does not need to consider coordinated deviations by large
groups of agents to determine the overall stability of a matching: In two-sided one-to-
one and many-to-one matching markets, overall stability, along with competitive equi-
librium, are both essentially equivalent to pairwise stability. Pairwise stability does not
require considering coordinated deviations by complex coalitions; neither does it re-
quire specifying prices for trades that are not carried out, in contrast to competitive
equilibrium for two-sided matching markets, which formally require that all trades—
even those not carried out—be priced. Given that pairwise deviations are much easier
for agents to discover, the equivalence results for pairwise stability mitigate potential
concerns about solution concepts that are either based on discovering large-group de-
viations or that require that all trades, including those that are not carried out, be priced.

In this paper, we establish analogous results for a very rich setting—trading networks
with bilateral contracts. We allow agents to be buyers in some contracts and sellers in
others, and do not impose any restrictions on the network of possible trades. In par-
ticular, the market is neither required to have a two-sided structure nor is the network
of possible trades required to have a vertical structure. The model we present here is
strictly more general than any of the earlier models in the literature on matching with bi-
lateral contracts, subsuming settings with discrete and continuous prices, with quasilin-
ear and non-quasilinear utility functions, and with and without indifferences in agents’
preferences. We prove two equivalence results. Our main result shows that if all agents’
preferences jointly satisfy the full substitutability condition and the Laws of Aggregate
Supply and Demand (which we make precise in Section 2.1 by way of a condition we
call monotone–substitutability), then the concept of stability (under which all possible
deviations by groups of agents need to be considered) is equivalent to chain stability,
under which only deviations by chains of agents need to be considered.1 We also show a
corollary of the main result of the present paper and the results of Hatfield et al. (2013):

1Chain stability was originally introduced by Ostrovsky (2008) for a more restrictive, vertical environment
in which all trade flows in one direction, from the suppliers of basic inputs to the consumers of final outputs.
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In trading networks with continuously transferable utility, if all agents’ preferences are
fully substitutable, then an outcome is consistent with competitive equilibrium2 if and
only if it is not blocked by any chain.

After presenting our equivalence results, we quantify the simplicity of chain devia-
tions relative to more general “blocking set” deviations. Formally, we show that as the
size of the economy grows, the number of chains of trades (corresponding to possible
blocking chains) is a vanishingly small fraction of the number of general sets of trades
(corresponding to possible blocking sets).3 Intuitively, just as in two-sided settings—in
which it is much easier to find a pairwise block than a general blocking set—in our set-
ting, it is much easier to find a blocking chain than a general blocking set. If the network
has additional structure, the simplicity gain can be much higher than suggested by our
formal counting result. For example, in the supply chain setting of Ostrovsky (2008), the
number of chains grows only polynomially as a function of the number of agents, while
the number of sets of contracts grows exponentially.

We also present three examples demonstrating the roles that our assumptions play
in the main equivalence result. The first example shows that if the preferences of some
agent do not satisfy the Laws of Aggregate Supply and Demand, then chain stable out-
comes may not be stable. The second example shows that if the preferences of some
agent are not fully substitutable, then chain stable outcomes may likewise not be stable.
The third example illustrates that ensuring robustness to blocking chains that do not
“cross” themselves (i.e., chains that involve each agent in at most two contracts) is not
sufficient to ensure robustness to general blocking sets. This last example, combined
with our equivalence results, illustrates that chain stability plays the same role in the
trading network setting as pairwise stability does in two-sided settings: chains are the
“essential” blocking sets that one needs to consider to evaluate an outcome’s stability or
its consistency with competitive equilibrium.

The model of trading networks that we consider is deliberately very general, encom-
passing many existing matching models and going beyond them. As a result, the exis-
tence of stable outcomes in our full model is not guaranteed (although it is, of course,
guaranteed in many important special cases, such as the quasilinear case with transfer-
able utility considered by Hatfield et al. 2013 and the vertical supply chain setting of Os-
trovsky 2008). The motivation for considering such a general model is twofold: First, our
model allows us to uncover the unifying structure underlying the equivalence between
stability and chain stability. Second, and relatedly, we establish that checking whether
an outcome is chain stable is sufficient to ensure that it is stable under larger and more
general deviations.

In the Ostrovsky (2008) setting, any chain of contracts has a beginning and an end, and passes “through”
each agent at most once. In the current, richer environment, we adapt the definition of a chain to allow a
chain to end at the same node at which it began (thus becoming a “loop”), and to cross itself (potentially
several times). However, as before, the essential feature of a chain is that it is a “linked” sequence of trades,
such that the agent who is the buyer in a particular trade is the seller in the next trade in the sequence. We
discuss our concept of chain stability in more detail in Section 2.2 after introducing it formally.

2That is, one can generate prices for trades that are not carried out to obtain a competitive equilibrium.
3That said, Fleiner et al. (2020) showed that testing stability is NP-hard in a fully general setting; combin-

ing this with our results yields that testing chain stability is NP-hard as well.
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The generality of our model allows for a wide variety of special cases. For example,
following the circulation of our original draft, Fleiner et al. (2019) showed that stable
outcomes are guaranteed to exist in trading network settings with income effects under
full substitutability, so long as there are no frictions.4 More recently, Andersson et al.
(forthcoming) developed a model of time banks in which agents exchange discrete units
of time performing a particular task, and Manjunath and Westkamp (2019) considered
the exchange of indivisible shifts among a group of workers. All of these applications
can be embedded into our model, and our results transfer over.5

The remainder of the paper is organized as follows. Section 1.1 provides an overview
of the related literature. Section 2 introduces our general model. Section 3 states and
proves the main result on the equivalence of stability and chain stability. Section 4 dis-
cusses the correspondence between chain stable outcomes and competitive equilibria
for the special case of quasilinear preferences and fully transferable utility. Section 5
assesses the simplicity of checking chain stability relative to checking stability directly.
Section 6 presents the examples that show the roles of our assumptions. Section 7 con-
cludes.

1.1 Related literature

The concept of blocking is fundamental in the analysis of matching markets. In the
original papers of Gale and Shapley (1962) and Shapley and Shubik (1971) on stability
in two-sided markets, attention is restricted to pairwise blocks, i.e., pairs of agents who
mutually prefer each other to their assigned partners. The requirement that a two-sided
matching be pairwise stable—i.e., be robust to pairwise blocks—seems much weaker
than the requirement that a matching be robust to deviations by arbitrary sets of agents.
Indeed, in general, in markets in which some agents are allowed to match with multiple
partners, a matching that is robust to deviations by pairs may not be robust to richer
deviations.6 However, as we discussed in the Introduction, key results in the theory of
two-sided, many-to-one matching show that when agents’ preferences are substitutable
(Kelso and Crawford 1982, Roth 1984), pairwise relationships are, in fact, the essential
blocking sets: any pairwise stable matching is also robust to larger deviations.7

Ostrovsky (2008) introduced a generalization of two-sided matching to “supply
chain” environments. In supply chain matching, goods flow downstream from initial
producers to end consumers, potentially with numerous intermediaries in between. In
the Ostrovsky (2008) framework, attention is restricted to blocking chains—sequences

4Their work is a strict generalization of the model of Hatfield et al. (2013) in that it goes beyond quasilin-
earity and allows for certain income effects in agents’ utility functions.

5Our work immediately implies that chain stability is equivalent to stability in the settings of Anders-
son et al. (forthcoming) and Manjunath and Westkamp (2019); meanwhile, the equivalence applies in the
setting of Fleiner et al. (2019) whenever agents’ preferences are monotone–substitutable.

6For example, if every firm in an economy is only interested in hiring an even number of workers, then
an empty matching will always be pairwise stable, even in the cases in which another, nonempty matching
makes all agents in the economy strictly better off.

7Hatfield and Kominers (2017) prove this result in a general two-sided matching setting with contracts,
and provide an overview of earlier literature on related results in other two-sided settings.
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of agents who could benefit from recontracting with each other along a vertical chain.
Outcomes robust to chain deviations are said to be chain stable. Chain stability is a nat-
ural extension of pairwise stability to the setting in which an agent can be both a buyer
and a seller; for example, an agent may be willing to sell a unit of output only if he can
buy a unit of input required to produce that output. Ostrovsky (2008) showed that when
the preferences of all agents in the economy are fully substitutable (see Definition 1 in
Section 2.1), chain stable outcomes are guaranteed to exist. Again, chain stability ap-
pears to be a much weaker condition than the requirement that an outcome be robust
to deviations by arbitrary sets of agents. However, as in the case of pairwise stability,
under the assumption that agents’ preferences are fully substitutable, chains are the es-
sential blocking sets in the supply chain setting: Hatfield and Kominers (2012) showed
that in that setting, any chain stable outcome is stable, in the sense that it is robust to
blocks by arbitrary sets of agents.8

Hatfield et al. (2013) dispensed with the vertical structure of the supply chain en-
vironment and instead considered arbitrary trading networks. They also assumed that
prices can vary freely (instead of being restricted to a finite discrete set) and that agents’
preferences are quasilinear.9 In their analysis, Hatfield et al. (2013) considered a stability
concept analogous to that of Hatfield and Kominers (2012), allowing for recontracting by
arbitrary groups of agents. They showed that when agents’ preferences are fully substi-
tutable, stable outcomes exist and are essentially equivalent to competitive equilibria
with personalized prices. Our model includes the setting of Hatfield et al. (2013) as a
special case—and for that special case, a corollary of our main result is that an outcome
is consistent with competitive equilibrium if and only if it is not blocked by any chain of
contracts.

Our paper contributes to the literature on the relationships between different solu-
tion concepts in matching environments (see, e.g., Echenique and Oviedo 2006, Klaus
and Walzl 2009, Westkamp 2010, and Hatfield and Kominers 2017). It also has parallels
in the operations research literature on flows in networks (see, e.g., a textbook treatment
by Ahuja et al. 1993); the “flow decomposition lemma” in that literature states that any

8The setting of Hatfield and Kominers (2012) is a special case of our framework, and for that special case,
the Hatfield and Kominers (2012) definition of stability coincides with ours (Definition 4 in our Section 2.2).
Note, however, that even in the case of vertical networks, our setting is substantially more general than that
of Ostrovsky (2008) and Hatfield and Kominers (2012): we allow for arbitrary sets of contracts (as opposed
to just finite ones) and explicitly incorporate the case in which an agent may be indifferent between two
different sets of contracts (as opposed to having strict preferences); these generalizations are necessary
to define the concept of competitive equilibrium and to establish the connections between chain stable
outcomes and competitive equilibria.

9If one dispenses with supply chain structure without assuming that prices can vary freely, then stable
outcomes may not exist (Hatfield and Kominers 2012). Fleiner et al. (2018) introduced a weaker concept,
trail stability, for settings without supply chain structure. As Fleiner et al. (2018) explained (emphasis in
original): “In a trail-stable outcome, no agent wants to drop his contracts and there exists no sequence of
consecutive bilateral contracts [. . . ] such that any intermediate agent who is offered a downstream (up-
stream) contract [. . . ] wants to choose it alongside the subsequent upstream (downstream) contract [. . . ].
Importantly, [trail stability] require[s] that the first (final) agent wants to unilaterally offer (accept) the first
(final) contract [. . . ].” Fleiner et al. (2018) showed that trail-stable outcomes are guaranteed to exist under
full substitutability (in arbitrary trading networks).
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“flow” in a network can be “decomposed” into a collection of simple “paths” and “cy-
cles,” resembling the decomposition of any blocking set into a collection of blocking
chains in our Theorem 2. Note, however, that paths and cycles in the flow decomposi-
tion lemma cannot cross themselves, while in our environment, we need to allow for the
possibility of self-crossing chains (see Example 3 in Section 6). The difficulty is due to
the fact that in the “network flows” environment, there is a single type of good “flowing”
through the network, and the objective function is the maximization or minimization of
the aggregate flow, whereas in our setting many different types of goods may be present
and the preferences of agents in the market may be more complex. For the case of quasi-
linear environments with transferable utility, Candogan et al. (2019) provided a detailed
analysis of the connections between results on stability and competitive equilibrium in
trading networks and the literature on network flows.10

2. Model

There is an economy with a finite set I of agents. Pairs of agents can participate in bilat-
eral trades. Each trade ω is associated with a buyer b(ω) ∈ I and a seller s(ω) ∈ I, with
b(ω) �= s(ω). The tradeω specifies all the nonpecuniary terms and conditions associated
with a relationship between b(ω) and s(ω); for instance, ω could specify the transfer of
a single unit of an indivisible good or service from s(ω) to b(ω).11 The set of possible
trades, denoted �, is finite and exogenously given. Note that we require that the buyer
and the seller associated with a trade be distinct agents, but we allow � to contain mul-
tiple trades associated with the same agents, and allow for the possibility of tradesω ∈�
and ψ ∈� such that s(ω)= b(ψ) and s(ψ)= b(ω).

To capture the purely financial aspect of a transaction associated with a trade, we
augment each trade by introducing a price. Formally, a contract x is a pair (ω�pω) ∈
� × R that specifies a trade and an associated price. For a contract x = (ω�pω), we
denote by b(x)≡ b(ω) and s(x)≡ s(ω) the buyer and the seller associated with the trade
ω of x. If b(x) = i for some contract x, then x is upstream of, or on the buy-side for, i;
similarly, if s(x)= i for some contract x, then x is downstream of, or on the sell-side for, i.
We denote by X ⊆ �× R the set of all contracts available to the agents; this set is fixed
and exogenously given. The set X can be infinite (as, e.g., in the settings of Hatfield
et al. 2013 and Fleiner et al. 2019, where all prices are allowed for all trades and, thus,
X = � × R) or finite (as, e.g., in the settings of Ostrovsky 2008, Hatfield and Kominers
2012, and Fleiner et al. 2018).

For each agent i ∈ I and set of contractsY ⊆X , we letY→i ≡ {y ∈ Y : i= b(y)} denote
the set of contracts in Y in which i is the buyer, i.e., the set of upstream contracts for i,
and we let Yi→ ≡ {y ∈ Y : i = s(y)} denote the set of contracts in Y in which i is the

10Beyond their conceptual interest, our results may contribute to the emerging empirical and econo-
metric literature on matching and trading networks (see, e.g., Fox 2017).

11For some applications, the assignment of buyer and seller roles in a trading relationship follows im-
mediately from the context. In other applications, one needs a convention. For instance, in a two-sided
matching market without transfers, we think of agents on one side as sellers (in all possible outcomes) and
agents on the other side as buyers (in all possible outcomes).
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seller, i.e., the set of downstream contracts for i. We let Yi ≡ Yi→ ∪ Y→i. We let a(Y) ≡⋃
y∈Y {b(y)� s(y)} denote the set of agents involved in contracts in Y as either buyers or

sellers. Slightly abusing notation, for a contract x ∈ X , we write a(x) ≡ a({x}). We use
analogous notation for various properties of trades ω ∈� and sets of trades�⊆�: e.g.,
a(ω) ≡ {b(ω)� s(ω)} and �i ≡ {ω ∈ � : i ∈ a(ω)}. Finally, we denote by τ(Y) the set of
trades involved in contracts in Y : τ(Y)≡ {ω ∈� : (ω�pω) ∈ Y for some pω ∈ R}.

A set of contracts Y ⊆X is feasible if it does not contain two or more contracts as-
sociated with the same trade: formally, Y ⊆X is feasible if (ω�pω)� (ω� p̂ω) ∈ Y implies
that pω = p̂ω; equivalently, Y ⊆X is feasible if |Y | = |τ(Y)|. An outcome is a feasible set
of contracts.

2.1 Preferences

Each agent i has a utility function Ui over feasible sets Y ⊆Xi of contracts that involve i
as the buyer or the seller. For a feasible set Y ⊆Xi, we have that Ui(Y) ∈R∪ {−∞}, with
the value of −∞ used to denote sets of contracts that are technologically impossible for
the agent to undertake (e.g., selling the same object to two different buyers). We assume
that Ui(∅) ∈ R, i.e., any agent’s utility from the “outside option” of not participating in
any contracts is finite.

The choice correspondence of agent i from a set of contracts Y ⊆Xi is defined as the
collection of sets of contracts maximizing the utility of agent i:

Ci(Y)≡ {
Z ⊆ Y :Z is feasible; ∀ feasible Z′ ⊆ Y� Ui(Z)≥Ui

(
Z′)}�12

For notational convenience, we also extend the choice correspondence to sets of con-
tracts that do not necessarily involve agent i: for a set of contracts Y ⊆ X , we write
Ci(Y)≡ Ci(Yi).

We now introduce our first key condition on preferences: full substitutability.13

Definition 1. The preferences of agent i are fully substitutable if both:

(i) for all sets of contracts Y�Z ⊆Xi such that |Ci(Y)| = |Ci(Z)| = 1, Yi→ =Zi→, and
Y→i ⊆Z→i, for the unique Y ∗ ∈ Ci(Y) and Z∗ ∈ Ci(Z), we have(

Y→i �Y
∗
→i

) ⊆ (
Z→i �Z

∗
→i

)
and Y ∗

i→ ⊆Z∗
i→;

and

(ii) for all sets of contracts Y�Z ⊆Xi such that |Ci(Y)| = |Ci(Z)| = 1, Y→i =Z→i, and
Yi→ ⊆Zi→, for the unique Y ∗ ∈ Ci(Y) and Z∗ ∈ Ci(Z), we have(

Yi→ �Y ∗
i→

) ⊆ (
Zi→ �Z∗

i→
)

and Y ∗
→i ⊆Z∗

→i�

12Note that Ci(Y)may be empty if Y is infinite.
13For the case of quasilinear utility functions, the full substitutability definition we use here corresponds

to the CFS condition of Hatfield et al. (2019). Thus, the results of Hatfield et al. (2019) imply that (again,
for the case of quasilinear utility functions) our definition is equivalent to a number of other substitutabil-
ity concepts that have originated in several distinct literatures. Ostrovsky (2008) and Hatfield et al. (2013)
provide detailed discussions of the implications of full substitutability in various environments.
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Informally, the choice correspondence Ci is fully substitutable if, when the set of
options available to i on one side expands, i both rejects a (weakly) larger set of contracts
on that side and selects a (weakly) larger set of contracts on the other side (where “larger”
is understood in a set-inclusion sense). Hatfield et al. (2013, 2019) have identified several
economically important examples of fully substitutable preferences.

The second property important for our results is that the preferences of all agents
satisfy the Laws of Aggregate Supply and Demand.

Definition 2. The preferences of agent i satisfy the Law of Aggregate Demand if for all
sets of contracts Y�Z ⊆Xi such that |Ci(Y)| = |Ci(Z)| = 1, Yi→ = Zi→, and Y→i ⊆ Z→i,
for the unique Y ∗ ∈ Ci(Y) and Z∗ ∈ Ci(Z), we have

∣∣Z∗
→i

∣∣ − ∣∣Z∗
i→

∣∣ ≥ ∣∣Y ∗
→i

∣∣ − ∣∣Y ∗
i→

∣∣�
The preferences of agent i satisfy the Law of Aggregate Supply if for all sets of con-

tracts Y�Z ⊆ Xi such that |Ci(Y)| = |Ci(Z)| = 1, Yi→ ⊆ Zi→, and Y→i = Z→i, for the
unique Y ∗ ∈ Ci(Y) and Z∗ ∈ Ci(Z), we have

∣∣Z∗
i→

∣∣ − ∣∣Z∗
→i

∣∣ ≥ ∣∣Y ∗
i→

∣∣ − ∣∣Y ∗
→i

∣∣�
Informally, the choice correspondence Ci satisfies the Law of Aggregate Demand if,

when the set of options available to i as a buyer expands, the net demand of i—i.e.,
the difference between the number of buy-side and sell-side contracts that i chooses—
(weakly) increases.14 Similarly, the choice correspondence Ci satisfies the Law of Aggre-
gate Supply if, when the set of options available to i as a seller expands, the net supply
of i—i.e., the difference between the number of sell-side and buy-side contracts that i
chooses—(weakly) increases. These conditions extend the canonical Law of Aggregate
Demand (Hatfield and Milgrom 2005; see also Alkan and Gale 2003) to the current set-
ting, in which each agent can be both a buyer in some trades and a seller in others.

Intuitively, if we think of each contract as specifying the transfer of an object, the
Laws of Aggregate Supply and Demand require that no object can substitute for mul-
tiple other objects. Thus, when i obtains access to a new buy-side contract, the total
number of buy-side contracts he chooses weakly increases (for a fixed number of sell-
side contracts), and, similarly, when i obtains access to a new sell-side contract, the
total number of sell-side contracts he chooses weakly increases (for a fixed number of
buy-side contracts).15 For instance, in the setting of the used car market discussed by
Hatfield et al. (2013), a trade represents the transfer of an automobile, and so the Laws
of Aggregate Supply and Demand hold naturally: purchasing an additional car enables
the dealer to sell at most one more car.

14That is, when an agent gains access to more buy-side contracts while holding his set of available sell-
side contracts fixed, the increase in the number of buy-side contracts chosen has to be weakly larger than
the increase in the number of sell-side contracts chosen.

15Of course, these monotonicity conditions only make sense if trades represent corresponding units of
goods; see Hatfield and Kominers (2017) for a discussion of this and other issues related to contract design.
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When the choice correspondence is multivalued (as can naturally arise when prices
can vary continuously), the definitions of full substitutability and the Laws of Aggregate
Supply and Demand must be adapted in order to account for indifferences. In partic-
ular, we need to reformulate the first part of the definition of full substitutability (Def-
inition 1) to consider instances in which the choice correspondence is multivalued by
requiring, for any set Y , for each optimal choice from Y , for a set Z that expands i’s
opportunities on the buy-side, i.e., a set Z such that Yi→ = Zi→ and Y→i ⊆ Z→i, there
exists an optimal choice from Z that satisfies the same conditions as those in the first
part of Definition 1.16 Similarly, we have to extend the Laws of Aggregate Supply and
Demand to consider multivalued choice correspondences as the set of available buy-
side or sell-side contracts expands. Additionally, when the choice correspondence may
be multivalued, requiring both conditions to hold simultaneously becomes subtle, as
we need to ensure that they apply to the same element of the multivalued choice cor-
respondence. That is, for example, we need that for any set Y , for each optimal choice
Y ∗ from Y , for a set Z that expands i’s opportunities on the buy-side, there exists an
optimal Z∗ that simultaneously fulfills the requirements of full substitutability and the
Laws of Aggregate Supply and Demand. We formalize the preceding requirements in the
following definition.

Definition 3. The preferences of agent i are monotone–substitutable if both:17

(i) for all finite sets of contracts Y�Z ⊆Xi such that Yi→ = Zi→ and Y→i ⊆ Z→i, for
every Y ∗ ∈ Ci(Y), there exists Z∗ ∈ Ci(Z) such that both Y ∗ and Z∗ are consis-
tent with the full substitutability condition when the set of buy-side opportunities
expands, i.e., (

Y→i �Y
∗
→i

) ⊆ (
Z→i �Z

∗
→i

)
and Y ∗

i→ ⊆Z∗
i→�

and Y ∗ and Z∗ are consistent with the Law of Aggregate Demand, i.e.,∣∣Z∗
→i

∣∣ − ∣∣Z∗
i→

∣∣ ≥ ∣∣Y ∗
→i

∣∣ − ∣∣Y ∗
i→

∣∣;
and

(ii) for all finite sets of contracts Y�Z ⊆Xi such that Y→i = Z→i and Yi→ ⊆ Zi→, for
every Y ∗ ∈ Ci(Y), there exists Z∗ ∈ Ci(Z) such that both Y ∗ and Z∗ are consis-
tent with the full substitutability condition when the set of sell-side opportunities
expands, i.e., (

Yi→ �Y ∗
i→

) ⊆ (
Zi→ �Z∗

i→
)

and Y ∗
→i ⊆Z∗

→i�

and Y ∗ and Z∗ are consistent with the Law of Aggregate Supply, i.e.,∣∣Z∗
i→

∣∣ − ∣∣Z∗
→i

∣∣ ≥ ∣∣Y ∗
i→

∣∣ − ∣∣Y ∗
→i

∣∣�
16These formulations of full substitutability are equivalent when continuous transfers are available and

agents’ utility functions are quasilinear (Hatfield et al. 2019).
17Note that when choice correspondences are single-valued, monotone–substitutability reduces to im-

posing full substitutability and the Laws of Aggregate Supply and Demand separately.
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The following lemma illustrates one of the implications of monotone–
substitutability, which plays a key role in understanding our main result.

Lemma 1. Suppose that the preferences of i are monotone–substitutable and Y ∗ ∈ Ci(Y)
for some Y ⊆X .

(i) For any contract ȳ ∈ [X �Y ]→i, there exists a Ȳ ∗ ∈ Ci(Y ∪ {ȳ}) such that either:

(a) we have Ȳ ∗ = Y ∗;

(b) we have Ȳ ∗ = Y ∗ ∪ {ȳ};

(c) there exists a contract y ∈ Y ∗
→i such that Ȳ ∗

→i = (Y ∗
→i∪{ȳ})�{y} and Ȳ ∗

i→ = Y ∗
i→;

or

(d) we have Ȳ ∗
→i = Y ∗

→i ∪ {ȳ} and there exists some contract z ∈ [Y � Y ∗]i→ such
that Ȳ ∗

i→ = Y ∗
i→ ∪ {z}.

(ii) For any contract ȳ ∈ [X �Y ]i→, there exists a Ȳ ∗ ∈ Ci(Y ∪ {ȳ}) such that either:

(a) we have Ȳ ∗ = Y ∗;

(b) we have Ȳ ∗ = Y ∗ ∪ {ȳ};

(c) there exists a contract y ∈ Y ∗
i→ such that Ȳ ∗

i→ = (Y ∗
i→ ∪{ȳ})�{y} and Ȳ ∗

→i = Y ∗
→i;

or

(d) we have Ȳ ∗
i→ = Y ∗

i→ ∪ {ȳ} and there exists some contract z ∈ [Y � Y ∗]→i such
that Ȳ ∗

→i = Y ∗
→i ∪ {z}.

Part (i) of Lemma 1 describes how an optimal choice by i changes when i gains access
to the contract ȳ as a buyer. There are four possibilities: In the first possibility, ȳ is un-
desirable and so i’s optimal choice does not change. In the second possibility, i chooses
the same set of contracts along with the newly available contract ȳ. In the third possibil-
ity, the contract ȳ “substitutes” for y, and i chooses the same set of contracts as a seller.
In the fourth possibility, i chooses the same set of contracts along with the newly avail-
able contract ȳ as a buyer, and also chooses a sell-side contract not previously chosen.
Part (ii) of Lemma 1 describes the analogous behavior associated with gaining access to
a new contract as a seller.

To understand the proof of Lemma 1, consider an agent with fully substitutable pref-
erences who converts inputs into outputs and suppose that one new input ȳ becomes
available. Full substitutability ensures that the agent still rejects all of the inputs that
he rejected before and does not reject any additional outputs. The Laws of Aggregate
Supply and Demand ensure that when ȳ becomes available, the intermediary’s optimal
choice must have a weakly higher net demand. Given the constraints imposed by full
substitutability, this can only be achieved by either choosing the same set of contracts
that he chose before (leaving net demand unchanged), choosing the same set of con-
tracts along with ȳ (which increases net demand by 1), replacing some contract y with ȳ
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as a buyer (leaving net demand unchanged), or taking ȳ and adding some contract z as
a seller (also leaving net demand unchanged).

In a quasilinear setting, Hatfield et al. (2019) showed that full substitutability implies
monotone–substitutability. In general, however, full substitutability does not imply the
Laws of Aggregate Supply and Demand (see, e.g., Example 1 of Section 6) and, thus, does
not imply monotone–substitutability.18

 Hatfield et al. (2019) provided an extended dis-
cussion of the restrictions imposed by monotone–substitutability and economically in-
teresting classes of preferences that are monotone–substitutable in quasilinear settings.

2.2 Stability and chain stability

Our main result connects two solution concepts for trading network settings: stability,
based on the concepts introduced by Hatfield and Kominers (2012) and Hatfield et al.
(2013), and chain stability, based on the concept introduced by Ostrovsky (2008).

We begin with the definition of stability.

Definition 4. An outcomeA is stable if it is both:

(i) individually rational, i.e.,Ai ∈ Ci(A) for all i; and

(ii) unblocked, i.e., there is no nonempty blocking set Z ⊆X such that

(a) Z is feasible,

(b) Z ∩A=∅, and

(c) for all i ∈ a(Z), for all Y ∈ Ci(Z ∪A), we have Zi ⊆ Y .

Individual rationality is a voluntary participation condition based on the idea that an
agent can always unilaterally drop contracts if doing so increases his welfare. The un-
blockedness condition states that when presented with a stable outcomeA, one cannot
propose a new set of contracts such that all the agents involved in those new contracts
would strictly prefer to execute all of them (and possibly drop some of their existing
contracts inA) instead of executing only some of them (or none).

To introduce our second solution concept, chain stability, we first need to formalize
the notion of a chain.

Definition 5. A nonempty set of trades � is a chain if its elements can be arranged
in some order ψ1� � � � �ψ|�| such that s(ψ	+1) = b(ψ	) for all 	 ∈ {1�2� � � � � |�| − 1}.
A nonempty set of contracts Z is a chain if τ(Z) is a chain.

Note that because there is no vertical ordering of agents in our framework, Defini-
tion 5 adapts the “chain” concept of Ostrovsky (2008) by allowing chains to cross them-
selves: the buyer in contract y |Z| is allowed to be the seller in contract y1 (in which case

18Even in the special case of a two-sided market, full substitutability does not imply the Laws of Aggregate
Supply and Demand (see, e.g., Hatfield and Milgrom 2005).
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the chain becomes a cycle) and a given agent can be involved in the chain multiple
times. Example 3 of Section 6 illustrates the role of “self-crossing” chains in our results.

We now define chain stability.

Definition 6. An outcomeA is chain stable if it is both:

(i) individually rational, i.e.,Ai ∈ Ci(A) for all i; and

(ii) not blocked by a chain, i.e., there is no nonempty blocking chainZ ⊆X such that

(a) Z is feasible,

(b) Z ∩A= ∅, and

(c) for all i ∈ a(Z), for all Y ∈ Ci(Z ∪A), we have Zi ⊆ Y .

The essential difference between the definitions of stability (Definition 4) and chain
stability (Definition 6) consists of just one word: “set” in requirement (ii) in the defi-
nition of stability versus “chain” in requirement (ii) in the definition of chain stability.
Substantively, however, the two definitions are very different. Blocking sets considered
in Definition 4 can be arbitrarily complex, involving any sets of contracts and agents.
By contrast, blocking chains considered in Definition 6 have a well-defined linear struc-
ture. As Ostrovsky (2008) argued, blocking chains are much easier to identify and orga-
nize than arbitrary blocking sets. An agent can contact a potential supplier and propose
a possible contract. That supplier would then contact one of his suppliers, and so on,
and the process would proceed in a linear fashion until a blocking chain is identified.
An important difference in our setting is that in the case of loops, the agent initiating
the communication may need to make his initial offer tentative: instead of proposing
a contract outright, he would have to say something along the lines of, “I may be inter-
ested in signing the contract x with you, if I can subsequently sign a contract y with a
customer for one of the outputs I am offering.” An initial agent may also try initiating
the deviation in both directions at the same time, making tentative offers to a supplier
and a customer. While identifying chains in our trading network setting is more com-
plicated than identifying pairwise blocks in two-sided settings or blocking chains in the
setting of Ostrovsky (2008), it is still relatively simple and natural compared to trying to
identify grand coalitions, which may require considering large, complex sets of blocking
contracts (see Section 5).

3. Main result: Equivalence of stability concepts

Stability appears substantively different and noticeably stronger than chain stability: the
former requires robustness to all blocking sets, while the latter requires robustness only
to specific blocking sets—chains of contracts. It is immediate that any stable outcome is
chain stable, regardless of whether agents’ preferences are fully substitutable or satisfy
the Laws of Aggregate Supply and Demand. Our main result shows that when agents’
preferences are monotone–substitutable, the two solution concepts are, in fact, equiva-
lent.
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Theorem 1. If all agents’ preferences are monotone–substitutable, then any chain stable
outcome is stable.

Theorem 1 is an immediate corollary of a stronger result: when agents’ preferences
are monotone–substitutable, any set blocking an outcomeA can be “decomposed” into
blocking chains.

Theorem 2. Suppose that all agents’ preferences are monotone–substitutable. If a feasi-
ble outcomeA is blocked by a set Z, then for some K ≥ 1 we can partition the set Z into a
collection ofK chains {W k}Kk=1 such thatA is blocked byW 1 and for any k≤K− 1 the set
of contractsA∪W 1 ∪ · · · ∪W k is blocked byW k+1.

In particular, Theorem 1 follows from Theorem 2 by noting that if an outcome A is
not stable, then eitherA is not individually rational (and soA cannot be chain stable by
definition) or there exists a blocking setZ; Theorem 2 then implies that we can construct
a chainW 1 that blocksA.

We prove Theorem 2 by way of the following lemma, which shows that, for any set of
contractsA blocked by some setZ, eitherZ is a chain or we can remove a chainW from
Z and still have that Z �W blocksA.

Lemma 2. Suppose that all agents’ preferences are monotone–substitutable. For any fea-
sible outcome A blocked by a set Z, if Z is not itself a chain, then there exists a chain
W �Z such thatA is blocked by Z �W andA∪ (Z �W ) is blocked byW .

Lemma 2 implies that for any setZ blockingA, ifZ is not a chain, then there exists a
chain W̃ 1 �Z such thatA is blocked byZ� W̃ 1 andA∪ (Z� W̃ 1) is blocked by W̃ 1. But
then, applying Lemma 2 again, ifZ� W̃ 1 is not a chain, there exists a chain W̃ 2 �Z� W̃ 1

such that A is blocked by (Z � W̃ 1)� W̃ 2 =Z � (W̃ 1 ∪ W̃ 2) and A ∪ (Z � (W̃ 1 ∪ W̃ 2)) is
blocked by W̃ 2. Iterating the preceding logic, we obtain a sequence of chains W̃ 1� W̃ 2� � � �

such that, for each 	, Z� (W̃ 1 ∪ · · · ∪ W̃ 	) blocksA, W̃ 	 blocksA∪ (Z� (W̃ 1 ∪ · · · ∪ W̃ 	)),
and, if Z � (W̃ 1 ∪ · · · ∪ W̃ 	) is not a chain, we can extend the sequence by another chain
W̃ 	+1. As Z is finite (since it is feasible), the sequence of chains W̃ 1� W̃ 2� � � � must be
finite; consequently, there must be some L such that Z � (W̃ 1 ∪ · · · ∪ W̃ L) is a chain
that—by construction—blocks A. Setting W 1 ≡Z � (W̃ 1 ∪ · · · ∪ W̃ L) and W 	 ≡ W̃ L+2−	
for all 	 ∈ {2� � � � �L + 1}, we see that Lemma 2 implies Theorem 2: By construction of
W̃ 1� � � � � W̃ L, we have that W̃ 1� � � � � W̃ L is a partition of Z, A is blocked by the set W 1 =
Z � (W̃ 1 ∪ · · · ∪ W̃ L), and, for all 	≤L,

A∪W 1 ∪ · · · ∪W 	 =A∪ (Z � (W̃ 1 ∪ · · · ∪ W̃ L+1−	))

is blocked by the setW 	+1 = W̃ L+1−	.
Before proceeding to the formal proof of Lemma 2, we explain the intuition behind

this result and highlight where our assumptions on preferences are used. For simplicity,
assume that there are no indifferences in agents’ preferences over any relevant sets of
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contracts, i.e., that all agents’ choice correspondences over subsets of Z ∪A are single-
valued. Our goal is to “peel off” a chainW from the set Z in such a way that the remain-
ing set Z �W still blocksA.

We start the chain “in the middle,” by choosing an arbitrary contract z0 ∈ Z. Since
Z is a blocking set, we have that Zb(z0) ⊆Z∗

b(z0)
, where {Z∗

b(z0)
} = Cb(z0)(Z ∪A). Thus, as

the preferences of b(z0) are monotone–substitutable, case (i) of Lemma 1 implies that,
for the unique Y ∗

b(z0)
∈ Cb(z0)((Z � {z0})∪A), either:19

(i) Z∗
b(z0)

= Y ∗
b(z0)

∪ {z0};

(ii) Z∗
→b(z0)

= (Y ∗
→b(z0)

∪ {z0})� {y} for some y ∈ [(A ∪Z)�Z∗]→b(z0) and Z∗
b(z0)→ =

Y ∗
b(z0)→; or

(iii) Z∗
→b(z0)

= Y ∗
→b(z0)

∪ {z0} and Z∗
b(z0)→ = Y ∗

b(z0)→ ∪ {ȳ} for some ȳ ∈Z∗
b(z0)→.

Rewriting the preceding equalities to describe Y ∗, we find that either:

(i′) Y ∗
b(z0)

=Z∗
b(z0)

� {z0};

(ii′) Y ∗
→b(z0)

= (Z∗
→b(z0)

� {z0})∪ {y} for some y ∈ (A∪Z)�Z∗ and Y ∗
b(z0)→ =Z∗

b(z0)→;
or

(iii′) Y ∗
→b(z0)

= (Z∗
→b(z0)

� {z0}) and Y ∗
b(z0)→ =Z∗

b(z0)→ � {ȳ} for some ȳ ∈Z∗
b(z0)→.

Thus, with respect to the contracts in Z, there are two possibilities:

(a) The agent b(z0) chooses all of his remaining contracts in [Z � {z0}]b(z0), i.e., we
have [Z � {z0}]b(z0) ⊆ Y ∗. This possibility corresponds to the above cases (i′) and
(ii′) (since (A∪Z)�Z∗ ⊆A as b(z0) chooses all of the contracts inZ fromA∪Z),
and (iii′) when ȳ ∈A.

(b) The agent b(z0) chooses all of his remaining contracts in [Z � {z0}]b(z0) except for
one contract z1 = ȳ for which he is the seller, i.e., we have [Z � {z0� z1}]b(z0) ⊆ Y ∗
for some z1 ∈Zb(z0)→. This possibility corresponds to case (iii′) when ȳ ∈Z.

In case (a), we have found the “downstream end” of the chain; in case (b), we ex-
tend the chain by adding z1 and now consider b(z1). By assumption, the preferences
of b(z1) are also monotone–substitutable, and so the same analysis applies: either z1

is the downstream end of the chain or we can extend the chain by adding a contract
z2 ∈ Zb(z1)→ and considering b(z2). Since the number of contracts in Z is finite, by it-
erating this process, we must eventually reach a contract zN such that the agent b(zN)
chooses all of his remaining contracts in [Z � {z0� � � � � zN}]b(zN); thus, zN is the down-
stream end of the chain. An analogous process allows us to grow the chain “upstream,”
adding contracts z−1� z−2� � � � until we reach the “upstream end,” z−M . The chain
W = {z−M� � � � � zN } satisfies the requirements of Lemma 2: First, W blocks (Z ∪A)�W

19Note that the first possibility described in the first case of Lemma 1 cannot happen, as we know z0 ∈
Z∗
b(z0)

since Z is a blocking set.
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becauseZ blocksA, i.e., every contract inZ is chosen fromZ∪A, and so every contract
in W ⊆ Z is chosen from ((Z ∪A)�W ) ∪W = Z ∪A. Second, by construction, every
agent chooses all of their contracts in Z �W from (Z ∪A)�W ; thus, Z �W blocksA.

The full proof of Lemma 2 follows the sketch just described, but the execution is
much more challenging due to the need to account for multivalued choice correspon-
dences.20

3.1 Proof of Lemma 2

We first define theA-endowed utility function Ûi(·;A) for each i ∈ I as

Ûi(Y ;A)≡ max
Ā⊆A

{
Ui(Y ∪ Ā)};

that is, Ûi(Y ;A) is the maximum utility that agent i can obtain by combining Y with
elements of A. This gives rise to an A-endowed choice correspondence Ĉi(·;A) for each
i ∈ I, given by

Ĉi(Y ;A)≡ argmax
Ȳ⊆Y

{
Ûi(Ȳ ;A)} = {

Ỹ �A : Ỹ ∈ Ci(Y ∪A)};
that is, an element of Ĉi(Y ;A) is a set of contracts that i “chooses” from Y when he
has access to all the contracts in A. Note that since Z is a blocking set, Zi ⊆ Y for all
Y ∈ Ci(Z ∪A) for all i ∈ I and, thus, Ĉi(Z;A)= {Zi} for all i ∈ I.

Take any contract z0 ∈Z. We algorithmically “grow” a chainW containing z0 by pro-
ceeding upstream and downstream from z0. Specifically, in a sequence of steps from z0,
we grow a quasi-removable chain, i.e., a chainW = {z−m� � � � � z0� � � � � zn} such thatZ�W

is a blocking set except (possibly) for the buyer of zn and the seller of z−m. We first pro-
ceed downstream, showing that after each step, either Z � W behaves like a blocking
set for the buyer of zn, in which case zn is a terminal contract, or we can extend the
quasi-removable chain W at least one step further. We then proceed upstream anal-
ogously. Once we have found the downstream and upstream terminal contracts, our
quasi-removable chain W is in fact “removable” from the blocking set Z, in the sense
thatZ�W blocksA, as desired. We now formally define what it means for a chain to be
quasi-removable.

Definition 7. A chain W −m�n = {z−m� � � � � zn} is quasi-removable under the following
conditions:

(i) For all i ∈ I � {s(z−m)�b(zn)}, we have that {[Z �W −m�n]i} = Ĉi(Z �W −m�n;A).
20Our formal proof follows the sketch just presented, but allows for cases in which the choice correspon-

dence is not single-valued. In particular, we cannot use Lemma 1, as it does not allow us to characterize
Cb(z0)((Z � {z0}) ∪A) if the choice correspondence Cb(z0)(Z ∪A) is not single-valued; rather, we need to
prove an analogue to the conclusion of Lemma 1 that accounts for the fact that Cb(z0)(Z∪A)may be multi-
valued. Similarly, we need to prove an analogue to the conclusion of Lemma 1 for the case in which a chain
“self-crosses.”
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(ii) If b(zn) �= s(z−m), then, when choosing from Z �W −m�n, we have that both:

(a) the buyer of zn never drops a contract for which he is the buyer and drops at
most one contract for which he is the seller, i.e., we have for all

Ẑ∗ ∈ Ĉb(zn)(Z �W −m�n;A)

that

Ẑ∗
→b(zn) = [

Z �W −m�n]
→b(zn)

and either

Ẑ∗
b(zn)→ = [

Z �W −m�n]
b(zn)→

or there exists a zn+1 ∈Zb(zn)→ such that

Ẑ∗
b(zn)→ = [

Z �
(
W −m�n ∪ {

zn+1})]
b(zn)→;

and

(b) the seller of z−m never drops a contract for which he is the seller and drops at
most one contract for which he is the buyer, i.e., we have for all

Ẑ∗ ∈ Ĉs(z−m)(Z �W −m�n;A)

that

Ẑ∗
s(z−m)→ = [

Z �W −m�n]
s(z−m)→

and either

Ẑ∗
→s(z−m) = [

Z �W −m�n]
→s(z−m)

or there exists a z−m−1 ∈Z→s(z−m) such that

Ẑ∗
→s(z−m) = [

Z �
(
W −m�n ∪ {

z−m−1})]
→s(z−m)�

(iii) If b(zn)= s(z−m)= k, then when choosing fromZ�W −m�n, agent k drops at most
one contract for which he is the buyer and at most one contract for which he is
the seller, i.e., we have for all Ẑ∗ ∈ Ĉk(Z �W −m�n;A) that both:

(a) either

Ẑ∗
→k = [

Z �W −m�n]
→k

or there exists a z−m−1 ∈Z→k such that

Ẑ∗
→k = [

Z �
(
W −m�n ∪ {

z−m−1})]
→k

;

and
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(b) either

Ẑ∗
k→ = [

Z �W −m�n]
k→

or there exists a zn+1 ∈Zk→ such that

Ẑ∗
k→ = [

Z �
(
W −m�n ∪ {

zn+1})]
k→�

The first condition of Definition 7 ensures that each agent not associated with either end
of the chain chooses all of the contracts in Z �W −m�n that he is associated with. The
second condition of Definition 7 ensures that when each end of the chain is associated
with a different agent, the agent at each end chooses all but one contract in Z �W −m�n
that he is associated with. The third condition of Definition 7 ensures that when each
end of the chain is associated with the same agent, that agent chooses all of the contracts
in Z �W −m�n that he is associated with except for possibly one contract as a buyer and
possibly one contract as a seller.

We say that a quasi-removable chainW −m�n = {z−m� � � � � zn} is

(i) downstream terminal if b(zn) strictly demands all of the contracts for which he is
a seller, i.e., for all Ẑ∗ ∈ Ĉb(zn)(Z �W −m�n;A), we have that

Ẑ∗
b(zn)→ = [

Z �W −m�n]
b(zn)→�

and

(ii) upstream terminal if s(z−m) strictly demands all of the contracts for which he is a
buyer, i.e., for all Ẑ∗ ∈ Ĉs(z−m)(Z �W −m�n;A), we have that

Ẑ∗
→s(z−m) = [

Z �W −m�n]
→s(z−m)�

We now present a series of five claims, all proven in Appendix A, that we combine to
establish Lemma 2.

Claim 1. Consider any z0 ∈Z. ThenW 0�0 ≡ {z0} is a quasi-removable chain.

Claim 1 shows that for any arbitrary element z0 ∈ Z, the set W 0�0 ≡ {z0} is a quasi-
removable chain. Our next claim shows that any blocking chain that is not downstream
terminal can be extended into a longer quasi-removable chain through the addition of a
downstream contract.

Claim 2. Suppose that W −m�n = {z−m� � � � � zn} is a quasi-removable chain that is not
downstream terminal. Then there exists a zn+1 such that s(zn+1) = b(zn) and such that
W −m�n+1 ≡ W −m�n ∪ {zn+1} is a quasi-removable chain. Moreover, if W −m�n is upstream
terminal, thenW −m�n+1 is upstream terminal.

An analogous result holds upstream: any blocking chain that is not upstream ter-
minal can be extended into a longer quasi-removable chain through the addition of an
upstream contract.
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Claim 3. Suppose thatW −m�n = {z−m� � � � � zn} is a quasi-removable chain that is not up-
stream terminal. Then there exists a z−m−1 such that b(z−m−1) = s(z−m) and such that
W −m−1�n ≡ W −m�n ∪ {z−m−1} is a quasi-removable chain. Moreover, if W −m�n is down-
stream terminal, thenW −m−1�n is downstream terminal.

Our next claim ensures that once we have found a quasi-removable chain that is
both downstream and upstream terminal, then that quasi-removable chain is, in fact, a
blocking chain.

Claim 4. If W −m�n = {z−m� � � � � zn} is a downstream and upstream terminal quasi-
removable chain, then Z �W −m�n blocksA.

Our last claim verifies that any subsetW of a blocking set Z blocksA∪ (Z �W ).

Claim 5. Any nonemptyW ⊆Z blocksA∪ (Z �W ).

We now complete the proof of Lemma 2 by way of our claims. Consider any z0 ∈ Z;
by Claim 1, we have that W 0�0 = {z0} is a quasi-removable chain. If W 0�0 is not down-
stream terminal, then by Claim 2, there exists a z1 such that s(z1)= b(z0) and such that
W 0�1 = {z0� z1} is a quasi-removable chain. Proceeding inductively, any quasi-removable
chain W 0�n = {z0� � � � � zn} that is not downstream terminal can be extended to a quasi-
removable chain W 0�n+1 = W 0�n ∪ {zn+1} by adding one sell-side contract zn+1 for the
buyer of zn. Since Z is finite and all the quasi-removable chains are contained in Z,
this downstream extension process must eventually end at a quasi-removable chain
W 0�N that is downstream terminal. Similarly, if W 0�N is a quasi-removable chain that
is downstream but not upstream terminal, then by Claim 3, there exists a z−1 such that
W −1�N = W 0�N ∪ {z−1} is a downstream terminal quasi-removable chain. Again pro-
ceeding inductively, we can extend any downstream but not upstream terminal quasi-
removable chain W −m�N to a downstream terminal quasi-removable chain W −m−1�N ,
until we reach a quasi-removable chain W −M�N that is downstream and upstream ter-
minal. Finally, by Claims 4 and 5, Z � W −M�N must block A and W −M�N must block
A∪ (Z �W −M�N).

4. Chain stability and competitive equilibrium

The results of Section 3 hold for general sets of contracts under monotone–substitutable
preferences. For an environment in which both

• prices are continuous and unrestricted, i.e.,X =�×R, and

• agents’ preferences are quasilinear in prices,

Hatfield et al. (2013) showed that when agents’ preferences are fully substitutable, an
outcome is stable if and only if it is consistent with competitive equilibrium. Thus, a
corollary of Theorem 1 is that in the trading network setting of Hatfield et al. (2013), an
outcome is consistent with competitive equilibrium if and only if it is not blocked by a
chain of contracts; for a formal statement of this result, see Appendix B.
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5. Quantifying the simplicity gain

Theorem 1 implies that under monotone–substitutability, checking whether an out-
come is stable (and in the quasilinear case, consistent with competitive equilibrium)
reduces to checking whether that outcome is chain stable. In this section, we examine
the extent to which Theorem 1 simplifies checking stability. We first consider asymp-
totics as the economy grows large; then we discuss computational complexity aspects.

5.1 Asymptotic simplicity gains

We show that while checking directly whether a given outcome Y is stable requires
checking 2|X�Y | possible blocking sets, the reduction to chain stability leads to a signif-
icant asymptotic simplicity gain, in the sense that the proportion of possible blocking
sets that are chains goes to 0 as the economy grows large.21

Formally, we define a sequence of economies (I��m)∞m=1 as having a fixed set of
agents I and a sequence of finite sets of trades �1��2� � � � such that |�m| = m. For a
given ω ∈ ⋃∞

m=1�
m, let P(ω) ⊆ R be the set of possible prices for ω; that is, we assume

that the set of possible prices associated with a given trade ω does not vary with m. For
the economy (I��m), the set of contracts is given byXm ≡ ⋃

ω∈�m
⋃
p∈P(ω){(ω�p)}.22

Note that checking the stability of an outcome Y for the economy (I��m) may re-
quire checking blocking sets corresponding to any set of trades in

B
m(Y)≡ {

�⊆�m � τ(Y)
}
�

By contrast, checking the chain stability of an outcome Y for the economy (I��m) re-
quires checking blocking chains corresponding to any chain of trades in

C
m(Y)≡ {

�⊆�m � τ(Y) :� is a chain
}
�

We show that, for any fixed set of contracts Y , the ratio of [the number of distinct sets of
chains of trades corresponding to possible blocking chains] to [the number of distinct
sets of trades corresponding to possible blocking sets], i.e., |Cm(Y)|

|Bm(Y)| , goes to 0 asm grows
large.

Theorem 3. For any sequence of economies (I��m)∞m=1 such that |�m| =m for all m, for
any Y , we have that ∣∣Cm(Y)∣∣∣∣Bm(Y)

∣∣ =O
(√

log2m√
m

)
�

In particular, |Cm(Y)|
|Bm(Y)| → 0 asm→ ∞.

21Intuitively, we show that as we randomly add trades and the economy grows large, the probability that
an arbitrary blocking set is a chain goes to 0.

22Our modeling in this section is deliberately parsimonious. Since the results in this section rely ex-
clusively on combinatorial arguments regarding the number of chains and sets of trades that need to be
considered, our requirements that the set of agents I is fixed and that the set of possible prices associated
with a trade is invariant across economies could both be relaxed, e.g., allowing the sets of agents and prices
to vary withm would not affect our results.
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Theorem 3 follows from a general graph-theoretic result proven by Shayani (2018). In

Appendix C, we present a formal proof of Theorem 3, adapting the argument of Shayani

(2018) to our setting.

To understand the intuition behind Theorem 3, consider a directed multi-graph with

the set of vertices I and the set of edges having one edge for each trade in �m, directed

from the seller to the buyer of that trade. To determine what proportion of the sub-

sets of �m consists of chains, we proceed via a probabilistic argument: We consider a

random set of trades � chosen from �m by including each trade ω ∈�m in � indepen-

dently with probability 1
2 . For a random set of trades � to be a chain, the following two

“balancedness” requirements have to be satisfied:

(i) For each agent i ∈ a(�), the number of contracts in which that agent is the buyer

differs by at most 1 from the number of contracts in which he is the seller, i.e.,

||�→i| − |�i→|| ≤ 1.

(ii) There are at most two distinct agents j ∈ a(�)who sign different numbers of con-

tracts as a buyer and as a seller, i.e., there are at most two distinct agents j ∈ a(�)
for whom |�→j| − |�j→| �= 0.

These balancedness requirements follow directly from the definition of a chain (Defini-

tion 5), as the buyer of the first trade is the seller of the second trade, the buyer of the

second trade is the seller of the third trade, . . . , and the buyer of the (|�| − 1)-st trade is

the seller of the |�|-th trade; thus, only the seller of the first trade and the buyer of the

|�|-th trade can sign different numbers of contracts as a buyer and a seller.

For the random set of trades�, there are two cases to consider.

Large agent case: In this case, there is one “large” agent i, who is involved in many

of them trades in�.

Many small agents case: In this case, there are many “small” distinct agents, each of

whom is involved in a few trades in�.

In the large agent case, we show that the probability that the first balancedness con-

dition is satisfied for a “big” agent i is small because it is unlikely that i will have roughly

equal numbers of contracts in which he is a buyer and in which he is a seller, as he is in-

volved in many trades in the random set�. In the many small agents case, we show that

the probability that� is such that |�→j|− |�j→| = 0 for all but two agents j is small, so it

is unlikely that the second balancedness condition is satisfied. Combining the preceding

two results shows that, in the limit, very few random sets of trades will be chains.

Theorem 3 implies that for general trading networks, the ratio of chains to the total

number of subsets converges to 0 as the number of trades grows large. Thus, the set of

chains is asymptotically a vanishingly small fraction of the set of potential blocking sets;

consequently, checking stability by considering each possible blocking chain is asymp-

totically much simpler than checking stability by considering each possible blocking
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set.23 In fact, even for settings for which the existence of stable outcomes is not guar-
anteed,24

 Theorem 1 implies that checking for the existence of chain stable outcomes
is sufficient when agents’ preferences are monotone–substitutable, and Theorem 3 im-
plies that checking chain stability is substantially easier than checking stability.

If the trading network has additional structure, then the simplicity gain can be much
higher than that implied by the bound in Theorem 3. For instance, consider the case
of multilayered supply chains, á la Ostrovsky (2008). In a multilayered supply chain,
there are L+ 1 layers (I	)L+1

	=1 , which partition the set of agents; each trade “flows” one
layer down the supply chain, i.e., for any trade ω ∈ �, if s(ω) ∈ I	, then b(ω) ∈ I	+1.
Thus, there are L bands of trades, �1� � � � ��L, in between the layers of agents, such that
s(�	)⊆ I	 and b(�	)⊆ I	+1. In this case, the total number of chains of trades is bounded
by

∏L
	=1(|�	| + 1), while the total number of sets of trades is given by 2|�1|+···+|�L|.

Our results also imply (by combining Corollary 1 and Theorem 3) that checking
whether an outcome is consistent with competitive equilibrium becomes straightfor-
ward in the Sun and Yang (2006, 2009) environment with gross substitutes and comple-
ments. In such an environment, one side of the market is a set of buyers while the other
side of the market consists of two distinct groups of objects. Buyers view objects in the
same group as substitutes for each other, but view objects in different groups as com-
plements; such preferences arise naturally when a firm has two types of complementary
inputs. As Hatfield et al. (2013) showed, the Sun and Yang (2006, 2009) environment is a
special case of the Hatfield et al. (2013) trading network framework.25 Moreover, chains
in the Sun and Yang (2006, 2009) environment are particularly simple: they consist ei-
ther of one buyer and one object (or, more formally, one contract between a buyer and
an object) or of one buyer and one object from each of the two groups (again, more for-
mally, two contracts, involving the same buyer and two objects from different groups).
Thus, checking for consistency with competitive equilibrium reduces to checking one-
and two-contract blocking chains. In the two-sided setting of Kelso and Crawford (1982),
which is itself a special case of the Sun and Yang (2006, 2009) framework, our results im-
ply that checking for consistency with competitive equilibrium reduces to checking for
single-contract blocks.

5.2 Computational complexity

Subsequent to the first version of this paper, a number of settings that are special cases
of our model have been studied.

For the special case of trading networks called flow networks, in which agents’ pref-
erences are strict (and, thus, continuous transfers are not allowed) and there are ex-
actly two so-called terminal agents who always choose all of the contracts that they

23However, for arbitrarily complex trading networks, Shayani (2018) showed that the bound in Theorem 3
is almost tight.

24For example, if prices are not allowed to vary freely and preferences are not quasilinear, monotone–
substitutability is not, in general, sufficient to guarantee the existence of stable outcomes; see, e.g., Hatfield
and Kominers (2012).

25The embedding of Hatfield et al. (2013) allows for much more general environments than those con-
sidered by Sun and Yang (2006, 2009): e.g., “objects” may have preferences over whom they match with and
may be involved in multiple contracts.
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are involved in, Fleiner et al. (2020) showed that establishing whether a stable outcome
exists is an NP-complete problem.26 Note that since the result established by Fleiner
et al. (2020) is for a setting that is a special case of ours, it directly implies that check-
ing whether a stable outcome exists remains an NP-complete problem in our setting
too.

For the special case of arbitrarily complex trading networks in which agents’
preferences are quasilinear in the numeraire, Candogan et al. (2019) developed a
polynomial-time algorithm that, for a given outcome, either constructs a blocking chain
or verifies that no such chain exists; for this case, combining the result of Cando-
gan et al. (2019) with our Theorem 1 yields a polynomial-time algorithm for checking
stability.

Finally, a number of new applications can be embedded into our model for which
stable outcomes can be computed efficiently. For example, Andersson et al. (forthcom-
ing) studied the organization of time banks and Manjunath and Westkamp (2019) stud-
ied shift exchanges between workers. Both Andersson et al. (forthcoming) and Man-
junath and Westkamp (2019) developed algorithms that find individually rational and
Pareto-efficient outcomes in polynomial time; furthermore, these outcomes turn out to
be stable as well.

6. Examples

The proof of our main equivalence result (Theorem 1) requires monotone–
substitutability—the conjunction of full substitutability and the Laws of Aggregate Sup-
ply and Demand. In this section, we show that whenever some agent’s preferences fail
to be fully substitutable or fail to satisfy the Laws of Aggregate Supply and Demand,
our equivalence result may not hold. We also show that it is essential that the defini-
tion of chain stability allow chains to cross themselves, i.e., that we allow an agent to be
involved in more than two contracts in a chain.27

We start with an example of preferences that are fully substitutable, but for which the
Laws of Aggregate Supply and Demand do not hold—and the equivalence result does
not hold either.28

Example 1. There are two agents, i and j. There are four contracts between the two
agents: x, y, z, andw. Agent i is the seller of x, y, and z, and is the buyer ofw, while agent
j is the buyer of x, y, and z, and the seller of w. The economy is depicted in Figure 1.

26Even though Fleiner et al. (2020) did not explicitly assume that agents’ choice functions satisfy the Laws
of Aggregate Supply and Demand, their results still apply in our setting, as the choice functions they used
in their construction satisfy the Laws of Aggregate Supply and Demand.

27For convenience, we give our examples in terms of ordinal preference relations over sets of contracts; it
is straightforward to construct corresponding cardinal utility functions over sets of contracts that give rise
to these ordinal preference relations, and we omit those constructions.

28As shown by Hatfield and Kominers (2012), the Laws of Aggregate Supply and Demand are not neces-
sary for the equivalence of stability and chain stability in the supply chain setting. The need for monoton–
substitutability in our setting is because we need to allow for chains to be self-crossing—which cannot
happen in supply chain networks.
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Figure 1. The economy of Example 1. Each arrow denotes a contract from its seller to its buyer.

The preferences of the agents are as follows. Informally, agent i is happy to sign
contract w in which he is the buyer, regardless of what his options are on the other side
of the market, and if (and only if) he is able to sign contract w, then he is also happy
to sign any subset of the other three contracts (in which he is the seller)—the more, the
better. Formally, the preferences of i over acceptable bundles of contracts are

{w�x� y� z} �i {w�x� y} �i {w�x�z} �i {w�y� z} �i {w�x} �i {w�y} �i {w�z} �i {w} �i ∅�
Agent j is happy to sign any subset of {x� y� z} (in which he is the buyer)—the more, the
better—no matter what his options are on the other side of the market. If (and only if)
he has access to all three of x, y, and z, then he is also happy to sign contractw (in which
he is the seller). Formally, the preferences of j over acceptable bundles of contracts are

{w�x� y� z} �j {x� y� z} �j {x� y} �j {x�z} �j {y� z} �j {x} �j {y} �j {z} �j ∅�
Note first that the preferences of agents i and j are fully substitutable but also note

that the preferences of agent i do not satisfy the Law of Aggregate Demand.29 The empty
set of contracts, ∅, is not stable: it is blocked by the full set of contracts in the economy,
{w�x� y� z}, which is the most preferred set of contracts for both agents. At the same time,
the empty set of contracts is not blocked by any chain; hence, the empty set is chain
stable. To see this, note first that any blocking set would, of course, have to involve
both agents. Second, every nonempty set acceptable to agent i must include contract
w, so w would have to be a part of the blocking chain. Third, the only set of contracts
involving contract w that is acceptable to agent j is the full set of contracts {w�x� y� z}.
Thus, {w�x� y� z} is the only blocking set in this example—and it cannot be represented
as a chain. ♦

Our second example shows that full substitutability likewise plays a critical role for
the equivalence result: without it, chain stability is strictly weaker than stability, even
when all agents’ preferences satisfy the Laws of Aggregate Supply and Demand.

Example 2. There are three agents: i, j, and k. There are two contracts: x and y. Agent
i is the buyer of both x and y, agent j is the seller of x, and agent k is the seller of y. The
economy is depicted in Figure 2.

29Indeed, Ci({x� y� z})= ∅ while Ci({w�x� y� z})= {w�x� y� z}, that is, the net demand of i falls (from 0 to
−2) after i receives the new buy-side offer w.
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x

k
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Figure 2. The economy of Example 2. Each arrow denotes a contract from its seller to its buyer.

The preferences of agents j and k are straightforward and are fully substitutable.
Indeed, each agent desires to sign the contract in which he is the seller: {x} �j ∅ and
{y} �k ∅. The preferences of agent i are not fully substitutable: i prefers signing both
contracts to signing none, but prefers not signing any contracts to signing only one con-
tract; that is, the preferences of agent i over acceptable bundles of contracts are given by
{x� y} �i ∅.

The empty set of contracts, ∅, is not stable: it is blocked by the full set of contracts in
the economy, {x� y}. At the same time, the empty set is chain stable: Any chain involves
agent i and contains exactly one contract—and agent i finds any such set of contracts
unacceptable. ♦

Our third and final example shows that even when preferences are monotone–
substitutable, it may not be sufficient to restrict attention to blocking chains that do not
cross themselves. Specifically, if attention is restricted to chains in which each agent ap-
pears in at most two consecutive contracts, then an outcome that is robust to deviations
by such chains may be blocked by richer sets of contracts.30

Example 3. There are three agents: i, j, and k. There are four contracts: x1, x2, y1, and
y2. Agent i is the buyer of contract x1 and the seller of contract y1. Agent j is the buyer of
contract x2 and the seller of contract y2. Agent k is the seller of contracts x1 and x2 and
the buyer of contracts y1 and y2. The economy is depicted in Figure 3.

The preferences of agents i and j are straightforward: Each one prefers to sign both
contracts that he is associated with and is not interested in any other nonempty set of
contracts; that is, {x1� y1} �i ∅ and {x2� y2} �j ∅. The preferences of agent k are{

x1�x2� y1� y2} �k
{
x1� y2} �k

{
x2� y1} �k ∅;

agent k finds other nonempty sets of contracts unacceptable.
In this example, all agents’ preferences are monotone–substitutable. Also, the empty

set of contracts is not stable, as it is blocked by the chain {x1� y1�x2� y2}; that chain is self-
crossing—it involves agent k in all four contracts. However, no chain that does not cross

30However, the necessity of considering self-crossing chains is only present in fully general trading net-
works. In particular, in the supply chain setting of Ostrovsky (2008), self-crossing chains are not even pos-
sible because each agent buys only from agents upstream and sells only to agents downstream. In the sup-
ply chain setting, stability and chain stability are also equivalent to the tree stability concept of Ostrovsky
(2008).



Theoretical Economics 16 (2021) Chain stability in trading networks 221

i

y1

k

x2x1

j

y2

Figure 3. The economy of Example 3. Each arrow denotes a contract from its seller to its buyer.

itself blocks the empty set of contracts. For example, the chain {x1� y1} does not block
the empty set because Ck({x1� y1})= {∅}, and so {x1� y1}k = {x1� y1} /∈ Ck({x1� y1}). ♦

7. Conclusion

In this paper, we have shown that when all agents have monotone–substitutable prefer-
ences, every chain stable outcome is stable. As a corollary, we also have shown that in
quasilinear environments with transferable utility and fully substitutable preferences,
an outcome is consistent with competitive equilibrium if and only if it is chain stable.

In practice, blocking chains may be relatively easy to form: They require much less
coordination than general blocking sets. Our work shows that under reasonable as-
sumptions on preferences, ruling out these particularly natural blocks in fact guarantees
that there are no possible blocks by groups of agents.

Appendix A: Proofs omitted from the main text

A.1 Proof of Lemma 1

To prove the first part of Lemma 1, we consider the case in which ȳ ∈ [X�Y ]→i. Since the
preferences of i are monotone–substitutable, we have from condition (i) of the definition
of monotone–substitutability that there exists a Ȳ ∗

i ∈ Ci(Y ∪ {ȳ}) such that

Y→i �Y
∗
→i ⊆

(
Y→i ∪ {ȳ})� Ȳ ∗

→i;
thus, we have

Ȳ ∗
→i ⊆ Y ∗

→i ∪ {ȳ}� (1a)

Moreover, we have from condition (i) of the definition of monotone–substitutability that

Ȳ ∗
i→ ⊇ Y ∗

i→� (1b)

which implies that ∣∣Ȳ ∗
i→

∣∣ − ∣∣Y ∗
i→

∣∣ ≥ 0�

Condition (i) of the definition of monotone–substitutability also then implies that∣∣Ȳ ∗
→i

∣∣ − ∣∣Y ∗
→i

∣∣ ≥ ∣∣Ȳ ∗
i→

∣∣ − ∣∣Y ∗
i→

∣∣ ≥ 0� (2)

There are two cases to consider.
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Case 1: ȳ /∈ Ȳ ∗. Then (1a) implies that Ȳ ∗
→i ⊆ Y ∗

→i and so |Ȳ ∗
→i| − |Y ∗

→i| ≤ 0. As (2)
implies that |Ȳ ∗

→i| − |Y ∗
→i| ≥ 0, we must then have that |Ȳ ∗

→i| = |Y ∗
→i|; hence, Ȳ ∗

→i =
Y ∗

→i. Then (2) can only hold if |Ȳ ∗
i→| = |Y ∗

i→|, and so (1b) implies that Ȳ ∗
i→ = Y ∗

i→.
Thus, Ȳ ∗ = Y ∗, which is possibility (a) in the lemma.

Case 2: ȳ ∈ Ȳ ∗. Then (1a) implies that |Ȳ ∗
→i| ≤ |Y ∗

→i| + 1.
If |Ȳ ∗

→i| ≤ |Y ∗
→i|, then (as in the preceding case), (2) can only hold if∣∣Ȳ ∗

→i

∣∣ − ∣∣Y ∗
→i

∣∣ = ∣∣Ȳ ∗
i→

∣∣ − ∣∣Y ∗
i→

∣∣ = 0�

which implies that Ȳ ∗
→i = (Y ∗

→i ∪ {ȳ})� {y} for some y ∈ Y ∗
→i (from (1a)) and Y ∗

i→ =
Ȳ ∗
i→ (from (1b)), which is possibility (c) in the lemma.
Otherwise, |Ȳ ∗

→i| = |Y ∗
→i| + 1 and so (1a) implies that Ȳ ∗

→i = Y ∗
→i ∪ {ȳ}. Thus,

|Ȳ ∗
→i| − |Y ∗

→i| = 1 and so (2) can only hold if either |Ȳ ∗
i→| − |Y ∗

i→| = 0 or |Ȳ ∗
i→| −

|Y ∗
i→| = 1. In the former case, we have (from (1b)) that Ȳ ∗

i→ = Y ∗
i→ and so Ȳ ∗ =

Y ∗ ∪ {ȳ}, which is possibility (b) in the lemma. In the latter case, we have (from (1b))
that Ȳ ∗

i→ = Y ∗
i→ ∪ {z} for some z ∈ [Y �Y ∗]i→, which is possibility (d) in the lemma.

The proof of the second part of Lemma 1 is completely analogous to the proof of the
first part.

A.2 Proof of Claim 1

Condition (i) of Definition 7 holds immediately.
To prove that part (a) of condition (ii) of Definition 7 holds, we proceed as follows:

Choose an arbitrary Y ∗ ∈ Cb(z0)((Z� {z0})∪A). Since Cb(z0) is monotone–substitutable,
there exists a Z∗ ∈ Cb(z0)(Z ∪A) such that

[((
Z �

{
z0}) ∪A)

�Y ∗]
→b(z0)

⊆ [
(Z ∪A)�Z∗]

→b(z0)
(3)

Y ∗
b(z0)→ ⊆Z∗

b(z0)→ (4)∣∣Z∗
→b(z0)

∣∣ − ∣∣Y ∗
→b(z0)

∣∣ ≥ ∣∣Z∗
b(z0)→

∣∣ − ∣∣Y ∗
b(z0)→

∣∣� (5)

Partition Y ∗ into Ŷ ∗ ≡ Y ∗ ∩ (Z � {z0}) and Y̌ ∗ ≡ Y ∗ ∩A, and partition Z∗ into Ẑ∗ ≡
Z∗ ∩ Z and Ž∗ ≡ Z∗ ∩A.31 Note that since Z is a blocking set, we must have Ẑ∗

b(z0)
=

Zb(z0).
We argue first that when z0 is no longer available, every optimal choice by b(z0)

includes all of the remaining contracts in Z for which he is a buyer, i.e., Ŷ ∗
→b(z0)

=
[Z � {z0}]→b(z0). Using the notation just introduced, we can rewrite (3) as

[((
Z �

{
z0}) ∪A)

�
(
Ŷ ∗ ∪ Y̌ ∗)]

→b(z0)
⊆ [
(Z ∪A)� (

Ẑ∗ ∪ Ž∗)]
→b(z0)

�

or, equivalently, [((
Z �

{
z0})� Ŷ ∗) ∪ (

A� Y̌ ∗)]
→b(z0)

⊆ [
A� Ž∗]

→b(z0)
� (6)

31To see that these are partitions, recall thatA∩Z = ∅ as Z is a blocking set.
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Here we have used the fact that [Z� Ẑ∗]→b(z0) = ∅ sinceZ is a blocking set. From (6), we

can immediately infer that [(Z� {z0})� Ŷ ∗]→b(z0) ⊆A. Given thatZ is a blocking set, we

must haveZ∩A=∅ and, thus, [(Z�{z0})�Ŷ ∗]→b(z0) =∅. Hence, [Z�{z0}]→b(z0) ⊆ Ŷ ∗.

Since Ŷ ∗ = Y ∗ ∩ (Z � {z0}), we obtain that [Z � {z0}]→b(z0) = Ŷ ∗
→b(z0)

.

Next we argue that when z0 is no longer available, every optimal choice by b(z0)

excludes at most one of his contracts in Z for which he is a seller, i.e., either Ŷ ∗
b(z0)→ =

Zb(z0)→ or there exists a z1 ∈ Z such that Ŷ ∗
b(z0)→ = [Z � {z1}]b(z0)→. Note first that (3)

implies that b(z0) chooses at most one fewer contract as a buyer when z0 is no longer
available, i.e., |Z∗

→b(z0)
| ≤ |Y ∗

→b(z0)
∪{z0}| = |Y ∗

→b(z0)
|+ 1, and so |Z∗

→b(z0)
|− |Y ∗

→b(z0)
| ≤ 1.

Hence, (5) implies that |Z∗
b(z0)→| − |Y ∗

b(z0)→| ≤ 1; we rewrite this last inequality as

(∣∣Ẑ∗
b(z0)→

∣∣ − ∣∣Ŷ ∗
b(z0)→

∣∣) + (∣∣Ž∗
b(z0)→

∣∣ − ∣∣Y̌ ∗
b(z0)→

∣∣) ≤ 1� (7)

Now by (4), we have that Y ∗
b(z0)→ ⊆Z∗

b(z0)→ and, thus, Y̌ ∗
b(z0)→ ⊆ Ž∗

b(z0)→; combining this

with (7) implies that |Ẑ∗
b(z0)→| − |Ŷ ∗

b(z0)→| ≤ 1. Moreover, by (4), we have that Y ∗
b(z0)→ ⊆

Z∗
b(z0)→ and, thus, Ŷ ∗

b(z0)→ ⊆ Ẑ∗
b(z0)→; hence, either Ŷ ∗

b(z0)→ = Ẑ∗
b(z0)→ =Zb(z0)→ or there

exists a z1 ∈Z such that Ŷ ∗
b(z0)→ = [Ẑ∗ � {z1}]b(z0)→ = [Z � {z1}]b(z0)→.

Part (b) of condition (ii) of Definition 7 follows analogously to part (a).
Condition (iii) of Definition 7 holds vacuously as b(z0) �= s(z0).

A.3 Proof of Claim 2

Since W −m�n is a quasi-removable chain that is not downstream terminal, there exists
a set Z̃∗ ∈ Ĉb(zn)(Z � W −m�n;A) and a contract zn+1 ∈ [Z � W −m�n]b(zn)→ such that
Z̃∗
b(zn)→ = [(Z � W −m�n) � {zn+1}]b(zn)→. We argue that W −m�n+1 ≡ W −m�n ∪ {zn+1} is

a quasi-removable chain.
To see thatW −m�n+1 satisfies condition (i) of Definition 7, we note that:

• For all i ∈ I � {s(z−m)�b(zn)�b(zn+1)}, we have that{[
Z �W −m�n+1]

i

} = Ĉi
(
Z �W −m�n+1;A)

�

asW −m�n is quasi-removable and [Z �W −m�n+1]i = [Z �W −m�n]i for each such i.

• We show here that if b(zn) �= s(z−m), then we have that {[Z � W −m�n+1]b(zn)} =
Ĉb(zn)(Z�W −m�n+1;A).32,33 Let Z̃ � [Z�W −m�n+1]b(zn) be arbitrary. We claim that
Z̃ /∈ Ĉb(zn)(Z �W −m�n+1;A). To see this, note first that part (a) of condition (ii) of
Definition 7 applied to W −m�n implies that Z̃ /∈ Ĉb(zn)(Z �W −m�n;A); meanwhile,
[(Z �W −m�n)� {zn+1}]b(zn) ∈ Ĉb(zn)(Z �W −m�n;A) by assumption. Thus,

Ûb(zn)
([(
Z �W −m�n)� {

zn+1}]
b(zn)

)
> Ûb(zn)(Z̃)�

32We consider the other case where b(zn)= s(z−m) subsequently.
33If b(zn) �= s(z−m), we have that b(zn) ∈ I � {s(z−m)�b(zn+1)} since s(zn+1) = b(zn) and s(zn+1) �=

b(zn+1). Hence, we also have to establish condition (i) of Definition 7 for b(zn) if b(zn) �= s(z−m).
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Hence, since [(Z�W −m�n)�{zn+1}]b(zn) is available from [(Z�W −m�n)�{zn+1}]b(zn)
and provides a higher utility than Z̃, we have that Z̃ /∈ Ĉb(zn)(Z �W −m�n+1;A).

To finish the proof, we consider two cases, depending on whether both ends of the
chainW −m�n+1 are associated to the same agent. In the first case, we suppose the ends of
the chain are associated with distinct agents, i.e., b(zn+1) �= s(z−m). In the second case,
we suppose the ends of the chain are associated with the same agent, i.e., b(zn+1) =
s(z−m).

Case 1: b(zn+1) �= s(z−m). If b(zn+1) �= s(z−m), then we need to check the condi-
tion (ii) of Definition 7. We prove first that part (a) of condition (ii) is satisfied. We
proceed via an argument analogous to that used to prove Claim 1: Choose an arbi-
trary Y ∗ ∈ Cb(zn+1)((Z �W −m�n+1) ∪A). Note first that since Cb(zn+1) is monotone–
substitutable, there exists a Z∗ ∈ Cb(zn+1)((Z �W −m�n)∪A) such that

[((
Z �W −m�n+1) ∪A)

�Y ∗]
→b(zn+1)

⊆ [((
Z �W −m�n) ∪A)

�Z∗]
→b(zn+1)

(8)

Y ∗
b(zn+1)→ ⊆Z∗

b(zn+1)→ (9)∣∣Z∗
→b(zn+1)

∣∣ − ∣∣Y ∗
→b(zn+1)

∣∣ ≥ ∣∣Z∗
b(zn+1)→

∣∣ − ∣∣Y ∗
b(zn+1)→

∣∣� (10)

Partition Y ∗ into Ŷ ∗ ≡ Y ∗ ∩ (Z � W −m�n+1) and Y̌ ∗ ≡ Y ∗ ∩A, and partition Z∗
into Ẑ∗ ≡Z∗ ∩ (Z �W −m�n) and Ž∗ ≡Z∗ ∩A.34

We argue first that when zn+1 is no longer available, every optimal choice by
b(zn+1) includes all of his remaining contracts in Z for which he is a buyer, i.e.,
Ŷ ∗

→b(zn+1)
= [Z � W −m�n+1]→b(zn+1). Using the notation just introduced, we can

rewrite (8) as

[((
Z�W −m�n+1)∪A)

�
(
Ŷ ∗ ∪ Y̌ ∗)]

→b(zn+1)
⊆ [((

Z�W −m�n)∪A)
�

(
Ẑ∗ ∪Ž∗)]

→b(zn+1)

or, equivalently,

[((
Z �W −m�n+1)� Ŷ ∗) ∪ (

A� Y̌ ∗)]
→b(zn+1)

⊆ [
A� Ž∗]

→b(zn+1)
� (11)

Here, we have used the fact that [(Z � W −m�n) � Ẑ∗]→b(zn+1) = ∅ since we have

that Ĉb(zn+1)(Z�W −m�n;A)= {[Z�W −m�n]b(zn+1)} (which follows from the fact that
W −m�n is a quasi-removable chain and applying condition (i) of Definition 7). From
(11), we can immediately infer that [(Z �W −m�n+1)� Ŷ ∗]→b(zn+1) ⊆A. Given that

Z is a blocking set, we have Z ∩A= ∅ and thus [(Z �W −m�n+1)� Ŷ ∗]→b(zn+1) = ∅.

Hence, [Z � W −m�n+1]→b(zn+1) ⊆ Ŷ ∗. Since Ŷ ∗ = Y ∗ ∩ (Z � W −m�n+1), we obtain

[Z �W −m�n+1]→b(zn+1) = Ŷ ∗
→b(zn+1)

.

Next we argue that when zn+1 is no longer available, every optimal choice by
b(zn+1) excludes at most one of his contracts inZ�W −m�n+1 for which he is a seller,
i.e., either Ŷ ∗

b(zn+1)→ = [Z � W −m�n+1]b(zn+1)→ or there exists a zn+2 ∈ Z such that

34Recall thatA∩Z = ∅ and soA∩ (Z �W −m�n+1)= ∅.
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Ŷ ∗
b(zn+1)→ = [(Z�W −m�n+1)� {zn+2}]b(zn+1)→. Note first that (8) implies that b(zn+1)

chooses at most one fewer contract as a buyer when zn+1 is no longer available, i.e.,
|Z∗

→b(zn+1)
| − |Y ∗

→b(zn+1)
| ≤ 1. Hence, (10) implies that |Z∗

b(zn+1)→| − |Y ∗
b(zn+1)→| ≤ 1;

we can rewrite this last inequality as

(∣∣Ẑ∗
b(zn+1)→

∣∣ − ∣∣Ŷ ∗
b(zn+1)→

∣∣) + (∣∣Ž∗
b(zn+1)→

∣∣ − ∣∣Y̌ ∗
b(zn+1)→

∣∣) ≤ 1� (12)

Now by (9), we have that Y ∗
b(zn+1)→ ⊆ Z∗

b(zn+1)→ and, thus, Y̌ ∗
b(zn+1)→ ⊆ Ž∗

b(zn+1)→;

combining this with (12) implies that |Ẑ∗
b(zn+1)→| − |Ŷ ∗

b(zn+1)→| ≤ 1. Moreover, by (9),

we have that Y ∗
b(zn+1)→ ⊆ Z∗

b(zn+1)→ and, thus, Ŷ ∗
b(zn+1)→ ⊆ Ẑ∗

b(zn+1)→; hence, either

we have Ŷ ∗
b(zn+1)→ = Ẑ∗

b(zn+1)→ or there exists a zn+2 such that we have Ŷ ∗
b(zn+1)→ =

[Ẑ∗ � {zn+2}]b(zn+1)→.
To prove that part (b) of condition (ii) of Definition 7 is satisfied—as well as that

extending the chain conserves upstream terminality—we distinguish two cases:
– If s(z−m) �= b(zn), we have that W −m�n

s(z−m) = W
−m�n+1
s(z−m) , as we have assumed by hy-

pothesis b(zn+1) �= s(z−m); thus, since W −m�n is a quasi-removable chain by as-
sumption, we have that part (b) of condition (ii) of Definition 7 is satisfied for
s(z−m) andW −m�n+1.

Also, if W −m�n is upstream terminal, then for all Z̄∗ ∈ Ĉs(z−m)(Z � W −m�n;A),
we have that

Z̄∗
→s(z−m) = [

Z �W −m�n]
→s(z−m)� (13)

Combining (13) with the fact that W −m�n
s(z−m) = W −m�n+1

s(z−m) yields that for all Z̄∗ ∈
Ĉs(z−m)(Z �W −m�n+1;A), we have that

Z̄∗
→s(z−m) = [

Z �W −m�n+1]
→s(z−m)�

and, thus,W −m�n+1 is upstream terminal by definition.

– If s(z−m)= b(zn)= k, recall first that Z̃∗ ∈ Ĉk(Z �W −m�n;A) and zn+1 were cho-
sen such that Z̃∗

k→ = [(Z �W −m�n)� {zn+1}]k→. Since Z̃∗ ∈ Ĉk(Z �W −m�n;A),

Ûi
(
Z̃∗;A)

> Ûi(Y ;A)

for all Y ⊆ Z � W −m�n such that Y /∈ Ĉi(Z � W −m�n;A); that is, Z̃∗ provides a
higher utility to i than any Y ⊆Z �W −m�n that was not chosen when Z �W −m�n
was available. Thus, because Z̃∗

k→ = [(Z �W −m�n)� {zn+1}]k→ (and, thus, Z̃∗ ⊆
Z �W −m�n+1), we have that

Ĉk
(
Z �W −m�n+1;A) ⊆ Ĉk

(
Z �W −m�n;A)

� (14)

We now show that when zn+1 is no longer available, the seller of z−m never
drops a contract for which he is the seller, i.e., for all Z̄∗ ∈ Ĉk(Z �W −m�n+1;A),
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we have that

Z̄∗
k→ = [

Z �W −m�n+1]
k→�

Since W −m�n is a quasi-removable chain, there is no Y ∈ Ĉk(Z �W −m�n;A) such
that |Yk→|< |[Z �W −m�n]k→| − 1. Thus, using (14), we have that there does not
exist Y ∈ Ĉk(Z �W −m�n+1;A) such that

|Yk→|< |[Z �W −m�n]k→| − 1 = |[Z �W −m�n+1]k→|�
Therefore, kmust now choose, as a seller, all of the contracts inZ�W −m�n+1, i.e.,

Z̄∗
k→ = [

Z �W −m�n+1]
k→�

Next we show that when zn+1 is no longer available, the seller of z−m drops at
most one contract as a buyer, i.e., for all Z̄∗ ∈ Ĉk(Z �W −m�n+1;A) either

Z̄∗
→k = [

Z �W −m�n+1]
→k

or there exists a z−m−1 ∈Z such that

Z̄∗
→k = [

Z �
(
W −m�n+1 ∪ {

z−m−1})]
→k
�

Since W −m�n was a quasi-removable chain, there is no Y ∈ Ĉk(Z � W −m�n;A)
such that |Y→k|< |[Z �W −m�n]→k| − 1. Thus, using (14), we have that there does
not exist Y ∈ Ĉk(Z�W −m�n+1;A) such that |Y→k|< |[Z�W −m�n]→k| − 1. There-
fore, k= s(z−m)must now choose all but one of his contracts as a buyer, i.e., either

Z̄∗
→s(z−m) = [

Z �W −m�n]
→s(z−m)

or there exists a z−m−1 ∈Z such that

Z̄∗
→s(z−m) = [

Z �
(
W −m�n ∪ {

z−m−1})]
→s(z−m)�

Since s(zn+1) = b(zn) = s(z−m), the preceding logic implies that we now have
[Z � W −m�n]→s(z−m) = [Z � W −m�n+1]→s(z−m) and, thus, we obtain the desired
statement.

Finally, we show that ifW −m�n is upstream terminal, thenW −m�n+1 is upstream
terminal. If W −m�n is upstream terminal, then for all Z̄∗ ∈ Ĉk(Z �W −m�n;A), we
have that

Z̄∗
→k = [

Z �W −m�n]
→k
� (15)

Combining (15) with (14) yields that for all Z̄∗ ∈ Ĉs(z−m)(Z�W −m�n+1;A), we have
that

Z̄∗
→k = [

Z �W −m�n+1]
→k
�

Thus,W −m�n+1 is upstream terminal by definition.
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Case 2: b(zn+1) = s(z−m). If b(zn+1) = s(z−m) ≡ k, then we need to check the con-
dition (iii) of Definition 7. Analogously to Case 1, we choose an arbitrary set Y ∗ ∈
Ck((Z � W −m�n+1) ∪A). Note first that since Cb(zn+1) is monotone–substitutable,
there exists a Z∗ ∈ Cb(zn+1)((Z �W −m�n)∪A) such that

[((
Z �W −m�n+1) ∪A)

�Y ∗]
→k

⊆ [((
Z �W −m�n) ∪A)

�Z∗]
→k

(16)

Y ∗
k→ ⊆Z∗

k→ (17)∣∣Z∗
→k

∣∣ − ∣∣Y ∗
→k

∣∣ ≥ ∣∣Z∗
k→

∣∣ − ∣∣Y ∗
k→

∣∣� (18)

Partition Y ∗ into Ŷ ∗ ≡ Y ∗ ∩ (Z �W −m�n+1) and Y̌ ∗ ≡ Y ∗ ∩A, and partition Z∗ into
Ẑ∗ ≡Z∗ ∩ (Z �W −m�n) and Ž∗ ≡Z∗ ∩A.35 Note that either Ẑ∗

→k = [Z �W −m�n]→k

or Ẑ∗
→k = [(Z �W −m�n)� {z−m−1}]→k for some z−m−1 ∈ [Z �W −m�n]→k, as W −m�n

is a quasi-removable chain and b(zn) �= s(z−m) in the case we consider here.36

We argue first that condition (iii)(a) of Definition 7 is satisfied: When zn+1 is no
longer available, every optimal choice by k excludes at most one of his remaining
contracts as a buyer, i.e., either Ŷ ∗

→k = [Z�W −m�n+1]→k or there exists a z−m−1 ∈Z
such that Ŷ ∗

→k = [(Z �W −m�n+1)� {z−m−1}]→k. We can rewrite (16) as

[[(
Z �W −m�n+1) ∪A]

→k
�

[
Ŷ ∗ ∪ Y̌ ∗]

→k

] ⊆ [[(
Z �W −m�n) ∪A]

→k
�

[
Ẑ∗ ∪ Ž∗]

→k

]
or, equivalently,[[(
Z �W −m�n+1)� Ŷ ∗]

→k
∪ [
A� Y̌ ∗]

→k

] ⊆ [[(
Z �W −m�n)� Ẑ∗]

→k
∪ [
A� Ž∗]

→k

];
given that Z ∩A=∅, this subset relation implies that[(

Z �W −m�n+1)� Ŷ ∗]
→k

⊆ [(
Z �W −m�n)� Ẑ∗]

→k
� (19)

If Ẑ∗
→k = [Z � W −m�n]→k, then (19) implies that Ŷ ∗

→k ⊇ [Z � W −m�n+1]→k; but

Ŷ ∗ ≡ Y ∗ ∩ (Z �W −m�n+1) and so Ŷ ∗
→k = [Z �W −m�n+1]→k. Consequently, ifW −m�n

is upstream terminal (i.e., Ẑ∗
→k = [Z�W −m�n]→k), thenW −m�n+1 is upstream termi-

nal (i.e., Ẑ∗
→k = [Z �W −m�n+1]→k). If Ẑ∗

→k = [(Z �W −m�n)� {z−m−1}]→k for some

z−m−1 ∈ [Z�W −m�n]→k, then (19) implies that Ŷ ∗
→k ⊇ [(Z�W −m�n+1)�{z−m−1}]→k;

but Ŷ ∗ ≡ Y ∗ ∩ (Z � W −m�n+1) and so either Ŷ ∗
→k = [Z � W −m�n+1]→k or Ŷ ∗

→k =
[(Z � W −m�n+1) � {z−m−1}]→k. Hence, when zn+1 is no longer available, every
optimal choice by k as a buyer includes all but at most one of the contracts in
[Z �W −m�n+1]→k.

We argue second that condition (iii)(b) of Definition 7 is satisfied: When zn+1 is
no longer available, every optimal choice by k excludes at most one of his remaining
contracts as a seller, i.e., either Ŷ ∗

k→ = [Z�W −m�n+1]k→ or there exists a zn+2 ∈Zk→
such that Ŷ ∗

k→ = [(Z � W −m�n+1) � {zn+2}]k→. Note first that (16) implies that k

35Recall thatA∩ (Z �W −m�n+1)= ∅.
36In this case, we have assumed that b(zn+1) = s(z−m) and so, since b(zn) = s(zn+1) and s(zn+1) �=

b(zn+1), we have that b(zn) �= s(z−m).
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chooses at most one fewer contract as a buyer when zn+1 is no longer available, i.e.,
|Z∗

→k| − |Y ∗
→k| ≤ 1. Hence, (18) implies that |Z∗

k→| − |Y ∗
k→| ≤ 1. We can rewrite this

last inequality as (∣∣Ẑ∗
k→

∣∣ − ∣∣Ŷ ∗
k→

∣∣) + (∣∣Ž∗
k→

∣∣ − ∣∣Y̌ ∗
k→

∣∣) ≤ 1� (20)

Now by (17), we have that Y ∗
k→ ⊆ Z∗

k→ and, thus, Y̌ ∗
k→ ⊆ Ž∗

k→; combining this with

(20) implies that |Ẑ∗
k→| − |Ŷ ∗

k→| ≤ 1. Moreover, by (17), we have that Y ∗
k→ ⊆ Z∗

k→
and, thus, Ŷ ∗

k→ ⊆ Ẑ∗
k→; hence, either Ŷ ∗

k→ = Ẑ∗
k→ or there exists a zn+2 such that

Ŷ ∗
k→ = [Ẑ∗ � {zn+2}]k→.

This completes the proof of Claim 2.

A.4 Proof of Claim 3

The proof follows the proof of Claim 2 mutatis mutandis.

A.5 Proof of Claim 4

As W −m�n is quasi-removable, we know that for all i ∈ I � {s(z−m)�b(zn)}, we have that
{[Z�W −m�n]i} = Ĉi(Z�W −m�n) (from condition (i) of Definition 7). There are two cases
to consider:

Case 1: b(zn) �= s(z−m). SinceW −m�n is downstream terminal, we have that

{
Zb(zn) �

{
z−m� � � � � zn

}} = Ĉb(zn)
(
Z �

{
z−m� � � � � zn

};A)
�

Furthermore, sinceW −m�n is upstream terminal, we have that

{
Zs(z−m) �

{
z−m� � � � � zn

}} = Ĉs(z−m)
(
Z �

{
z−m� � � � � zn

};A)
�

Thus, Z �W −m�n blocksA.

Case 2: b(zn)= s(z−m). In this case, since W −m�n is downstream and upstream ter-
minal, we have that

{
Zb(zn) �

{
z−m� � � � � zn

}} = Ĉb(zn)
(
Z �

{
z−m� � � � � zn

};A)
�

Thus, Z �W −m�n blocksA.

This completes the proof of Claim 4.

A.6 Proof of Claim 5

As Z blocks A, for all i ∈ a(Z), for each Y ∈ Ci(A ∪ Z), we have that Zi ⊆ Y . Since
W ⊆ Z, for all i ∈ a(Z), for each Y ∈ Ci(A ∪ Z), we have that Wi ⊆ Y . Thus, for all i ∈
a(W ) ⊆ a(Z), for each Y ∈ Ci(A ∪ Z) = Ci((A ∪ (Z �W )) ∪W ), we have that Wi ⊆ Y .
Thus, by definition,W blocksA∪ (Z �W ).
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Appendix B: Chain stability and competitive equilibrium

In this appendix, we show that in the trading network setting of Hatfield et al. (2013), an
outcome is consistent with competitive equilibrium if and only if it is not blocked by a
chain of contracts.

The Hatfield et al. (2013) setting is a special case of ours that requires that

• prices are continuous and unrestricted, i.e.,X =�×R, and

• agents’ preferences are quasilinear in prices.

Formally, a utility function Ui is quasilinear in prices if there exists a valuation function
ui from the sets of trades involving agent i to R ∪ {−∞} such that for any feasible set
Y ⊆Xi,

Ui(Y)= ui
(
τ(Y)

) +
∑

(ω�pω)∈Yi→
pω −

∑
(ω�pω)∈Y→i

pω�

Definition 8. An outcome Y is consistent with competitive equilibrium if there exists
a vector of prices for all trades in the economy, p ∈R�, such that

• for every ω ∈ τ(Y), we have (ω�pω) ∈ Y , and

• for every agent i, for every set of trades
⊆�i, we have

Ui(Yi)≥ ui(
)+
∑

ω∈
i→
pω −

∑
ω∈
→i

pω�

An outcome Y only specifies prices for the trades that are, in fact, executed under
the outcome, while a competitive equilibrium specifies prices for all the trades in the
economy. For an outcome to be consistent with competitive equilibrium, it must be
that one can specify prices for the trades that are not executed so that, for each agent
i, selecting the trades associated with the outcome Y is, in fact, consistent with utility
maximization; Definition 8 formalizes this requirement.

We are now ready to state our competitive equilibrium equivalence result.

Corollary 1. Suppose that the set of contracts is X = � × R, and that all agents’ pref-
erences are fully substitutable and quasilinear in prices. Then an outcome is consistent
with competitive equilibrium if and only if it is chain stable.

Proof. Under the assumed conditions on X and agents’ preferences, Theorem 10 of
Hatfield et al. (2019) implies that all agents’ utility functions are monotone–substitutable.
Thus, by our Theorem 1, an outcome is chain stable if and only if it is stable. Moreover,
by Theorems 5 and 6 of Hatfield et al. (2013), an outcome is stable if and only if it is con-
sistent with competitive equilibrium under fully substitutable preferences. Thus, under
the assumptions of the corollary, an outcome is chain stable if and only if it is consistent
with competitive equilibrium.
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Appendix C: Proof of Theorem 3

Here, we implicitly use I as the set of agents who have trades in �m.
For a set of agents J ⊆ I and for any set of trades 
⊆�m, let


J ≡
⋃
j∈J

j = {

ϕ ∈
 : b(ϕ) ∈ J or s(ϕ) ∈ J}�
For a set of agents J ⊆ I, an agent i ∈ I � J expands�mJ if�m{i}∪J ��

m
J �= ∅. An expanding

sequence of agents is a sequence of agents (i1� � � � � iR) such that ir expands �m{i1�����ir−1}
for all r = 1� � � � �R. A complete expanding sequence of agents is a sequence of agents
(i1� � � � � iR) such that �m{i1�����iR} =�m. Note that every set of trades can be constructed by
sequentially choosing sets of trades in �i1�����ir ��i1�����ir−1 for r = 1� � � � �R.

We complete the proof by considering two mutually exclusive cases: In the first case,
we assume that there exists an agent associated with at least m

log2(m)
trades; in the second

case, since no agent is associated with m
log2(m)

or more trades, any complete expanding
sequence must contain at least log2(m) agents. In each case, we construct a bound on
the ratio of the number of chains to the number of potential blocking sets.

Case 1: A large agent. Here, we suppose that there exists an agent i such that |�mi | ≥
m

log2(m)
.

For a set of trades 
 ⊆ �m to be a chain, it must be the case that either |
→i| =
|
i→|, |
→i| = |
i→| + 1 (when i is at the downstream end of the chain) or |
→i| +
1 = |
i→| (when i is at the upstream end of the chain). We compute that:
– the number of the sets of trades satisfying the first of these three criteria is

|�m→i|∑
n=0

(∣∣�m→i

∣∣
n

)(∣∣�mi→∣∣
n

)
=

( ∣∣�mi ∣∣∣∣�m→i

∣∣
)

≤
⎛
⎝

∣∣�mi ∣∣∣∣�mi ∣∣
2

⎞
⎠ ;

– the number of the sets of trades satisfying the second of these three criteria is

|�m→i|∑
n=0

(∣∣�m→i

∣∣
n+ 1

)(∣∣�mi→∣∣
n

)
=

( ∣∣�mi ∣∣∣∣�m→i

∣∣ − 1

)
≤

⎛
⎝

∣∣�mi ∣∣∣∣�mi ∣∣
2

⎞
⎠ ;

– the number of the sets of trades satisfying the third of these three criteria is

|�m→i|∑
n=0

(∣∣�m→i

∣∣
n

)(∣∣�mi→∣∣
n+ 1

)
=

( ∣∣�mi ∣∣∣∣�m→i

∣∣ + 1

)
≤

⎛
⎝

∣∣�mi ∣∣∣∣�mi ∣∣
2

⎞
⎠ �

Summing the three previous expressions, we find that the number of sets of trades
satisfying one of our three conditions is no greater than

3

⎛
⎝

∣∣�mi ∣∣∣∣�mi ∣∣
2

⎞
⎠ �
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Thus, using Stirling’s bounds, we find that the number of chains of trades is no
greater than

3

√
2
π

⎛
⎝ 2|�mi |√∣∣�mi ∣∣

⎞
⎠ �

Thus, as the number of subsets of trades is simply 2|�mi |, we have that |Cm(Y)|
|Bm(Y)| =

O(

√
log2m√
m

) as |�mi | ≥ m
log2(m)

.

Case 2: Small agents. Here we suppose that |�mi | < m
log2(m)

for all i ∈ I. Thus,
there must exist a complete expanding sequence of agents (i1� � � � � iR) such that
R≥ log2(m).

It is easy to compute that, as �mi1 is nonempty, the following inequality holds:37

{
W 1 ⊆�mi1 : ∣∣W 1

→i1

∣∣ = ∣∣W 1
i1→

∣∣}{
W 1 ⊆�mi1

} ≤ 1
2
�

That is, the number of subsets of �mi1 that are “balanced for i1” (i.e., such that i1
is associated with the same number of buy and sell contracts) is at most half of the
number of subsets of�mi1 . We can also compute, taking any sequenceW 1� � � � �W r−1,

where W r′ is chosen from �m{i1�����ir′ }, that (recalling that (i1� � � � � iR) is an expanding
sequence)

{
W r ⊆�m{i1�����ir } ��m{i1�����ir−1} :

∣∣∣∣∣
[
r⋃
s=1

W s

]
→ir

∣∣∣∣∣ =
∣∣∣∣∣
[
r⋃
s=1

W s

]
ir→

∣∣∣∣∣
}

{
W r ⊆�m{i1�����ir } ��m{i1�����ir−1}

} ≤ 1
2
�

That is, taking any sequence W 1� � � � �W r−1, whereW r′ is chosen from �m{i1�����ir′ }, the

number of subsets of �m{i1�����ir } ��
m
{i1�����ir−1} such that

⋃r
s=1W

s is “balanced for ir” is
at most half of the number of subsets of �m{i1�����ir } ��

m
{i1�����ir−1}.

Using the preceding two observations, if we construct a set by choosing trades in
this way along the complete expanding sequence, the overall probability that each
agent ir is balanced is bounded by

(
1
2

)R
�

37This follows as we can compute {W 1 ⊆�mi1 : |W 1
→i1

| = |W 1
i1→|} as the sum over

|�m→i1
|∑

n=0

(∣∣�m→i1

∣∣
n

)(∣∣�mi1→
∣∣

n

)
=

( ∣∣�mi1 ∣∣∣∣�m→i1

∣∣
)

≤
⎛
⎜⎝

∣∣�mi1 ∣∣⌊ ∣∣�mi1 ∣∣
2

⌋
⎞
⎟⎠ ≤ 2|�mi1 |−1

�
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Similarly, the overall probability that each agent ir except one is balanced is
bounded by (

R

1

)(
1
2

)R−1
�

Finally, the overall probability that each agent ir except for two is balanced is
bounded by (

R

2

)(
1
2

)R−2
�

Summing the three preceding expressions, we compute that the probability that a
set of trades constructed by choosing each trade in �m with probability 1

2 is a chain
is no more than (

1
2

)R
+

(
R

1

)(
1
2

)R−1
+

(
R

2

)(
1
2

)R−2
≤ 4R2

(
1
2

)R
�

Recalling that R≥ log2(m), we have that

|Cm(Y)|
|Bm(Y)| =O

(
(log2(m))

2

m

)
�O

(√
log2m√
m

)
�
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