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The shape of luck and competition in winner-take-all
tournaments

Dmitry Ryvkin
Department of Economics, Florida State University

Mikhail Drugov
Department of Economics, New Economic School/CEPR

In winner-take-all tournaments, agents’ performance is determined jointly by ef-
fort and luck, and the top performer is rewarded. We study the impact of the
“shape of luck”—the details of the distribution of performance shocks—on incen-
tives in such settings. We are concerned with the effects of increasing the number
of competitors, which can be deterministic or stochastic, on individual and aggre-
gate effort. We show that these effects are determined by the shape of the density
and failure (hazard) rate of the distribution of shocks. When shocks have heavy
tails, aggregate effort can decrease in the number of competitors.

Keywords. Tournament, competition, heavy tails, stochastic number of players,
unimodality, log supermodularity, failure rate.

JEL classification. C72, D72, D82.

1. Introduction

[...] because the contests that mete out
society’s biggest prizes are so bitterly
competitive, talent and effort alone are
rarely enough to ensure victory. In
almost every case, a substantial
measure of luck is also necessary.

Robert H. Frank
Success and Luck: Good Fortune and

the Myth of Meritocracy

Luck, or lack thereof, plays a crucial role in people’s lives. The success stories we
observe in business, academia, sports, or the arts can often be traced back to a “lucky
moment” or an unlikely sequence of events that defined the future path of success. No-
table examples are the stories of Bill Gates and Microsoft, Da Vinci’s Mona Lisa, and
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actor Bruce Willis. In fact, a lucky break, or sequence of breaks, underlying a success
story is not an exception, but a rule (Mlodinow 2009, Frank 2016).1

Luck is especially important in winner-take-all (WTA) settings where rewards accrue
to the select few. Examples include research and development (R&D) competition, ad-
mission to top universities, job applications for an attractive position, or competition
for promotion in organizations. Careers in professional sports or the arts are predicated
almost entirely on WTA incentives. When many hard-working, equally able people are
trying to achieve the same thing, success requires a nontrivial amount of luck. As the
number of competitors increases, so does the chance that someone else will get a better
draw, which should discourage individual effort. Yet economists typically believe that
competition provides incentives in markets, at least on the aggregate, leading to larger
output, lower prices, and higher efficiency (e.g., Ruffin 1971). In symmetric auctions,
revenue increases in the number of bidders (McAfee and McMillan 1987a). For R&D
competition, empirical evidence shows a positive effect of competition on investment
in innovation even at the individual firm level (Vives 2008).

In this paper, we study the effect of competition on incentives in WTA settings with
a significant luck component. To do so, we utilize the classic rank-order tournament
model of Lazear and Rosen (1981). Agents’ output is given by effort distorted by additive
noise, and the agent whose output is the highest wins the tournament and receives a
fixed prize. The idiosyncratic noise is synonymous with luck in this model, and different
distributions of noise allow for different “shapes of luck.”

We consider tournaments where the number of players can be stochastic, follow-
ing an arbitrary distribution. Indeed, in many situations the number of competitors is
unknown to the tournament participants at the time they decide how much to invest
in competition. This is the case, for example, in coding contests where an unknown
and potentially very large number of coders submit their solutions, such as the Netflix
Prize,2 in hiring tournaments where a job seeker does not know how many others she is
up against, or in promotion tournaments where an employee may not know how many
of her colleagues the management is considering for a senior position.

The contribution of this paper is to answer a very basic question: How are individ-
ual and aggregate efforts in WTA tournaments affected by an increase in the number
of competitors, in the first-order stochastic dominance (FOSD) sense? We show that

1When Bill Gates was growing up, he was one of 50 or so students in the world who, by sheer chance,
had access to a programming terminal allowing code to run with instant feedback (Frank 2016). The key
contract between IBM and Microsoft, which transformed the latter into a world-dominating software com-
pany, was signed due to a series of random events; Microsoft did not even develop the initial version of its
famous operating system DOS (Mlodinow 2009). The Mona Lisa was not considered an exceptional work of
art until it was stolen from the Louvre in 1911. The newspaper coverage of the painting’s theft and recovery
two years later created its global fame (Watts 2011). Bruce Willis acted for seven years in small roles in New
York, his main income coming from bartending. He flew to Los Angeles for personal reasons, went to a few
television auditions, and got a role in Moonlighting far from being everyone’s top choice. The first season
flopped, but the second one became a hit, and the rest is history (Mlodinow 2009).

2The Netflix Prize competition, where the task was to improve the Netflix recommendation algorithm for
movies, ran for three years overall and about 40,000 teams registered at some point. The final stage lasted
30 days and the two best teams tied in terms of the score. One of the teams won because it submitted its
solution 20 minutes before its rival (Lohr 2009).
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the shape of the distribution of noise—specifically, of its density and failure (hazard)
rate—is crucial for any prediction about the effect of competition on effort. There is
not a single prediction, either for individual or aggregate effort, that cannot be reversed
for at least some distribution of noise. Individual and aggregate equilibrium effort can
be increasing, decreasing, or nonmonotone in the number of players. We systematize
and provide new general results for these effects both when the number of players is
known and when it is random. The results have many testable implications, as well as
far-reaching applications for tournament design.

To cleanly delineate the effects of the number of players and the distribution of
noise, we focus on a setting with symmetric players; that is, we assume away differences
in ability. While these differences undoubtedly play a critical role in success across the
society at large, the most intense competition takes place, and the impact of luck is es-
pecially pronounced, in stratified sub-tournaments among (roughly) equally able con-
testants.3 Then, in the symmetric pure-strategy equilibrium, there are no differences in
effort, and the winner is the luckiest player, i.e., the one with the highest realization of
noise.

A general intuition for our results is the following. Start with a deterministic number
of players k ≥ 2. A marginal increase in player i’s effort in the symmetric equilibrium
is pivotal, that is, it makes this player the winner, if the player’s noise realization, Xi, is
equal to order statistic X(k−1:k−1), the highest realization of noise among the other k− 1
players. This means, formally, that the equilibrium effort is determined by the proba-
bility density of the difference Xi −X(k−1:k−1) at zero, which is equal to the expectation
E(f (X(k−1:k−1))), where f (·) is the probability density function (pdf) of noise. Order
statistic X(k−1:k−1) is FOSD-increasing in k, and the comparative statics for monotone
densities then follow immediately. For example, in the case of uniformly distributed
noise, the number of players does not affect the individual equilibrium effort. More
generally, adapting results from Karlin (1968), we show that the unimodality of the pdf
of noise leads to the individual equilibrium effort being unimodal in the number of play-
ers. The result follows from a log-supermodularity condition that the pdf of order statis-
tic X(k−1:k−1) satisfies.4 We provide a general characterization of the equilibrium com-
parative statics for unimodal noise distributions from which all existing results follow as
special cases.

For aggregate effort, using arguments similar to those in the previous paragraph, we
show that when the cost of effort is quadratic, aggregate effort can be written as the
expectation E(h(X(k−1:k))), where h(·) is the failure (hazard) rate of noise, and X(k−1:k)
is the second-highest order statistic among k noise realizations. Then aggregate effort

3For example, each year thousands of top high school graduates compete for admission to elite universi-
ties; the presence of unqualified applicants in the mix is largely irrelevant. A similar stratification happens
naturally in the job market for academic positions or in competition among papers submitted to top jour-
nals. Even if quality varies substantially in the initial pool, the actual competition boils down to a subset
where quality is very close and, inevitably, luck comes into play. It is also widely believed that tournaments
become inefficient as agents’ heterogeneity increases (Lazear and Rosen 1981). Thus, tournament-based
incentives are most likely to emerge in settings with symmetric agents.

4See Athey (2002) and related papers for a discussion of the role of log supermodularity in monotone
comparative statics problems under uncertainty.
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is increasing in the number of players if the noise distribution has an increasing failure
rate (IFR), such as the normal, uniform, and Gumbel distributions. The comparative
statics are reversed for distributions with decreasing failure rates (DFR), such as Pareto.
We then generalize these results for cost functions more or less convex than quadratic
in the sense of the convex transform order (Shaked and Shanthikumar 2007).

Turn now to the case when the number of players, k, is stochastic. The equilibrium
effort is then determined by an expectation over k of the expectations of functions of
order statistics described in the previous two paragraphs. For the equilibrium effort to
be unimodal in the number of players as the latter increases in the FOSD sense, the re-
sult on the preservation of unimodality has to be applied once more, this time to the
distribution of k. Unlike the distributions of order statistics X(k−1:k−1) and X(k−1:k), an
arbitrary distribution of k may not satisfy the corresponding log-supermodularity con-
dition; hence, a restriction on the distribution of k has to be imposed. This restriction is
rather weak; it is satisfied, for example, by the family of power series distributions that
includes the distributions typically used in the literature to model population uncer-
tainty, such as the Poisson, binomial, negative binomial, and logarithmic distributions.

The most surprising results are obtained for aggregate effort in the presence of a
heavy tail in the distribution of noise. Such noise distributions, most notably power
laws (Gabaix 2016), are usually characterized by a decreasing or (interior) unimodal fail-
ure rate. Our results then imply a reduction in aggregate effort with the number of play-
ers, at least in sufficiently large tournaments. A principal whose goal is to maximize
aggregate effort or investment, e.g., in a promotion tournament or an R&D race, would
benefit from restricting the number of participants. This is a new mechanism that is
very different from those identified in the literature on optimal exclusion of agents in
contests.5

Fluctuations following heavy-tailed distributions, including power laws (also known
as the Pareto distribution), have been widely identified in economics, finance, and other
domains. For example, it has been known for a long time that economic variables such
as income (Pareto et al. 1964), city sizes (Auerbach 1913), firm sizes (Axtell 2001), stock
market movements (Mandelbrot 1967), and CEO compensation (Roberts 1956) follow
power laws. More recently, power laws have been found to describe demand for books
at Amazon (Chevalier and Goolsbee 2003) and movie ratings in Netflix (Bimpikis and
Markakis 2016).6 The nature of innovation as an unlikely breakthrough resulting from a
large number of mostly unsuccessful attempts produces heavy tails in the value, quality,
and financial returns of inventions (Fleming 2007).

5The existing literature shows that it may be optimal to exclude certain types from contests with hetero-
geneous agents (see, e.g., Baye et al. 1993, Taylor 1995, Fullerton and McAfee 1999, Che and Gale 2003) or to
restrict entry in contests with symmetric agents and endogenous participation (Fu et al. 2015). The present
paper shows, instead, that exclusion may be optimal even when agents are symmetric and their number is
exogenous.

6See Gabaix (2016) for a survey of many identified power laws and their underlying mechanisms. Many
patterns outside economics are described by power laws as well, such as the frequency of words in natural
languages (Zipf 1949), the intensity of earthquakes (Christensen et al. 2002), or popularity in social networks
(Barabási and Albert 1999).
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To date, there is virtually no empirical research on the effects of variation in the
shape of shocks on behavior in tournaments. The existing studies of tournaments using
natural data (e.g., Ehrenberg and Bognanno 1990, Knoeber and Thurman 1994, Eriksson
1999) treat noise as a nuisance and do not attempt to estimate its distribution. Similarly,
laboratory experiments typically rely on a specific distribution of noise in their winner
determination process—most often, a lottery contest or uniformly distributed additive
shocks (for a review, see Dechenaux et al. 2015)—and do not explore variation in its
shape. We only know of one exception. List et al. (forthcoming) study how effort de-
pends on the number of players in tournaments with varying noise densities. They con-
sider distributions with constant, increasing, and decreasing densities, and find, consis-
tent with theory, that the comparative statics of individual effort follow similar patterns.
However, all three distributions in their study are light-tailed with increasing failure rates
and, consistent with our results, they observe aggregate effort increasing in the number
of players in all three cases.

Finally, we study the design of optimal tournaments with stochastic participation.
We identify conditions for when the uncertainty about the number of players increases
or decreases equilibrium effort. We also explore the optimality of disclosing the realized
number of players. Among the ∼40�000 teams registered for the Netflix Prize competi-
tion, many were not active. Should Netflix have disclosed the number of active partici-
pants?

Relation to prior literature Starting with the seminal contributions of Tullock (1980)
and Lazear and Rosen (1981), there is by now a large theoretical literature on tourna-
ments using the respective models.7 An important feature of these models that distin-
guishes them from “perfectly discriminating” contests or all-pay auctions (e.g., Hillman
and Riley 1989, Baye et al. 1996, Siegel 2009, Moldovanu and Sela 2001) is the presence
of uncertainty, or “noise,” in the winner determination process.

Yet, the existing analysis of general tournament models is quite scarce, even in the
case of nonrandom number of players. For tractability reasons, most of the literature
uses either the Tullock CSF (contest success function; also known as the lottery contest)
and its lottery-form generalizations that satisfy the axioms of Skaperdas (1996), or the
Lazear–Rosen tournament with two players.8 Relatively little is known about the ba-
sic comparative statics of the WTA tournament model in general. While the symmetric
equilibrium effort decreases in the number of players in the Tullock contest (see, for ex-
ample, surveys by Nitzan 1994, Corchón and Serena 2018), it is independent of the num-
ber of players in a Lazear–Rosen tournament when the distribution of noise is uniform.
For general tournaments with a fixed number of players, Gerchak and He (2003) provide
an important first step, showing that the equilibrium effort is decreasing in the number
of players when the noise density is decreasing or unimodal and symmetric, and is in-
creasing when the density is increasing (similar results are obtained by Ales et al. 2019).

7See surveys by, e.g., Konrad (2009), Connelly et al. (2014), and Corchón and Serena (2018).
8Notable exceptions are the papers that analyze optimal prize structures in tournaments (Nalebuff and

Stiglitz 1983, Green and Stokey 1983, Krishna and Morgan 1998, Kalra and Shi 2001, Akerlof and Holden
2012, Ales et al. 2017, Balafoutas et al. 2017, Drugov and Ryvkin 2018, 2019). See also a survey of the earlier
literature by McLaughlin (1988).
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Even less is known about the behavior of aggregate effort beyond the Tullock contest
and Lazear–Rosen tournament with uniformly distributed noise where it is increasing
in the number of players.

There is no study of general rank-order tournaments with a stochastic number of
players. The previous literature is restricted to the Tullock contest model (and its lottery-
form generalizations), which we generalize. Myerson and Wärneryd (2006) compare
aggregate equilibrium effort in the case of an arbitrary distribution of group size with
expectation μ with the case when the number of players is equal to μ with certainty.
Münster (2006) and Lim and Matros (2009) study the comparative statics of effort when
the distribution of contest size is binomial.9  Fu et al. (2011) study the effect of disclosing
the number of participating players on aggregate effort. Boosey et al. (2019) provide re-
sults on the effects of disclosure in contests between groups with stochastic sizes. More
generally, our paper is related to the literature on games with population uncertainty,
including auctions10 and Poisson games.11

The rest of the paper is organized as follows. Section 2 sets up the model and pro-
vides some preliminary steps. Sections 3 and 4 present comparative statics results for
individual and aggregate effort, respectively. Applications for tournament design are
discussed in Section 5, and Section 6 concludes. More technical results on the existence
of equilibrium and comparative statics for multimodal noise distributions are provided
in Appendix A. All proofs are contained in Appendix B.

2. The model and preliminaries

2.1 The model setup

We consider a tournament game in which the number of players, K, is a random vari-
able that takes nonnegative integer values. Let p = (p0�p1� � � � �pn) denote the prob-
ability mass function (pmf) of K, where pk = P(K = k) is the probability of having k

players in the tournament. We use P = (P0�P1� � � � �Pn = 1) to denote the corresponding
cumulative mass function (cmf), Pk = ∑k

l=0 pl, and use G(z) = ∑n
k=0 pkz

k, z ∈ [0�1], to
denote the probability generating function (pgf) of K. The maximum possible number
of players n ≥ 2 can be finite or infinite, P(K ≥ 2) > 0, and E(K3) is finite.

Operationally, it is convenient to think about a set of potential participants N =
{1� � � � � n} from which a subset K ⊆ N is randomly drawn such that P(|K| = k) = pk,
and subsets of the same cardinality |K| have the same probability of being drawn. Each
player is informed if she is selected, but is not informed about the value of K.

All participating players i ∈ K simultaneously and independently choose efforts
ei ∈ R+. The cost of effort ei to player i is c(ei). Function c : R+ → R+ is continuous,
strictly increasing12 and strictly convex on [0� ē], and C2 on (0� ē], where ē≡ c−1(1) <∞.

9Münster (2006) also explores the effect of risk aversion in the same setting.
10For a theoretical analysis of auctions with a stochastic number of bidders, see, e.g., McAfee and McMil-

lan (1987b), Harstad et al. (1990) and Levin and Ozdenoren (2004).
11See, e.g., Myerson (1998, 2000), Makris (2008, 2009), De Sinopoli and Pimienta (2009), Mohlin et al.

(2015), Kahana and Klunover (2015, 2016).
12Throughout this paper, unless noted otherwise, “increasing” means nondecreasing and “decreasing”

means nonincreasing. When distinctions are important, “strictly increasing” and “strictly decreasing” are
used.
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Furthermore, c(0) = c′(0) = 0. Efforts ei are perturbed by random additive shocks Xi to
generate the players’ output levels yi = ei + Xi.13 Shocks Xi are independent and iden-
tically distributed (i.i.d.) with absolutely continuous cumulative distribution function
(cdf) F(·), and continuous, bounded, piecewise differentiable, and square-integrable
pdf f (·) defined on interval support X = [x�x], where the bounds x and x may be finite
or infinite.14 The winner of the tournament—the player whose output is the highest—
receives a prize normalized to 1. Ties occur with probability 0. The players are risk-
neutral expected payoff maximizers.

2.2 Equilibrium characterization

Let Si denote a random variable equal to 1 if player i ∈ N is selected for participation
and 0 otherwise, and let K̃ = (K|Si = 1) denote the random number of players in the
tournament from the perspective of a participating player. The pmf of K̃ is given by
(see, e.g., Harstad et al. 1990)

p̃k = P(K̃ = k)= pkk

k̄
� k= 1� � � � � n� (1)

where k̄= E(K). The corresponding cmf is denoted as P̃ .
Equation (1) can be understood as follows (Myerson and Wärneryd 2006). Suppose

n is finite (for an infinite n, a similar argument applies in the limit n → ∞). For a given k,
the probability for player i to be selected for participation is P(Si = 1|K = k)= k/n; thus,

p̃k = P(K = k|Si = 1)= P(Si = 1|K = k)pk
n∑

l=0

P(Si = 1|K = l)pl

=
k

n
pk

n∑
l=0

l

n
pl

�

which gives (1).
We focus on a symmetric pure-strategy equilibrium in which all participating play-

ers choose effort e∗ > 0. The expected payoff of a participating player i ∈ K from some
deviation effort ei is

π(i)
(
ei� e

∗) =
n∑

k=1

p̃k

∫
F

(
ei − e∗ + x

)k−1
dF(x)− c(ei)� (2)

Here and below, integration over X is implied unless noted otherwise. Define bk as

bk = (k− 1)
∫

F(x)k−2f (x)dF(x)� (3)

13We assume that shocks are additive. A model with multiplicative shocks can be cast into this form via
a logarithmic transformation; see Section 2.4.

14In this type of models, it is typically assumed that the shocks are zero mean. While this assumption
can be made without loss of generality, it is not necessary because the probability of winning is determined
by differences in shocks. Moreover, shocks can be i.i.d. conditional on an additive common component.
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The symmetric first-order condition for payoff maximization, π(i)
ei (e

∗� e∗) = 0, gives

c′(e∗) = Bp ≡
n∑

k=1

p̃kbk = 1

k̄

n∑
k=2

pkkbk� (4)

The summation can start with k= 2 instead of k = 1 because b1 = 0. In other words, only
group sizes k≥ 2 contribute to the equilibrium effort.

Let e∗
p denote the unique positive solution of (4), assuming it exists. This solution is

the candidate for the symmetric pure-strategy equilibrium effort. The equilibrium exis-
tence can be ensured by assuming function c(·) has a second derivative bounded away
from zero and the distribution of noise is sufficiently dispersed. Technical details are
provided in Appendix A.1. Since c′(e∗) is strictly increasing in e∗, the comparative stat-
ics of equilibrium effort e∗

p with respect to parameters of distribution p are determined
entirely by Bp.

To understand the role of coefficients bk, consider the degenerate case of a tourna-
ment with a fixed number of players k. With a slight abuse of notation, let e∗

k denote the
corresponding equilibrium effort. Equation (4) then gives

c′(e∗
k

) = bk� (5)

Thus, bk is the equilibrium marginal benefit of effort in a tournament with k players,
and total marginal benefit Bp is the expectation of bK̃ (cf. (4)).

Combining (3) and (4), it sometimes is convenient to write Bp in the form

Bp =
∫

f (x)dG̃
(
F(x)

)
� (6)

where G̃(z) = ∑n
k=1 p̃kz

k−1 is the pgf of K̃.

2.3 Properties of p̃

We are interested in the effects of changes in distribution p on coefficients Bp, which
then monotonically map into the comparative statics for equilibrium effort e∗

p. In partic-
ular, we explore how Bp responds to a stochastic increase (in the standard FOSD sense)
in the number of players in the tournament. To this end, consider a parameterized fam-
ily of group size distributions {p(θ)}θ∈�, where � ⊆ R is an ordered set. Let P(θ) and
G(z�θ) denote the corresponding cmf and pgf. We assume that p(θ) is FOSD-ordered
in θ so that Pk(θ) and G(z�θ) are decreasing in θ. However, the corresponding updated
pmf, p̃(θ), may not, in general, be FOSD-ordered in θ. The following lemma provides a
sufficient condition for when FOSD ordering is preserved under participation updating.

Lemma 1. Suppose p(θ) satisfies the increasing likelihood ratio (ILR) property: For any
θ′ > θ, pk(θ

′)/pk(θ) is increasing in k. Then both p(θ) and p̃(θ) are FOSD-ordered.

Two distributions used most prominently in the literature to model population un-
certainty are the Poisson and binomial distributions. Along with the negative binomial
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and logarithmic distributions, they belong to a family known as power series distribu-
tions (PSD) that are characterized by pmfs of the form

pk(θ)= akθ
k

A(θ)
� (7)

Here, ak are nonnegative numbers, θ ≥ 0 is a parameter, and A(θ) = ∑∞
k=0 akθ

k (it is
assumed that the sum exists) is the normalization function (Johnson et al. 2005). The
pgf of PSD distributions is G(z�θ) = A(θz)/A(θ). Lemma 2 lists several properties of
the PSD family that prove useful later. Denote by Gθ(z�θ) and P ′

k(θ), respectively, the
derivatives of the pgf and cmf with respect to θ.

Lemma 2. Suppose pmf p(θ) is in the PSD family (7). Then the following statements
hold:

(i) The updated pmf p̃(θ) is also in the PSD family.

(ii) p(θ) satisfies the ILR property.

(iii) P ′
k(θ) ≤ 0 and Gθ(z�θ)≤ 0.

(iv) −Gθ(z�θ) is log supermodular: For all θ′ > θ, Gθ(z�θ
′)/Gθ(z�θ) is increasing in

z.

(v) −P ′
k(θ) is log supermodular: For all θ′ > θ, P ′

k(θ
′)/P ′

k(θ) is increasing in k.

Property (i) states that the PSD family is closed under the participation updating
(1).15 From property (ii) and Lemma 1, PSD distributions are FOSD-ordered by θ (im-
plying (iii)) and preserve the ordering under updating. Finally, the log-supermodularity
properties (iv) and (v) play a key role in comparative statics.

2.4 Tullock contests

The equilibrium of the popular contest model of Tullock (1980), with the probability of
player i winning the contest given by contest success function (CSF) eri /

∑
j∈K erj , can be

obtained as a special case of (4).
Consider a tournament with deterministic size k ≥ 2 and multiplicative noise with

support in R+ such that player i’s output is yi = eiXi. Letting êi = logei and X̂i = logXi,
this model is transformed into the additive noise model in which noise has cdf F̂(x) =
F(exp(x)) and pdf f̂ (x) = f (exp(x))exp(x), and the cost of effort is ĉ(ê) = c(exp(ê)). The

15In some cases, the updated distribution is of the same type as the initial distribution. For example,

for K ∼ Binomial(n�q), we have pk = (n
k

)
qk(1 − q)n−k (for k = 0� � � � � n) and p̃k = (n−1

k−1

)
qk−1(1 − q)n−k (for

k= 1� � � � � n); that is, (K̃ − 1) ∼ Binomial(n− 1� q). Similarly, for K ∼ Poisson(λ), we have pk = exp(−λ)λk/k!
(for k = 0�1� � � �) and p̃k = exp(−λ)λk−1/(k− 1)! (for k= 1�2� � � �); that is, (K̃− 1) ∼ Poisson(λ). It is possible,
however, for the updated distribution to be of a different type (albeit still within the PSD family). For exam-
ple, for K ∼ Logarithmic(θ), where θ ∈ (0�1), we have pk = −θk/[k ln(1 − θ)], k̄= −θ/[(1 − θ) ln(1 − θ)], and
p̃k = (1 − θ)θk−1; that is, K̃ has the geometric distribution with parameter 1 − θ.
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first-order condition (5) then becomes ĉ′(ê) = b̂k, where b̂k is given by (3) with F and f

replaced by F̂ and f̂ .
Notice that ĉ′(ê)= c′(exp(ê))exp(ê) = c′(e)e. Thus, if c(e) is the original cost function

in the model with multiplicative noise, the corresponding additive noise model has the
transformed cost function of the form

cm(e) =
∫ e

0
c′(t)t dt�

To obtain the equilibrium of the Tullock contest, consider the model with multiplica-
tive noise following the inverse exponential distribution, F(x) = exp(−x−r) (Hirshleifer
and Riley 1992, Jia 2008, Jia et al. 2013). The transformed noise then has the generalized
extreme value type I (or Gumbel) distribution with cdf F̂(x) = exp[−exp(−rx)] and pdf
f̂ (x) = r exp[−rx− exp(−rx)]. Equation (3) then produces

b̂k = r(k− 1)

k2 � (8)

Assuming the original contest has a linear cost of effort c(e) = e, the transformed cost of
effort is quadratic: cm(e) = ∫ e

0 t ′� dt = e2/2. First-order condition (5) then gives the well
known equilibrium effort in the Tullock contest, e∗

k = r(k− 1)/k2.
For stochastic contest size, (4) reproduces the model studied by Myerson and Wärn-

eryd (2006) and, when K is binomial, the models of Münster (2006) and Lim and Matros
(2009). The approach can also be extended to generalized Tullock contests with CSFs of
the form g(ei)/

∑k
j=1 g(ej), where g(·) is a strictly increasing “impact function” (Jia 2008,

Ryvkin and Drugov 2017).

3. Individual equilibrium effort

In this section, we consider how individual equilibrium effort changes when the number
of players in the tournament is stochastically increased. For maximum generality, we
directly assume that K̃ is FOSD-ordered in parameter θ. By Lemma 1, this holds when
p(θ) has the ILR property (e.g., when K belongs to the PSD family; cf. Lemma 2), but the
results of this section are still valid even if it does not.

Parameter θ can be continuous, such as q when K ∼ Binomial(n�q) or λ when
K ∼ Poisson(λ), or a discrete index, such as n when K ∼ Binomial(n�q) or k when K = k

deterministically. In the continuous case, we assume that p(θ) is differentiable in θ.
Subscript θ is used to denote both the derivative and the first difference.

In Section 3.1, we formulate our main result for unimodal noise densities, Proposi-
tion 1, and explain the underlying intuition. In Section 3.2, we revisit the existing results
in the literature connecting them to special cases of Proposition 1 and provide some
further results.

3.1 Comparative statics for unimodal noise distributions

Proposition 1. Suppose K̃ is FOSD-increasing in θ and
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(i) f (x) is unimodal,

(ii) −G̃θ(z�θ) is log supermodular.

Then e∗
p(θ) is unimodal in θ.

Proposition 1 states that the unimodality of the pdf of noise f (·) is “inherited” by
the equilibrium effort e∗

p(θ) under some condition on the distribution of the number of
players.

For the intuition, consider a tournament of deterministic size k ≥ 2. Coefficients bk
in (3) can be rewritten as

bk =
∫

f (x)dF(x)k−1 =
∫

f (x)f(k−1:k−1)(x)dx� (9)

where F(x)k−1 is the cdf of the (k − 1)th order statistic among k − 1 i.i.d. draws from
distribution F , and f(k−1:k−1)(x) = dF(x)k−1/dx is the corresponding pdf. In the sym-
metric equilibrium, player i wins the tournament if her realization of noise, Xi, ex-
ceeds X(k−1:k−1) = maxj �=i Xj , which is the largest shock among the other k − 1 players.
A marginal increase in the player’s effort is then pivotal when there is a tie between the
two shocks, i.e., it is determined by the probability density of Xi −X(k−1:k−1) at zero.

Representation (9) immediately leads to comparative statics results for monotone
pdfs f (x) (see Section 3.2). Indeed, bk = E(f (X(k−1:k−1))) and X(k−1:k−1) is FOSD-
increasing in k. For nonmonotone distributions, however, the effect of an increase in k

is ambiguous: both higher and lower values of f (x) acquire higher weights in the expec-
tation. To obtain comparative statics for unimodal distributions, Proposition 1 applies
results on the preservation of unimodality under integration. These results are parallel
to those of Karlin (1968) on the preservation of single crossing, since a unimodal func-
tion has a single-crossing derivative.

For illustration, consider expectation γ(θ) = ∫ 1
0 u(z)dH(z�θ), where u(z) is interior

unimodal, continuous, and piecewise differentiable, and H(z�θ) is an absolutely con-
tinuous cdf of a random variable FOSD-increasing in θ. Since u(1) is finite for an inte-
rior unimodal u(z), integration by parts gives γ(θ)= u(1)− ∫ 1

0 u′(z)H(z�θ)dz. Then the

derivative, or first difference, of γ(θ) is γθ(θ) = − ∫ 1
0 u′(z)Hθ(z�θ)dz. Following Karlin

(1968), for u′(z) single crossing +− and −Hθ(z�θ) log supermodular, γθ(θ) is also single
crossing +− and, hence, γ(θ) is unimodal.16

For tournaments with deterministic size k, θ = k and the role of H(z�θ) is played
by F(x)k−1 (cf. (9)). It is easy to see that −Hθ = F(x)k−1 − F(x)k is log supermodular,
leading to the following result.

Corollary 1. In tournaments with deterministic size k, if f (x) is unimodal, then e∗
k is

unimodal in k.

16 Karlin (1968) refers to log supermodularity as total positivity of order 2, TP2. More generally, total
positivity of order r ≥ 2, TPr , is sufficient for a variation-diminishing property of integration whereby the
number of crossings of an integral cannot exceed the number of crossings of the integrated function as long
as the latter does not exceed r − 1. Therefore, Proposition 1 can be generalized to multimodal densities. For
details, see Appendix A.2.
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Figure 1. Left: The pdf f (x) (thin solid line) and the failure rate h(x) (thick dashed line) of the
type I generalized logistic distribution with a = 1

6 . Center: Individual (diamonds) and aggregate
(circles) equilibrium efforts in the deterministic case as a function of the number of players k for
effort cost function c(e) = e2/2. Right: Individual (thin line) and aggregate (thick line) equilib-
rium efforts in the stochastic case, with K ∼ Binomial(10� q) for effort cost function c(e) = e2/2.

When the number of players is stochastic, the result on the preservation of uni-
modality has to be applied once more, this time to the expectation of a unimodal se-
quence Bp(θ) = ∑n

k=1 p̃k(θ)bk. In this case, the role of H(z�θ) is played by P̃k(θ), the
cmf of K̃. However, due to representation (6), the log-supermodularity condition can
be checked for −G̃θ(z�θ) instead. Proposition 1 then proves that Bp(θ) (and e∗

p(θ)) is
unimodal in θ.

The log-supermodularity condition in Proposition 1 holds for PSD distributions of
tournament size (cf. Lemma 2(iv)), producing the following result.

Corollary 2. If p(θ) is in the PSD family (7) and f (x) is unimodal, then e∗
p(θ) is uni-

modal in θ.

For an example of interior unimodal effort, consider the type I generalized logis-
tic distribution, which has cdf F(x) = 1/(1 + exp(−x))a with parameter a > 0 (John-
son et al. 1995). The standard logistic distribution is obtained for a = 1.17 Then bk =
a(k − 1)/[k(ak + 1)]. Since bk+1 − bk ∝ 1 + a − ak(k − 1) is decreasing in k, bk (and,
hence, e∗

k) is either monotonically decreasing or interior unimodal. In particular, bk
reaches its maximum at k̂ if a = 1/(k̂2 − k̂− 1). When the number of players is stochas-
tic, with a distribution satisfying the log-supermodularity condition (ii) of Proposition 1,
this unimodality is transferred to the equilibrium effort as the number of players is
FOSD-increasing. Figure 1 shows the dependence of the equilibrium effort on k when
the tournament size is deterministic (center), and on parameter q when the number of
players is stochastic and distributed as Binomial(10� q) (right). The latter distribution is
PSD and, hence, satisfies condition (ii).

17The example has to involve an asymmetric unimodal distribution since effort is monotonically de-
creasing when f (·) is symmetric unimodal; see Section 3.2.
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Figure 2. Left: The pdf f (x) (thin solid line) and the failure rate h(x) (thick dashed line) of a
noise distribution with cdf F(x) = 0�2 tan(2x)+ 0�7 defined on [−0�646�0�491]. Center: Individual
(diamonds) and aggregate (circles) equilibrium efforts in the deterministic case as a function of
the number of players k for effort cost function c(e) = e2/2. Right: Individual (thin line) and
aggregate (thick line) equilibrium effort in the stochastic case, with K distributed as truncated
Binomial(10� q) with K ≥ 2, for effort cost function c(e)= e2/2.

Figure 3 gives an example of a log-normal distribution that is unimodal. The equi-

librium effort is monotonically decreasing in the deterministic case and is interior uni-

modal in the stochastic case. These comparative statics are similar to those for the Tul-

lock contest that we discuss in Section 3.2.

Proposition 1 also allows us to characterize the behavior of e∗
p(θ) for U-shaped noise

distributions such that −f (x) is unimodal.

Corollary 3. Suppose K̃ is FOSD-increasing in θ and

(i) f (x) is U-shaped,

(ii) −G̃θ(z�θ) is log supermodular,

(iii) a one-player tournament is not possible, p1(θ)= 0.

Then e∗
p(θ) is U-shaped in θ.

Corollary 3 is a mirror image of Proposition 1, bar condition (iii) that appears for

the following reason. When f (x) is U-shaped, sequence bk (and, hence, effort e∗
k in the

deterministic case) is also U-shaped, but only starting with k = 2, since b1 = 0. There-

fore, the entire sequence bk starting with k = 1 may be (interior) bimodal and, hence,

the comparative statics may also be bimodal if p1 > 0. Condition (iii) excludes this pos-

sibility. Figure 2 shows an example of a U-shaped distribution of noise that produces a

U-shaped e∗
k for k ≥ 2 in the deterministic case and a U-shaped dependence of e∗

p(θ) on

θ for stochastic K distributed as Binomial(10� q) truncated so that K ≥ 2.
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3.2 Comparative statics under stronger assumptions on f (·)
The literature so far has studied the comparative statics of individual effort in Lazear–
Rosen tournaments only in the deterministic case and assuming monotone or symmet-
ric unimodal noise densities. For Tullock contests, the analysis has been done in the
stochastic case for K binomial. In this section, we review and comment on these results
and present more general versions.

As discussed below representation (9) for coefficients bk, the case of monotone den-
sities f (x) is straightforward.

Corollary 4. Suppose K̃ is FOSD-increasing in θ.

(i) If f (x) is increasing, then e∗
p(θ) is increasing in θ.

(ii) If f (x) is decreasing and a one-player tournament is not possible (p1(θ)= 0), then
e∗
p(θ) is decreasing in θ.

(iii) Effort e∗
p(θ) is constant in θ for any p(θ) such that p1(θ) = 0 if and only if f (x) is

constant.

The deterministic version of Corollary 4 (except the “only if” part of (iii)) was proved
by Gerchak and He (2003) and List et al. (forthcoming). The stochastic version follows
simply from the representation Bp(θ) = E(bK̃); cf. (4).

Lim and Matros (2009) provide the most comprehensive comparative statics results
for Tullock contests with K ∼ Binomial(n�q), showing that individual equilibrium effort
is unimodal in q and in n. The extreme value type I distribution underlying the Tullock
contest model has a unimodal density. While coefficients bk are decreasing for k≥ 2 (cf.
(8)), the entire sequence {bk}nk=1 including b1 = 0 is interior unimodal. Since p1 = nq(1−
q)n−1 > 0, the unimodality of e∗

p in q and n follows from Proposition 1.18 Truncating the
binomial distribution so that p0 = p1 = 0 would produce a decreasing dependence on
q.

For the deterministic case, Gerchak and He (2003) show that e∗
2 = e∗

3 when f (x) is
symmetric. If f (x) is also unimodal, then e∗

k is decreasing in k for k ≥ 3. The following
proposition generalizes this result to the stochastic case.

Proposition 2. Suppose K̃ is FOSD-increasing in θ.

(i) If f (x) is symmetric and supp(K)= {2�3}, then e∗
p(θ) is constant in θ.

(ii) If f (x) is unimodal and symmetric, and p1(θ)= 0, then e∗
p(θ) is decreasing in θ.

Moreover, for a U-shaped and symmetric f (x), part (ii) of Proposition 2 implies that
e∗
p(θ) is increasing in θ.

18The binomial distribution is in the PSD family with respect to parameter q; hence, for the dependence

on q, the result follows from Corollary 2. For the dependence on n, note that G̃(z�n) = (1 − q + qz)n−1 and
−G̃n(z�n) is log supermodular.
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Finally, Ryvkin and Drugov (2017) also analyze comparative statics in tournaments
with a large deterministic number of players. The representation bk = E(f (X(k−1:k−1)))

shows that as k becomes large, the comparative statics are determined by the shape of
the upper tail of f (·).

4. Aggregate equilibrium effort

In this section, we explore the effects of a stochastic increase in the number of players
on expected aggregate effort:

E∗
p(θ) = k̄(θ)e∗

p(θ) = k̄(θ)c′−1(Bp(θ))� (10)

We use E∗
k = kc′−1(bk) to denote aggregate effort for tournaments with deterministic

size k. Throughout this section, it can be assumed that the original number of players,
K, is FOSD increasing in θ. We no longer have to deal with K̃, because, unlike individual
effort, aggregate effort is determined from an outsider’s perspective.

If individual effort in the deterministic case, e∗
k = c′−1(bk), is constant or increasing

in k (i.e., when bk is constant or increasing), it is obvious that aggregate effort is increas-
ing in θ. However, as discussed in Section 3, for many noise distributions, individual
effort is decreasing or nonmonotone in the number of players and, hence, the compar-
ative statics of aggregate effort are unclear. For example, in the Tullock contest with
linear costs c(e) = e, individual effort e∗

k = r(k− 1)/k2 is decreasing, but aggregate effort
E∗
k = r(k− 1)/k is increasing in k for k≥ 2 (cf. Section 2.4).

Yet, a very crisp characterization of aggregate effort is possible through the behavior
of the failure (or hazard) rate of noise, h(x) = f (x)/[1 − F(x)]. We say that distribution
f (x) is IFR (increasing failure rate) if h(x) is increasing and is DFR (decreasing failure
rate) if h(x) is decreasing. Further, for two strictly increasing functions c1(·) and c2(·),
we say that c1(·) is more (less) convex than c2(·) if c1(c

−1
2 (·)) is convex (concave). Our

main result for aggregate effort is given by the following proposition.

Proposition 3. Suppose K is FOSD-increasing in θ.

(i) If f (x) is IFR and c(e) is more convex than quadratic, then E∗
p(θ) is increasing in θ.

(ii) If f (x) is DFR, c(e) is less convex than quadratic, and there are at least two players
(p0(θ)= p1(θ)= 0), then E∗

p(θ) is decreasing in θ.

Let us first explain why the failure rate of noise plays a prominent role in the analysis
of aggregate effort. Coefficients bk (3) can be rewritten as bk = (k − 1)

∫
F(x)k−2[1 −

F(x)]h(x)dF(x). Note that the density of X(k−1:k), the second highest order statistic
among k noise realizations, is f(k−1:k)(x) = k(k − 1)F(x)k−2[1 − F(x)]f (x). Therefore,
bk becomes

bk = 1
k

∫
f(k−1:k)(x)h(x)dx = 1

k
E

(
h(X(k−1:k))

)
� (11)

In equilibrium, winning a tournament with k ≥ 2 players can be interpreted as both
surpassing X(k−1:k−1), the highest shock among the other k− 1 players, and surpassing
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X(k−1:k), the second highest shock among all k players. Note that the failure rate can
be written as h(x) = f (x|X ≥ x), i.e., the pdf of noise at X = x conditional on X ≥ x.
However, only realizations of noise exceeding X(k−1:k) can lead to winning; therefore,
E(h(X(k−1:k))) = E(f (X(k−1:k)|X ≥ X(k−1:k))) gives exactly the relevant conditional ex-
pectation. To obtain bk, it needs to be multiplied by P(X ≥X(k−1:k))= 1/k.

Consider a tournament with deterministic size k ≥ 2 and quadratic cost function,
c(e) = e2/2, producing individual effort e∗

k = bk. Using (11), aggregate effort is then E∗
k =

kbk = E(h(X(k−1:k))). Since X(k−1:k) is FOSD-increasing in k, the comparative statics in
the case of a monotone failure rate h(x) follow immediately.

Most standard distributions fall into one of the monotone failure rate classes. IFR
is implied by the log concavity of pdf f (x), while DFR is implied by the log convexity
of f (x) provided f (x) = 0. The exponential distribution, with f (x) = λexp(−λx), has a
constant failure rate λ and, hence, is both IFR and DFR.

For tournaments with a stochastic number of players, still assuming the cost func-
tion is quadratic, (4) gives aggregate effort in the form

E∗
p(θ) = k̄(θ)

n∑
k=1

p̃k(θ)bk =
n∑

k=0

pk(θ)kbk =
n∑

k=0

pk(θ)E
∗
k�

When noise has a monotone failure rate, E∗
k is monotone for k ≥ 2, as explained above.

Moreover, when noise is IFR, E∗
k is increasing for k ≥ 0 because E∗

0 = E∗
1 = 0; therefore,

E∗
p(θ) is increasing in θ. However, when noise is DFR, E∗

k is no longer monotone for all k,
and a restriction K ≥ 2 has to be imposed to ensure that E∗

p(θ) is decreasing in θ.
Finally, consider the effect of the cost function. For a general cost function, aggregate

effort E∗
p(θ) is given by (10). An increase in θ has two effects: A direct effect, due to the

increase in k̄(θ), and an indirect effect, due to the equilibrium change in Bp(θ). The
latter effect can go in either direction, but it becomes less important as the cost function
becomes “more convex.” In other words, if the direct effect of a higher k̄(θ) dominates
the effect of Bp(θ) for some cost function, this is also the case for “more convex” cost
functions.

The definition of cost function c1(·) being more convex than c2(·) is equivalent to
requiring that there exists a strictly increasing, convex function η(·) such that c1(e) =
η(c2(e)); indeed, defining t = c2(e), we obtain η(t) = c1(c

−1
2 (t)). This partial order is

related to the likelihood ratio order of random variables, whereby a random variable X

is said to be smaller than random variable Y if the ratio of pdfs fY (x)/fX(x) is increasing
in x. An equivalent condition is that FY (F

−1
X (z)) is convex (the convex transform order

in Shaked and Shanthikumar 2007). In our case, it implies that the ratio of marginal costs
c′

1(e)/c
′
2(e) is increasing in e. The definition of a less convex function is analogous.19

19It follows that a cost function c(e) is more convex than quadratic if c(
√
t) is convex in t or, equivalently,

the ratio c′(e)/e is increasing. Thus, a cost function is more convex than quadratic if the marginal cost
increases faster than linear. For thrice differentiable functions, this condition implies c′′′ ≥ 0 and is equiv-
alent to it provided c′(0) = 0. Indeed, the condition that c′(e)/e is increasing is equivalent to c′′(e)e ≥ c′(e),
which implies that c′(e) is convex. Conversely, if c′(0) = 0, the convexity of c′(e) implies c′′(e)e ≥ c′(e). A
less convex than quadratic function has c′′′ ≤ 0.
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The results for Tullock contests with linear costs mentioned at the beginning of this
section follow from Proposition 3 because, as shown in Section 2.4, the properties of
equilibrium in such a contest are equivalent to those of a tournament with a quadratic
cost function and Gumbel distribution of noise, which is IFR. Figure 1 illustrates the case
of a logistic distribution that is also IFR.

The exponential distribution has a constant failure rate, leading to the following re-
sult.

Corollary 5. Suppose K is FOSD-increasing in θ, noise is exponentially distributed
with pdf f (x) = λexp(−λx), the cost of effort is quadratic, c(e) = e2/2, and there are at
least two players (p0(θ) = p1(θ) = 0). Then E∗

p(θ) = λ is constant.

To understand why aggregate effort can decrease in the number of players for DFR
distributions of noise, note that such a distribution has a decreasing pdf that falls faster
than its cdf is increasing. Hence, individual effort is decreasing (see Corollary 4(ii)) and
so fast that aggregate effort decreases too. For a simple example, consider the F dis-
tribution with (2,2) degrees of freedom, whose pdf and cdf are f (x) = 1/(1 + x)2 and
F(x) = x/(1 + x) defined for x ≥ 0. This gives bk = 2/[k(k + 1)] and, for the quadratic
cost function, aggregate effort E∗

k = 2/(k+ 1) is strictly decreasing in k.
A result similar to Proposition 1, which shows that individual effort is unimodal for

a unimodal pdf f (x) under an additional log-supermodularity condition, can be for-
mulated for aggregate effort when failure rate h(x) is unimodal and the cost of effort is
quadratic. Here, P ′

k(θ) denotes the derivative or first difference of the cmf with respect
to θ.

Proposition 4. Suppose K is FOSD-increasing in θ, c(e) = e2/2, and

(i) h(x) is unimodal,

(ii) −P ′
k(θ) is log supermodular.

Then E∗
p(θ) is unimodal in θ.

In the deterministic case, E∗
k = E(h(X(k−1:k))) = ∫

h(x)dF(k−1:k)(x) and the uni-
modality of E∗

k follows from the log supermodularity of −F(k−1:k)(x). Therefore, in the
stochastic case, E∗

p(θ) = ∑n
k=0 pk(θ)E

∗
k is an expectation of a unimodal sequence. The

unimodality of E∗
p(θ) is then ensured by the log-supermodularity condition (ii). It is sat-

isfied by PSD distributions (see Lemma 2(v)), leading to the following result. For an
illustration, see Figure 3.

Corollary 6. If K is in the PSD family (7), c(e) = e2/2, and h(x) is unimodal, then E∗
p(θ)

is unimodal in θ.
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Figure 3. Left: The pdf f (x) (thin solid line) and the failure rate h(x) (thick dashed line) of the
log-normal distribution with parameters (0�1). Center: Individual (diamonds) and aggregate
(circles) equilibrium efforts in the deterministic case as a function of the number of players k for
effort cost function c(e) = e2/2. Right: Individual (thin line) and aggregate (thick line) equilib-
rium efforts in the stochastic case, with K ∼ Binomial(10� q) for effort cost function c(e) = e2/2.

Similar to the case of individual effort (Proposition 1 and Corollary 3), Proposition 4
also implies that E∗

p(θ) is U-shaped for distributions with a U-shaped failure rate (as-

suming p0 = p1 = 0). For an illustration, see Figure 2.20

5. Applications to tournament design

In this section, we investigate optimal design questions for tournaments with stochastic
participation. Section 5.1 looks at how the level of uncertainty in the number of players
affects aggregate effort. In Section 5.2, the question is whether it is optimal, from an ex
ante perspective, to disclose the realized number of players. Finally, in Section 5.3, we
briefly comment on the objective of maximizing the best performance.

5.1 The effect of uncertainty in the number of players

Is uncertainty in the number of players beneficial or detrimental for aggregate effort?
The following proposition provides a general answer for any two distributions of the
number of players ranked by second-order stochastic dominance (SOSD).

Proposition 5. Consider two group size distributions, p and p′, with the same mean k̄

such that there are at least two players (p0 = p1 = p′
0 = p′

1 = 0) and p′ dominates p in the
SOSD order. Then E∗

p′ ≥ (≤)E∗
p if f (x) is log concave (log convex); moreover, the inequality

is strict if f (x) is strictly log concave (log convex).

Proposition 5 says that higher uncertainty about the number of players (in the SOSD
sense) reduces expected aggregate effort if noise has a log-concave distribution. For a

20More generally, as in the case of individual effort, Proposition 4 can be generalized to multimodal h(x)
under higher order total positivity of −P ′

k(θ); see footnote 16. The behavior of aggregate effort in large
tournaments is determined by the shape of the failure rate in the upper tail.
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log-convex noise distribution, the relationship is reversed. The comparison between
aggregate efforts E∗

p′ and E∗
p is equivalent to a comparison between individual efforts

e∗
p′ and e∗

p since the mean group size k̄ is the same, which amounts to a comparison
between Bp′ and Bp. Equation (4) can be written as

Bp = 1

k̄
E(KbK|K ≥ 2)P(K ≥ 2);

that is, Bp is proportional to the expectation of KbK conditional on K ≥ 2, and the as-
sumption that there are always at least two players makes this expectation uncondi-
tional. Jensen’s inequality can then be applied if kbk is concave (convex) in k for k ≥ 2,
which is the case when f (x) is log concave (log convex).

As a special case, Proposition 5 allows for a comparison of aggregate effort between
tournaments with deterministic and stochastic group sizes. It implies that the presence
of uncertainty in the number of players, as opposed to a tournament where the num-
ber of players is fixed and equal to k̄, reduces expected aggregate effort in the Tullock
contest (since the Gumbel distribution is log concave) and increases it for many heavy-
tailed distributions such as Pareto (which is log convex). This is in contrast to the existing
studies—restricted to Tullock contests—that compare aggregate effort in contests with
deterministic and stochastic participation: Myerson and Wärneryd (2006), Lim and Ma-
tros (2009) and Boosey et al. (2019). All three show that uncertainty in the number of
players always reduces aggregate effort.21

However, Proposition 5 is more general than that and relates the ranking of expected
aggregate effort to the SOSD order of group size distributions. It also shows that the
presence of a heavy tail in the distribution of noise reverses the prevailing “intuition”
that uncertainty in the number of players is detrimental for aggregate effort.

5.2 Optimal disclosure of the number of players

When the number of players K is stochastic, it might be possible for the tournament
designer to reveal the realization of K to the players before they choose their efforts. As-
suming commitment power, when does the tournament designer prefer to (commit to)
disclose K? Lim and Matros (2009) show that in a standard Tullock contest with a bino-
mial distribution of the number of players, aggregate effort is independent of disclosure.
Fu et al. (2011) generalize this result to contests with CSFs of the form g(ei)/

∑k
j=1 g(ej).

They show that full disclosure (no disclosure) is optimal if g(e)/g′(e) is strictly convex
(concave), while the indifference is recovered when g(e)/g′(e) is linear. The following
proposition generalizes these results to arbitrary tournaments and arbitrary distribu-
tions of the number of players.

21Proposition 5 is not a direct generalization of Myerson and Wärneryd (2006) and Lim and Matros (2009)
because these two papers allow for the possibility of having fewer than two players in the contest, under
additional restrictions. A version of Proposition 5 directly generalizing Myerson and Wärneryd (2006) and
Lim and Matros (2009) is more nuanced and is available in Ryvkin and Drugov (2017). Boosey et al. (2019)
consider contests between groups with stochastic size.
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Proposition 6. Suppose bk is nonconstant for k≥ 1 in the support of p and c′(·) is non-
linear. Then it is optimal to disclose (not disclose) the number of participants in the tour-
nament if c′′′ ≤ (≥)0.

Disclosure creates a mean-preserving variation in the marginal benefit of effort. In-
deed, without disclosure, the (expected) marginal benefit of effort is c′(e∗

p) = Bp = E(bK̃)

(cf. (4)), whereas with disclosure, the realization of K is observed and effort is chosen
according to c′(e∗

k) = bk. Such variation then increases (decreases) expected individ-
ual effort if the marginal cost function is concave (convex); that is, if c′′′ ≤ (≥)0. For a
quadratic cost function (i.e., when c′(·) is linear) disclosure is irrelevant. Note that the
nature of coefficients bk does not affect the optimality of disclosure. The only special
case is when bk is constant in the support of p for k ≥ 1 (for example, noise is uniformly
distributed and p1 = 0), in which case disclosure does not matter.

The results of Fu et al. (2011) are recovered as a special case by introducing effective
effort y = g(e), which transforms their CSF into the lottery form and the cost of effort
into c(y) = g−1(y). Following Section 2.4, the resulting cost of effort in the correspond-
ing tournament with additive noise is cm(y) = ∫ y

0 c′(t)t dt, which gives the marginal cost
c′

m(y) = c′(y)y = y/g′(g−1(y)) = g(e)/g′(e).
A similar effect of a (mean-preserving) variation in the marginal benefit of effort

emerges in static biased contests (see Drugov and Ryvkin 2017) and dynamic contests
where revealing interim information is equivalent to biasing the next stage (see Lizzeri
et al. 1999, 2002, Aoyagi 2010). Parallel results regarding the role of c′′′ hold in those
settings as well.

5.3 Best performance

Focusing on effort as the designer’s objective is standard, and it is most easily justified
under the assumption that noise, or luck, is unproductive and only distorts the percep-
tion, or measurement, of individual efforts. However, the designer may also be inter-
ested in maximizing the best performance. This objective is relevant in settings where
noise is productive, such as innovation or design tournaments in which the winner’s
idea ends up being implemented and the rest are discarded.

For simplicity, consider a tournament with a deterministic number of players k ≥ 2
and define expected best performance ymax

k = e∗
k +E(X(k:k)). As k increases, E(X(k:k))—

the expectation of the best shock—increases as well, but equilibrium effort e∗
k may de-

crease, as, for example, in the Tullock contest or when f (x) is decreasing or symmetric
unimodal (cf. Corollary 4 and Proposition 2). Due to this trade-off, ymax

k may be non-
monotone in k.

Figure 4 shows individual effort e∗
k, the expectation of the best shock E(X(k:k)), and

the resulting expected best performance ymax
k for a tournament with the Gumbel distri-

bution of noise. The equilibrium effort in this tournament is the same as in the Tullock
contest (cf. Section 2.4). As seen from the figure, while eventually ymax

k is increasing in k,
there is a range of k where it is declining.22

22An increase in k may interfere with the existence of the pure-strategy equilibrium we are studying (cf.
Proposition 7 in Appendix A.1). The conditions of Proposition 7 are very general and, hence, rather strong.
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Figure 4. A tournament with the Gumbel distribution of noise with parameter 1
3 and cost func-

tion c(e) = e2/2. Left: Individual effort e∗
k and expected maximum shocks E(X(k:k)). Right: Ex-

pected best performance ymax
k .

A similar trade-off can emerge for a given number of players k when the intensity of
noise increases.23 For an explicit characterization, suppose the distribution of noise has
a scale parameter σ > 0 such that the pdf and cdf are fσ(x) = (1/σ)f1(x/σ) and Fσ(x) =
F1(x/σ), where subscript 1 refers to the “standardized” distribution. Examples include
the standard deviation of the normal distribution, 1/λ for the exponential distribution
and 1/r for the Gumbel distribution. The expected best performance is then

ymax
k (σ) = c′−1

(
1
σ
b1�k

)
+ σE(X1�(k:k))�

The first term is decreasing in σ , while the second term is increasing; therefore, ymax
k (σ)

can be U-shaped. For illustration, suppose the noise is uniform on [−σ/2�σ/2] and the
cost function is c(e) = e2/2. A sufficient condition for the equilibrium existence is D− <

1, where D− = (k− 1)/σ2 (see Proposition 7 in Appendix A.1). The equilibrium effort is
e∗
k = 1/σ and the expected best performance is

ymax
k (σ)= 1

σ
+ σ(k− 1)

2(k+ 1)
�

The derivative ∂ymax
k /∂σ changes sign at σ2

0 = 2(k+ 1)/(k− 1) and the equilibrium exists
for σ2 >k− 1; therefore, ymax

k (σ) is U-shaped in σ for k= 2�3�4.

For the example, in Figure 4, we explicitly verified that the payoff function π(i)(ei� e
∗) (2) is maximized at

ei = e∗
k and, hence, the equilibrium exists for all parameter values used in the figure.

23In a large tournament model including the analysis of mixed-strategy equilibria for small noise, Mor-
gan et al. (2018) show that aggregate effort can be nonmonotone in noise intensity due to players dropping
out when the winner determination process becomes “too meritocratic.” Using a large contest assortative
matching model of competition for college admissions, Olszewski and Siegel (2019) show that more noise
in contest outcomes can increase students’ welfare. In a setting similar to this paper, Drugov and Ryvkin
(2020) provide a systematic study of how equilibrium effort is affected by changes in the distribution of
noise, and what it means to have “more noise” in a tournament.
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6. Conclusion

Tournament incentives are ubiquitous. Students applying to universities, researchers

competing for grants, R&D firms competing for innovation, job candidates applying

for an opening or employees competing for promotion, and numerous other examples,

are situations where participants’ outcomes are determined jointly by ability, effort, and

luck. Differences in ability stratify the playing field to some extent, but competition is

the fiercest, and luck plays the biggest role, in tournaments among equally able contes-

tants.

It is traditionally believed that competition increases productivity, fosters innova-

tion, and promotes economic growth.24 However, it is also easy to imagine how com-

petition may discourage effort in winner-take-all environments where luck plays a sig-

nificant role. Our results demonstrate that there is a nontrivial interplay between the

two effects, and the nature of shocks—the “shape of luck”—matters for the willingness

to compete.

We show that individual effort reacts to an increase in competition, be it determin-

istic or stochastic, in a way that essentially follows the shape of the density of noise.

As long as the density is unimodal, individual effort is also unimodal in the number of

players, but it can be increasing, decreasing, or nonmonotone when the distribution of

noise is skewed. Aggregate effort behaves similarly, but following the shape of the fail-

ure rate of noise. Hence, the presence of heavy tails—a decreasing or interior unimodal

failure rate—in the distribution of noise can lead to a reduction in aggregate effort with

competition.

The results of this paper predict diverging effects of competition on aggregate ef-

fort (or investment) in tournaments characterized by different types of noise. Given the

various contradictory findings and nonmonotonicities in the literature on the effects

of competitive pressure on innovation (e.g., Aghion et al. 2005, Vives 2008), our results

provide an independent mechanism through which different reactions to competitive

pressure may arise across industries or even within the same industry across time.

Heavy-tailed fluctuations are common in many areas often associated with tourna-

ment incentives, such as sales of creative and innovative products or the financial sector.

Our results suggest that restricting competition can be beneficial in these settings.

Our last comment is methodological. The techniques developed in this paper can be

extended to many applications of general tournament models, including optimal con-

tract design and dynamic tournaments,25 giving a new life to the literature that so far

has been limited to considering a number of special cases.

24There is a strand of literature analyzing the effect of market competition among firms on managerial
effort that shows effort may go down due to endogenously adjusted managerial incentives (e.g., Schmidt
1997); (for an earlier survey, see Vickers 1995). There, competition has more than one effect (say, an infor-
mation effect and changing margins), and the focus is on individual effort.

25For example, in companion papers Drugov and Ryvkin (2018) and (2019), we use them to obtain new
general results on the optimal allocation of prizes.
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Appendix A: Technical results

A.1 Equilibrium existence

Equilibrium existence and comparative statics are two separate issues, and in the pa-
per we have focused on the latter. In this section, however, we address the equilibrium
existence, which so far did not receive an adequate treatment in the literature on Lazear–
Rosen tournaments. It is generally understood that a symmetric pure-strategy equilib-
rium exists if shocks Xi are sufficiently dispersed and/or the effort cost function c(·) is
sufficiently convex (see, e.g., Nalebuff and Stiglitz 1983), but general sufficient condi-
tions for equilibrium existence have remained unknown.26

For e∗
p to be the unique symmetric equilibrium, it is sufficient to require that (i) (4)

has a solution and (ii) payoff function π(i)(ei� e
∗
p) (2) is strictly concave in ei.27 The main

difficulty is in the “revenue” part of the payoff function that may not be globally concave
because, in general, F(·) is not concave; moreover, even if F(·) is concave, F(·)k−1 may
not be, for a sufficiently large k. At the same time, c(·) is strictly convex and, hence, a
version of sufficient conditions can be obtained if the convexity of c(·) is restricted in
some way. The simplest approach is to impose a uniform restriction on c′′(·) on [0� ē].28

Let fm = sup{f (x) : x ∈ X }, f ′
max = sup{f ′(x) : x ∈ X } and f ′

min = inf{f ′(x) : x ∈ X } de-
note the tight, possibly infinite, bounds of pdf f (·) and its derivative f ′(·) on X . We
impose the following restrictions on the pdf of noise.

Assumption 1. (i) f (·) is uniformly bounded; that is, fm < ∞.

(ii) f ′(·) is uniformly bounded above or below or both; that is, either f ′
max < ∞ or f ′

min >

−∞ or both.

Proposition 7. Suppose Assumption 1 is satisfied and the following conditions hold:

(i) There exists a c0 > 0 such that c′′(e) ≥ c0 for all e ∈ [0� ē].
(ii) c0 >D≡ min{D+�D−}, where

D+ = E
[
K(K − 1)2]

k̄
f 2
m + E

[
K(K − 1)

]
k̄

f ′
max�

D− = E
[
K(K − 1)

]
k̄

(
f 2
m − f ′

min
)
�

(12)

(iii) E(K|K ≥ 1)c(c′−1(fm)) < 1.
Then e∗

p is the unique equilibrium in the tournament.

26For WTA Tullock contests, equilibrium existence and uniqueness are well understood; see Szidarovszky
and Okuguchi (1997).

27Since π(i)(0� e∗
p) ≥ 0, conditions (i) and (ii) automatically imply that the symmetric equilibrium payoff

is positive, π(i)(e∗
p�e

∗
p) > 0.

28Any effort ei > ē is strictly dominated.
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Conditions (i) and (ii) in Proposition 7 guarantee the global strict concavity of payoff
function (2) in ei, while condition (iii) ensures that (4) has a solution. The conditions are
consistent with the intuition described above. For a given tournament model, they are
easier to satisfy as noise becomes more dispersed (leading to a decrease in fm, f ′

max, and
|f ′

min|).
More explicitly, suppose noise has a scale parameter σ > 0 such that its cdf and pdf

are, respectively, Fσ(x) = F1(x/σ) and fσ(x) = (1/σ)f1(x/σ), where F1(·) and f1(·) char-
acterize the “standardized” distribution. An increase in σ produces a larger variance,
and a reduction in the SOSD order and in the dispersive order (Lewis and Thompson
1981).29 This gives the bounds fm(σ) = (1/σ)f1m, f ′

min(σ) = (1/σ2)f ′
1 min, and f ′

max(σ) =
(1/σ2)f ′

1 max, producing D(σ) = (1/σ2)D1. Subscript 1 refers to the bounds for the stan-
dardized distribution. Condition (ii) then takes the form σ2c0 >D1, and condition (iii)
is σc′(c−1(1/E(K|K ≥ 1))) > f1m.

Additionally, conditions (ii) and (iii) are harder to satisfy as the number of players
increases. Overall, the conditions of Proposition 7 are rather strong because the global
strict concavity of the payoff function is not necessary. An alternative approach can be to
impose a weaker restriction on c(·), but restrict attention to particular families of noise
distributions. In contrast, for the purposes of this paper, we have chosen to formulate
conditions with maximum flexibility for the shape of the distribution of noise, at the
expense of a rather restrictive positivity of c′′(·) and substantial noise dispersion.

A quadratic cost function, c(e) = c0e
2/2, satisfies condition (i). Generally, functions

satisfying condition (i) have the form c(e) = c0e
2/2 + κ(e), where κ : [0� ē] → R+ is con-

vex. Note that a function can satisfy the condition even if it is less convex than quadratic.
For example, function c(e) = c1e

ξ has a positive second derivative bounded below by
c0 = ξ(ξ − 1)c1ē

ξ−2 when ξ ∈ (1�2].

A.2 Comparative statics for multimodal noise densities

More generally, one may ask whether there is any “higher-order” universality in the be-
havior of Bp(θ) (and e∗

p(θ)) for multimodal densities. The answer is yes, to some extent.
For deterministic tournament size, Proposition 1 relies on the fact that f ′(x) is single-
crossing and zk−1(1 − z) is log supermodular in (z�k). Log supermodularity is also
known as total positivity of order 2 (TP2), a special case of total positivity of order r (TPr),
introduced by Karlin (1968).

Function v : S1 ×S2 → R, with S1� S2 ⊆R, is TPr if for all l = 1� � � � � r and all sequences
x1 < · · · < xl, y1 < · · · < yl (xi ∈ S1, yj ∈ S2),

det

⎛
⎜⎝
v(x1� y1) � � � v(x1� yl)

���
���

v(xl� y1) � � � v(xl� yl)

⎞
⎟⎠ ≥ 0�

The variation-diminishing property of totally positive kernels (Karlin 1968) states that if
function v(·� ·) is TPr and function φ : S2 → R changes sign j ≤ r − 1 times on S2, then

29Drugov and Ryvkin (2020) show that ranking noise distributions in the dispersive order is necessary
and sufficient to rank equilibrium effort in tournaments with arbitrary sizes and prize schedules.
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Figure 5. Left: f (x) = 8�8x3 − 15�6x2 + 8x. Right: Individual equilibrium effort e∗
k as a function

of k for effort cost function c(e) = e2/2.

function φ̃(x) = ∫
S2
v(x� y)φ(y)dy changes sign at most j times on S1. Moreover, if φ̃

changes sign exactly j times, then it follows the same sequence of sign changes as φ. It
can be shown that zk−1(1 − z) is, in fact, TP∞ (Marshall et al. 2011, p. 759); therefore, if
f ′(x) has any number j of sign changes, then bk+1 − bk will have at most j sign changes.

We conclude that if f (x) has j modes, bk (and e∗
k) will have at most j modes, and

if bk has exactly j modes, then the sequence of local minima and maxima of bk (and
e∗
k) will follow the shape of f (x). The case of unimodal (or U-shaped) f (x) is special

because f ′(x) has at most one sign change and, hence, e∗
k is either monotone or interior

unimodal (or U-shaped). Figure 5 illustrates a case when bk and f (x) both have two
modes, and e∗

k follows the shape of f (x).
When K is stochastic, Proposition 1 can be generalized to the multimodal case with

condition (ii) replaced by the requirement that −G̃θ(z�θ) is TPr . Similarly, Proposition 4
can be generalized to multimodal failure rates if −P ′

k(θ) is TPr .

Appendix B: Proofs

Proof of Lemma 1. The fact that ILR implies FOSD ordering is well known (see, e.g.,
Shaked and Shanthikumar 2007). To prove that p̃(θ) is also FOSD-ordered, it is sufficient
to show that P̃k(θ) is decreasing in θ. For some θ′ > θ,

P̃k

(
θ′) − P̃k(θ)=

k∑
l=0

[
lpl

(
θ′)

k̄
(
θ′) − lpl(θ)

k̄(θ)

]
= 1

k̄(θ)k̄
(
θ′)

k∑
l=0

l
[
pl

(
θ′)k̄(θ)−pl(θ)k̄

(
θ′)]

= 1

k̄(θ)k̄
(
θ′)

k∑
l=0

n∑
l′=0

ll′
[
pl

(
θ′)pl′(θ)−pl(θ)pl′

(
θ′)]

= 1

k̄(θ)k̄
(
θ′)

k∑
l=0

n∑
l′=k+1

ll′
[
pl

(
θ′)pl′(θ)−pl(θ)pl′

(
θ′)] ≤ 0�
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The terms with l′ ≤ k vanish due to symmetry, and the inequality on the last line follows
directly from the ILR property of p(θ).

Proof of Lemma 2. (i) From (1),

p̃k = kpk

k̄
= kakθ

k

∞∑
k=1

kakθ
k

= ãkθ
k

Ã(θ)
�

where ãk = kak and Ã(θ)= ∑∞
k=1 ãkθ

k; that is, p̃k also has the PSD form.
(ii) Consider some θ′ > θ. Then

pk

(
θ′)

pk(θ)
= A(θ)

A
(
θ′)

(
θ′

θ

)k

�

which is increasing in k.
(iii) The cmf of a PSD distribution (7) is Pk(θ)= ∑k

l=0 alθ
l/

∑∞
l=0 alθ

l, which gives

P ′
k(θ) = 1

A(θ)2

[
k∑
l=0

lalθ
l−1

∞∑
l′=0

al′θ
l′ −

k∑
l=0

alθ
l

∞∑
l′=0

l′al′θl
′−1

]

= 1

A(θ)2

k∑
l=0

∞∑
l′=0

alal′θ
l+l′−1(l − l′

)

= 1

A(θ)2

k∑
l=0

∞∑
l′=k+1

alal′θ
l+l′−1(l − l′

) ≤ 0� (13)

The terms with l′ ≤ k vanish due to symmetry.
Using summation by parts,

G(z�θ)=
n∑

k=0

pk(θ)z
k = Pn(θ)z

n −
n−1∑
k=0

Pk(θ)
(
zk+1 − zk

) = zn + (1 − z)

n−1∑
k=0

Pk(θ)z
k�

which gives

Gθ(z�θ)= (1 − z)

n−1∑
k=0

P ′
k(θ)z

k� (14)

and the result for Gθ(z�θ) follows from (13).
(iv) We prove this part assuming part (v) holds and then prove part (v) directly. Con-

sider some θ′ > θ. From (14),

ρ
(
z�θ�θ′) = Gθ

(
z�θ′)

Gθ
(
z�θ′) =

n−1∑
k=0

P ′
k

(
θ′)zk

n−1∑
k=0

P ′
k(θ)z

k

�
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This gives, up to a positive multiplier,

ρz
(
z�θ�θ′) ∝

n−1∑
k=0

kP ′
k

(
θ′)zk−1

n−1∑
l=0

P ′
l(θ)z

l −
n−1∑
k=0

P ′
k

(
θ′)zk n−1∑

l=0

lP ′
l(θ)z

l−1

=
n−1∑
k=0

n−1∑
l=0

P ′
k

(
θ′)P ′

l(θ)z
k+l−1(k− l)�

The terms with k = l are zero. Separating the double sum into two parts and swapping
the indices in the second part, we obtain

ρz
(
z�θ�θ′) ∝

∑
k>l

P ′
k

(
θ′)P ′

l(θ)z
k+l−1(k− l)+

∑
k<l

P ′
k

(
θ′)P ′

l(θ)z
k+l−1(k− l)

=
∑
k>l

[
P ′
k

(
θ′)P ′

l(θ)− P ′
l

(
θ′)P ′

k(θ)
]
zk+l−1(k− l) ≥ 0�

where the inequality follows because each term is positive due to part (v).
(v) Consider some θ′ > θ and let β = θ′/θ > 1. For convenience, introduce the nota-

tion αll′ = alal′θl+l′−1(l′ − l). Using (13),

sk
(
θ�θ′) = P ′

k

(
θ′)

P ′
k(θ)

= A(θ)2

A
(
θ′)2

Nk

Dk
�

where

Nk =
k∑
l=0

∑
l′≥k+1

βl+l′−1αll′� Dk =
k∑
l=0

∑
l′≥k+1

αll′ �

We need to show that Nk/Dk is increasing in k or, equivalently, that Nk+1Dk−NkDk+1 ≥
0. Notice that Nk+1 can be expressed through Nk as

Nk+1 = Nk −
k∑
l=0

βl+kαl�k+1 +
∑

l′≥k+2

βl′+kαk+1�l′ �

Similarly,

Dk+1 =Dk −
k∑
l=0

αl�k+1 +
∑

l′≥k+2

αk+1�l′ �

Therefore,

Nk+1Dk −NkDk+1 =
(
Nk −

k∑
l=0

βl+kαl�k+1 +
∑

l′≥k+2

βl′+kαk+1�l′

)
Dk

−Nk

(
Dk −

k∑
l=0

αl�k+1 +
∑

l′≥k+2

αk+1�l′

)
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=
k∑
l=0

αl�k+1
(
Nk −βl+kDk

) +
∑

l′≥k+2

αk+1�l′
(
βl′+kDk −Nk

)
�

It can be shown that each of the two terms in the last line is nonnegative. We demon-

strate it explicitly for the first term; for the second term, the derivation is similar:

k∑
l=0

αl�k+1
(
Nk −βl+kDk

)

=
k∑
l=0

k∑
j=0

∑
l′≥k+1

(
βj+l′−1αjl′αl�k+1 −βl+kαjl′αl�k+1

)

=
k∑
l=0

k∑
j=0

∑
l′≥k+1

(
βl+l′−1αll′αj�k+1 −βl+kαjl′αl�k+1

)

≥
k∑
l=0

k∑
j=0

∑
l′≥k+1

βl+k(αll′αj�k+1 − αjl′αl�k+1)

=
k∑
l=0

k∑
j=0

∑
l′≥k+1

βl+kalal′ajak+1θ
l+l′−1+j+k

[(
l′ − l

)
(k+ 1 − j)− (

l′ − j
)
(k+ 1 − l)

]

=
k∑
l=0

k∑
j=0

∑
l′≥k+1

βl+kalal′ajak+1θ
l+l′−1+j+k

(
l′ − k− 1

)
(l − j)

=
∑

l′≥k+1

βkal′ak+1θ
l′−1+k

(
l′ − k− 1

) k∑
l=0

k∑
j=0

βlalajθ
l+j(l − j)�

The sum over l and j can be rewritten as

k∑
l=0

k∑
j=0

βlalajθ
l+j(l − j) =

∑
l>j

βlalajθ
l+j(l − j)+

∑
l<j

βlalajθ
l+j(l − j)

=
∑
l>j

(
βl −βj

)
alajθ

l+j(l − j) ≥ 0�

The inequality follows because β> 1.

Proof of Proposition 1. When f (x) is monotone, the result is trivial. Suppose f (x)

is interior unimodal. Integrating representation (6) by parts, we obtain

Bp(θ) = f (x)G̃(1� θ)− f (x)G̃(0� θ)−
∫

f ′(x)G̃
(
F(x)�θ

)
dx�
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From the definition of pgf G̃, we have G̃(1� θ) = 1. The derivative, or first difference, of
Bp(θ) with respect to θ, therefore, is

B′
p(θ) = −f (x)G̃θ(0� θ)−

∫
f ′(x)G̃θ

(
F(x)�θ

)
dx�

To show that Bp(θ) is unimodal, it is sufficient to show that B′
p(θ) is single-crossing +−;

that is, if B′
p(θ) < 0 for some θ, then B′

p(θ′) ≤ 0 for all θ′ > θ.
Suppose B′

p(θ) < 0 and consider some θ′ > θ. Function f ′(x) is single-crossing +−.
Let x̂ ∈ int(X ) denote a mode of f (x) such that f ′(x) ≥ (≤)0 for x ≤ (≥)x̂. Furthermore,
let ρ̃(z�θ�θ′)= G̃θ(z�θ

′)/G̃θ(z�θ). Splitting the integral, rewrite B′
p(θ′) as

B′
p(θ′) = −f (x)G̃θ

(
0� θ′) −

∫ x̂

x
f ′(x)G̃θ

(
F(x)�θ′)dx−

∫ x

x̂
f ′(x)G̃θ

(
F(x)�θ′)dx

= −f (x)ρ̃
(
0� θ�θ′)G̃θ(0� θ)−

∫ x̂

x
f ′(x)ρ̃

(
F(x)�θ�θ′)G̃θ

(
F(x)�θ

)
dx

−
∫ x

x̂
f ′(x)ρ̃

(
F(x)�θ�θ′)G̃θ

(
F(x)�θ

)
dx

≤ −f (x)ρ̃
(
F(x̂)�θ�θ′)G̃θ(0� θ)− ρ̃

(
F(x̂)�θ�θ′) ∫ x̂

x
f ′(x)G̃θ

(
F(x)�θ

)
dx

− ρ̃
(
F(x̂)�θ�θ′)∫ x

x̂
f ′(x)G̃θ

(
F(x)�θ

)
dx

= ρ̃
(
F(x̂)�θ�θ′)[−f (x)G̃θ(0� θ)−

∫
f ′(x)G̃θ

(
F(x)�θ

)
dx

]

= ρ̃
(
F(x̂)�θ�θ′)B′

p(θ) ≤ 0�

The first inequality follows because ρ̃(z�θ�θ′) is increasing in z, due to the log-
supermodularity condition.

Proof of the “only if” part of Corollary 4(iii). It is sufficient to show that if bk is
independent of k for k ≥ 2, then f (x) is constant. Let �lbk denote the lth difference of
bk, defined recursively as �l+1bk = �lbk+1 −�lbk, with �1bk = bk+1 −bk. The fact that bk
is constant implies that �lbk = 0 for all k ≥ 2, l ≥ 1. Note that �lzk−1 = (−1)lzk−1(1 − z)l

for z ∈ [0�1]; therefore,

�lbk = (−1)l
∫

f (x)d
[
F(x)k−1(1 − F(x)

)l] = 0� k≥ 2� l ≥ 1� (15)

Fix some k� l ≥ 1. Then

k+l∑
j=k

(−1)k+l−j

(
k+ l

j

)
�k+l−jbj+1
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=
k+l∑
j=k

(
k+ l

j

)∫
f (x)d

[
F(x)j

(
1 − F(x)

)k+l−j] =
∫

f (x)dF(k:k+l)(x)�

where F(k:k+l)(x) is the cdf of order statistic X(k:k+l). In the sum in the first line of the
equation above, all terms except the one with j = k+ l are zero due to (15); therefore,

Akl =
∫

f (x)dF(k:k+l)(x) = bk+l+1 = b2� k� l ≥ 1�

Suppose f (x̃1) �= f (x̃2) for some points x̃1� x̃2 ∈ X . Then, by continuity of f (·),
there exist points x1�x2 ∈ int(X ) such that f (x1) �= f (x2), f (x1) > 0, f (x2) > 0, and
F(x1)�F(x2) are rational numbers. First, let k� l → ∞ so that k/(k + l) = F(x1). Then√
k+ l(X(k:k+l) − x1) converges in distribution to N(0�F(x1)(1 − F(x1))/f (x1)

2), which
implies Akl converges to f (x1). Second, let k� l → ∞ so that k/(k + l) = F(x2). Then,
similarly, Akl converges to f (x2). However, Akl is a constant independent of k� l—a
contradiction.

Proof of Proposition 2. Using (3), define

�bk+3 = bk+3 − bk+2 =
∫ [

(k+ 2)F(x)k+1 − (k+ 1)F(x)k
]
f (x)dF(x)� k≥ 0�

Integrating by parts, we obtain

�bk+3 =
∫

f (x)d
(
F(x)k+2 − F(x)k+1) =

∫
F(x)k+1(1 − F(x)

)
f ′(x)dx� (16)

The symmetry of f (x) around its mean μ implies f (x) = f (2μ−x) and F(x) = 1−F(2μ−
x) for all x ∈X .

(i) From (3), b2 = ∫
f (x)dF(x) and

b3 = 2
∫

F(x)f (x)dF(x) = 2
∫

F(2μ− x)f (2μ− x)dF(2μ− x)

= 2
∫ (

1 − F(x)
)
f (x)dF(x) = 2b2 − b3�

which implies b2 = b3.
(ii) From (16), via the change of variable x→ 2μ− x, due to f ′(2μ− x) = −f ′(x),

�bk+3 =
∫ μ

x
F(x)k+1(1 − F(x)

)
f ′(x)dx+

∫ x

μ
F(x)k+1(1 − F(x)

)
f ′(x)dx

=
∫ μ

x
F(x)k+1(1 − F(x)

)
f ′(x)dx−

∫ μ

x

(
1 − F(x)

)k+1
F(x)f ′(x)dx

= −
∫ μ

x
F(x)

(
1 − F(x)

)[(
1 − F(x)

)k − F(x)k
]
f ′(x)dx ≤ 0�

with equality only for k = 0 or when f (x) is constant. Thus, bk is decreasing for k ≥ 2
and the result follows from (4).
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Proof of Proposition 3. We prove part (i); the derivation for part (ii) is similar.
(i) Suppose f (x) is IFR and c(e) is more convex than quadratic. From representation

(11), kbk is increasing in k, which implies B(θ) = ∑n
k=0 p(θ)kbk is increasing in θ. From

(4), Bp(θ) = B(θ)/k̄(θ).
By definition, E∗

p(θ) = k̄(θ)e∗
p(θ). Differentiating with respect to θ, we obtain

(
E∗
p(θ)

)′ = k̄′(θ)e∗
p(θ) + k̄(θ)

(
e∗
p(θ)

)′
�

Differentiating the first-order condition c′(e∗
p(θ)) = Bp(θ) with respect to θ, we obtain

(e∗
p(θ))

′ = B′
p(θ)/c

′′(e∗
p(θ)), where B′

p(θ) = B′(θ)/k̄(θ)−B(θ)k̄′(θ)/k̄(θ)2. This gives

(
E∗
p(θ)

)′ = k̄′(θ)e∗
p(θ) + k̄(θ)

c′′(e∗
p(θ)

)[
B′(θ)
k̄(θ)

− B(θ)k̄′(θ)
k̄(θ)2

]

= B′(θ)
c′′(e∗

p(θ)

) + k̄′(θ)
[
e∗
p(θ) − c′(e∗

p(θ)

)
c′′(e∗

p(θ)

)]
�

It is sufficient to show that the expression in square brackets is positive. Since c(
√
t) is

convex in t, we have

d2

dt2 c(
√
t) = d

dt

[
c′(

√
t)

2
√
t

]
= c′′(

√
t)

√
t − c′(

√
t)

4t3/2 ≥ 0;

therefore, c′′(e)e ≥ c′(e).

Proof of Proposition 4. We first show that E∗
k is unimodal. Following the same ar-

gument as in the proof of Proposition 1, it is sufficient to show that −F(k−1:k)(x) =
kF(x)k−1 − (k− 1)F(x)k is log supermodular. Consider some l > k≥ 2 and let z = F(x).
We show that the ratio [lzl−1 −(l−1)zl]/[kzk−1 −(k−1)zk] is increasing in z. The deriva-
tive of the ratio with respect to z is

1[
kzk−1 − (k− 1)zk

]2

[(
l(l − 1)zl−2 − l(l − 1)zl−1)(kzk−1 − (k− 1)zk

)

− (
k(k− 1)zk−2 − k(k− 1)zk−1)(lzl−1 − (l − 1)zk

)]
= zk+l−3(1 − z)[

kzk−1 − (k− 1)zk
]2

[
lk(l − 1)− l(l − 1)(k− 1)z − lk(k− 1)+ k(l − 1)(k− 1)z

]

= zk+l−3(1 − z)(l − k)
[
lk− (l − 1)(k− 1)z

]
[
kzk−1 − (k− 1)zk

]2 ≥ 0�

Thus, E∗
k is unimodal for k ≥ 2; therefore, it is also unimodal for all k ≥ 0 because E∗

0 =
E∗

1 = 0. Using summation by parts, we can write

E∗
p(θ) =

n∑
k=0

pk(θ)E
∗
k = Pn(θ)E

∗
n −

n−1∑
k=0

Pk(θ)�E
∗
k�
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where �E∗
k = E∗

k+1 − E∗
k, the first difference of E∗

k, is single-crossing +−. Note that
Pn(θ) = 1 is independent of θ; hence, the derivative, or first difference, of E∗

p(θ) with
respect to θ is

E∗′
p(θ) = −

n−1∑
k=0

P ′
k(θ)�E

∗
k�

where P ′
k(θ) is the derivative, or the first difference, of the cmf.

We now show that E∗′
p(θ) is single-crossing +−. Let k̂ denote a mode of E∗

k such that

�E∗
k ≥ (≤)0 for k ≤ (≥)k̂. Suppose E∗′

p(θ) < 0 and consider some θ′ > θ. Let sk(θ�θ′) =
P ′
k(θ

′)/P ′
k(θ). Separating the sum, we obtain

E∗′
p(θ′) = −

∑
k≤k̂

P ′
k

(
θ′)�E∗

k −
∑
k>k̂

P ′
k

(
θ′)�E∗

k

= −
∑
k≤k̂

sk
(
θ�θ′)P ′

k(θ)�E
∗
k −

∑
k>k̂

sk
(
θ�θ′)P ′

k(θ)�E
∗
k

≤ −s
k̂

(
θ�θ′) ∑

k≤k̂

P ′
k(θ)�E

∗
k − s

k̂

(
θ�θ′) ∑

k>k̂

P ′
k(θ)�E

∗
k = s

k̂

(
θ�θ′)E∗′

p(θ) ≤ 0�

The first inequality follows from condition (ii) whereby sk(θ�θ
′) is increasing in k. Thus,

E∗′
p(θ) is single-crossing +− and, hence, E∗

p(θ) is unimodal.

Proof of Proposition 5. First, we prove that if f (x) is log concave (log convex), then
kbk is concave (convex) in k for k≥ 2. Integrating (3) by parts, we obtain

kbk = k(k− 1)
∫

F(x)k−2f (x)dF(x) = k

[
f (x)F(x)k−1|xx −

∫
F(x)k−1f ′(x)dx

]

= kf(x)− k

∫
F(x)k−1f ′(x)dx�

This gives the second difference:

�2(kbk)= (k+ 2)bk+2 − 2(k+ 1)bk+1 + kbk

=
∫

f ′(x)F(x)k−1[−(k+ 2)F(x)2 + 2(k+ 1)F(x)− k
]
dx

=
∫

f ′(x)F(x)k−1(1 − F(x)
)[
(k+ 2)F(x)− k

]
dx�

Suppose f (x) is log concave (when f (x) is log convex, the argument is similar). Then
f ′(x)/f (x) is decreasing. Let x̂ ∈ X denote a point such that F(x̂) = k/(k + 2). Splitting
the integral, we obtain

�2(kbk)=
∫ x̂

x

f ′(x)
f (x)

F(x)k−1(1 − F(x)
)[
(k+ 2)F(x)− k

]
dF(x)
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+
∫ x

x̂

f ′(x)
f (x)

F(x)k−1(1 − F(x)
)[
(k+ 2)F(x)− k

]
dF(x)

≤ f ′(x̂)
f (x̂)

∫ x̂

x
F(x)k−1(1 − F(x)

)[
(k+ 2)F(x)− k

]
dF(x)

+ f ′(x̂)
f (x̂)

∫ x

x̂
F(x)k−1(1 − F(x)

)[
(k+ 2)F(x)− k

]
dF(x)

= f ′(x̂)
f (x̂)

∫
F(x)k−1(1 − F(x)

)[
(k+ 2)F(x)− k

]
dF(x)�

The inequality follows because f ′(x)/f (x) is decreasing and the integrand is negative
(positive) for x ≤ (≥)x̂. Moreover, the inequality is strict when f ′(x)/f (x) is strictly de-
creasing. The last integral is∫ 1

0
zk−1[−(k+ 2)z2 + 2(k+ 1)z − k

]
dz = −(k+ 2)

∫ 1

0
zk+1 dz + 2(k+ 1)

∫ 1

0
zk dz

− k

∫ 1

0
zk−1 dz = −1 + 2 − 1 = 0�

Thus, �2(kbk) ≤ 0, i.e., kbk is concave.
Second, we compare E∗

p = k̄e∗
p to E∗

p′ = k̄e∗
p′ . This is equivalent to comparing e∗

p and
e∗
p′ , i.e., it is sufficient to compare Bp to Bp′ . Under the assumption p0 = p1 = 0, (4) can

be written as Bp = (1/k̄)Ep(KbK). Therefore, we are comparing Ep(KbK) to Ep′(KbK).
The result then follows from the definition of second-order stochastic dominance.

Proof of Proposition 6. Without disclosure, the expected aggregate effort in the
tournament is E∗

p = k̄e∗
p = k̄c′−1(Bp), where, from (4), Bp = E(bK̃). With disclosure, the

expected aggregate effort is E(Kc′−1(bK)), which can be rewritten as

E
(
Kc′−1(bK)

) =
n∑

k=1

pkkc
′−1(bk)= k̄

n∑
k=1

p̃kc
′−1(bk) = k̄E

(
c′−1(bK̃)

)
�

Thus, comparing E∗
p and E(Kc′−1(bK)) is equivalent to comparing c′−1(E(bK̃)) and

E(c′−1(bK̃)).
It follows that when bk is not constant in the support of K̃, and c′−1 is concave (con-

vex) and nonlinear for at least some distinct values of bk, disclosure is not optimal (op-
timal). The concavity (convexity) of c′−1 is equivalent to the convexity (concavity) of c′,
i.e., to the condition c′′′ ≥ (≤)0.

Proof of Proposition 7. We start by showing that condition (iii) guarantees the exis-
tence of a unique e∗

p solving (4). Recall that c′(·) is strictly increasing and c′(0) = 0. It
is, therefore, sufficient to show that c′(ē) > Bp. Representation (9) gives bk ≤ fm; there-
fore, Bp = E(bK̃) ≤ fm. Condition (iii) implies c′−1(fm) < c−1(1/E(K|K ≥ 1)) ≤ c−1(1);
therefore, fm < c′(c−1(1)) = c′(ē), which produces the desired result.

Next we use conditions (i) and (ii) to show that payoff function (2) is strictly concave
in ei. Let R(e) = ∑n

k=1 p̃k

∫
F(e − e∗ + x)k−1 dF(x) and suppose c′′(e) ≥ c0 > 0 on [0� ē].
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We need to show that R′′(e) < c0. For convenience, let �e = e − e∗. Differentiating R(e)

once, obtain

R′(e) =
n∑

k=1

p̃k(k− 1)
∫ x

x
F(�e+ x)k−2f (�e+ x)dF(x)� (17)

We need to evaluate the second derivative R′′(e). Note that the integrand in (17) is
nonzero only for x ∈ [max{x�x − �e}�min{x�x − �e}], and is continuous and piecewise
differentiable in this interval under our assumptions; however, the integrand may be
discontinuous on X . We, therefore, consider the cases when �e ≥ 0 and �e < 0 sepa-
rately.

(i) Suppose that �e≥ 0. Then the interval of integration in (17) is [x�x−�e] and

R′′(e) =
n∑

k=1

p̃k(k− 1)
[
(k− 2)

∫
F(�e+ x)k−3f (�e+ x)2 dF(x)

+
∫

F(�e+ x)k−2f ′(�e+ x)dF(x)− f (x)f (x−�e)

]

≤
n∑

k=1

p̃k(k− 1)
[
(k− 2)f 2

m + f ′
max

] ≤ E
(
K3)
k̄

f 2
m + E

(
K2)
k̄

f ′
max�

(ii) Suppose that �e < 0. Then the interval of integration in (17) is [x−�e�x] and

R′′(e) =
n∑

k=1

p̃k(k− 1)
[
(k− 2)

∫
U
F(�e+ x)k−3f (�e+ x)2 dF(x)

+
∫
U
F(�e+ x)k−2f ′(�e+ x)dF(x)+ F(x)k−2f (x)f (x−�e)

]

≤
n∑

k=1

p̃k(k− 1)
[
(k− 1)f 2

m + f ′
max

] = E
[
K(K − 1)2]

k̄
f 2
m + E

[
K(K − 1)

]
k̄

f ′
max�

Thus, D+ given by (12) is a bound such that c0 >D+ ensures R′′(e)− c0 < 0.
An alternative bound on R′′(e) can be obtained by transforming (17) via a change of

variable x+�e→ x into the form

R′(e) =
n∑

k=1

p̃k(k− 1)
∫ x

x
F(x)k−2f (x−�e)dF(x)� (18)

In this case the integrand is nonzero, continuous, and piecewise differentiable for x ∈
[max{x�x+�e}�min{x�x+�e}]. We consider the same two cases as above.

(i) For �e≥ 0, the interval of integration in (18) is [x+�e�x] and

R′′(e) =
n∑

k=1

p̃k(k− 1)
[
−

∫
F(x)k−2f ′(x−�e)dF(x)− F(x+�e)k−2f (x)f (x+�e)

]

≤ −
n∑

k=1

p̃k(k− 1)f ′
min = −E

[
K(K − 1)

]
k̄

f ′
min�
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(ii) For �e < 0, the interval of integration in (18) is [x�x+�e] and

R′′(e) =
n∑

k=1

p̃k(k− 1)
[
−

∫
F(x)k−2f ′(x−�e)dF(x)+ F(x+�e)k−2f (x)f (x+�e)

]

≤
n∑

k=1

p̃k(k− 1)
(
f 2
m − f ′

min
) = E

[
K(K − 1)

]
k̄

(
f 2
m − f ′

min
)
�

This produces bound D− in (12) such that c0 > D− implies R′′(e) − c0 < 0. Since both
bounds are valid, condition c0 > min{D+�D−} is sufficient.

Finally, we check the participation constraint. From (2) and (1), the equilibrium pay-
off is

π(i)
(
e∗
p�e

∗
p

) =
n∑

k=1

p̃k

∫
F(x)k−1 dF(x)− c

(
e∗
p

) = 1

k̄

n∑
k=1

pk − c
(
e∗
p

) = 1
E(K|K ≥ 1)

− c
(
e∗
p

)
�

where E(K|K ≥ 1) = ∑n
k=1 kpk/

∑n
k=1 pk is the expected number of players conditional

on there being at least one player in the tournament. Using the bound Bp ≤ fm derived
above and condition (iii), we obtain

E(K|K ≥ 1)c
(
e∗
p

) = E(K|K ≥ 1)c
(
c′−1(Bp)

) ≤ E(K|K ≥ 1)c
(
c′−1(fm)

)
< 1�

which gives π(i)(e∗
p�e

∗
p) > 0.
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innovation tournaments.” Operations Research, 65, 693–702. [1591]

Ales, Laurence, Soo-Haeng Cho, and Ersin Körpeoğlu (2019), “Innovation tournaments
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