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Random ambiguity

Jay Lu
Department of Economics, UCLA

We introduce a model of random ambiguity aversion. Choice is stochastic due
to unobserved shocks to both information and ambiguity aversion. This is mod-
eled as a random set of beliefs in the maxmin expected utility model of Gilboa
and Schmeidler (1989). We characterize the model and show that the distribution
of ambiguity aversion can be uniquely identified from binary choices. A novel
stochastic order on random sets is introduced that characterizes greater uncer-
tainty aversion under stochastic choice. If the set of priors is the Aumann expec-
tation of the random set, then choices satisfy dynamic consistency. This corre-
sponds to an agent who knows the distribution of signals but is uncertain about
how to interpret signal realizations. More broadly, the analysis of stochastic prop-
erties of random ambiguity attitudes provides a theoretical foundation for the
study of other random nonlinear utility models.

Keywords. Stochastic choice, ambiguity, random utility, updating.

JEL classification. D81, D83.

1. Introduction

In many economic situations, ambiguity aversion, i.e., aversion toward Knightian uncer-
tainty (Knight 1921), is useful for explaining behavior that cannot be easily addressed by
standard expected utility maximization. In practice, however, it is useful to model choice
behavior as stochastic due to unobserved heterogeneity in a population of agents or un-
observed shocks to a single agent’s preferences. In this paper, we provide a theory of
stochastic choice generated by random ambiguity.

To be concrete, consider a population of agents choosing between a safe and an un-
certain asset where prices are fixed. Agents have heterogeneous ambiguity attitudes.1

Those who are more ambiguity-averse choose the safe asset while those who are less
ambiguity averse choose the uncertain one.2 An analyst observes only the proportion of
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unknown state. For example, in Caballero and Krishnamurthy (2008), agents face an enlarged set of possible
priors during surprise defaults or bank runs and scramble for safe assets in a flight-to-quality.
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agents who choose each asset (i.e., stochastic choice), but not the distribution of ambi-
guity aversion. Our model shows how the analyst can uniquely identify this distribution
using stochastic choice from a rich set of binary options. This is an important exercise
if the analyst is a regulator deciding on optimal policy implementation (see Easley and
O’Hara 2009).

Alternatively, consider a single hiring manager faced with a pool of job applicants.
The manager conducts private interviews before deciding whether to hire each worker.
Hiring decisions depend on the information acquired from interviews as well as the
manager’s perceived ambiguity regarding each worker. An analyst observes only the hir-
ing rate (i.e., stochastic choice) of the manager, but not the distribution of interview out-
comes. Our model shows how the analyst can identify this distribution using stochastic
choice.

We introduce a model of stochastic choice and ambiguity that captures both exam-
ples. In the multiple-priors model of Gilboa and Schmeidler (1989), an agent evaluates
an option f by minimizing expected utility over a set K of possible beliefs about the
payoff-relevant state. The maxmin expected utility of the option f is given by

uK(f )= min
π∈K

π · (u ◦ f )�

In our random ambiguity model, the von Neumann–Morgenstern (vNM) utility u is
fixed, but the set of beliefs K is random. In other words, this is a random utility model
where the utilities are maxmin expected utilities that depend on K. The distribution of
ambiguity aversion is captured by the distribution of the random setK.

Our main results are as follows. First, we show that the distribution of the random set
K can be fully identified from stochastic choice from binary menus. We then introduce
a novel stochastic order on random sets that characterizes greater uncertainty aversion
in this context. Next, we show that if the ex ante set of priors is exactly the Aumann ex-
pectation ofK (i.e., the set of all priors consistent withK), then choice behavior satisfies
dynamic consistency. We also provide a full axiomatic characterization of the model.
Although we focus on the maxmin model due to its tractability, our analysis of stochas-
tic properties of random ambiguity attitudes provides a theoretical foundation for the
general study of random nonlinear utility.

Section 2.1 introduces the formal setup. Let S be a finite payoff-relevant state space.
An act is a state-contingent mapping from S to payoffs in the form of risky prospects.
Following Anscombe and Aumann (1963) and Seo (2009), we distinguish between ran-
domization that is ex ante (i.e., before the state is realized) and ex post (i.e., after the
state is realized). Formally, each choice option is a lottery, an ex ante mixture over acts.
The main primitive is a stochastic choice over menus of lotteries that specify the choice
probability for each lottery p in the menu A. In our model, the probability of choos-
ing a lottery p ∈ A is precisely the probability that p attains the highest utility in the
menu A. Since ambiguity is with respect to the state, ex ante mixtures are evaluated
using standard expected utility. Thus, this is a random utility model where utilities are
expected utilities with respect to ex ante randomization and maxmin with respect to ex
post randomization.
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Distinguishing between ex ante and ex post randomization in this stochastic choice
model provides several advantages. First, the use of ex ante randomization facilitates
the axiomatic characterization (see Section 3) as characterizing random utility in general
without additional structure is a known difficulty.3 Second, the use of lotteries over acts
allows for sharper identification results (Section 2.2) and cleaner comparative statics
(Section 2.3).

Section 2.2 considers identification. Theorem 1 shows that the distribution of the
random setK can be identified from simple binary menus where one option is constant
(i.e., yields the same payoff regardless of the state). This is achieved by leveraging the
richness of ex ante randomization. In the absence of ex ante randomization, identifi-
cation can still be achieved, but requires stochastic choice data beyond binary menus
(see Theorem 7 in the Appendix); this is possible despite the well known difficulties in
identifying models of random nonexpected utility (see Lin 2020).

Section 2.3 considers comparative statics. Call one stochastic choice more uncer-
tainty-averse than another if constant acts are chosen more frequently in the first than in
the second. Theorem 2 shows that greater uncertainty aversion is exactly characterized
by a novel stochastic order called stochastic c-dominance. A random set of beliefs is
greater than another in this order if it puts greater weight on all increasing, convex, and
closed families of beliefs. This notion is weaker than the standard stochastic order on
random sets that corresponds to first-order stochastic dominance with respect to set
inclusion.

In Section 2.4, we extend our model to address updating and dynamic consistency.
Consider a random set of beliefs K. If a random belief is always in the random set, then
we call it a posterior selection of K. Suppose the agent’s initial set of priors is the Au-
mann expectation of K, i.e., the set of priors of all posterior selections of K. This could
correspond to an agent who knows the distribution of signals but is uncertain about
how to interpret signal realizations. As a result, he has in mind a family of possible sig-
nal structures. Theorem 3 shows that if the agent’s ex ante preferences are represented
by a maxmin expected utility where the set of ex ante priors is the Aumann expectation,
then the agent satisfies dynamic consistency. This indicates that stochastic models of
ambiguity may suggest new approaches toward updating with multiple priors.

Section 3 provides the axiomatic characterization. The first axiom (monotonicity, ex
ante independence, ex ante extremeness, continuity) consists of conditions that charac-
terize random expected utility from Gul and Pesendorfer (2006). A novel axiom, ex post
hedging, characterizes stochastic aversion toward uncertainty. It states that adding an
act will not affect the choice of another act as long as a hedge option (i.e., mixture of the
two acts) is available in the menu. Certainty reversal of order states that when mixing
with constant acts, ex ante and ex post randomization are the same. This is because
constant acts involve no uncertainty, so the agent is indifferent to the timing of random-
ization. Finally, the last three axioms (certainty determinism, dominance, and nonde-
generacy) are conditions from the information representation of Lu (2016). Theorem 4
states that these axioms exactly characterize the random ambiguity model.

3For instance, compare the characterization of Falmagne (1978) with that of Gul and Pesendorfer (2006)
in the richer lottery setup. The use of ex ante randomization allows us to adopt the latter approach.
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Finally, in Section 4, we study the general stochastic properties of nonlinear random
utility. In the random ambiguity model, Bernoulli utilities are maxmin expected utility
and exhibit ambiguity aversion. As a result, ex post randomization is desirable and util-
ities are quasiconcave (with respect to ex post mixtures). We show that for random utili-
ties, quasiconcavity is exactly characterized by the ex post hedging axiom. Alternatively,
if the agent is ambiguity-loving, then ex post randomization is not desirable and utilities
are quasiconvex. For random utility, quasiconvexity is exactly characterized by the ex
post version of the extremeness axiom of Gul and Pesendorfer (2006). Theorem 5 thus
provides a characterization of quasiconcavity and quasiconvexity for random utilities.
We then apply the result to characterize betweenness for random utility (Corollary 1)
and ambiguity neutrality in our random ambiguity model (Corollary 2), where choice
is stochastic only due to information. More generally, these results provide a theoreti-
cal foundation for studying other stochastic ambiguity models beyond random maxmin
expected utility.

All proofs are provided in the Appendix unless stated otherwise.

1.1 Related literature

This paper is related to a long literature on stochastic choice and random utility. Early
seminal works include Block and Marschak (1960), McFadden and Richter (1990), and
Falmagne (1978). More recent works have leveraged enriched choice domains to obtain
more structured characterizations. These include Gul and Pesendorfer (2006), Ahn and
Sarver (2013), Fudenberg and Strzalecki (2015), Lu (2016), Lu and Saito (2018), Duraj
(2018), Frick et al. (2019), and Lin (2019).

In particular, this paper contributes to our understanding of random nonlinear util-
ity. Violations of linearity in a stochastic context have been well documented (see Becker
et al. 1963 and Kahneman and Tversky 1979). In Section 4, we study the stochastic prop-
erties of random nonlinear utility and provide characterizations of random quasicon-
cave and quasiconvex utility. Recently, Lin (2020) shows that contrary to random linear
utility, models of random nonlinear utility may lack unique identification.

Recent papers that have also studied ambiguity and stochastic choice include Fu-
denberg et al. (2015), Saito (2015), and Agranov and Ortoleva (2017). In all these models,
the agent deliberately randomizes over choice options due to a preference for ex ante
randomization. In contrast, the agent in our model has a preference for ex post random-
ization and any observed stochastic choice is due to random ambiguity. For stochastic
binary choices, Ryan (2018) characterizes a Fechner model of ambiguity aversion.

Epstein and Kopylov (2007) study a model of menu choice where a sophisticated
agent anticipates future shocks to ambiguity aversion. While their model is ex ante
where choices are due to the anticipation of cold feet shocks, our model is ex post where
choices are the direct result of such shocks. Seo (2009) considers a deterministic choice
model that also distinguishes between ex ante and ex post randomization. He also re-
laxes the reversal of order axiom and assumes the agent is impartial to ex ante random-
ization.

The paper is also related to a large literature on updating under ambiguity. Ap-
proaches include Gilboa and Schmeidler (1993), Sarin and Wakker (1998), Epstein and
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Schneider (2003), Hanany and Klibanoff (2007), and Siniscalchi (2011). When updating
with multiple priors, a tension arises between accommodating rich ambiguity attitudes
and satisfying dynamic consistency and consequentialism. We show that if the original
set of priors is the Aumann expectation of the random set of posteriors, then the agent
satisfies dynamic consistency and consequentialism. Thus, stochastic choice models
with random sets of beliefs may suggest new restrictions on updating under ambiguity.

Finally, this paper is related to a large literature on applications of heterogeneous
ambiguity aversion. Dow and da Costa Werlang (1992) and Epstein and Wang (1994)
study the effects of ambiguity aversion on market nonparticipation and asset prices.
Bose et al. (2006) investigate varying ambiguity aversion in an auction setting. Caballero
and Krishnamurthy (2008) study investors who receive random shocks to ambiguity
aversion due to surprise defaults or bank runs and scramble to safer assets in a phe-
nomenon called flight-to-quality. Easley and O’Hara (2009) study the role of regulation
in a heterogeneous population with different levels of ambiguity aversion. Epstein and
Schneider (2010) provide a review of various limited participation problems involving
heterogeneous ambiguity aversion.

2. A model of random ambiguity

2.1 Setup and model

Let S be a finite state space and let X be a finite set of prizes. Let �S and �X be their
respective probability simplexes. We interpret �S as the set of all beliefs about S and
interpret �X as the set of payoffs that consists of risky prospects. As in Anscombe and
Aumann (1963), an act corresponds to a state-contingent payoff f : S → �X . An act is
constant if f (s) is the same for all s ∈ S. Let H denote the set of all acts and let Hc ⊂H

denote the set of constant acts.
Following Anscombe and Aumann (1963) and Seo (2009), we consider lotteries (i.e.,

Borel probability measures) over acts. Let �H denote the set of all lotteries. Given an act
f ∈H, let δf ∈ �H denote the degenerate lottery that yields f for sure. We distinguish
between ex ante and ex post randomization. For instance, given two lotteries δf �δg ∈
�H and a ∈ [0�1], the mixture

p= aδf ⊕ (1 − a)δg ∈ �H

corresponds to ex ante mixing of payoffs where p yields the act f with probability a and
yields g with probability 1 − a. Since randomization occurs before the state is realized,
it is ex ante. Alternatively, given two acts f�g ∈H and a ∈ [0�1], the mixture

h= af + (1 − a)g ∈H

corresponds to ex post mixing of payoffs where h(s) = af (s) + (1 − a)g(s) for all states
s ∈ S. Here, randomization is ex post as it occurs after the state is realized.
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Call a finite set of lotteries a menu and let A denote the set of all menus. We endow
�H with the topology of weak convergence and endow A with the corresponding Haus-
dorff metric. Note that A is a mixture space under Minkowski mixing for ex ante ran-
domization.4 Stochastic choice corresponds to a choice distribution across all lotteries
in a menu. Let �(�H) denote the set of all choice distributions over lotteries.

Definition 1. A stochastic choice is a mapping ρ : A → �(�H) such that ρA(A)= 1 for
allA ∈ A.

For any menu A ∈ A and lottery p ∈A, ρA(p) specifies the probability that the lot-
tery p is chosen in the menu A. For binary menus A = {p�q}, we employ the more
succinct notation ρ(p�q)= ρA(p).

As with any model of random utility, there is a need to address ties. Following Lu
(2016), we model ties by relaxing the restriction that all choice probabilities have to
be fully specified. For example, if two lotteries p and q are tied, then the stochas-
tic choice does not specify choice probabilities for either p or q specifically. Formally,
we model this as nonmeasurability with respect to the choice probability and let ρ de-
note the corresponding outer measure without loss of generality.5 With this definition,
ρ(p�q)= ρ(q�p)= 1 whenever p and q are tied.

In the classic Raiffa (1961) critique, an agent who is ambiguity-averse may strictly
prefer randomization for hedging purposes. Differentiating between ex ante and ex
post randomization is one way the literature has resolved this issue (see Saito 2015).
Since ambiguity is with respect to the state, ex ante randomization that occurs before
the state is realized does not help. Stochastic choice adds a third layer of randomization,
as the agent can now deliberately randomize between acts (see Cerreia-Vioglio et al.
2019). However, since deliberate randomization also occurs before the state is realized,
an agent who is impartial to ex ante randomization would likely also be impartial to
deliberate randomization. Adopting this approach allows us to interpret any observed
stochastic choice as the result of random ambiguity rather than deliberate randomiza-
tion.

We now describe the random ambiguity model. Let K be the set of all nonempty
compact convex subsets of �S endowed with the Hausdorff metric. Note that K is
also a mixture space under Minkowski mixing. In the multiple-priors model of Gilboa
and Schmeidler (1989), maxmin expected utility is characterized by a von Neumann–
Morgenstern (vNM) utility u : �X → R and a set of beliefsK ∈ K. Formally, the expected
utility of an act f ∈H given a belief π ∈ �S is

π · (u ◦ f )=
∑
s

π(s)u
(
f (s)

)
�

4The Minkowski mixture of two menusA�B ∈ A and a ∈ [0�1] is given by aA⊕ (1 −a)B= {ap⊕ (1 −a)q :
p ∈A�q ∈ B}.

5Stochastic choice naturally subsumes a σ-algebra B on �H. Given any menuA ∈ A, the corresponding
choice distribution ρA is a measure on the σ-algebra generated by B ∪ {A}. We let ρ denote the outer
measure with respect to this σ-algebra without loss. For details, see Lu (2016).
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Maxmin expected utility evaluates each act according to the worst possible belief in the
setK ∈ K. In other words, the maxmin expected utility of an act f is given by

uK(f ) := min
π∈K

π · (u ◦ f )�

We extend the utility to lotteries by defining the expected utility UK(p) := ∫
H uK(f )dp,

where the Bernoulli utility uK(·) is maxmin. Note that this implies that the agent is in-
different to ex ante randomization as in Seo (2009).

In our model, choice is stochastic due to unobserved shocks to both information
and ambiguity attitudes. We model this by allowing the set of beliefs K to be random.
Formally, let μ be a Borel probability measure on K with the σ-algebra induced by the
Hausdorff metric. A random element taking values in K with distribution μ is called a
random set.

Given a vNM utility u, a distribution μ is regular if the utilities of two options are
either always or never equal, i.e., UK(p) = UK(q) with probability 0 or 1. This relaxes
the standard restriction in standard random utility models that assumes that utilities
are never equal. Going forward, let (μ�u) consist of a regular distribution μ and a non-
constant u. Define a random ambiguity representation as follows.

Definition 2 (Random ambiguity). Stochastic choice ρ is represented by (μ�u) if

ρA(p)= μ({
K ∈ K :UK(p)≥UK(q) for all q ∈A})

�

This is a random utility model where the random Bernoulli utilities are maxmin ex-
pected utilities that depend on the random set of beliefsK. The probability of choosing
p ∈A is precisely the probability that p attains the highest utility in the menuA.

In the group interpretation of the model, there is a population of maxmin agents,
and stochastic choice reflects unobserved heterogeneity in both information and am-
biguity in the population. This heterogeneity is captured by μ, which is the popula-
tion distribution of sets of priors.6 For example, suppose f corresponds to a safe asset
(e.g., a constant act), while g corresponds to an asset with uncertain payoffs. In this
case, ρ(δf �δg) reflects the proportion of agents in the population who are sufficiently
ambiguity-averse (i.e., large enough sets of priors) that they choose the safe asset over
the uncertain asset.

In the individual interpretation of the model, there is a single maxmin agent, and
stochastic choice reflects the agent’s private information and ambiguity attitudes. This
is captured by μ, which is a distribution of signals where each signal realization cor-
responds to a set of priors for the agent. Choice frequencies can be calculated from
repeated choices over a series of independent decisions or over time. For example, sup-
pose the agent is a hiring manager, and the acts f and g correspond, respectively, to

6Note that in the maxmin model, the size of the set of priors can be interpreted either as the magnitude
of ambiguity aversion or the amount of perceived subjective uncertainty about the state. Ghirardato et al.
(2004) show that the two interpretations can be distinguished with additional restrictions on choice data.
A similar exercise can be performed here.
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hiring and not hiring a worker from a pool of job applicants. In this case, ρ(δf �δg) re-
flects the hiring rate of the manager, which depends on ambiguity attitudes as well as
private information gleaned from interviews. Alternatively, suppose f corresponds to
constant consumption every period, while g corresponds to uncertain consumption ev-
ery period. In this case, ρ(δf �δg) reflects the time-averaged long-run frequency that the
agent is sufficiently ambiguity-averse and chooses constant consumption (see Lu and
Saito 2020).

The following examples are two special cases of the random ambiguity model. In
the first example, information is fixed but ambiguity attitudes are random, while in the
second, ambiguity attitudes are fixed but information is random.

Example 1. Suppose the random set of beliefs satisfies

K = (1 − ε){π} + εJ�

where ε ∈ [0�1] is a random parameter, π ∈ �S is a fixed belief, and J ∈ K is a fixed set
of beliefs such that π ∈ J. This is a simple one-dimensional parametrization of random
ambiguity aversion where εmeasures the dispersion of beliefs from the fixed belief π. It
is a stochastic version of the classic ε-contamination model that has been widely used
in robust statistics.7 Note that given this parametrization of K, it is straightforward to
rewrite the maxmin expected utility as

uK = u{π} − ε(u{π} − uJ)�

The random utility can be thus decomposed into a fixed subjective expected utility u{π}
minus a stochastic cost of ambiguity aversion ε(u{π} −uJ). If we interpret ε as the magni-
tude of ambiguity aversion, then choice is stochastic due to random ambiguity aversion,
while information is fixed. ♦

Example 2. Suppose K is a singleton almost surely or, in other words, K = {π}, where
π is a random belief in �S. In this case, the maxmin expected utility of p,

UK(p)=
∫
H
π · (u ◦ f )dp= π · (u ◦ fp)�

is just the subjective expected utility of fp := Ep[f ], the average act under p. As a result,

ρA(p)= μ({
π ∈ �S : π · (u ◦ fp)≥ π · (u ◦ fq) for all q ∈A})

�

In this example, choice is stochastic due to information, while the agent is ambiguity-
neutral. Note that this corresponds to the information representation of Lu (2016).
Corollary 2 in Section 4 provides a characterization of this special case. ♦

7It was even suggested by Ellsberg (1961) as a simple functional form to address his namesake paradox.
See Gajdos et al. (2008) and Kopylov (2009) for axiomatic characterizations of deterministic models of ε-
contamination.
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2.2 Identifying random ambiguity

We now consider the uniqueness properties of the random ambiguity model. Recall
that an act is constant if it yields the same payoff in every state (e.g., a safe asset such
as a bond). Theorem 1 below shows that it is possible to identify the utility u and the
distribution μ using binary choices where one of the options is a degenerate constant
act.

Theorem 1. Let ρ and τ be represented by (μ�u) and (ν� v) respectively. Then the follow-
ing statements are equivalent:

(i) We have ρ(δf �p)= τ(δf �p) for all constant f ∈H and p ∈ �H.

(ii) We have μ= ν and u= αv+β for α> 0.

We now provide a brief outline of the proof. Since identifying u is straightforward
from constant acts, we focus on identifying μ. First, note that we can rewrite maxmin
expected utility as

uK(f )= 1 − σK(1 − u ◦ f )�
where σK(w) := maxπ∈K π ·w is the support function of K evaluated at w ∈ RS . Support
functions are thus the dual of maxmin expected utility and identifying μ is equivalent
to identifying the distribution of support functions. In the model, comparing a lottery p
with a constant act δf corresponds to comparing the expectation p · σK and a constant.
Thus, pinning down all such binary choices is equivalent to pinning down the distribu-
tion of all expectations of support functions. By using the Stone–Weierstrass theorem,
we prove an infinite-dimensional version of the Cramér–Wold theorem to show that the
distribution of support functions is uniquely determined by the distribution of their ex-
pectations. Finally, uniqueness follows from the one-to-one mapping between a set K
and its support function σK . The following example provides an illustration.

Example 3. Suppose there are two states S = {s1� s2} and X = {0�1}, and assume u(x)=
x for simplicity. Now any set of priors is identified with two beliefs π� π̄ ∈ [0�1] (about
s1) such that

K = {
π ∈ [0�1] : π ≤ π ≤ π̄}

�

Let g be the act that yields (1�0) (i.e., 1 in state s1 and 0 in state s2), let h be the act that
yields (0�1), and let p = aδg ⊕ (1 − a)δh. For instance, g is an asset that only pays out
in the first state, h is an asset that only pays out in the second state, and p is a lottery
between the two assets. Note that randomization here is ex ante and occurs before the
state is realized. Let f be a constant act that yields c for sure (e.g., yields 1 with probabil-
ity c and 0 otherwise). For instance, f could be a safe asset. In this case, the probability
of choosing the safe asset over the lottery is given by

ρ(δf �p)= μ({
K ∈ K :UK(δf )≥UK(p)

})
= μ({

K ∈ K : uK(f )≥ auK(g)+ (1 − a)uK(h)
})

= P
({
c ≥ aπ + (1 − a)π̄})

�
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Since π and π̄ are positive, their joint distribution is uniquely determined by the distri-
bution of their affine combinations. ♦

The above example illustrates how the richness of ex ante randomization is lever-
aged for identification. This is similar to identification results involving binary menus
in other domains, such as Lu (2016) and Lu and Saito (2018, 2020). The last paper also
proves an infinite-dimensional version of the Cramér–Wold theorem; while they achieve
this by focusing on the compact set of Lipschitz continuous functions, we focus on the
compact set of support functions.

When the richness of ex ante randomization cannot be leveraged, identification re-
quires richer choice data. For instance, in the exercise in Example 3, restricting choice
options to degenerate acts identifies only the marginal distributions of π and π̄, but not
their joint distribution. Intuitively, ex ante lotteries allow us to evaluate the entire sup-
port function, while in the absence of ex ante lotteries, support functions can only be
evaluated at two points in binary comparisons. Identification, however, can be achieved
by looking at stochastic choice over all menus (see Theorem 7 in the Appendix); this
is possible despite the well known difficulties in identifying models of random nonex-
pected utility (see Lin 2020).

2.3 Comparing stochastic ambiguity

We now study comparative statics of the random ambiguity model. We introduce a
new stochastic order over sets that corresponds to greater uncertainty aversion under
stochastic choice. One stochastic choice is more uncertainty-averse than another if con-
stant acts are chosen more frequently in the former than the latter.

Definition 3. Stochastic choice ρ is more uncertainty-averse than τ if ρA(δf )≥ τA(δf )
for all constant f ∈H andA ∈ A.

We now introduce a new stochastic order over sets. A family of sets of beliefs J ⊂
K is increasing if K ⊃ J ∈ J implies K ∈ J . A distribution μ of sets stochastically c-
dominates (or convex-dominates) another distribution ν if μ puts greater weight than ν
on all increasing, convex, and closed families of sets.

Definition 4. Distributionμ stochastically c-dominates ν, that isμ≥c ν, ifμ(J )≥ ν(J )
for all increasing, convex, and closed J ⊂ K.

The standard stochastic order comparing sets asserts that μ stochastically domi-
nates ν if μ puts greater weight than ν on all increasing and closed families of sets,
i.e., μ(J )≥ ν(J ) for all increasing J ⊂ K. This is first-order stochastic dominance with
respect to set inclusion and is equivalent to the existence of two random sets K1 and
K2 with marginal distributions or laws μ and ν, respectively, such that K2 ⊂ K1 almost
surely. This equivalence is known as Strassen’s theorem (see Theorem 4.41 of Molchanov
2005). The c-dominance stochastic order further requires that the families of sets have
to be convex. Our notion of stochastic c-dominance is thus weaker than the standard
stochastic dominance as the following example illustrates.
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Example 4. Suppose there are two states S = {s1� s2} and let πi be the degenerate belief
on state si for i ∈ {1�2}. Let μ= 1

2δ{ 1
2π1+ 1

2π2} + 1
2δ�S and ν = 1

2δ{π1} + 1
2δ{π2}. It is straight-

forward to show thatμ≥c ν. To see whyμ does not dominate ν in the standard stochastic
ordering, consider

J := {K ∈ K : π1 ∈K or π2 ∈K}�
Note that J is closed and increasing, but not convex (e.g., {π1}� {π2} ∈ J , but { 1

2π1 +
1
2π2} /∈ J ). Since μ(J )= 1

2 < 1 = ν(J ), μ does not dominate ν in the standard stochastic
order. ♦

The following result shows that greater uncertainty aversion is exactly characterized
by c-dominance.

Theorem 2. Let ρ and τ be represented by (μ�u) and (ν� v) respectively. Then ρ is more
uncertainty-averse than τ if and only if μ≥c ν and u= αv+β for α> 0.

Under deterministic maxmin expected utility, more uncertainty aversion corre-
sponds to having a larger set of priors. Extending to stochastic choice, one may ex-
pect this to correspond to having a larger set of priors almost surely, i.e., the standard
stochastic dominance for sets. Theorem 2 shows that this is not the case. Consider Ex-
ample 4 and suppose ρ has distribution μ= 1

2δ{ 1
2π1+ 1

2π2} + 1
2δ�S , while τ has distribution

ν = 1
2δ{π1} + 1

2δ{π2}. Suppose both have the same utility u and consider some act f . If
u(f (s2))≥ u(f (s1)), then

u{π1}(f )= u(f (s1)) ≥ min
{
u
(
f (s1)

)
�u

(
f (s2)

)} = u�S(f )

u{π2}(f )= u(f (s2)) ≥ 1
2
u
(
f (s1)

) + 1
2
u
(
f (s2)

) = u{ 1
2π1+ 1

2π2}(f )�

The case for u(f (s2))≤ u(f (s1)) is symmetric, so maxmin expected utility under ν first-
order stochastically dominates maxmin expected utility under μ. This argument easily
extends to menus of lotteries, so ρ is more uncertainty-averse than τ despite μ not dom-
inating ν in the standard stochastic order (see Example 4).

To understand the gap between greater uncertainty aversion and the standard
stochastic order over sets, suppose ρ and τ reflect the stochastic choice of two popu-
lations. If, for every agent in the first group, there is a corresponding agent in the second
group with a smaller set of priors, then the first group is obviously more uncertainty-
averse than the second group. The converse, however, is not true as demonstrated
above. While the agent with the set of priors �S is larger than both {π1} and {π2}, the
agent with the singleton set { 1

2π1 + 1
2π2} is larger than neither. Nevertheless, his evalu-

ation of an act is always lower than that of either {π1} or {π2}, so ρ is more uncertainty-
averse than τ.

When μ= δK and ν = δJ are degenerate, c-dominance and standard dominance co-
incide, and both are equivalent to K ⊂ J. Theorem 2 is a generalization of correspond-
ing results under deterministic choice (see Theorem 17(ii) of Ghirardato and Marinacci



550 Jay Lu Theoretical Economics 16 (2021)

2002). Note that stochastic choice allows for a bit more flexibility and subtlety in com-
paring random sets. As in the deterministic counterpart, the order is incomplete, as
some random sets are incomparable.

Our characterization of greater uncertainty aversion relies on the richness of ex ante
randomization. In the absence of ex ante lotteries, characterizing greater uncertainty
aversion leads to a different (weaker) stochastic order than c-dominance. This would
allow for more comparisons between random sets and lead to coarser comparative stat-
ics.8

2.4 Updating and dynamic consistency

The random ambiguity model is silent on the interpretation of priors and updating rules.
In the classic model of information where the random set is always a singleton belief
(Example 2), μ is simply a distribution over posterior beliefs. Under Bayesian updating,
the prior is the expectation of posterior beliefs. We now extend this definition to random
sets of posterior beliefs and consider updating.

Let ν be a distribution on�S. A random element taking values in�Swith distribution
ν is called a random belief. Note that a random belief is a special case of a random set
where the set takes on only singleton values, i.e.,K = {π} almost surely. Random beliefs
correspond to the classic way to model information. If ν is the distribution of a random
belief, then Bayes’ rule dictates that its expectation

Eν[π] :=
∫
�S
π dν (1)

is exactly the prior Eν[π] ∈ �S.
We call a random belief a posterior selection of a random set if it is contained in the

random set almost surely. The formal definition is as follows.

Definition 5. Let π be a random belief with distribution ν and let K be a random set
with distribution μ. Then π is a posterior selection ofK if there exists a probability law η

on �S×K such that the following statements hold:

(i) The marginals of η on �S and K are ν and μ, respectively.

(ii) We have π ∈K almost surely with respect to η.

Given a random set with distributionμ, let�(μ) denote the family of all distributions
of its posterior selections. In other words, if a random belief with distribution ν is a
posterior selection of a random set with distribution μ, then ν ∈�(μ).

Consider a random set with distribution μ. Since every posterior selection is a ran-
dom belief, we can calculate its prior Eν[π]. The prior set of μ is the family of priors of all
posterior selections of the random set. This is known as the Aumann (1965) expectation
of the random set.

8Consider Example 4, but now let ν = 1
2δK1 + 1

2δK2 , where Ki for i ∈ {1�2} is the set of priors where the

belief on si is greater than 1
2 . In this case, μ dominates ν in this weaker order, but μ�c ν.
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Definition 6. The prior set of μ is denoted by

Eμ[K] := {
Eν[π] : ν ∈�(μ)}�

It is straightforward to see that Eμ[K] is convex and compact, so Eμ[K] ∈ K.9 We can
also write the prior set as

Eμ[K] =
∫
K
Kdμ� (2)

where the integral is taken as the limit of Minkowski averages. This is known as the De-
breu (1967) expectation and is equivalent to the Aumann expectation for random com-
pact convex sets in Euclidean space (see Theorem 1.26 of Molchanov 2005). Note that (2)
is the generalization of Bayes’ rule from (1) to sets. When the agent is ambiguity-neutral
so that the random set is a random belief, the prior set Eμ[K] = {Eν[π]} coincides with
the singleton prior as in the standard Bayesian model of information.

What is a natural interpretation of the prior set being the Aumann expectation of a
random set of posteriors? The following example provides an illustration.

Example 5. Suppose there are two states S = {s1� s2} and two possible signal realizations
�= {θ1� θ2}. A signal structure is a joint distribution on S ×�. We can express this as a
matrix T ∈ RS×�, where Tij is the probability of (si� θj) for i� j ∈ {1�2}. Consider the four
signal structures

T1 =

⎛
⎜⎜⎝

1
2

1
8

0
3
8

⎞
⎟⎟⎠ T2 =

⎛
⎜⎜⎝

1
2

3
8

0
1
8

⎞
⎟⎟⎠ T3 =

⎛
⎜⎜⎝

0
1
8

1
2

3
8

⎞
⎟⎟⎠ T4 =

⎛
⎜⎜⎝

0
3
8

1
2

1
8

⎞
⎟⎟⎠ �

Suppose the agent believes the true signal structure can be any convex combination of
these four. Note that while the prior on S may vary across the signal structures, the dis-
tribution of signal realizations on � is always 50–50. Now, conditional on θ1, the agent’s
belief (about s1) is in the entire set [0�1], while conditional on θ2, his belief is in the set
[ 1

4 �
3
4 ]. Thus, μ = 1

2δ[0�1] + 1
2δ[ 1

4 �
3
4 ]. The set of possible priors is [ 1

8 �
7
8 ]. From (2), this is

exactly equal to

Eμ[K] = 1
2
[0�1] + 1

2

[
1
4
�

3
4

]
�

which is the Aumann expectation. ♦

Example 5 provides a natural setup where a set of priors is exactly the Aumann ex-
pectation of a random set. We leave the interpretation of signal structures open; they
can be purely subjective to the agent or they can correspond to objective pieces of in-
formation. Note that they all generate the same distribution of signal realizations (in�);
this is consistent with a repeated choice interpretation of stochastic choice where the
agent eventually learns the true signal distribution.

9This follows from the fact that �(μ) is a convex compact set (Proposition 2.21 of Molchanov 2005).
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In the example, if we considered only signal structures that are combinations of T2

and T3, then the analysis would be the same. This is not true if we considered only
combinations of T1 and T4; μwould still be 1

2δ[0�1] + 1
2δ[ 1

4 �
3
4 ], but the set of possible priors

would be [ 3
8 �

5
8 ], which is a strict subset of the Aumann expectation. This is because while

combinations of T2 and T3 and combinations of T1 and T4 both generate the sameμ, the
former is more uncertain from an ex ante perspective, as it is consistent with a larger set
of possible priors. The Aumann expectation corresponds to the largest set of possible
priors for all signal structures consistent with μ.

We now show that interpreting the prior set as the Aumann expectation of a random
set of beliefs satisfies dynamic consistency. Consider a preference relation � on �H. We
interpret � as representing ex ante preferences before the agent receives any informa-
tion. The agent satisfies dynamic consistency if his ex ante preference is consistent with
his stochastic choice.

Definition 7. Preference relation � and stochastic choice ρ satisfy dynamic consis-
tency if ρ(p�q)= 1 implies p� q.

Dynamic consistency implies that whenever the agent chooses p over q for sure,
then he prefers p over q ex ante. This is a relatively weak notion of consistency in that
it considers only events that occur with probability 1 under stochastic choice. We say
that � is represented by (K�u) if it is represented by a maxmin expected utility with a
(deterministic) prior setK ∈ K and a nonconstant vNM utility u.

Theorem 3. If � and ρ are represented by (Eμ[K]�u) and (μ�u), respectively, then they
satisfy dynamic consistency.

Proof. The support function of the Aumann expectation is the expectation of the sup-
port function of the random set (see Theorem 1.26 of Molchanov 2005). This implies
that

UEμ[K](p)=
∫
K
UK(p)dμ�

Since ρ(p�q) = 1, UK(p) ≥ UK(q) almost surely, so UEμ[K](p) ≥ UEμ[K](q). Thus, p � q
as desired.

In this model, ex ante preferences are exactly captured by maxmin expected utility
where the set of prior beliefs is given by the Aumann expectation of the random set of
posteriors. Since the Aumann expectation preserves linearity with respect to Minkowski
mixing, this stochastic model of updating under ambiguity preserves dynamic consis-
tency and consequentialism. Note that updating in this form is not necessarily prior-by-
prior and signals are not necessarily partitional.10 Modeling random sets of beliefs can
thus suggest new restrictions on updating behavior.

10When signals are partitional, the Aumann expectation satisfies the rectangularity condition of Epstein
and Schneider (2003).
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3. Characterization

We now provide an axiomatic characterization of the random ambiguity model. First,
we leverage ex ante randomization to obtain a random (ex ante) expected utility rep-
resentation. We then impose conditions to ensure that the random (ex post) Bernoulli
utilities are maxmin expected utilities.

The first axiom (Axiom 1) consists of four conditions from Gul and Pesendorfer
(2006) with respect to ex ante randomization. Monotonicity ensures that the probability
an option is chosen is decreasing in the size of the menu and is necessary for any ran-
dom utility model. Ex ante independence is the standard independence axiom applied
to ex ante randomization. A lottery p ∈A is (ex ante) extreme in A if it is not in the inte-
rior of the convex hull (with respect to ex ante randomization) ofA. Let ext⊕(A) denote
the set of extreme lotteries ofA. Ex ante extremeness asserts that ex ante randomization
is not helpful, so only extreme lotteries are chosen, barring ties. Continuity says that
the stochastic choice mapping restricted to the domain A◦ ⊂ A of menus without ties is
continuous.

Axiom 1.1 (Monotonicity). For all p ∈A⊂ B andA�B ∈ A, ρA(p)≥ ρB(p) .

Axiom 1.2 (Ex ante independence). For all p ∈ A ∈ A, q ∈ �H, and a > 0, ρA(p) =
ρaA⊕(1−a)q(ap⊕ (1 − a)q).
Axiom 1.3 (Ex ante extremeness). For allA ∈ A, ρA(ext⊕(A))= 1.

Axiom 1.4 (Continuity). The mapping ρ : A◦ → �(�H) is continuous.

The next axiom is the stochastic analog to uncertainty aversion and preference for
hedging. To illustrate, consider two acts f and g, and the ex post mixture h= af+(1−a)g
for a ∈ (0�1). Note that h is the hedge option. For deterministic preferences, uncertainty
aversion means that h is ranked higher than the worst of f and g. This implies four
possible preference rankings:

f � h� g g� h� f
h� f � g h� g � f�

Among the four rankings, f is preferred to both g and h if and only if f is preferred to
just h. For stochastic preferences, this means that the probability of choosing f over
both g and h is the same as the probability of just choosing f over h. In other words, one
can ignore the other option g when the hedge option h is available.

Axiom 2 (ex post hedging) generalizes this concept. Removing an option does not
affect the choice of another option as long as the hedge option (i.e., mixture of the two
options) is available. In Section 4, we show that this axiom characterizes random qua-
siconcave utility and is exactly the stochastic analog of convex preferences in the deter-
ministic setting. We use the notation δF to denote the menu of degenerate acts

δF := {δf : f ∈ F}
for any finite set of acts F ⊂H.
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Axiom 2 (Ex post hedging). For any f ∈ F and g ∈H, if af + (1 − a)g ∈ F , then ρδF (δf )=
ρδF∪{g}(δf ).

An interesting implication of ex post hedging combined with monotonicity is that an
option is chosen less frequently when other options are “closer” to it via randomization.
To illustrate, consider h= af + (1 − a)g as before, so the act f is closer to h than it is to g.
If we let F = {f�h�g}, then by ex post hedging and monotonicity,

ρ(δf �δh)= ρδF (δf )≤ ρ(δf �δg)�

Thus, the act f is chosen less frequently when other acts are closer. This is the stochas-
tic analog of uncertainty aversion under deterministic choice, i.e., f � h implies f � g.
Note, however, that this is weaker than ex post hedging and is insufficient to ensure the
random utility is quasiconcave.

The next axiom relaxes reversal of order and states that the agent does not distin-
guish between ex ante and ex post randomization when mixing with constant acts. To
illustrate, recall that under maxmin expected utility, deterministic preferences satisfy
the independence axiom when mixed with constant acts (the certainty-independence
axiom of Gilboa and Schmeidler 1989). In other words, if δf is indifferent to δg, then
δaf+(1−a)h is also indifferent to δag+(1−a)h for any constant h. Suppose g is also constant
and the agent is indifferent to timing whenever there is no uncertainty. Since constant
acts convey no uncertainty, δag+(1−a)h is indifferent to aδg ⊕ (1 − a)δh. Finally, since the
agent satisfies the independence axiom for ex ante randomization,

aδf ⊕ (1 − a)δh ∼ aδg ⊕ (1 − a)δh ∼ δaf+(1−a)h�

Axiom 3 (certainty reversal of order) extends this reasoning for stochastic choice. It
states that ex post and ex ante randomization with a constant act are interchangeable
in binary comparisons.

Axiom 3 (Certainty reversal of order). If h ∈H is constant, then for any f ∈H and p ∈
�H,

ρ
(
aδf ⊕ (1 − a)δh�p

) = ρ(δaf+(1−a)h�p)�

The last three axioms are conditions from the information representation of Lu
(2016). Axiom 4 (certainty determinism) states that choice is deterministic over menus
consisting of constant acts. It ensures that all stochasticity is due to ambiguity attitudes
or information. We say the menu δF is constant if F consists only of constant acts.

Axiom 4 (Certainty determinism). For all constant δF , ρδF (δf ) ∈ {0�1}.

Axiom 5 (dominance) states that if an act is the best regardless of which state occurs,
then it must be chosen for sure. It is the stochastic analog of the standard state mono-
tonicity axiom necessary for maxmin expected utility. Given f ∈H and s ∈ S, let fs ∈Hc
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denote the constant act such that fs(s′)= f (s) for all s′ ∈ S. Given finite F ⊂H, let

Fs := {fs : f ∈ F}
denote the set of constant acts in state s ∈ S. Note that the menu δFs is constant.

Axiom 5 (Dominance). If ρδFs (δfs )= 1 for all s ∈ S, then ρδF (δf )= 1 for any f ∈ F .

Finally, nondegeneracy rules out the trivial case of universal indifference.

Axiom 6 (Nondegeneracy). There exists F and some f ∈ F such that ρδF (δf ) < 1.

We are now ready to present the main representation result.

Theorem 4. Stochastic choice ρ satisfies Axioms 1–6 if and only if it is represented by
(μ�u).

The primary difficulty of the proof lies in the construction of a random utility rep-
resentation. Incorporating ex ante randomization in our setup allows us to leverage the
random expected utility characterization of Gul and Pesendorfer (2006). Intuitively, lin-
earity lowers the dimensionality of the space of possible utilities, allowing for a simpler
axiomatization. In the absence of ex ante randomization, a clean and intuitive char-
acterization of random nonlinear utility would be difficult without imposing additional
parametric restrictions.11

The Gul and Pesendorfer (2006) characterization involves lotteries over a finite-
dimensional set, while we have lotteries over the set of all acts, an infinite-dimensional
set. Lu and Saito (2020) provide an infinite-dimensional extension of random expected
utility, but the extension applies when utilities are Lipschitz continuous with common
bound. The main insight of the proof is that our axioms are sufficient for Lipschitz
continuity (see Step 3 in Appendix A.4). Once a random utility representation is estab-
lished, it is straightforward to show that our axioms imply that the random utility must
be maxmin expected utility almost surely. It is worth pointing out that this approach can
be used to obtain characterizations of other ambiguity representations beyond maxmin
expected utility (e.g., a random Choquet expected utility).

4. Stochastic ambiguity attitudes

In this section, we study the general stochastic properties of nonlinearity in models of
random utility. For simplicity, we focus exclusively on ex post randomization in this
section.

In the random ambiguity model, Bernoulli utilities are maxmin expected utilities
and exhibit ambiguity aversion. As a result, ex post randomization is desirable and utili-
ties are quasiconcave. We show that for random utilities, quasiconcavity is exactly char-
acterized by ex post hedging. Alternatively, if the agent is ambiguity-loving, then ex post

11Of course, one can always directly impose the Block–Marschak inequalities.
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randomization is not desirable and utilities are quasiconvex. We show that for random
utilities, quasiconvexity is exactly characterized by the ex post version of the extreme-
ness axiom (Axiom 1.3). Our results thus provide a theoretical foundation for studying
other stochastic ambiguity models beyond random maxmin expected utility.

We say a stochastic choice is ex post hedging if it satisfies Axiom 2 above.

Definition 8. Stochastic choice ρ is ex post hedging if af + (1 − a)g ∈ F implies
ρδF (δf )= ρδF∪{g}(δf ) for any f ∈ F and g ∈H.

We can weaken ex post hedging to ex post mixture-loving, which applies only
to menus that contain two acts and their mixture. Note that when there is a one-
dimensional ordering, this is exactly the strong centrality axiom of Apesteguia et al.
(2017) that characterizes single-peakedness.

Definition 9. Stochastic choice ρ is ex post mixture-loving if h= af + (1 − a)g implies
ρδ{f�h}(δf )= ρδ{f�h�g}(δf ) for any f�g ∈H.

Alternatively, ex post randomization would not be attractive for an ambiguity-loving
agent. As a result, ex post mixtures of acts are never chosen in any menu. An act f ∈ F is
(ex post) extreme in a finite F ⊂H if it is not in the interior of the convex hull of F . Let
ext(F) denote the set of extreme acts of F . Ex post extremeness asserts that only extreme
acts are chosen, barring ties.

Definition 10. Stochastic choice ρ is ex post extreme if ρδF (δext(F)) = 1 for all finite
F ⊂H.

We can weaken ex post extremeness to the following model, which applies only to
menus that contain two acts and their mixture.

Definition 11. Stochastic choice ρ is ex post mixture-averse if ρδ{f�af+(1−a)g�g}({δf �δg})=
1 for all f�g ∈H.

We now consider a general random utility model that may be ambiguity-averse or
ambiguity-loving. Let V be the set of continuous utilities v :H → R and let ν be a prob-
ability measure on V . We say that ρ is represented by ν if

ρδF (δf )= ν({v ∈ V : v(f )≥ v(g) for all g ∈ F})
�

For instance, in the random ambiguity model, ν is a distribution on maxmin expected
utilities. We can now define quasiconcave and quasiconvex as stochastic properties of
the random utility.

Definition 12. The utility distribution ν has the following properties:

(i) It is quasiconcave if v(f )≥ v(g) implies v(af + (1 − a)g)≥ v(g) almost surely.

(ii) It is quasiconvex if v(f )≥ v(g) implies v(f )≥ v(af + (1 − a)g) almost surely.
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The main result of this section shows that random quasiconcave utilities are char-
acterized by ex post hedging (or mixture loving), while random quasiconvex utilities are
characterized by ex post extremeness (or mixture aversion). For simplicity, assume ν
excludes ties, i.e., v(f )= v(g) occurs with zero probability.12

Theorem 5. Let ρ be represented by ν that excludes ties.

(i) Distribution ν is quasiconcave if and only if ρ is ex post mixture-loving if and only
if ρ is ex post hedging.

(ii) Distribution ν is quasiconvex if and only if ρ is ex post mixture-averse if and only if
ρ is ex post extreme.

Theorem 5 states that ex post hedging (or mixture loving) and ex post extremeness
(or mixture aversion) are exactly the stochastic properties that characterize quasicon-
cavity and quasiconvexity, respectively, for random utilities. Hedging and extremeness
are dual properties: while the former focuses on hedge options, the latter focuses on
extreme options. Recall that for deterministic preferences, a utility is quasiconcave if
and only if the preference relation it represents is convex.13 Thus, ex post hedging (or
mixture loving) is exactly the stochastic choice analog of convex preferences.

When stochastic choice is both ex post mixture-loving and -averse, we say it is ex post
mixture-neutral. A random utility ν satisfies betweenness if it is both quasiconcave and
quasiconvex, i.e., the random utilities satisfy betweenness almost surely.14 The following
characterization of random betweenness is immediate from Theorem 5.

Corollary 1. Let ρ be represented by ν that exclude ties. Then ν satisfies betweenness if
and only if ρ is ex post mixture-neutral.

The most well known case of a random utility that satisfies betweenness is random
expected utility. While an ex post version of the independence axiom (Axiom 1.2) is
necessary for random expected utility, it is not sufficient. In fact, Lin (2020) provides
an example of a random nonexpected utility that satisfies ex post independence. Under
random utility and ex post independence, it is straightforward to show that ex post hedg-
ing and ex post extremeness are equivalent. This suggests an alternate axiomatization
of random expected utility where we substitute the hedging axiom for the extremeness
axiom of Gul and Pesendorfer (2006).

Finally, we return to our random ambiguity model. It is easy to see that ex post ex-
tremeness is sufficient to ensure that all random utilities are subjective expected utilities.
This provides a simple characterization of the special case where the agent is ambiguity-
neutral almost surely and choice is stochastic only due to information (see Example 2).

12If we allow for ties to occur with probability 1 as in regular utility distributions, then ex post hedging is
equivalent to a slightly stronger statement of quasiconcavity. See Theorem 6 in the Appendix for details.

13That is, f � g implies af + (1 − a)g� g for all a ∈ [0�1].
14Betweenness means that min{v(f )� v(g)} ≤ v(af + (1 − a)g) ≤ max{v(f )� v(g)} for all a ∈ [0�1]. Dekel

(1986) provides an axiomatic characterization of betweenness preferences.
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Corollary 2. Suppose ρ is represented by (μ�u) and excludes ties. Then ρ is ex post
extreme if and only ifK is a singleton almost surely.

The proof follows from Theorem 5 and the fact that a maxmin expected utility that
satisfies betweenness is linear.

The results in this section provide a foundation for the study of more general models
of stochastic ambiguity. Although we focused only on ex post randomization in this
section, our results on the stochastic properties of random nonlinear utilities extend to
any mixture space more generally.

Appendix

A.1 Proof of Theorem 1

Let ρ and τ be represented by (μ�u) and (ν� v), respectively. That (ii) implies (i) is
straightforward. We show that (i) implies (ii). Suppose (i) is true and note that for con-
stant f�g ∈Hc , u(f ) ≥ u(g) if and only if ρ(δf �δg) = 1 if and only if τ(δf �δg) = 1 if and
only if v(f ) ≥ v(g). Thus, u= αv+ β for α > 0. Without loss of generality, assume u= v

and 1 = u(x̄)≥ u(x)≥ u(x)= 0 for x̄� x ∈X and all x ∈X .
Let W := [0�1]n, where n = |S|. Define the mapping ψ : H → W such that ψ(h) =

1 − u ◦ h. Note that

UK(p)=
∫
H
uK(h)dp=

∫
H

min
π∈K

π · (u ◦ h)dp

=
∫
W

(
1 − max

π∈K
π ·w

)
dr = 1 − σK · r�

where r = p ◦ ϕ−1 ∈ �W and σK is the support function of K ∈ K. Let f = (1 − α)x̄+ αx,
which is constant. Thus,

ρ(δf �p)= μ({
K ∈ K : u(f )≥UK(p)

})
= μ({K ∈ K : 1 − α≥ 1 − σK · r})
= μ({K ∈ K : σK · r ≥ α})�

Since ρ(δf �p)= τ(δf �p), σK · r has the same distribution under μ and ν for all r ∈ �W .
Let � denote the set of support functions σK and let C(�) denote the set of continu-

ous functions on �. Let �⊂ C(�) denote the set of functions

φ(σK)=
∑
i

aie
λiσK ·ri

for ai ∈R, λi ≥ 0, and ri ∈ �W . Since each σK · ri has the same distribution underμ and ν,∫
K
φ(σK)dμ=

∫
K

∑
i

aie
λiσK ·ri dμ=

∫
K

∑
i

aie
λiσK ·ri dν =

∫
K
φ(u)dν�
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We show that � is dense in C(�). First note that � is a vector space that includes
constants, since e0σK ·r = 1 ∈�. Consider a1e

λ1σK ·r1� a2e
λ2σK ·r2 ∈�. If λ1 + λ2 > 0, then

a1e
λ1σK ·r1a2e

λ2σK ·r2 = a1a2e
(λ1+λ2)σK ·( λ1

λ1+λ2
r1+(1− λ1

λ1+λ2
)r2) ∈��

Alternatively, if λ1 + λ2 = 0, then λ1 = λ2 = 0 and

a1e
λ1σK ·r1a2e

λ2σK ·r2 = a1a2 ∈��
This means that � is closed under multiplication.

Next we show that � separates points in �. Suppose σK�σJ ∈ � such that σK �= σJ .
Thus, there is some w ∈ W such that σK(w) > σJ(w) without loss of generality. If we
let r = δw, then σK · r = σK(w) > σJ(w) = σJ · r, so eσK ·r > eσJ ·r . This establishes that �
separates points in �.

Since K is compact (Theorem 3.85 of Aliprantis and Border 2006; henceforth AB), the
homeomorphism between � and K implies that � is also compact. Since� is a subalge-
bra, contains the constant function, and separates points in �, � is uniformly dense in
C(�) by the Stone–Weierstrass theorem (Theorem 9.13 of AB). This means that for any
φ ∈ C(�), we can find φi ∈� such that φi →φ uniformly. By dominated convergence,∫

K
φ(σK)dμ= lim

i

∫
K
φi(σK)dμ= lim

i

∫
K
φi(σK)dν =

∫
K
φ(σK)dν�

By Theorem 15.1 of AB, support functions have the same distribution under μ and ν. In
other words, for any J ∈ K,

μ
({K ∈ K : σK ≤ σJ}

) = ν({K ∈ K : σK ≤ σJ}
)

μ
({K ∈ K :K ⊂ J}) = ν({K ∈ K :K ⊂ J})�

Since containment functionals completely characterize the distribution of convex com-
pact sets (Theorem 7.8 of Molchanov 2005), μ= ν as desired.

A.2 Proof of Theorem 2

Suppose ρ is more uncertainty-averse than τ. Note that if u �= αv + β for α > 0, then
we can find two constant acts f�g ∈ H such that τ(δf �δg) = 1 > 0 = ρ(δf �δg), which
contradicts the fact that ρ is more uncertainty-averse than τ. Hence, we can assume
u= vwithout loss of generality, and 1 = u(x̄)≥ u(x)≥ u(x)= 0 for x̄� x ∈X and all x ∈X .

Let C(W ) denote the set of all continuous functions on the compact setW := [0�1]n,
where n= |S|. Note that we can define the dual pair

ϕ · r :=
∫
W
ϕ(w)dr�

where ϕ ∈ C(W ) and r is a signed Borel measure on W (see Corollary 14.15 of AB). Fix
some increasing, closed, and convex J , and define

CJ := {
ϕ ∈ C(W ) : ϕ≥ σJ for some J ∈ J

}
�

First, we prove two claims about CJ .
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Claim 1. A setK ∈ J if and only if σK ∈ CJ .

Proof. If K ∈ J , then σK ∈ CJ trivially. Suppose σK ∈ CJ so σK ≥ σJ for some J ∈ J .
Thus, K ⊃ J and since J is increasing, K ∈ J .

Claim 2. The set CJ is closed and convex.

Proof. We first show that CJ is closed. Consider ϕk ∈ CJ such that ϕk → ϕ. Thus,
ϕk ≥ σJk for Jk ∈ J . Since J ⊂ K is closed and K is compact, J is also compact. Thus, we
can find a convergent subsequence Ji → J ∈ J and σJi → σJ . Thus, ϕ≥ σJ , so ϕ ∈ CJ .

We now show that CJ is convex. Suppose ϕ1�ϕ2 ∈ CJ , so ϕi ≥ σJi for J1� J2 ∈ J .
Thus,

aϕ1 + (1 − a)ϕ2 ≥ aσJ1 + (1 − a)σJ2 = σaJ1+(1−a)J2 �

Since J is convex, aJ1 + (1 − a)J2 ∈ J , so aϕ1 + (1 − a)ϕ2 ∈ CJ .

With these claims, we now continue the proof of Theorem 2. Claim 2 implies we
can express CJ as the intersection of a countable collection of closed half-spaces that
support it (Corollary 7.49 of AB). In other words,

CJ =
⋂
i

{
ϕ ∈ C(W ) : ϕ · ri ≥ ai

}
� (3)

Moreover, for every i, there exists some ϕ ∈ CJ such that ϕ · ri = ai. Consider some
closed E ⊂W and note that by Urysohn’s lemma, we can find a sequence of ϕk ∈ C(W )
such that ϕk → ϕ+ 1E and ϕk ≥ ϕ. Since ϕk ≥ ϕ ∈ CJ , ϕk ∈ CJ by the definition of CJ .
Thus, ϕk · ri ≥ ai from (3). Since W is compact, it follows from dominated convergence
that

ai ≤ lim
k
ϕk · ri = (ϕ+ 1E) · ri = ϕ · ri + ri(E)= ai + ri(E)�

Thus, ri(E)≥ 0 for all closed E. Since ri is a regular Borel measure, we can assume ri is a
probability measure without loss of generality. Finally, note that by the definition of CJ ,
there must exist some J ∈ J such that ϕ≥ σJ . Since σJ ≥ 0,

ai = ϕ · ri ≥ σJ · ri ≥ 0�

Define the mapping ψ :H →W such that ψ(h)= 1 − u ◦ h and let

pi = 1
2
(ri ◦ψ)+ 1

2
δgi�

where gi = aix̄+ (1 − ai)x. Thus,

UK(pi)= 1
2

∫
H
uK(h)dpi + 1

2
ai = 1

2

(∫
W

min
π∈K

π · (1 −w)dri
)

+ 1
2
ai

= 1
2

∫
W

(
1 − max

π∈K
π ·w

)
dri + 1

2
ai = 1

2
(1 − σK · ri)+ 1

2
ai�



Theoretical Economics 16 (2021) Random ambiguity 561

Let f = 1
2 x̄+ 1

2x, so uK(f )≥UK(pi) if and only if

1
2

≥ 1
2
(1 − σK · ri)+ 1

2
ai

ai ≤ σK · ri�

LetAk = {δf �p1� � � � �pk}, so by Claim 1 and (3),

μ(J )= μ({K ∈ K : σK ∈ CJ }) = μ
(⋂

i

{K ∈ K : σK · ri ≥ ai}
)

= lim
k
μ

(⋂
i≤k

{K ∈ K : σK · ri ≥ ai}
)

= lim
k
ρAk(δf )�

Since ρAk(δf )≥ τAk(δf ), we have μ(J )≥ ν(J ) as desired.
Now suppose μ ≥c ν. Let f ∈ H be constant, where u(f ) = 1 − a and A =

{f�p1� � � � �pk}. Again, define the mapping ψ :H →W such that ψ(h)= 1 − u ◦ h. Note
that u(f )≥UK(pi) if and only if

1 − a≥
∫
H
uK(h)dpi =

∫
H

min
π∈K

π · (u ◦ h)dpi = 1 − σK · ri�

where ri = pi ◦ψ−1. Define

J :=
⋂
i≤k

{K ∈ K : σK · ri ≥ a}

so ρA(δf )= μ(J). Note that J is closed, convex, and increasing, so

ρA(δf )= μ(J )≥ ν(J )= τA(δf )

as desired.

A.3 Proofs for Section 4

A.3.1 Extremeness In this section, we demonstrate the relationship between ex post
extremeness and mixture aversion. Since this result is useful for later analysis, for this
section, we consider an arbitrary compact metric space Z. Let ρ be a stochastic choice
on �Z. For finiteA⊂ �Z, let ext(A) denote the extreme points ofA. We define extreme-
ness and mixture aversion for ρ exactly as in Section 4. We say ρ is monotone if A ⊂ B

implies ρA(p)≥ ρB(p).

Lemma 1. Suppose ρ is monotone. Then ρ is mixture-averse if and only if it is extreme.

Proof. Note that if ρ is extreme, then ρ is mixture-averse trivially. Suppose ρ is
monotone and mixture-averse. We show that ρ is extreme by contradiction. Suppose
ρA(ext(A)) < 1, so there must be some p /∈ ext(A) such that ρA(p) > 0. Without loss
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of generality, assume p is not tied with any point in A (see Lemmas A.2 and A.3 from
Lu 2016). By monotonicity, we can also assume A = ext(A) ∪ {p} without loss. By the
Krein–Milman theorem, we can write

p=
∑
i≤k

αiqi

for
∑
i≤k αi = 1, αi ∈ (0�1), and qi ∈ ext(A)⊂A. Define r1 = q1 and

λi := αi∑
j≤i
αj
�

Recursively define

ri := λiqi + (1 − λi)ri−1

and note that p= rk. Let B :=A∪ {r1� � � � � rk−1}, so by monotonicity,

ρB
(
ext(A)

) ≤ ρA
(
ext(A)

)
< 1�

Thus, there must be some i ∈ {2� � � � �k} such that ri is not tied with anything in ext(A)
and ρB(ri) > 0. By monotonicity again,

ρ{ri−1�qi�ri}(ri)≥ ρB(ri) > 0�

Since ri = λiqi + (1 − λi)ri−1 and ρ is mixture-averse, it means that ri must be tied with
qi or ri−1. Since qi ∈ ext(A), this means that ri is tied with ri−1, so ρB(ri−1)= ρB(ri) > 0.
By induction, we conclude that ri is tied with r1 = q1, which contradicts the fact that ri is
not tied with anything in ext(A). Thus, ρmust be extreme.

A.3.2 Proof of Theorem 5 In this section, we prove a more general version of Theorem 5
by allowing ν to be regular, that is, v(f )= v(g)with probability 0 or 1. As a result, we con-
sider a slightly stronger version of quasiconcavity called quasiconcavity∗. If ν excludes
ties, then quasiconcavity∗ and quasiconcavity are equivalent.

Definition 13. Distribution ν is quasiconcave∗ if almost surely (a.s.) v(f ) ≥ v(g) im-
plies v(af + (1 − a)g)≥ v(g), and with strictness if v(f ) > v(g) and a ∈ (0�1).

Theorem 6. Let ρ be represented by a regular ν.

(i) Distribution ν is quasiconcave∗ if and only if ρ is ex post mixture-loving if and only
if ρ is ex post hedging.

(ii) Distribution ν is quasiconvex if and only if ρ is ex post mixture-averse if and only if
ρ is ex post extreme.
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We start by proving (i). If ρ is ex post hedging, then it is clearly ex post mixture-loving.
Suppose ρ is ex post mixture-loving. Let h= af + (1 − a)g and F = {f�h�g}. Note that

ρ(δf �δh)= ν({v : v(f )≥ v(h)})
= ν({v : v(f )≥ v(h)� v(f )≥ v(g)}) + ν({v : v(f )≥ v(h)� v(f ) < v(g)})
= ρδF (δf )+ ν({v : v(g) > v(f )≥ v(h)})�

so v(g) > v(f ) ≥ v(h) with ν-measure zero. By symmetric argument, v(f ) > v(g) ≥ v(h)
with ν-measure zero. Thus, v(f ) �= v(g) and min{v(f )� v(g)} ≥ v(h) with ν-measure zero.
Note that if f and g are not tied, then min{v(f )� v(g)}< v(h) a.s. as desired.

Suppose f and g are tied, so v(f )= v(g) a.s. as ν is regular. Without loss of generality,
suppose h is not tied with f . Let

b∗ := inf
{
b : bf + (1 − b)h is tied with f

}
�

Note that by the continuity of v, f ∗ := b∗f + (1 − b∗)h is tied with f . Thus, b∗ > 0. Con-
sider bk ∈ (0� b∗), so fk := bkf + (1 − bk)h is not tied with f and, thus, also not tied
with g. By the argument above, v(h) >min{v(fk)� v(g)} a.s. Since fk → f ∗ as bk → b∗, by
the continuity of v, we have a.s.

v(h)≥ min
{
v
(
f ∗)� v(g)} = min

{
v(f )� v(g)

}
as desired. This proves that ν is quasiconcave∗.

Finally, to see how quasiconcavity∗ implies ex post hedging, let af + (1 −a)g ∈ F and
note that

ρδF (δf )= ν({v : v(f )≥ v(h) for all h ∈ F})
= ρδF∪{g}(δf )+ ν({v : v(f )≥ v(h) for all h ∈ F and v(f ) < v(g)

})
�

Since ν is quasiconcave∗, a.s. v(g) > v(f ) implies v(h) > v(f ), so the second term above
must be zero. This proves that ρ is ex post hedging, concluding the proof for (i).

We now prove (ii). Since ρ has a random utility representation, it is monotone, so
Lemma 1 implies that ex post mixture aversion and ex post extremeness are equivalent.
Suppose ρ is ex post mixture-averse, and let h= af + (1−a)g and F = {f�h�g}. Note that
if h is tied with either f or g, then clearly v(h)≤ max{v(f )� v(g)} a.s. Assume h is tied with
neither, so

0 = ρδF (δh)= ν({v : v(h)≥ v(f ) and v(h)≥ v(g)})�
so v(h) <max{v(f )� v(g)} and ν is quasiconvex. Now suppose ν is quasiconvex. Again, if
h is tied with either f or g, then clearly ρδF (δ{f�g})= 1. Assuming h is tied with neither,
we have ρδF (δh)= 0, as ν is quasiconvex. This concludes the proof of Theorem 5.
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A.4 Proof of Theorem 4

In this section, we prove the main representation theorem. We first show sufficiency and
assume ρ satisfies Axioms 1–6. The proof consists of a series of steps. First, we show that
choice over constant acts can be represented by a deterministic utility.

Step 1. There exists a nonconstant vNM utility u : �X → R such that for all constant δF ,
ρδF (δf )= 1 if u(f )≥ u(g) for all g ∈ F .

Proof. Define a stochastic choice ρ̂ on finite F ⊂ Hc such that ρ̂F = ρδF . We show
that ρ̂ satisfies the random expected utility axioms. If F ⊂ G ⊂ Hc , then δF ⊂ δG, so
ρ̂F (f ) ≥ ρ̂G(f ) by Axiom 1.1. Thus, ρ̂ satisfies monotonicity. Note that Axiom 3 implies
that δaf+(1−a)g and aδf ⊕ (1 − a)δg are tied for all f�g ∈Hc . Hence, Axioms 1.2 and 1.3
imply that ρ̂ satisfies linearity and extremeness, respectively. For continuity, note that
mapping F → δF is a homeomorphism (see Theorem 15.8 of AB). Thus, by Axiom 1.4,
ρ̂ is also continuous. Hence, ρ̂ has a random expected utility representation (see Theo-
rem S.1 of Lu 2016). Axiom 4 implies that this random utility must be deterministic. In
other words, there is a vNM utility u : �X → R such that ρδF (δf )= 1 if u(f )≥ u(g) for all
g ∈ F ⊂Hc . Axioms 5 and 6 imply that umust be nonconstant.

Given Step 1, we can now choose x̄� x ∈X such that 1 = u(x̄)≥ u(x)≥ u(x)= 0 for all
x ∈X . The next step shows that these are indeed the best and worst prizes.

Step 2. It must be that ρ(δx�δx̄)= 0 and ρ(δx̄� δf )= ρ(δf �δx)= 1 for all f ∈H.

Proof. Note that ρ(δx�δx̄)= 0 follows from Step 1 and the definitions of x̄ and x. More-
over, for any f ∈H and s ∈ S,

ρ(δx̄� δf(s))= ρ(δf(s)� δx)= 1�

By Axiom 5, ρ(δx̄� δf )= ρ(δf �δx)= 1 as desired.

Recall thatH ⊂RS×X and define the supnorm

|f − g| := sup
s�x

∣∣f (s�x)− g(s�x)∣∣�
The last step shows that ρ satisfies a Lipschitz continuity condition from Lu and Saito
(2020).

Step 3. For any a ∈ [0�1], if |f − g| ≤ a/|X|, then

ρ
(
aδx̄ + (1 − a)δf �aδx + (1 − a)δg

) = 1�

Proof. Letm= |X| and suppose |f − g| ≤ a/m. Thus, for all s�x ∈ S×X ,

g(s�x)− f (s�x)≤ a

m
�
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Hence, for any s ∈ S,

u
(
g(s)

) − u(f (s)) =
∑
x

u(x)
(
g(s�x)− f (s�x)) ≤

∑
x

u(x)
a

m
≤ a�

As a result,

u
(
g(s)

) ≤ a+ u(f (s))
(1 − a)u(g(s)) ≤ a(1 − a)+ (1 − a)u(f (s))

au(x)+ (1 − a)u(g(s)) ≤ au(x̄)+ (1 − a)u(f (s))�
Let f ′ := ax̄+(1−a)f and g′ := ax+(1−α)g, so u(f ′(s))≥ u(g′(s)) for all s ∈ S. By Step 1,
ρ(δf ′(s)� δg′(s))= 1 for all s ∈ S. Hence, by Axiom 5,

1 = ρ(δf ′� δg′)= ρ(δax̄+(1−a)f � δax+(1−α)g)�

By Axiom 3, δax̄+(1−a)f is tied with aδx̄ ⊕ (1 − a)δf and δax+(1−α)g is tied with aδx ⊕ (1 −
a)δg. Hence,

1 = ρ(aδx̄ ⊕ (1 − a)δf �aδx ⊕ (1 − a)δg
)

as desired.

Axioms 1.1–1.4 and Steps 2 and 3 imply that ρ satisfies the sufficient conditions for a
random expected utility representation (see Theorem 5 of Lu and Saito 2020). Thus,
there exists a distribution ν on Lipschitz continuous utilities v : H → [0�1] such that
v(x̄)= 1, v(x)= 0, and

ρA(p)= ν({v : V (p)≥ V (q) for all q ∈A})
�

where V (p) := ∫
H v(f )dp. Moreover, ν is regular in that V (p)= V (q) with probability 0

or 1.
Finally, we show that v satisfies the axioms of maxmin expected utility a.s. Note that

Axiom 2 implies that v is quasiconcave by Theorem 6. The c-independence and state-by-
state monotonicity follow from Axioms 3 and 5, respectively. Note that v is continuous
and v(x̄) > v(x). Thus, by Theorem 1 of Gilboa and Schmeidler (1989), we can write

v(f )= uK(f )= min
π∈K

π · (u ◦ f )�

This establishes the sufficiency of the axioms.
We now establish necessity. Note that Axioms 1.1–1.4 follow from the characteriza-

tion of random expected utility (see Theorem S.1 of Lu 2016). Since uK(·) is concave in
ex post mixing and any concave function is quasiconcave∗, Axiom 2 follows from Theo-
rem 6. To see Axiom 3, note that for constant h,

uK
(
af + (1 − a)h) = auK(f )+ (1 − a)uK(h)�

Finally, Axioms 4–6 follow immediately from the representation. This concludes the
proof.
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A.5 Identification without ex ante randomization

In this section, we show that without ex ante randomization, identification is possible
with more than just binary menus.

Theorem 7. Let ρ and τ be represented by (μ�u) and (ν� v), respectively. Then the follow-
ing statements are equivalent:

(i) We have ρδF (δf )= τδF (δf ) for all constant f ∈H and δf ∈ δF .

(ii) We have μ= ν and u= αv+β for α> 0.

Proof. Note that (ii) implying (i) is straightforward, so suppose (i) is true. By the same
argument as the proof for Theorem 1, we can assume u = v without loss of generality,
and let 1 = u(x̄)≥ u(x)≥ u(x)= 0 for x̄� x ∈X and all x ∈X .

Let W := [0�1]n, where n= |S|. Now, for any wi ∈W and ai ∈ [0�1], we can find some
gi ∈H such that

1 − u ◦ gi = 1
2
wi + 1

2
(1 − ai)1 ∈W �

Let f = 1
2 x̄+ 1

2x be a constant act and note that uK(f )≥ uK(gi) if and only if

1 − σK(1 − u ◦ gi)≤ 1
2

σK

(
1
2
wi + 1

2
(1 − ai)1

)
≥ 1

2

σK(wi)≥ ai�

Define

Ji :=
{
K ∈ K : σK(wi)≥ ai

}
�

Given a finite set I, let F = {gi : i ∈ I} ∪ {f }, so

μ

(⋂
i∈I

Ji
)

= ρδF (δf )= τδF (δf )= ν
(⋂
i∈I

Ji
)
� (4)

Now

μ

(
m⋂
i=1

J c
i

)
= μ

((
m⋃
i=1

Ji

)c)
= 1 −μ

(
m⋃
i=1

Ji

)

= 1 −
m∑
j=1

(−1)j−1
∑

I⊂{1�����m}�|I|=j
μ

(⋂
k∈I

Jk
)
� (5)

where the last equation follows from the inclusion–exclusion principle. Now, given any
J ∈ K, we can find a sequence ajk ↘ σK(wj) for any wj in some dense set of W . This
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means we can also find a sequence Ji such that⋂
i

J c
i ↘ {

K ∈ K : σK(w)≤ σJ(w) for all w ∈W }
�

so by continuity,

μ

(⋂
i

J c
i

)
→ μ

({K ∈ K :K ⊂ J})�
Together with (4) and (5), this implies that for all J ∈ K,

μ
({K ∈ K :K ⊂ J}) = ν({K ∈ K :K ⊂ J})�

Since containment functionals completely characterize the distribution of convex com-
pact sets (Theorem 7.8 of Molchanov 2005), μ= ν as desired.
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