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Countering the winner’s curse:
Optimal auction design in a common value model

Dirk Bergemann
Department of Economics, Yale University

Benjamin Brooks
Department of Economics, University of Chicago

Stephen Morris
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We characterize revenue maximizing mechanisms in a common value environ-
ment where the value of the object is equal to the highest of the bidders’ indepen-
dent signals. If the revenue maximizing solution is to sell the object with proba-
bility 1, then an optimal mechanism is simply a posted price, namely, the highest
price such that every type of every bidder is willing to buy the object. If the object
is optimally sold with probability less than 1, then optimal mechanisms skew the
allocation toward bidders with lower signals. The resulting allocation induces a
“winner’s blessing,” whereby the expected value conditional on winning is higher
than the unconditional expectation. By contrast, standard auctions that allocate
to the bidder with the highest signal (e.g., the first-price, second-price, or English
auctions) deliver lower revenue because of the winner’s curse generated by the
allocation. Our qualitative results extend to more general common value envi-
ronments with a strong winner’s curse.

Keywords. Optimal auction, common values, maximum game, posted price, re-
serve price, revenue equivalence.

JEL classification. C72, D44, D82, D83.

1. Introduction

Whenever there is interdependence in bidders’ willingness to pay for a good, each bid-
der must carefully account for that interdependence in determining how they should
bid. A classic motivating example concerns wildcatters competing for an oil tract in a
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first- or second-price auction. Each bidder drills test wells and forms his bids based on
his sample. Richer samples suggest more oil reserves, and are associated with higher
equilibrium bids. Since the high bidder wins the auction, winning means that the other
bidders’ samples were relatively poor. The expected value of the tract conditional on
winning is, therefore, less than the interim expectation of the winning bidder’s value
conditional on just his signal. This winner’s curse results in more bid shading relative to
a naïve model in which bidders do not account for selection and treat interim values as
ex post values.

This paper studies the design of revenue maximizing auctions in settings where
there is the potential for a strong winner’s curse. The prior literature on optimal auctions
has largely focused on the case where values are private, meaning that each bidder’s sig-
nal perfectly reveals his value and there is no interdependence. A notable exception is
Bulow and Klemperer (1996), who generalize the revenue equivalence theorem of My-
erson (1981) to models with interdependent values. They give a condition on the form
of interdependence under which revenue is maximized by an auction that allocates the
good to the bidder with the highest signal whenever the good is sold. We subsequently
interpret the Bulow–Klemperer condition as saying that the winner’s curse effect is not
too strong, which roughly corresponds to a limit on how informative high signals are
about the value. Aside from this work, the literature on Bayesian optimal auctions with
interdependent values and independent signals appears to be quite limited.

Our contribution is to study optimal auctions in the opposite case where the win-
ner’s curse is quite strong, while maintaining the hypothesis that signals are indepen-
dent.1 For our main results, we focus on a simple model where the bidders have a pure
common value for the good, the bidders receive independent signals, and the common
value is equal to the highest signal. We refer to this as the maximum signal model. For
this environment, the winner’s curse in a standard auction is quite severe. Indeed, there
is a precise sense in which this is the environment that has the largest winner’s curse:
As shown by Bergemann et al. (2017a, 2019), among all type spaces with the same dis-
tribution of a common value, this is the one that minimizes expected revenue in the
first-price auction. It also minimizes revenue in second-price and English auctions if
one restricts attention to affiliated-values models as in Milgrom and Weber (1982). Col-
lectively, we refer to these as standard auctions. Beyond its theoretical interest, the max-
imum signal model captures the idea that the most optimistic signal is a sufficient statis-
tic for the value. This would be the case if the bidders’ signals represented different ways
to use the good, e.g., possible resale opportunities if the bidders are intermediaries or
possible designs to fulfill a procurement order, and the winner of the good will discover
the best use ex post.2

1A great deal of work on auction design with interdependent values has focused on the case where sig-
nals are correlated. For example, Milgrom and Weber (1982) show that when signals are affiliated, English
auctions generate more revenue than second-price auctions, which in turn generate more revenue than
first-price auctions. Importantly, this result follows from correlation in signals, not interdependence per se.

2One could also assume that resale takes place between the bidders, the values exogenously become
complete information, and the winner of the good can make a take-it-or-leave-it offer to one of the other
bidders. Such a model of resale is used by Gupta and LeBrun (1999) and Haile (2003) to study asymmetric
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The maximum signal model was first introduced by Bulow and Klemperer (2002).
They showed that the second-price auction has a “truthful” equilibrium in which each
bidder submits a bid equal to his signal. This bid is less than the interim expected value
for every type except the highest. Indeed, the bid shading is so large that the seller can
increase revenue simply by making the highest take-it-or-leave-it offer that would be
accepted by all types. We refer to this mechanism as an inclusive posted price. In the
equilibrium of the inclusive posted price mechanism, all bidders indicate they are will-
ing to purchase the good and are equally likely to be allocated the good. Thus, winning
the good conveys no information about the value and, hence, the winner’s curse is com-
pletely eliminated. Importantly, while Bulow and Klemperer showed that the inclusive
posted price generates more revenue than standard auctions, their analysis left open the
possibility that there were other mechanisms that generated even more revenue, even
in the case when the good is required to be always sold.3

Moreover, revenue is generally higher if the seller exercises monopoly power and
rations the good when values are low. This is the case in the independent private value
model as established by Myerson (1981), and it continues to be the case here. A simple
way to do so would be to set an exclusive posted price, i.e., a posted price at which not all
types would be willing to buy. This, however, turns out to be far from optimal: A highest-
signal bidder would face less competition in a “tie break” if the others’ signals are low,
thus again inducing a winner’s curse and depressing bidders’ willingness to pay.

Our first result presents a simple mechanism that improves on any exclusive posted
price. In this mechanism, the good is allocated to all bidders with equal likelihood if
and only if some bidder’s signal exceeds a given threshold. This allocation can be imple-
mented with the following two-tier posted price: The bidders express either high interest
or low interest in the good. If at least one bidder expresses high interest, the good is of-
fered to a randomly chosen bidder; otherwise, the seller keeps the good. When a given
bidder is offered the good, it is offered at the low price if all other bidders expressed low
interest, and it is offered at a high price if at least one other bidder expressed high in-
terest. In equilibrium, bidders express high interest if and only if their signal exceeds a
threshold, and prices are set as high as possible such that conditional on being offered
the good, bidders want to accept. Curiously, rather than inducing a winner’s curse, this
mechanism induces a winner’s blessing : If a bidder has a low signal and, therefore, ex-
pressed low interest, being allocated the good indicates that others’ signals must be rel-
atively high. This leads to a higher posterior expectation of the value and, hence, greater
willingness to pay even if one had expressed low interest.

While this mechanism does better than any exclusive posted price, it is possible to
go even further. The optimal mechanism, it turns out, induces a winner’s blessing for

first-price auctions. The recent work of Carroll and Segal (2019) also studies optimal auction design in the
presence of resale. They argue that a worst-case model of resale involves the values becoming complete
information among the bidders, with the high-value bidder having all bargaining power.

3In Bulow and Klemperer (2002), the main focus is on the additively separable model where the com-
mon value is equal to the sum of the individual signals. They conclude that an inclusive posted price is
optimal among mechanisms that always allocate the good when the distribution of signals exhibits a de-
creasing hazard rate; see their Proposition 3. Campbell and Levin (2006) provide additional arguments for
the revenue dominance of the posted price mechanism in related common value environments.
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every type. This is achieved by an allocation that—for any realized profile of signals—
favors bidders with lower signals. We discuss a number of ways to implement the opti-
mal mechanism, but one method is to use a generalization of two-tier pricing, which is a
random two-tier posted price: The highest-signal bidder is allocated the good only if his
signal exceeds a random posted price, in which case he pays the maximum of that price
and the others’ bids. Otherwise, the good is allocated to one of the other bidders at the
highest of the others’ bids. A concern is that the extra hurdle for the high bidder would
induce bidders to underreport so as to avoid being the high bidder. The trade-off is that
with a lower report, the bidder would lose surplus from the event that he still makes the
high bid but that bid is less than the realized posted price. The posted price distribution
is tuned just so that bidders are indifferent to underreporting. Indeed, this temptation
to underreport is the key to deriving a tight bound on the seller’s revenue that proves
that this mechanism is optimal.

Whenever the optimal random two-tier posted price allocates the good with proba-
bility 1, the mechanism reduces to an inclusive posted price. This occurs whenever the
lowest possible value is sufficiently large. Alternatively, a sufficient condition for an in-
clusive posted price to be optimal is that there is at least one bidder who is omitted from
the auction. Moreover, if we restrict attention to auctions that allocate the good with
probability 1, then the inclusive posted price is always the revenue maximizing mecha-
nism. We thus strengthen the foundation for posted prices introduced in earlier work of
Bulow and Klemperer (2002) by proving optimality in the maximum signal model.

The proof that the random two-tier price mechanism is optimal utilizes a novel ar-
gument. The standard approach to optimal mechanism design, based on the seminal
contribution of Myerson (1981), relies on two key results: the revenue equivalence the-
orem, which says that revenue is the expected “virtual value” of the bidder who is allo-
cated the good, and also the result that an allocation is implementable if and only if each
bidder’s interim allocation is weakly increasing in his signal. Myerson (1981) establishes
these results for independent private values and, more generally, when utility functions
are additively separable in the signals.4 When the virtual value is monotonically increas-
ing, dubbed the regular case in Myerson (1981), the optimal allocation subject to local
incentive constraints is interim monotone and, hence, is implementable. Otherwise, an
“ironing” construction can be used to solve for the optimal allocation subject to interim
monotonicity. As we discuss below, the revenue equivalence theorem extends to our
setting. It turns out, however, that the optimal allocation subject to only local incentive
constraints is not implementable. In addition, we show by example that interim mono-
tonicity of the allocation is neither necessary nor sufficient for implementability, and
there is no analogue of ironing that can be used to identify the optimal allocation.

We, therefore, proceed differently. We identify a class of global deviations, one for
each type of bidder, that pin down optimal revenue: Instead of reporting their true sig-
nal, a bidder misreports a lower signal that is drawn with probabilities that are propor-
tional to the prior. We refer to this as misreporting a redrawn lower signal. This class

4Myerson also assumes that the gains from trade between the seller and a given bidder are assumed to
depend only on that bidder’s private type. In contrast, we study environments where the gains from trade
depend on all signals.
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of deviations is motivated by several considerations, which we discuss in detail in Sec-
tion 4. We solve for optimal revenue subject to bidders not wanting to misreport re-
drawn lower signals. The solution is necessarily an upper bound on revenue when we
respect all incentive constraints. Theorem 1 then establishes that the random two-tier
price mechanism attains the upper bound and, hence, is an optimal mechanism.

Finally, we argue that our key qualitative results extend beyond the specific maxi-
mum signal model to a wide range of common value environments that exhibit increas-
ing information rents. The condition of increasing information rent captures the idea
that higher signals are more informative about the value than lower signals. We describe
natural mechanisms with exclusion that generate more revenue than either the inclu-
sive or exclusive posted price mechanisms. It remains an open question whether posted
prices continue to be optimal among efficient mechanisms in the presence of increas-
ing information rents. We suspect that the pattern of binding incentive constraints at
the optimal mechanism could, in general, be quite complicated. This presents a ma-
jor challenge for future research on optimal auctions in general interdependent value
settings.

A significant feature of the direct mechanisms we construct is that they do not ex-
clusively allocate the object to the bidder with the highest signal. Mechanisms with this
property are optimal in the case of the maximum-signal model, and they improve over
standard auctions in more general environments. This is in spite of the fact that bid-
ders are ex ante symmetric. Similar features also emerge in the recent literature study-
ing robust optimal auction design with common values, in particular when the seller
takes a worst case over the bidders’ information and the equilibrium. Brooks and Du
(2019) define a class of “proportional auctions” and show that they solve the unrestricted
max-min revenue maximization problem, and are Bayesian optimal on the endogenous
worst-case informational environment. In related work, Du (2018) constructs robust
mechanisms that asymptotically extract all of the surplus as the number of bidders go
to infinity. The theme linking these papers and ours is that randomization in the alloca-
tion can limit the effect of a winner’s curse in depressing bids. The continued study of
auctions with randomized allocations is a promising direction for future research.

The rest of this paper proceeds as follows. Section 2 describes the model. Sec-
tion 3 shows how to increase revenue by moving from standard auctions that generate a
winner’s curse to two-tier price mechanisms that generate winner’s blessing. Section 4
proves the optimality of the latter mechanisms. Section 5 generalizes our analysis to the
case of increasing information rents. Section 6 concludes.

2. Model

2.1 Environment

There are N bidders for a single unit of a good, indexed by i ∈ N � {1� � � � �N}. Each
bidder i receives a real signal si ∈ S � [s� s], where s ≥ 0, about the good’s value. The
bidders’ signals si are independent draws from an absolutely continuous cumulative
distribution F with strictly positive density f . We adopt the shorthand notation that
FN (s) � ×N

i=1F(si), F−i(s−i) � ×j �=iF(sj), and Fk(x) � (F(x))k for positive integers k.
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These conventions are extended to the density in the obvious way. The bidders all assign
the same value to the good, which is the maximum of the signals:

v(s1� � � � � sN)� max{s1� � � � � sN } = max s�

We frequently use the shorter expression max s, which selects the maximal element from
the vector s = (s1� � � � � sN). In Section 5, we discuss corresponding results for general
common value environments.

The distribution of signals, F , induces a distribution G(x) � FN(x) over the maxi-
mum signal fromN independent draws. We denote the associated density by

g(x)�NFN−1(x)f (x)�

The bidders are expected utility maximizers, with quasilinear preferences over the
good and transfers. Thus, the ordering over pairs (q� t) of probability q of receiving the
good and net transfers t to the seller is represented by the utility index v(s)q− t.

2.2 Direct mechanisms

We model a seller who can commit to a mechanism and select the equilibrium played
by the bidders. For much of our analysis, and in particular for constructing bounds on
revenue and bidder surplus in Theorem 3, we restrict attention to direct mechanisms,
whereby each bidder simply reports his own signal, and the set of possible message pro-
files is SN . This is without loss of generality by the revelation-principle (Myerson, 1981).
The probability that bidder i receives the good, given signals s ∈ SN , is qi(s) ≥ 0, with∑N
i=1 qi(s)≤ 1. Bidder i’s transfer is ti(s), and the interim expected transfer is denoted by

ti(si)�
∫
s−i∈SN−1

ti(si� s−i)f−i(s−i) ds−i�

Bidder i’s surplus from reporting a signal s′i when his true signal is si is

ui
(
si� s

′
i

)
�

∫
s−i∈SN−1

qi
(
s′i� s−i

)
v(si� s−i)f−i(s−i) ds−i − ti

(
s′i

)
�

and ui(si)� ui(si� si) is the payoff from reporting truthfully. Ex ante bidder surplus is

Ui �
∫ s

si=s
ui(si)f (si)dsi

and total bidder surplus is

U �
N∑
i=1

Ui�

A direct mechanism {qi� ti}Ni=1 is incentive compatible (IC) if

ui(si)= max
s′i
ui

(
si� s

′
i

)
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for all i and si ∈ S. This is equivalent to requiring that reporting one’s true signal is a
Bayes Nash equilibrium. The mechanism is individually rational (IR) if ui(si)≥ 0 for all
i and si ∈ S.

2.3 The seller’s problem

The seller’s objective is to maximize expected revenue across all IC and IR mechanisms.
Under a mechanism {qi� ti}Ni=1, expected revenue is

R�
N∑
i=1

∫ s

si=s
ti(si)f (si)dsi�

Since values are common, total surplus depends only on whether the good is allocated,
not the identity of the bidder who receives the good. Moreover, the surplus depends
only on the value v(s) = max s, not on the entire vector s of signals. Let us thus denote
by qi(v) the probability that the good is allocated to bidder i, conditional on the value
being v, and let

q(v)�
N∑
i=1

qi(v)

be the corresponding total probability that some bidder receives the good. Total surplus
is simply

TS �
∫ s

v=s
v q(v)g(v)dv�

and revenue is obviously R= TS −U .

3. Countering the winner’s curse

We start by reviewing the winner’s curse in standard auctions. We then progressively im-
prove the revenue with a sequence of mechanisms to arrive at the optimal mechanism.
Optimality is proven in the next section.

3.1 Standard auctions and the winner’s curse

In the maximum signal model, first-price, second-price, and English auctions all admit
monotonic pure-strategy equilibria, which result in the highest-signal bidder being allo-
cated the good. For ease of discussion, we describe the outcome in terms of the second-
price auction. A bidder with a signal si forms his interim expectation of the common
value E[v(si� s−i)|si] and then submits a bid bi(si). In the maximum signal model, the
signal si is a sharp lower bound on the ex post value of the object: Given any signal si,
bidder i knows that the true value of the object has to be in the interval [si� s]. Note that
the interim expectation of bidder i satisfies

E
[
v(s)|si

]
> si
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for all si < s. Even so, there is an equilibrium of the second-price auction in which
each bidder i bids only b∗

i (si)= si. Expected revenue in this equilibrium is the expected
second-highest signal. The equilibrium bid is equal to the lowest possible realization of
the common value given the interim information si. But the signal si, which provided a
sharp lower bound on the common value at the bidding stage, becomes a sharp upper
bound conditional on winning,

E
[
v(s)|si� sj ≤ si ∀j �= i] = si�

as the expectation of the value conditional on si being the highest signal is simply si. The
resulting equilibrium allocation is

qi(s)=
⎧⎨⎩

1
|arg max s| if si = max s

0 otherwise�

Thus, the second-price auction exhibits a winner’s curse: The bidder with the highest
signal receives the good and learns that his signal was more favorable than all the other
signals. In turn, each bidder lowers his equilibrium bid from the interim estimate of
the value E[v(si� s−i)|si] down to the lowest possible value in the support of this poste-
rior probability distribution, namely si. In this sense, the winner’s curse is as large as it
can possibly be. In Bergemann et al. (2019), we show that there is revenue equivalence
between the first-price, second-price, and the English auction in the specific common
value setting and, hence, the same winner’s curse arises across these standard auction
formats.

3.2 Inclusive posted prices and no winner’s curse

Given the strength of the winner’s curse and the extent of bid shading, it is natural to ask
whether other mechanisms can mitigate the winner’s curse and thus increase revenue.
Bulow and Klemperer (2002) establish that a specific posted price mechanism can attain
higher revenue than the standard auctions with their monotonic equilibria.

In a posted price mechanism with price p, the object is allocated with uniform prob-
ability among those bidders who declared their willingness to payp to receive the object.
The specific posted price suggested by Bulow and Klemperer (2002) is the expectation
of the highest ofN − 1 independent draws from the signal distribution F :

pI �
∫ s

x=s
xd

(
FN−1(x)

)
� (1)

We refer to pI as the inclusive posted price. This is the interim expectation that a bidder
i with the lowest possible signal realization si = s has about the common value of the
object, which is the largest price such that every type is willing to buy the object. At this
price, all types are “included” in the allocation. Another interpretation is that pI is the
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ex ante expectation of a particular Vickrey price, which is the highest signal among the
competing bidders,5 max s−i.

Proposition 1 (Inclusive posted price). The inclusive posted price yields a higher rev-
enue than the monotonic pure-strategy equilibrium of any standard auction.

Bulow and Klemperer (2002, Section 9) established the revenue ranking regarding
the English auction. Bergemann et al. (2019) established a revenue equivalence result
between standard auctions for the maximum signal model. This equivalence completes
the proof of the above proposition. The revenue ranking can be understood as follows.
Revenue under the inclusive posted price is equal to the expectation of the highest of
N − 1 independent and identical signals from F . By contrast, the revenue in any of the
standard auctions is equal to the expectation of the second highest of N draws. The
former must be greater than the latter, since the inclusive posted price revenue can be
obtained by throwing out one of N draws at random and then taking the highest of the
remaining realizations, whereas the standard auction revenue is obtained by systemat-
ically throwing out the highest of the N draws and then taking the highest remaining
draw.

The allocation induced by the inclusive posted price assigns the object with equal
probability to every bidder i: qi(s) = 1/N . As a result, the event of winning conveys no
additional information about the value of the object to any of the winning bidders. In
sharp contrast to the standard auctions, a bidder’s expected value conditional on re-
ceiving the object is the same as his unconditional expectation, i.e., there is no winner’s
curse.

A different perspective on the revenue ranking result is offered by the revenue equiv-
alence theorem. Specifically, using only local incentive constraints, one can solve for the
transfers in terms of the allocation to conclude that expected revenue is equal to the ex-
pected virtual value of the buyer who is allocated the good. Bulow and Klemperer (1996)
derive the virtual value for a general interdependent values model. When the bidders
have a common value that is a monotonic and differentiable function v(s) of all bidders’
signals, bidder i’s virtual value is

πi(s)� v(s)− 1 − F(si)
f (si)

∂v(s)

∂si
� (2)

In the maximum signal model, this simplifies to

πi(s)=
⎧⎨⎩max s if si <max s

max s− 1 − F(si)
f (si)

if si = max s�
(3)

The partial derivative of the value with respect to the signal si is now simply the indicator
Isi=max s for whether bidder i has the highest signal. As a result, only the highest-signal

5The existence of the Vickrey prices also demonstrates that the inclusive posted price could alternatively
be implemented by a set of personalized prices that would satisfy the stronger ex post individual rationality
and ex post incentive constraints, as we argue in more detail in Section 3.4.
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bidder receives an information rent, equal to the inverse hazard rate (1 − F(si))/f (si).
Thus, those bidders who do not have the highest signal have a higher virtual value—
equal to the common value v—than the highest-signal bidder. In consequence, the
lower is the probability that the highest-signal bidder receives the good, the higher is
revenue. Relative to the standard auctions, the inclusive posted price attains higher rev-
enue because it allocates the object uniformly across all bidders, whereas the standard
auctions give it to the highest-signal bidder with probability 1.6

3.3 Two-tier posted price and the winner’s blessing

A notable feature of the inclusive posted price is that the object is awarded with uniform
probability for every type profile realization s. In particular, the object is awarded even
if the virtual value of some bidder or even the average virtual value across all bidders is
negative. In these circumstances, not allocating the good can typically raise revenue.

A first attempt at raising revenue is to post a price, denoted by pE , that is strictly
higher than the inclusive posted price pI ; thus, pE > pI . By definition, the price pE
exceeds the interim expectation of the bidder with the lowest possible signal si = s. Any
such price pE therefore induces some threshold r ∈ (s� s], so that every bidder i with
a signal si ≥ r accepts the offer and with signal si < r rejects the offer. The resulting
assignment probabilities are

qi(s)=

⎧⎪⎨⎪⎩
1∣∣{j|sj ≥ r}∣∣ if si ≥ r

0 otherwise.

We refer to a posted price pE > pI as an exclusive posted price, and refer to the threshold
r as the exclusion level. The posted price pE , which implements the exclusion level r,
is the expectation of the common value for the type si = r conditional on receiving the
good:

pE �

∫
s−i∈{s′−i|max s′−i≥r}

max{s−i}qi(r� s−i) dF−i(s−i)∫
s−i∈{s′−i|max s′−i≥r}

qi(r� s−i) dF−i(s−i)
�

The exclusive posted price assigns the object with uniform probability among all
those bidders whose signal si exceeds the threshold r. But in contrast to the inclusive
posted price, the exclusive posted price again tilts the allocation toward higher-signal
bidders, si > r, by excluding the lower-signal bidders, si < r. Thus, while the exclusive
posted price does ration the object, it reintroduces the winner’s curse. The formula of
the virtual value, (3), suggests that revenue would be higher if we shift the allocation

6Note that the value function in the maximum signal model is not differentiable, so that the theorem of
Bulow and Klemperer (1996) does not apply. It is, however, straightforward to extend their theorem to cover
the maximum signal model.
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toward lower-signal bidders. For example, revenue is higher if we instead implement a
uniform allocation conditional on assigning the object:

qi(s)=
⎧⎨⎩

1
N

if max s ≥ r
0 otherwise�

(4)

This mechanism achieves the same exclusion level r and, hence, maintains the same ex
post social surplus, but it generates less bidder surplus and more revenue.

One way to implement this allocation is with the following two-tier posted price: Let

pL � r� pH �

∫ s

x=r
xd

(
FN−1(x)

)
1 − FN−1(r)

�

Thus, pH is the expected value of a bidder with signal si ≤ r conditional on the highest
signal among the remaining N − 1 bidders weakly exceeding r and, thus, pH > pL. In
this mechanism, every bidder is asked to express either a low or a high interest in the
good. If all bidders express low interest, then the seller keeps the good. If at least one
bidder expresses high interest, then all bidders are offered a chance to purchase, with
equal probability. When bidder i is offered the good, the associated price is either a low
price pL if all other bidders expressed low interest or a high price pH >pL if at least one
other bidder expresses high interest.

We claim that there is an equilibrium of this mechanism where bidders express high
interest if si ≥ r and express low interest otherwise. Bidders always agree to buy the
good at the offered price, whatever that may be. In fact, this strategy is optimal even if
a bidder i were to know whether max s−i is less than or greater than r, i.e., whether all
of the other bidders express low interest or at least one expresses high interest. To see
this, notice if we condition on max s−i < r, there is effectively a posted price of r, and the
value is at least the price if and only if si ≥ r. It is a best reply to express high interest and
accept the low price when si ≥ r and to express low interest otherwise. If we condition
on max s−i ≥ r, then expressing high or low interest results in the same outcome, which is
a probability 1/N of being offered the good at the high price. The expected value across
all s−i is always at least pH , since the true value is the maximum of si and s−i. Thus, it is
a best reply to express high interest if si ≥ r and express low interest otherwise.

Note that this mechanism implements the same ex post total surplus as the exclusive
posted price, but lower-signal bidders are more likely to receive the good for every signal
profile. As a result, information rents are reduced relative to the exclusive posted price.

Proposition 2 (Two-tier posted price). The two-tier posted price (pL�pH) yields a
weakly higher revenue than the exclusive posted price pE with the same exclusion level.

The two-tier posted price induces a winner’s blessing for types si < r: Being allocated
the good implies that max s−i ≥ r. Formally, the interim expectation of a bidder with
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si < r is smaller than the expected value conditional on receiving the object:

E
[
v(si� s−i)|si

] =

∫ s

x=s
max{si� x}d

(
FN−1(x)

)
∫ s

x=s
d
(
FN−1(x)

) <

∫ s

x=r
xd

(
FN−1(x)

)
∫ s

x=r
d
(
FN−1(x)

) �
By contrast, for all types si ≥ r, the expected value conditional on receiving the good
equals the interim expectation, as with the inclusive posted price. Thus, for these types,
there is neither a winner’s curse nor a winner’s blessing.7

3.4 Random two-tier posted price

The inclusive posted price and the two-tier posted price depresses the probability of
winning to 1/N for the bidder with the highest signal, whereas that bidder would have
won with probability 1 in any standard auction. Do there exist mechanisms that reduce
the highest-signal bidder’s probability of winning even further? One might think this
is impossible based on intuition from the private-value case, where higher types must
have higher interim allocations. With interdependent values, however, it is possible to
skew the allocation against the highest-signal bidder, as we now explain.

As a segue, let us first observe that there is another implementation of the alloca-
tion (4) induced by the two-tier posted price: Bidders report their signals, the good is
allocated with uniform probability if the highest report exceeds r, and any bidder who is
allocated the good makes the Vickrey payment max{r� s−i}. Thus, the high bidder faces
a nontrivial posted price r, whereas the lower-signal bidders face no such reserve price
(although they are still not allocated the good if all of the bids are below r). It is straight-
forward to verify that this mechanism is ex post incentive compatible and ex post indi-
vidually rational, i.e., truthful reporting is an equilibrium even if the realized signals are
complete information among the bidders.

Now consider the following modification of this revelation game. The object is al-
located if at least one of the bidders reports a signal exceeding the threshold r. Break-
ing ties randomly, we give the bidder i with the highest reported signal the priority to
purchase the object, but we ask him to pay a posted price that is the maximum of the
reported signals of the others and an additional random variable x. Thus, bidder i faces
a posted price of max{x� s−i}. The distribution of x is denoted by H(x) and has support
in [r�∞]. In particular, it is possible for this posted price to be infinite, in which case it
is impossible for the high bid to meet the threshold. Bidder i is allocated the good at the
realized price if it is less than his reported signal. Otherwise, one of the other bidders

7In the context of efficient trade with interdependent values, Fieseler et al. (2001) refer to a “blessing”
when the value of the winning bidder is a decreasing function of the other agents’ signal (rather than in-
creasing as in common value models of auctions). In related work on efficient bargaining, Segal and Whin-
ston (2011) refer to this condition as a “winner’s blessing” in contrast to the winner’s curse. In the current
analysis, the presence of a winner’s curse or winner’s blessing is not determined by an exogenous statistical
feature of the value model, but by the endogenous choice of the allocation through the revenue maximizing
mechanism.
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is offered the good at a price equal to the highest reported signal. The allocation just
described is

qi(s)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
|arg max s|H(max s)+

(
1 − 1

|arg max s|
)

1
N − 1

(
1 −H(max s)

)
if si = max s and max s ≥ r

1
N − 1

(
1 −H(max s)

)
if si <max s and max s ≥ r

0 if max s < r�

The allocation and transfer rules reduce to the two-tier posted price mechanism
when H puts probability 1/N on x = r and probability (N − 1)/N on x = ∞, in which
case we have already shown that truthful bidding is an equilibrium. However, if we
choose H to put less probability on x = r, then the allocation is effectively skewed to-
ward lower-signal bidders as long as bidding is truthful. This begs the question, “For
which distributionsH is truthful bidding an equilibrium?”

Note that for any H, bidders have no incentive to overreport when others report
truthfully: This can only result in being allocated the good at a price that exceeds the
value. Also, reporting any signal less than r is equivalent to reporting a signal of r. Thus,
to verify incentive compatibility, it suffices to check that a bidder i with signal si ≥ r

does not want to misreport s′i ∈ [r� si]. To that end, consider the surplus of such a bidder,
assuming that all other bidders report truthfully:

ui
(
si� s

′
i

) =
∫ s′i

x=r
(si − x)d

(
H(x)FN−1(x)

)
+

∫ s

x=s′i

(
max{si� x} − x)1 −H(x)

N − 1
d
(
FN−1(x)

)
�

The derivative of this expression with respect to s′i is

(
si − s′i

)[
d
(
H

(
s′i

)
FN−1(s′i)) − 1 −H(

s′i
)

N − 1
d
(
FN−1(s′i))]�

So, a sufficient condition for downward deviations not to be attractive is that the term
inside the brackets is nonnegative for all s′i, which reduces to

dH(x)

1 −NH(x) ≥ 1
N − 1

d
(
FN−1(x)

)
FN−1(x)

�

If we solve the above inequality as an equality, with the boundary condition H(r) = 0,
we obtain

H(x)� 1
N

(
1 −

(
F(r)

F(x)

)N)
� (5)
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With this distribution for x, we refer to the resulting game form as a random two-tier
posted price. We have just verified that this mechanism is incentive compatible. In fact,
bidders are indifferent between truthful reporting and all downward misreports.

By construction, H(r)= 0, so a bidder with the highest signal close to the exclusion
threshold r is unlikely to receive the object. Moreover, even the bidder with the highest
possible signal s receives the object with probability less than 1/N since

H(s)= 1
N

(
1 − FN(r))< 1

N
�

We have, therefore, completed the proof of the following result.

Proposition 3 (Random two-tier posted price). The random two-tier posted price
yields a higher revenue than the two-tier posted price for a given exclusion level r.

Note that the random two-tier posted price has the feature that the resulting interim
probability qi(si) of receiving the object is constant in the signal si. Specifically,

qi(si)= FN−1(si)H(si)+
∫ s

x=si

(
1 −H(x)
N − 1

)
d
(
FN−1(x)

) = 1 − FN(r)
N

�

We return to this property and its further implications in Section 4.3.
Until now, we have treated the exclusion threshold r as a fixed parameter. Thus, there

is actually a one-dimensional family of random two-tier posted price mechanisms, in-
dexed by r. At the extreme where r = 0, the associated allocation reduces to the uniform
probabilities implemented by the inclusive posted price mechanism.

The revenue maximizing threshold r∗ can be determined as follows. Expected rev-
enue is the difference between total surplus and bidder surplus. The effect of increasing
the exclusion threshold on total surplus is immediate: Surplus is lost from the good not
being allocated when the value is r. Next, since a bidder receives positive surplus only if
he has the highest signal, bidder surplus in the random two-tier posted price is

U =
∫ s

s=r

∫ s

x=r
(s− x)d(H(x)FN−1(x)

)
dF(s)

=
∫ s

x=r
1
N

1 − F(x)
F(x)

(
FN(x)− FN(r))dx�

where we have simply plugged in the definition of H(x) from (5). Thus, the effect of an
increase in r on U is

dU

dr
= − 1

N

∫ s

x=r
1 − F(x)
F(x)

dx
d
(
FN(r)

)
dr

�

The overall effect of increasing r on revenue is, therefore,

dR

dr
= −ψ(r)d

(
FN(r)

)
dr

�
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where

ψ(r)� r −
∫ s

x=r
1 − F(x)
F(x)

dx� (6)

Note that ψ(r) is continuous and strictly increasing in r, and it is positive when r is suf-
ficiently large. As a result, revenue is single-peaked in the posted price, and the optimal
reserve price r∗ is the smallest r such that ψ(r)≥ 0:

r∗ � min
{
r
∣∣∣r −

∫ s

x=r
1 − F(x)
F(x)

dx≥ 0
}
�

The function ψ(v) can be interpreted as the virtual value from allocating the good con-
ditional on the value being v, albeit a different virtual value than the one obtained from
only local incentive constraints. We expand on this interpretation in the next section.

Thus, we have established that the random two-tier posted price with threshold r∗
generates more revenue than standard auctions, inclusive and exclusive posted prices,
and two-tier posted prices. Indeed, our main result is that it maximizes revenue among
all incentive compatible and individually rational mechanisms.

Theorem 1 (Optimality of random two-tier posted price). The random two-tier posted
price with cutoff r∗ maximizes revenue across all IC and IR direct mechanisms.

The random two-tier posted price mechanism tilts the allocation toward lower-
signal bidders and away from the highest-signal bidder. In consequence, every type
of bidder is more likely to receive the object when their signal is not the highest, and
this mechanism extends the winner’s blessing to all types. Formally, the interim expec-
tation for all bidders si ∈ [s� s) is strictly smaller than the expected value conditional on
receiving the object,

E
[
v(si� s−i)|si

] =
∫ s

x=s
max{si� x}d

(
FN−1(x)

)
< siF

N−1(si)H(si)+
∫ s

x=si
x

(
1 −H(x)
N − 1

)
d
(
FN−1(x)

)
�

where the inequality can be verified after replacing the distribution H(x) by the prior
distribution of signals, F(x), as defined above in (5). Thus, the optimal mechanism re-
verses the winner’s curse and induces a winner’s blessing for all types (except the highest
type).

Note that as r goes to s, H converges pointwise to the constant function 1/N . As a
result, when the gains from the bias toward lower-signal bidders is small relative to the
cost of restricting supply, the inclusive posted price emerges as the optimal mechanism.

Corollary 1 (Optimality of inclusive posted price). The inclusive posted price maxi-
mizes revenue across all IC and IR direct mechanisms if and only if ψ(s)≥ 0.
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We also show that the inclusive posted is always the optimal mechanism if one re-
stricts attention to mechanisms where the object must always be allocated. We refer to
this class of mechanism as must-sell mechanisms.

Theorem 2 (Must-sell optimality of inclusive posted prices). If the object is required to
be allocated with probability 1, then the inclusive posted price maximizes expected rev-
enue across all IC and IR mechanisms.

We prove Theorems 1 and 2 in the next section. We emphasize that the arguments
are novel and require the explicit consideration of global incentive constraints. In par-
ticular, the optimality of the posted price within must-sell mechanisms does not follow
from the arguments reported in Bulow and Klemperer (2002).8

4. Optimal mechanisms

The broad strategy in proving Theorems 1 and 2 is to show that the allocations induced
by random two-tier posted prices attain an upper bound on revenue, where that upper
bound is derived using a subset of the bidders’ incentive constraints. Before developing
this argument, we briefly review existing approaches and explain why they are inade-
quate for our purposes.

4.1 Local versus global incentive compatibility

The standard approach in auction theory is to use local incentive constraints to solve
for transfers in terms of allocations and to rewrite expected revenue as the expected
virtual value of the bidder who is allocated the good. Note that the formula for the virtual
value (3) tells us what revenue must be as a function of the allocation if local incentive
constraints are satisfied, but it does not tell us which allocations can be implemented
subject to all incentive constraints.

In the case studied by Bulow and Klemperer (1996), where the winner’s curse is weak,
the virtual value is pointwise maximized by allocating the good to the bidder with the
highest signal (that is, whenever allocating the good is better than withholding it). One
can then appeal to existing characterizations of equilibria of English auctions with in-
terdependent values, namely that of Milgrom and Weber (1982), to show that such an
allocation is implementable. This proof strategy does not work in the maximum sig-
nal model. As we have shown, the bidder with the highest signal always has the lowest
virtual value, so pointwise maximization of πi(s) would never allocate the object to the
highest-signal bidder. Moreover, it is straightforward to argue that such an allocation
would not be incentive compatible. If it were, then the highest type would receive the
good with probability 0 and the lower types with probability 1. The high type must,

8As we mentioned earlier in footnote 3, Bulow and Klemperer (2002) establish the optimality of the inclu-
sive posted price mechanism among efficient mechanisms in a different environment (the “wallet game”)
where the value is the sum of independent signals. This case is additively separable, so that the usual mono-
tonicity condition on the interim allocation is necessary and sufficient for implementability. The maximum
signal model is not additively separable and, therefore, necessitates new arguments.
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therefore, be paid by the mechanism an amount equal to the positive surplus that could
be obtained by pretending to be the lowest type. But this surplus must be strictly greater
than that obtained by the lowest type, thus tempting the lowest type to misreport as the
highest.

When the pointwise maximization approach fails, one needs to explicitly include
global incentive constraints in the optimization problem in addition to the local incen-
tive constraints that are implicit in the revenue equivalence formula. In the additively
separable case, e.g., where the value is the sum of the bidders’ signals, global incentive
constraints are equivalent to the interim allocation being nondecreasing. But in general
interdependent value models, interim monotonicity is neither necessary nor sufficient
for incentive compatibility, and we know of no general characterization of which alloca-
tions are implementable in these environments.9

Thus, we must incorporate global constraints into the seller’s optimization problem.
The key question is, “Which global constraints pin down optimal revenue?” The anal-
ysis of the preceding section suggests that the critical constraints might be those cor-
responding to downward deviations: Each bidder accrues information rents only when
he is allocated the good and has the highest signal. Thus, the seller wants to distort the
allocation towards lower-signal bidders as much as possible. But if the allocation is too
skewed, then bidders would want to deviate by reporting strictly lower types.10 More-
over, all of the downward constraints are binding in the putative optimal allocations,
thus suggesting that they all must be used to obtain a tight upper bound on revenue.

In the next section, we formally establish an upper bound on revenue that is attained
by the random two-tier posted price described in Theorem 1. The bound is obtained
by solving a relaxation of the revenue maximization program, where we drop all of the
incentive constraints except those that correspond to a one-dimensional family of devi-
ations in the normal form, one for each type si, wherein si misreports as a type s′i ∈ [s� si]

9The following two allocation rules—within the maximum signal model—show that interim monotonic-
ity of the allocation is neither necessary nor sufficient for incentive compatibility. Consider the case of two
bidders, i = 1�2, who have binary signals si ∈ {0�1}, which are equally likely. We consider two allocation
rules for bidder 1, q1, as given by one of the following tables. The allocation for bidder 2 is constant across
signal realizations and is simply q2 = 0.

q1 s2
0 1

s1 1 1 0

0 1 1

q1 s2
0 1

s1 1 0 1

0 1 0

The allocation on the left is not interim monotone in s1, but is easily implemented by charging a price of
s2 whenever the good is allocated to bidder 1. The allocation on the right is interim monotone, but cannot
be implemented: The low type must pay an interim transfer that is at least that of the high type so as to
prevent the high type from misreporting. But this implies the low type would prefer to misreport, to pay
weakly less, and get the good when it is worth 1 rather than 0. These examples could be made efficient by
adding a third bidder, who receives the good when it would not be allocated to bidder 1, with zero transfer.
Note that the third bidder’s allocation probability is independent of his signal. As a result, the example can
be made symmetric simply by randomly permuting the roles of the bidders.

10Note that this intuition is in some sense the opposite of what happens in the private-value auction
model, in which the optimal auction typically discriminates in favor of higher types. An important differ-
ence is that when values are not common, it is not just whether, but also to whom, the good is allocated
that determines total surplus.
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with likelihood f̃ (s′i|si). We now informally motivate this relaxation. First, the fact that
the deviation likelihood is independent of i is suggested by the symmetry of the model.
Next, a dual interpretation of these constraints is that f̃ (s′i|si) is proportional to the op-
timal Lagrange multiplier on the incentive constraint for si misreporting as s′i (so that
replacing incentive constraints with weighted sums, where the weights are equal to the
optimal Lagrange multipliers, does not change the value of the program). The fact that
types misreport only as lower types corresponds to our observation in the previous para-
graph that bidders need to be indifferent to all downward deviations.

The functional form for f̃ can be understood as follows. Ultimately we argue that
the random two-tier posted price is an optimal mechanism. Recall that this mechanism
has the feature that ui(si)= ui(si� s

′
i) for all s′i ≤ si. Thus, a feature of this mechanism is

that all downward deviations result in the same payoff, so that ui(si� s′i) − ui(si� s
′′
i ) = 0

as long as si > max{s′i� s′′i }. Thus, the relative value of misreporting as lower types does
not depend on which type is misreporting. This suggests a crucial property of the de-
viation likelihoods: The relative likelihood of deviating to lower types does not depend
on which type is deviating, i.e., f̃ (s′i|si)/f̃ (s′′i |si) is independent of si (again, as long as

si >max{s′i� s′′i }). Equivalently, there exists a function f̃ (s′i) (which no longer depends on

si) such that f̃ (s′i|si)= f̃ (s′i)/F̃(si), where F̃(si)�
∫ si
x=s f̃ (x)dx.

Now, given this functional form, the aggregated incentive constraint is

ui(si)F̃(si)≥
∫ si

s′i=s
f̃
(
s′i

)
ui

(
si� s

′
i

)
ds′i

=
∫ si

s′i=s
f̃
(
s′i

)[
ui

(
s′i

)
+

∫
s−i∈SN−1

max
{
0� si − max

{
s′i� s−i

}}
qi

(
s′i� s−i

)
f−i(s−i) ds−i

]
ds′i�

This integral inequality ultimately is used to bound bidder utility from below. It is in-
tuitive that given the allocation qi, there is a smallest indirect utility that satisfies this
inequality for all si, which is the function ui that makes the constraint hold as equality
everywhere, with ui(s)= 0. (This is established rigorously for the optimal f̃ in Theorem 3
below.) Treating the aggregated incentive constraint as an equality and differentiating
both sides, we obtain the differential equation

u′
i(si)F̃(si)=

∫
s′∈[s�si]N

qi
(
s′

)
f̃
(
s′i

)
f−i

(
s′−i

)
ds′�

Subject to the boundary condition, the solution is

u(si)�
∫ si

s′′i =s
1

F̃
(
s′′i

) ∫
s′∈[s�s′′i ]N

qi
(
s′

)
f̃
(
s′i

)
f−i

(
s′−i

)
ds′ ds′′i �

Bidder i’s ex ante expected utility Ui is then at least∫ s

si=s
u(si)f (si)dsi =

∫ s

si=s

∫ si

s′′i =s
1

F̃
(
s′′i

) ∫
s′∈[s�s′′i ]N

qi
(
s′

)
f̃
(
s′i

)
f−i

(
s′−i

)
ds′ ds′′i fN (si)dsi
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=
∫
s′∈SN

∫ s

si=s

∫ si

s′′i =s
1

F̃
(
s′′i

) Is′′i ≥max(s′) ds
′′
i f (si)dsiqi

(
s′

) f̃ (s′i)
f
(
s′i

)fN (
s′

)
ds′

=
∫
s′∈SN

∫ s

s′′i =max(s′)

1 − F(
s′′i

)
F̃

(
s′′i

) ds′′i
f̃
(
s′i

)
f
(
s′i

)qi(s′)fN (
s′

)
ds′�

As revenue is simply expected surplus less the bidders rents, the previous equation (with
a change of variables) indicates that

N∑
i=1

(∫
s∈SN

max(s)qi(s)fN (s)ds−Ui
)

≤
N∑
i=1

∫
s∈SN

(
max(s)−

∫ s

s′i=max(s)

1 − F(
s′i

)
F̃

(
s′i

) ds′i
f̃ (si)

f (si)

)
qi(s)fN (s)ds� (7)

This equation represents an analogue of the Myersonian revenue equivalence formula,
except that the term in parentheses is a generalized virtual value that takes into account
this particular class of global incentive constraints.

Now we may ask, which f̃ is optimal, i.e., minimizes the bound? Without global in-
centive constraints, the seller will wish to allocate the good to the lower-signal bidders.
This suggests that the optimal f̃ should be such that the seller no longer wishes to ex-
clusively allocate to lower-signal buyers. In fact, there is a particular choice for f̃ such
that the term multiplying qi(s) in (7) is independent of i, which is f̃ (si)= f (si), i.e., de-
viations are proportional to the prior. As a result, the seller will be indifferent between
allocating to all bidders. The resulting revenue bound is

N∑
i=1

∫
s∈SN

(
max(s)−

∫ s

s′i=max(s)

1 − F(
s′i

)
F

(
s′i

) ds′i
)
qi(s)fN (s)ds

=
N∑
i=1

∫
s∈SN

ψ(max s)qi(s)fN (s)ds

=
∫ s

v=s
ψ(v)q(v)g(v)dv�

We have already argued that this expression is maximized by setting q = 1 if max s ≥
r∗ and qi = 0 otherwise, and, moreover, this revenue upper bound is attained by the
optimal random two-tier posted price.

4.2 Proof of optimality: Theorems 1 and 2

We now formally state and prove the upper bound on revenue.

Theorem 3 (Revenue upper bound). In any IC and IR mechanism in which the prob-
ability of allocating the good conditional on the value is given by q, expected revenue is
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bounded above by

R�
∫ s

v=s
ψ(v)q(v)g(v)dv� (8)

where ψ(v) is defined in (6).

Proof. Consider the deviation in which type si misreports as s′i ∈ [s� si] according to the
cumulative distribution F(s′i)/F(si). We refer to this as misreporting a redrawn lower
signal. The analysis of the preceding section shows that a bidder with signal si will not
want to deviate in this manner only if

ui(si)≥ 1
F(si)

∫
s′∈[s�si]N

[
ui

(
s′i

) + max
{
0� si − max

{
s′

}}
qi

(
s′

)]
fN

(
s′

)
ds′

= 1
F(si)

(∫ si

x=s
ui(x)f (x)dx+

∫ si

x=s
(si − x)qi(x)g(x)dx

)
�

If this constraint holds for each i, then it must hold on average across i, so that

u(y)≥ 1
F(y)

(∫ y

x=s
u(x)f (x)dx+ λ(y)

)
� (9)

where

u(y)�
N∑
i=1

ui(y)

and

λ(y)�
∫ y

x=s
(y − x)q(x)g(x)dx�

Now define the function operator

�(u)(y)�

⎧⎪⎨⎪⎩
1

F(y)

(∫ y

x=s
u(x)f (x)dx+ λ(y)

)
if y > s

0 if y = s
on the space of nonnegative integrable utility functions such that u(s) = 0. Then (9) is
equivalent to u≥ �(u) in the pointwise order.

It is easily verified that the function

u(y)�

⎧⎪⎨⎪⎩
∫ y

x=s
λ(x)

f (x)(
F(x)

)2 dx+ λ(y)

F(y)
if y > s

0 if y = s
(10)

is a fixed point of � and, therefore, solves (9) as an equality:

�(u)(y)= 1
F(y)

(∫ y

x=s

(∫ x

y=s
λ(y)

f (y)(
F(y)

)2 dy + λ(x)

F(x)

)
f (x)dx+ λ(y)

)
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= 1
F(y)

(
F(y)

∫ y

x=s
λ(x)

f (x)(
F(x)

)2 dx+ λ(y)
)

= u(y)�

where the second line comes from Fubini’s theorem.
We now argue that u is the lowest nonnegative u that satisfies (9). This is a conse-

quence of the following observations. First, � is a monotonic operator on nonnegative
increasing functions in the pointwise order, so by the Knaster–Tarski fixed point theo-
rem, it must have a smallest fixed point. Second, if � has another fixed point û that is
smaller than u, then it must be that û(s)≤ u(s) for all s, with a strict inequality for some
positive measure set of s. Moreover, it must be that u(x)− û(x) goes to zero as x goes to
s (and, hence, cannot be constant for all x). Let ‖ · ‖ denote the sup norm, and suppose
that ‖�(u)− �(û)‖ is attained at s. Then

∥∥�(u)− �(û)∥∥ = 1
F(s)

∣∣∣∣∫ s

x=s
(
u(x)− û(x))f (x)dx∣∣∣∣

≤ 1
F(s)

∫ s

x=s
∣∣u(x)− û(x)∣∣f (x)dx

<
1
F(s)

∫ s

x=s
‖u− û‖f (x)dx

= ‖u− û‖�

This contradicts the hypothesis that both u and û are fixed points of �.
Finally, if û is any function that satisfies (9) but is not everywhere above u, then con-

sider the sequence {uk}∞k=0, where u0 = û and uk = �(uk−1) for k ≥ 1. Given the base
hypothesis that u0 ≥ �(u0) = u1 and that � is a continuous affine operator, and given
that u ≥ 0 implies that �(u) ≥ 0 as well, we conclude that {uk}∞k=0 is monotonically de-
creasing and, therefore, must converge pointwise to a limit that is a fixed point of �,
which is not uniformly above u. This implies that there exists a fixed point that is below
u, again a contradiction. Thus, every u such that u≥ �(u) must be greater than u in the
pointwise order.

As a result, if a direct mechanism implements q, total bidder surplus must be at least

U �
∫ s

y=s
u(y)f (y)ds =

∫ s

y=s

∫ s

x=y
1 − F(x)
F(x)

dxq(y)d
(
FN(y)

)
�

and revenue is TS −U , which is equal to R.

We can now complete the proofs of our main theorems.

Proof of Theorem 1. If the seller can withhold the good, then we can derive an up-
per bound on optimal revenue by maximizing the bound (8) pointwise. Since ψ(v) is
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monotonic, the pointwise maximum is attained by the allocation

q̄(v)=
{

1 if v≥ r∗
0 if v < r∗�

(11)

where

r∗ = min
{
v|ψ(v)≥ 0

}
�

This is the allocation that is implemented by the random two-tier posted price. More-
over, we have already verified that bidders are indifferent to all downward deviations, so
that the revenue upper bound is attained.

Proof of Theorem 2. If the good must be allocated, then q̄(v)= 1 for all v, which com-
pletely determines the upper bound on revenue from misreporting a redrawn lower sig-
nal. The upper bound is attained by any mechanism that implements this allocation
and makes bidders indifferent to all downward deviations. But all types are treated the
same way by the inclusive posted price, so that all downward incentive constraints hold
as equalities and the upper bound on revenue is attained.

4.3 Features of the optimal auction

We now review some key properties of optimal mechanisms, including the structure of
optimal allocations and transfers, the pattern of binding incentive constraints, and the
nature of updating from being allocated the good.

Features of optimal direct mechanisms Theorem 1 establishes that a random two-tier
posted price maximizes revenue. A natural question is whether there are other optimal
allocations. While there may be other optimal auctions, the induced allocation must
share a number of key properties with the one we have constructed.

First, the logic of Theorem 3 implies that in any optimal mechanism, we must have
q be the step function given in (11).

Second, so as to attain the revenue bound from Theorem 3 exactly, all of the av-
erage downward constraints (9) must hold as equalities. This implies that all point-
wise downward incentive constraints hold as equalities as well, i.e., for all si and s′i < si,
ui(si) = ui(si� s

′
i). Otherwise, if some subset of these constraints were slack, then since

they are equalities on average, some other subset must be strictly violated. Now, fix two
types si and s′i. If ŝ ≥ max{si� s′i}, then because bidders are indifferent to all downward
deviations,

0 = ui(ŝi� si)− ui
(
ŝi� s

′
i

)
=

∫
s−i∈SN−1

max{ŝ� s−i}
(
qi(si� s−i)− qi

(
s′i� s−i

))
f−i(s−i) ds−i −

(
ti(si)− ti

(
s′i

))
�

where ti(·) is the interim transfer function. Thus, the derivative of the last line with re-
spect to ŝ must be zero:

0 =
∫
s−i∈[s�ŝ]N−1

(
qi(si� s−i)− qi

(
s′i� s−i

))
f−i(s−i) ds−i�
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Evaluated at ŝ = s, this implies that qi(si) = qi(s
′
i), where qi(·) is the interim allocation.

Thus, in any optimal allocation, all types receive exactly the same interim allocation.
The fact that interim allocations are constant implies that interim transfer must be

constant as well. The highest type s is certain that the value is s and by construction is
indifferent to all downward deviations, so that the payoff sqi(si) − ti(si) must be inde-
pendent of si. But since qi(si) is constant, ti(si) must be constant as well. Thus, another
implementation of this allocation is that every bidder pays the constant interim transfer
as an entry fee, after which he make his reports, and the optimal allocation is imple-
mented. We next describe such an implementation in greater detail.

Finally, the argument in Theorem 3 actually establishes a much stronger result, that
the sum of the indirect utilities ui(y) is at least u(si), and this level must be attained in
any optimal mechanism. Recall that another way to compute utilities is with the en-
velope formula, which says that u′

i(si)= q̂i(si), where the right-hand side is the interim
probability that bidder i is allocated the good and has the highest signal:

q̂i(si)�
∫
s−i∈SN−1

qi(si� s−i)Isi≥s−i dF−i(s−i)�

Putting these two observations together, we conclude that

N∑
i=1

q̂i(si)= u′(si)= 1
F(si)

∫ si

x=s
qi(x)g(x)dx�

where the term on the right-hand side is a direct calculation from (10).
Thus, any optimal allocation must have the same aggregate allocation, the same

constant interim allocation, and the same interim probability of getting the good and
having the high signal. There is still some flexibility in how the good is allocated among
lower-signal bidders. The random two-tier posted price simply treats all lower-signal
bidders symmetrically.

Global incentive constraints We can compare the pattern of binding incentive con-
straints for the standard auctions (first-price, second-price, and English) and the op-
timal mechanism visually in Figure 1. Here we consider an example with two bidders
where the value is standard uniform, so G(v)= v and F(s)= √

s. Each graph describes
the indirect utility for three types, si ∈ {1/4�1/2�3/4}, in the second-price auction and
the optimal mechanism. Each curve describes for each type si the indirect utility the
type would receive from reporting any other signal s′i ∈ [0�1]. The equilibrium utility
supported by truthful reporting is indicated by the corresponding vertical line. The first
observation is that the equilibrium utility—the information rent of each bidder—drops
by at least a factor of 4 by moving from the second-price auction to the optimal mecha-
nism. Thus, the revenue gain from eliminating the winner’s curse is substantial. Second,
in moving from a standard auction to the optimal mechanism, the structure of the bind-
ing incentive constraints reverses completely. In standard auctions, the winner’s curse
is so strong and, consequently, the equilibrium bid is so low, that each bidder is indif-
ferent between his equilibrium bid bi(si) and any higher bid on the entire support of the
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Figure 1. Uniform downward versus upward incentive constraints.

signal distribution. Thus, all upward incentive constraints are binding. By contrast, in
the optimal mechanism, all downward incentive constraints are binding. That is, the
information rent of each bidder is lowered so far that each bidder is indifferent between
reporting truthfully and offering any misreport between 0 and the true signal si. We note
that the contrast in the structure of the incentive constraints holds true for all continu-
ous signal distributions in the maximum signal model. That is, all upward constraints
bind in standard auctions and all downward constraints bind in the optimal mechanism.
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We emphasize that this holds true for all continuous value (and signal) distributions, not
just the uniform distribution plotted here.

Interim and ex post allocation probability While the interim allocation probability is
constant, the ex post probability qi(s) induced by the random two-tier posted price
mechanism depends on the realized signals:

qi(s)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
H(max s) if si > sj ∀j �= i and si ≥ r

1
N − 1

(
1 −H(max s)

)
if si <max s and max s ≥ r

0 otherwise�

Thus, conditional on the realized signal profile, highest-signal bidders are strictly less
likely to receive the good than lower-signal bidders, since

H(max s)≤H(s)= 1 − FN(r)
N

<
1
N
<

1
N

+ 1

N2F
N(r)= 1 −H(s)

N − 1
≤ 1 −H(max s)

N − 1
�

Conditioning on winning therefore results in a higher expected value for all types. In
effect, the random posted price turns the winner’s curse into a winner’s blessing. This
results in an increased willingness to pay in equilibrium and an increase in the revenue
generated by the auction.

We note that while the allocation is interim incentive compatible, it cannot be made
ex post incentive compatible. The reason is that qi is not monotonic in si, which is nec-
essary for ex post implementation: If a bidder j �= i reports a signal above r, then bidder
i receives the good with higher probability with a report less than max s−i than he does
with a report greater than max s−i. The allocations associated with the inclusive posted
price and the two-tier posted price can, however, be implemented ex post.

4.4 Alternative implementation: Guaranteed demand auction

While the random two-tier posted price nominally requires detailed knowledge of the
environment so as to calibrate the distribution H, there exist other implementations
that “discover” the optimal distribution in equilibrium. Consider the following mecha-
nism, which we refer to as the guaranteed demand auction (GDA). Each bidder first de-
cides whether to pay an entry feeφ to enter the auction. Upon entering, the bidder then
makes demand δi ∈ [0� δ] of a probability of receiving the good. The only parameters of
the auction are the entry fee φ≥ 0 and the upper bound δ ∈ [0�1/N]. There are no pay-
ments beyond the entry fee. If bidder i decides not to enter, then the auction proceeds
without him, and the payment and assignment probability of bidder i are both 0.

The allocation is determined as follows. Let i∗ denote the identity of the bidder with
the highest demand (chosen randomly if there are multiple high demanders). If δi∗ > 0,
then bidder i∗ is allocated the good with probability δi∗ and each bidder j �= i∗ receives
the good with probability (1 − δi∗)/(N − 1). Thus, a bidder is more likely to be allocated
the good when he does not have the highest demand as

δi∗ <
1 − δi∗
N − 1

�
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because δi∗ ≤ δ < 1/N . In consequence, a bidder is guaranteed to receive the good with
probability at least his demand.

We claim that there is an equilibrium in which each bidder simply demands a quan-
tity

δ(si)=

⎧⎪⎨⎪⎩
1
N

(
1 −

(
F(r)

F(si)

)N)
if si ≥ r

0 if si < r

and where r solves

FN−1(r)= 1 −Nδ�
It is easily verified that the induced interim allocation is exactly the same as that induced
by the random price mechanism that implements the exclusion threshold r. Since the
interim transfers are constant as well, we conclude that conditional on entering, the
proposed strategies are an equilibrium. Moreover, if δ is chosen so that the exclusion
threshold is the optimal r∗ and if φ is the highest entry fee such that all types are willing
to enter, then the induced allocation and bidder surplus will be precisely those of the
random two-tier posted price.

4.5 Omitted bidders and optimality of the inclusive posted price

In Corollary 1, we gave a necessary and sufficient condition for the inclusive posted price
to be the optimal mechanism. When this condition is not met, the seller can achieve
greater revenue using the random two-tier posted price to withhold the good when the
value is low. A trade-off is that the exclusive random two-tier posted price construction
is significantly more complicated than the inclusive posted price. A classic result of Bu-
low and Klemperer (1996) demonstrates that the value of such exclusion may be quite
limited. They argue that the difference between optimal revenue and optimal must-sell
revenue is bounded above by the additional revenue from the optimal must-sell mecha-
nism when an additional bidder is added to the auction in a natural way. In the particu-
lar context of Bulow and Klemperer (1996), which excludes the maximum signal model,
the optimal must-sell mechanism is an English auction, whereas in the maximum signal
model, the posted price mechanism is optimal among must-sell mechanisms. But as we
now argue, when there are omitted bidders, the inclusive posted price is in fact optimal
among all mechanisms, including those that ration the good.11

Let us suppose that there are N potential bidders. As before, they receive indepen-
dent signals drawn from F , and the common value of all bidders is the maximum of
these signals. Only the firstN ′ ≤N of the bidders participate in the auction. We say that
there are omitted bidders ifN ′ <N . Following Bulow and Klemperer (1996), the expected
value of a bidder i ≤N ′ conditional on (s1� � � � � sN ′) is the expectation of the maximum

11Kirkegaard (2006) also emphasizes the broader applicability of the Bulow and Klemperer (1996) limited
value of exclusion result.
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of allN signals, integrated across (sN ′+1� � � � � sN). If we let

w(x)�
∫ s

y=s
max{x� y}d(FN ′−N(y)

)
�

then the expected value conditional on (s1� � � � � sN ′) is simply w(maxi≤N ′ si).

Proposition 4 (Omitted bidders). If there are omitted bidders, then the inclusive posted
price with price pI as in (1) is an optimal mechanism.

Proof. Suppose that there is an IC and IR mechanism that generates revenue R when
only bidders i ≤ N ′ < N participate. Then there is an IC and IR must-sell mechanism
with all N bidders in which the seller simply runs the same mechanism as with N ′ and
gives the good away for free to bidderN ′ + 1 whenever it would not have been allocated
to a bidder i≤N ′. Clearly this must-sell mechanism generates revenue ofR, which must
be less thanpI , which is maximum revenue across all must-sell mechanisms. As a result,
any achievable revenue with N ′ bidders must be less than pI . But revenue of pI can be
obtained when there are only N ′ bidders by, say, making a take-it-or-leave-it offer to
bidder i = 1 at price pI , which would be accepted with probability 1. We conclude that
optimal revenue withN ′ bidders is pI .

In particular, note that with omitted bidders, optimal revenue is equal to pI for all
N ′ < N and the optimal mechanism always allocates the good. Thus, when there are
omitted bidders, the seller does not benefit at all from exclusion and posted prices are
optimal. Bringing omitted bidders into the auction does not increase optimal revenue
unless all potential bidders are included. We regard this as a further argument in favor
of the inclusive posted price as a simple and robust mechanism for revenue extraction.

This finding may be contrasted with the narrow interpretation of the result of Bulow
and Klemperer (1996), which is that an English auction with N ′ + 1 bidders generates
more revenue than the optimal auction with N ′ bidders. This result crucially relies on
the hypothesis that bidders with higher signals have higher virtual values, which is vio-
lated in the maximum signal model. Indeed, as long as there areN ′ ≥ 2 bidders, revenue
from an English auction is actually decreasing in the number of bidders. The reason is
that as long asN ′ ≥ 2, competition between the bidders will make the participation con-
straints bind, so that revenue is equal to the expected highest virtual value among the
first N ′ bidders. But when more bidders are included in the auction, it becomes more
and more likely that the bidder who is allocated the good has the highest signal among
allN potential bidders, which is the only case in which a bidder receives an information
rent according to (3). This is consistent with the results of Bulow and Klemperer (2002),
Section 7, that when highest-signal bidders have lower virtual values, excluding bidders
in standard auctions will raise revenue.12

12In the current analysis, as in Bulow and Klemperer (1996), the entry of new bidders is taken as an ex-
ogenous event. An anonymous referee suggested that with endogenous entry of new bidders, the optimal
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5. Common values and increasing information rents

We now broaden our analysis beyond the maximum signal model and ask which of our
results generalizes to environments with common values and a strong winner’s curse.
We shortly define a class of such environments. It is always possible to achieve an effi-
cient allocation with a posted price. We construct mechanisms that implement uniform
allocations across bidders while also withholding the good when the value is low. This
can lead to strictly higher revenue. We finally give conditions under which it is possible
to implement mechanisms that skew the allocation even further away from the highest-
signal bidder and further increase revenue. Note that we stop short of characterizing
optimal auctions for these environments. As we indicated in the Introduction, the pat-
tern of binding incentive constraints at the optimal mechanism could in general be quite
complicated and depends on the fine details of the information structure.

5.1 Increasing information rents

We continue to assume that bidders receive independently distributed signals, but bid-
der i’s signal can now be drawn from an idiosyncratic distribution Fi. We also con-
tinue to assume that there is a common value whose expectation, given the signals
(s1� � � � � sN), is given by a function v(s1� � � � � sN) that is weakly increasing in each signal
si. The virtual value of a bidder is still given by the general formula (2).

We say that the model has increasing information rents if for all signal profiles s and
for all i, j,

si > sj =⇒ 1 − Fi(si)
fi(si)

∂v(s)

∂si
≥ 1 − Fj(sj)

fj(sj)

∂v(s)

∂sj
�

Conversely, the model has decreasing information rents if for all signal profiles s and all
i, j,

si > sj =⇒ 1 − Fi(si)
fi(si)

∂v(s)

∂si
≤ 1 − Fj(sj)

fj(sj)

∂v(s)

∂sj
�

Note that the notion of increasing information rents compares information rents across
bidders i and j, but not across signals si and s′i of any given bidder i. For example, it does
not require that each bidder i has an increasing or decreasing virtual value in his own
signal si.

In the maximum signal model, the increasing information rents condition is satisfied
for any distribution function F as the term ∂v(s)/∂si is positive only for the bidder with
the maximum signal, and it is zero for all other bidders.

auction format may well differ from the optimal auction design obtained here. In auctions with free en-
try, the expected information rent of each bidder in equilibrium equals the participation cost. In Levin
and Smith (1994) and more recently in Jehiel and Lamy (2015), it is shown that the auctioneer receives the
residual surplus, which is frequently maximized with a simple Vickrey auction. Similar arguments may also
become relevant in the common value setting considered here.
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Another prominent example is the wallet model, where the common value is the
sum of the signals:

v(s1� � � � � sN)=
N∑
i=1

si�

This model was the focus of the analysis in Bulow and Klemperer (2002). Here, the
marginal value of signal i is constant. The environment satisfies increasing information
rents if and only if the inverse hazard rate is increasing or, equivalently, if the hazard
rate is decreasing. Thus, in the wallet game, whether the information rent is increasing
or decreasing is entirely a matter of the monotonicity of the hazard rate. With the ex-
ponential distribution, the wallet model has weakly increasing information rent. If the
value function is given by the sum of nonlinear elements, for example,

v(s)=
N∑
i=1

(si)
α�

with α > 1, then the wallet game with exponential signals has strictly increasing infor-
mation rents.13

The increasing information rent condition implies that the revenue maximizing allo-
cation should be biased toward lower-signal bidders. But the generality of the common
value model complicates our earlier analysis in two respects. First, the common value of
the object now depends on the entire profile s of signals rather than just the highest sig-
nal max s. This complicates our constructions in Section 3, as the bidders’ payments now
have to depend on the entire signal profile, rather than just the highest of the others’ sig-
nals. Second, the virtual values of the bidders with lower signals may now differ across
bidders. Thus, whereas the optimal mechanism in the maximum signal model could be
described just in terms of the allocation of the highest-signal bidder and a representa-
tive lower-signal bidder, the optimal allocation in the general model might differentiate
between lower-signal bidders.

While the exact characterization of revenue maximizing mechanisms remains an
open question, we generalize our results in two steps to all increasing information rent
environments. First, we show that allocating to bidders with lower signals must increase
revenue if it is incentive compatible to do so. Second, we show that we can generalize
the revenue improving constructions from Section 3. Thus, without establishing opti-
mality, we describe simple revenue enhancing mechanisms building on the insights of
the maximum signal model.

13Povel and Singh (2004, 2006) consider a variant of the wallet game with two bidders. While the distri-
bution of the signals is assumed to be independent and identical across bidders, the signal of each bidder
enters the common value function with different weights. Thus, the agent with the larger weight can be
said to have more private information. They show that the asymmetry across bidders leads to asymmetric
allocation rules that ameliorate the winner’s curse. The analysis is driven by the ex ante asymmetry in the
scale of the bidders’ information, but otherwise follows the local arguments of Myerson (1981) and Bulow
and Klemperer (1996).
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5.2 More advantageous selection

The sequence of mechanisms constructed in Section 3 leads to progressively higher rev-
enue because they progressively skew the allocation away from highest-signal bidders,
who have high information rents, and toward lower-signal bidders, who have low in-
formation rents. We now give a general formulation of this comparative static. Fix two
allocations q�q′ : SN → [0�1] such that

N∑
i=1

qi(s)=
N∑
i=1

q′
i(s)�

In words, the allocations have the same total probability of allocating the good condi-
tional on the signal profile s and, hence, induce the same social surplus. We say that q
has more advantageous selection than q′ if, for all s and x,∑

{i|si≤x}
qi(s)≥

∑
{i|si≤x}

q′
i(s)� (12)

Thus, the more advantageously selective allocation q places more probability on lower-
signal bidders being allocated the good than does q′. Given a signal profile s, it results
in a lower unconditional expected value for the bidder who is allocated the good and,
correspondingly, more positive updating about the value from the event of winning the
auction. Generally speaking, this results in a weaker winner’s curse.

Our first formal result for this section shows that if information rents are increasing,
then more advantageous selection increases revenue.

Theorem 4 (More advantageous selection). Suppose that information rents are increas-
ing and that q and q′ are implementable allocations. If q has more advantageous selection
than q′, then the maximal revenue across all IC and IR direct mechanisms that implement
q is greater than maximal revenue across all IC and IR direct mechanisms that implement
q′.

Proof. Since the two allocations have the same total probability of allocating the good
for each signal profile, they must induce the same social surplus. At the same time,
by shifting the allocation to lower-signal buyers, the bidders’ information rents are re-
duced. Let

Z(x)=
∑

{i| 1−Fi(si)
fi(si)

∂v(si�s−i)
∂si

<x}
qi(si)

and define Z′ analogously in terms of q′. Then increasing information rents imply that
Z′ first-order stochastically dominates Z and, hence,

N∑
i=1

qi(s)
1 − Fi(si)
fi(si)

∂v(s)

∂si
=

∫ ∞

x=−∞
xdZ(x)

≤
∫ ∞

x=−∞
xdZ′(x)



Theoretical Economics 15 (2020) Countering the winner’s curse 1429

=
N∑
i=1

q′
i(s)

1 − Fi(si)
fi(si)

∂v(s)

∂si
�

Since total surplus is the same and information rents are weakly lower with q, revenue
must be weakly larger.

Similarly, if information rents are decreasing and if q has less advantageous selection
than q′—in the sense that the reverse inequalities in (12) hold for all x—then the max-
imum revenue across mechanisms that implement q is lower than maximum revenue
across mechanisms that implement q′.

5.3 Revenue improving mechanisms

Thus, with increasing information rents, more advantageous selection increases rev-
enue. The question remains as to how much advantageous selection can be achieved
subject to incentive compatibility constraints. While it is always possible to implement
an allocation in which the highest-signal bidder always receives the good, e.g., with stan-
dard auctions, there are generally nontrivial bounds on how much the allocation can be
skewed toward lower-signal bidders, as in the maximum signal model. We do not have
a general characterization of how much the allocation can be skewed. We can, how-
ever, describe some simple allocations that are always implementable and significantly
reduce the winner’s curse.

First, it is always possible to implement a range of neutrally selective allocations, in
which the ex post allocation probability is the same for all bidders. In particular, the
efficient neutrally selective allocation is always implementable via an inclusive posted
price, as previously defined in (1).

Proposition 5 (Inclusive posted price). The inclusive posted price mechanism yields a
higher revenue than any IC and IR mechanism that always allocates the good to a highest-
signal bidder.

Proof. The inclusive posted price and any standard auction assign the object with
probability 1 at every type profile s. The inclusive posted price is an incentive com-
patible and neutrally selective mechanism. It thus offers a more advantageous selection
than any standard auction that always selects the bidder with the highest signal. The
revenue ranking now follows directly from Theorem 4.

Similarly, it is always possible to implement an allocation that allocates the good
if and only if the value exceeds a threshold r and, conditional on the signal profile, all
bidders are equally likely to be allocated the good. The ex post incentive compatible
Vickrey price for agent i now depends on the entire signal profile s−i of all the other
agents. For a given screening level r for the common value that the seller wishes to select,
we can define a personalized price for agent i:

pi(r� s−i)� max
{
r� v(s� s−i)

}
� (13)
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The payment pi(r� s−i) represents the Vickrey payment of bidder i and, thus, can vary
across bidders. The revelation game now asks each bidder for his signal si and allocates
the object uniformly across the bidders if the reported signal profile s generates a value
v(s)≥ r,

qi(s)=
⎧⎨⎩

1
N

if v(s)≥ r
0 otherwise�

and asks for the Vickrey payment pi(r� s−i) if the object is assigned to agent i.

Proposition 6 (Personalized price). The personalized price mechanism yields weakly
higher revenue than the inclusive posted price.

Proof. The personalized price mechanism is clearly ex post incentive compatible for
every r. It is neutrally selective for every r. For r = v(s), the ex ante expected payment
of each bidder equals the inclusive posted price. Thus, the optimal personalized price
mechanism must deliver a (weakly) higher revenue than the inclusive posted price. In
particular, the optimal personalized price mechanism attains a strictly higher revenue
if the average virtual value at the lowest-type profile is negative and, thus, exclusion
becomes strictly beneficial.

In the maximum signal model, the optimal personalized price mechanism is rev-
enue equivalent to the two-tier price mechanism. In general common value settings,
however, excluding at a given value threshold may no longer be revenue maximizing,
even if we restrict attention to neutrally selective allocations, and the optimal neutrally
selective allocation could be quite complicated. There is a simple condition, however,
under which we can say what the optimal such allocation is. Let us say that the environ-
ment is mean-regular if the average virtual value,

π(s)� 1
N

N∑
i=1

πi(s)�

is monotonically increasing in the signal profile s. If the environment is mean-regular,
then it is possible to implement the allocation

qi(s)=
⎧⎨⎩

1
N

if π(s)≥ 0

0 otherwise�
(14)

Under mean regularity, the allocation defined by (14) is monotonic, so that it can be
implemented by a pricing rule analogous to (13). In particular, a bidder who is allocated
the good must pay

pi(s−i)� min
{
v
(
s′i� s−i

)|π(
s′i� s−i

) ≥ 0
}
�

But just as in the maximum signal model, under increasing information rents, there
is further scope to increase revenue, namely, with a generalization of the random two-
tier posted price. As in Proposition 3, the good is withheld if the high type si is below the
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exclusion threshold r. If si ≥ r, we draw a threshold type x for the highest type according
to a distribution H, which has a density h. We shortly describe a class of such distribu-
tions that can be implemented. The high type si is allocated the good if and only if si ≥ x;
otherwise we randomly allocate the good to one of the low bidders. The complication
relative to the maximum signal model is to determine transfers such that this allocation
is incentive compatible. They are now constructed on the basis of the Vickrey prices,
which depend on the entire profile s rather than on the high signal si only.

Let us introduce the notation

v̂(x� y)� E
[
v(si� s−i)|si = x�max s−i = y

]
ṽ(x� y)� E

[
v(si� s−i)|si = x�max s−i ≤ y

]
�

Proposition 7 (Generalized random two-tier posted price). Assume that the signal dis-
tributions are symmetric, i.e., Fi = F , and that for all x ∈ S, the expression

v̂(y�x)− v̂(x�x)
ṽ(y�x)− ṽ(x�x) (15)

is uniformly bounded across x and y. Then there is a generalized random two-tier posted
price that yields a higher revenue than any personalized price mechanism for the same
exclusion level r.

Proof. The prices are set according to two different cases. First, if the high bidder i is
allocated the good, then the price is v̂(max s−i�max s−i); second, when si >max s−i > x,
the high bidder pays

p(x)� ṽ(x�x)− (
v̂(x�x)− v̂(s�x))1 −H(x)

h(x)

f (x)

F(x)
(16)

if si ≥ x > y. Finally, if a lower-signal bidder is allocated the good, he pays v̂(s�max s−i).
The surplus from a report s′i when the type is si is

∫ s′i

y=s

∫ s′i

x=r
(
v̂(si� y)− Ix>yp(x)− Iy>xv̂(y� y)

)
h(x)dxd

(
FN−1(y)

)
+

∫ s

y=s′i

(
v̂(si� y)− v̂(s� y))1 −H(y)

N − 1
d
(
FN−1(y)

)
�

The derivative with respect to s′i is

(
ṽ
(
si� s

′
i

) −p(
s′i

))
h
(
s′i

)
�
(
s′i

) + (
v̂
(
si� s

′
i

) − v̂(s′i� s′i))H(
s′i

)d(FN−1(s′i))
ds′i

− (
v̂
(
si� s

′
i

) − v̂(s� s′i))1 −H(
s′i

)
N − 1

d
(
FN−1(s′i))
ds′i

�
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By inserting the formula (16) for p, the derivative of the indirect utility reduces to(
ṽ
(
si� s

′
i

) − ṽ(s′i� s′i))h(
s′i

)
FN−1(s′i)

− (
v̂
(
si� s

′
i

) − v̂(s′i� s′i))(1 −NH(
s′i

)
N − 1

)
d
(
FN−1(s′i))
ds′i

�

Thus, as long asH satisfies

h(x)

1 −NH(x) ≥ max
y

v̂(y�x)− v̂(x�x)
ṽ(y�x)− ṽ(x�x)

f (x)

F(x)
� (17)

bidder surplus is single-peaked at s′i = si and truthful reporting is incentive compatible.
Since (15) is uniformly bounded by some C, inequality (17) is satisfied as long as

h(x)

1 −NH(x) ≥ C f(x)
F(x)

�

This equation is satisfied as an equality by the function

H(x)= 1
N

(
1 −

(
F(x)

F(r)

) C
N−1

)
�

As a result, there exist H functions that satisfy H(s)= 0 and asymptote to H(∞)≤ 1/N ,
and satisfy (17). The associated generalized random two-tier posted price is incentive
compatible. As the generalized random two-tier posted price induces an allocation that
is more advantageously selective than that induced by personalized prices, by Theo-
rem 4, it generates more revenue.

Note that the hypotheses for Proposition 7 are satisfied for the maximum signal
model, since then (15) is equal to 1 for all x and y.

6. Conclusion

This paper contributes to the theory of revenue maximizing auctions when the bidders
have a common value for the good being sold. In the classic treatment of revenue max-
imization due to Myerson (1981), the potential buyers of the good have independent
signals about the value. While the standard model does encompass some common
value environments, the leading application is to the case of independent private val-
ues, wherein each bidder observes his own value. In benchmark settings, the optimal
auction is simply a first- or second-price auction with a reserve price. More broadly,
the optimal auction induces an allocation that discriminates in favor of more optimistic
bidders, i.e., bidders whose expectation of the value is higher. By contrast, the class of
common value models we have studied have the feature that the value is more sensitive
to the private information of bidders with more optimistic beliefs. This seems like a nat-
ural feature in economic environments where the most optimistic bidder has the most
relevant information for determining the best-use value of the good and, therefore, has
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a greater information rent. This case is not covered by the characterizations of optimal
revenue that exist in the literature, which depend on information rents being smaller for
bidders who are more optimistic about the value.

The qualitative impact is that while earlier results found that optimal auctions dis-
criminate in favor of more optimistic bidders, we find that optimal auctions discrimi-
nate in favor of less optimistic bidders, since they obtain lower information rents from
being allocated the good. In certain cases, the optimal auction reduces to a fully inclu-
sive posted price, under which the likelihood that a given bidder wins the good is inde-
pendent of his private information. In many cases, however, the optimal auction strictly
favors bidders whose signals are not the highest. This is necessarily the case when there
is no gap between the seller’s cost and the support of bidders’ values.

Bulow and Klemperer (2002) argued that it may be difficult to tell whether informa-
tion rents are increasing or decreasing, and that with interdependent values, the inclu-
sive posted price may not be as naïve as auction theorists are tempted to assume. We
agree with this conclusion and add the observation that we do not have to give up on us-
ing monopoly exclusionary power. We can construct simple exclusive mechanisms that
can be implemented in a wide range of environments and mitigate the loss in revenue
due to the winner’s curse.

More broadly, we have extended the theory of optimal auctions to a new class of
common value models. The analysis yields substantially different insights than those
obtained by the earlier literature. We are hopeful that the methodologies we have de-
veloped can be used to understand optimal auctions in other as yet unexplored interde-
pendent value environments.
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