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Cooperative strategic games

Elon Kohlberg
Harvard Business School, Harvard University

Abraham Neyman
Institute of Mathematics, and the Federmann Center for the Study of Rationality,

The Hebrew University of Jerusalem

The value is a solution concept for n-person strategic games, developed by Nash,
Shapley, and Harsanyi. The value of a game is an a priori evaluation of the eco-
nomic worth of the position of each player, reflecting the players’ strategic possi-
bilities, including their ability to make threats against one another. Applications
of the value in economics have been rare, at least in part because the existing def-
inition (for games with more than two players) consists of an ad hoc scheme that
does not easily lend itself to computation. This paper makes three contributions:
We provide an axiomatic foundation for the value; exhibit a simple formula for
its computation; and extend the value—its definition, axiomatic characterization,
and computational formula—to Bayesian games. We then apply the value in sim-
ple models of corruption, oligopolistic competition, and information sharing.

Keywords. Strategic games, cooperative games, Shapley value, Nash variables
threats, bribery.

JEL classification. C71, C72, C78.

1. Introduction

1.1 The value solution

A strategic game is a model for a multiperson competitive interaction. Each player
chooses a strategy, and the combined choices of all the players determine a payoff to
each of them. A problem of obvious interest, and with a long history in game theory, is
this: How to evaluate, in advance of playing a game, the economic worth of a player’s
position?1 A “value” is a general solution, that is, a method for evaluating the worth of
any player in a given strategic game.

The value ought to reflect both the cooperative and the competitive aspects of the
game. One may think of it as the expected payoff in a cooperative process that takes into
account all the players’ strategic possibilities, including their capacity to make threats
against one another.

We make the simplifying assumption that utility is transferable, that is, that the
players’ payoffs are measured in units of a commodity that is freely exchangeable, like
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1Alternatively: What would be the outcome if it were determined by an arbitrator?
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money.2 Therefore, it is reasonable to expect that the players will coordinate their strate-
gic choices to maximize the sum of their payoffs, and that this maximal sum will be
allocated in accordance with the threat powers of the players.

A value solution provides an a priori assessment of the cooperative allocation.
Thus, it can serve as a tool for studying a variety of economic phenomena where side
payments—utility transfers between the players—are made in response to explicit or
implicit threats.

Shapley (1951, 1953) provided the original definition of a value for strategic games
and Harsanyi (1963) suggested a modification. We believe that Harsanyi’s definition is
preferable. Its essential advantage is that it takes into account the potential damage of
a threat not only to the threatened party but also to the party making the threat. (See
Example 2.) Harsanyi calls his solution the modified Shapley value; others call it the
Harsanyi–Shapley value; we call it simply the value.3

This paper makes three contributions: We provide an axiomatic foundation for the
value; we exhibit a simple formula for its computation; and we extend the value—its
definition, axiomatic characterization, and computational formula—to Bayesian games
(Theorems 1 and 2.)

The axiomatic foundation delineates what assumptions must be made in order to
justify use of the value solution. The formula makes it possible to compute the value
much more easily than by following Harsanyi’s original procedure, which is rather com-
plex. (The procedure is described in Appendix B of our working paper Kohlberg and
Neyman (2020).) And the extension to Bayesian games opens the door to applications
of the value in a wide class of games that are of interest in information economics.4

The value solution has many potential applications. In this paper, we provide three
examples: determining the economic value of a public official’s authority to grant build-
ing permits; determining the impact of differential unit costs on profit sharing among
colluding Cournot oligopolists; and determining the economic value of a player’s infor-
mation in a Bayesian game (Section 5).

1.2 The axioms for the value

We consider the following axioms: efficiency, symmetry, additivity, null player, balanced
threats, and individual rationality.

Efficiency says that the sum of the values of all the players is the maximum available
payoff.5

2If one wishes to have a concrete model of a game with transferable utilities, then one may think of a
single prize, desirable by all players, and a game where each player’s payoff is the probability of receiving
the prize. The value of a player is then the a priori probability that a cooperative process (that may involve
randomization) will allocate the prize to this player.

3The key idea underlying the Harsanyi modification is due to Nash (1953). An alternative name, then,
could have been the Nash–Harsanyi–Shapley solution.

4It is somewhat surprising that Shapley (1953), Harsanyi (1963), and Myerson (1978) focused only on the
complete information case. However, Kalai and Kalai (2013) defined their coco value for Bayesian games.
In two-person Bayesian games, our definition of the value coincides with the coco value.

5Efficiency seems to be a reasonable axiom for the evaluation of a cooperative outcome. But one can
imagine models where this axiom is rejected. Important examples are Ray and Vohra (1997) and Maskin
(2008).
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Symmetry says that two players whose payoffs are identical everywhere, and whose
strategies can be switched without impacting any payoff, have the same value.

Additivity says that if the payoff to each player is the sum of her payoffs in two games
that are unrelated to each other then the player’s value is the sum of her values in those
two games.6

The null-player axiom says that a player whose actions do not affect any player’s
payoff, and whose own payoff is identically zero, has value zero.

Individual rationality says that a player’s value is at least her security level—the max-
imal payoff that the player can guarantee unilaterally, irrespective of the strategies of the
other players.

Efficiency, symmetry, additivity, and null-player are strategic-game analogs of the
classic Shapley axioms for the value of coalitional games.7 The individual rationality
axiom is standard for strategic games. But the axiom of balanced threats is new. One
way to motivate the axiom is to consider a public official, who may attempt to exploit his
authority to shift rewards from one group of players to another. The axiom of balanced
threats essentially stipulates that if the public official cannot shift rewards then his value
is zero. In fact, the axiom requires less—it stipulates that if no player can shift rewards
then every player’s value is zero. We now turn to the formal definition.

1.3 The axiom of balanced threats

The minmax theorem of von Neumann says that for any two-person zero-sum game
there exists a number, v, called the minmax value of the game, such that player 1 can
guarantee to receive a payoff of at least v and player 2 can guarantee8 to receive a payoff
of at least −v. Thus, the evaluation of player 1’s position must be greater than or equal
to v and the evaluation of player 2’s position must be greater than or equal to −v. Since
the sum of the evaluations cannot exceed zero, they must be v and −v, respectively.

Similarly, in a two-person constant sum game, where the sum of the payoffs of the
two players is always c, there is a number v such that player 1 can guarantee to receive a
payoff of at least v and player 2 can guarantee to receive a payoff of at least c − v; thus,
the evaluation of the players’ positions must be (v� c− v).9

In a general-sum two-person game, it is less clear how to evaluate the players’ posi-
tions. But in a seminal paper, Nash (1953) proposed a scheme for doing just that. While
Nash’s scheme applies more generally, for our purposes it is sufficient to consider the
special case of games with transferable utility:

6Note that the rationale for this axiom does not depend on a cooperative point of view. For example,
the mapping from strategic games to their Nash equilibrium payoffs, viewed as a set function, satisfies
additivity.

7In Kohlberg and Neyman (2018), we show that the coalitional-game versions of these axioms charac-
terize the value on a class of coalitional games called “games of threats.” This is a very different result than
the characterization of the value for strategic games, where the axioms are imposed directly on the strategic
form.

8That is, player 1 (resp., 2) has a strategy that yields a payoff of at least v (resp., −v), regardless of the
strategy chosen by her opponent.

9Note that in a two-person constant-sum game the two axioms of efficiency and individual rationality
define a unique value solution.
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Nash envisions a process of “bargaining with variable threats:” In an initial com-
petitive stage, each player declares a “threat strategy,” to be used if negotiations break
down. The players’ payoffs resulting from the deployment of these strategies consti-
tute a “disagreement point.” In a subsequent cooperative stage, the players coordinate
their strategies to maximize the sum of their payoffs, and share the gains relative to the
disagreement point equally.

Nash observes that what matters in the disagreement point is only the difference
between the players’ payoffs: If the disagreement point is (π1�π2), then after the coop-
erative stage player 1’s payoff is π1 + 1

2(s − (π1 + π2)) = 1
2 s + 1

2(π1 − π2), and similarly
player 2’s payoff is 1

2 s− 1
2(π1 −π2), where s denotes the maximal sum of the players’ pay-

offs in any entry of the payoff matrix. Thus, player 1 strives to maximize π1 − π2, while
player 2 strives to minimize the same expression.

Nash then constructs an auxiliary (zero-sum) game by taking the difference between
player 1’s and player 2’s payoffs. If δ denotes the minmax value of the auxiliary game,
then players 1 and 2 can guarantee, at the end of the cooperative stage,

1
2
s+ 1

2
δ and

1
2
s− 1

2
δ� (1)

respectively. The above pair of numbers is the Nash solution.10

For a numerical example, consider the following game.

Example 1. [
1�5 2�4
0�0 0�0

]
� ♦

The game of differences is [
−4 −2
0 0

]
�

and its minmax value is zero. (Player 1 can guarantee zero by playing the bottom row,
and she can obviously not guarantee any higher payoff.) Thus, δ = 0 and s = 6; hence,
by formula (1), the Nash solution is (3�3).

The Nash solution provides a compelling method for evaluating the cooperative out-
come in a two-person game. The challenge, then, is to extend the solution to n-person
games. Harsanyi (1963) and Myerson (1978) both approached this challenge by general-
izing the scheme of “bargaining with variable threats,” but these n-person schemes are
quite complex. (See Kohlberg and Neyman (2020), Appendix B.) By contrast, we focus on
a basic property of the Nash solution and adopt it as an axiom that can be generalized
to n-person games.

10The simple definition, by means of formula (1), for the Nash bargaining solution in games with trans-
ferable utilities is due to Shapley (1984). Kalai and Kalai (2013) independently discovered the formula and
used it to define their competitive-cooperative solution concept, the coco value.
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The basic property is this: If δ≥ 0, then the value of player 1 is greater than or equal
to the value of player 2. (This follows from equation (1).)

In order to generalize this property to n-player games, we proceed as follows. Con-
sider, for any subset S of the set of players, N , an auxiliary two-player zero-sum game
between S and its complement, N \ S, where the players in each of these subsets coor-
dinate their strategies (and pool their information) to act as a single player, and where
the payoff to player S is the difference between the sum of the (original game) payoffs to
the players in S and the sum of the payoffs to the players inN \ S; and define δ(S) as the
minmax value of this game.

Now, consider two players, i and j, and assume that δ(S)≥ 0 for any subset S that in-
cludes i but not j. Then—by the same logic as in a two-player game,—in the cooperative
outcome player i’s payoff should be greater than or equal to player 2’s payoff. Therefore,
if δ(S)= 0 for any subset S that includes i but not j, and consequently—by the minmax
theorem—δ(S)= 0 for any subset S that includes j but not i, the payoffs to i and j should
be equal. This, essentially, is the assumption of “balanced threats.”

In fact, to prove our uniqueness result, we require less. We assume that only if the
above holds for any pair i and j, that is, if δ(S)= 0 for any proper11 subset ofN , then the
payoffs to all players should be equal. Furthermore, we weaken the axiom even more12

by requiring the condition only in games of pure transfers, where δ(N)—the maximum
sum of the players’ payoffs13—is equal to zero. Thus, the axiom of balanced threats is
defined as follows: if δ(S)= 0 for all S ⊆N , then the value of each player is zero.14

1.4 The uniquess result and the formula for the value

Theorems 1 and 2 state our main results—that the axioms of efficiency, balanced threats,
symmetry, null player, and additivity imply a unique value solution for strategic games
with complete information as well as for Bayesian games, and that the value satisfies
individual rationality; furthermore, the theorems provide a formula for computing the
value.

The formula says that the value of a player in an n-person strategic game or Bayesian
game is an average of the threat powers, δ(S), of the subsets of which the player is a
member. Specifically, if δi�k denotes the average of δ(S) over all k-player subsets that
include i, then the value of player i is the average of δi�k over k= 1�2� � � � � n.

Remark 1. In a two-player game with complete information, the value coincides with
the Nash variable-threats solution. Indeed, the formula says that the value of player 1 is
1
2δ(1)+ 1

2δ(1�2), which is the same as equation (1).

11A proper subset of N is a subset that is neither ∅ norN .
12This means that the uniqueness theorem is stronger.
13Note that δ(N) is the minmax value of a redundant two-person game between the all-player setN and

the empty set; it is therefore natural to think of δ(N) as the maximum sum of the players’ payoffs.
14In Kohlberg and Neyman (2020), Appendix D, we show that the value satisfies several additional prop-

erties, each of which can replace the axiom of balanced threats in the characterization of the value.
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1.5 The impact of inferior strategies

We end this Introduction by emphasizing the fundamental distinction between the
cooperative-competitive approach underlying the idea of a value and the purely com-
petitive approach underlying the concept of equilibrium.

Consider once again the two-player game of Example 1. In purely-competitive anal-
ysis, the strategy “down” is viewed as an incredible threat ; thus, the availability of this
strategy does not affect the equilibrium outcome, (1�5). But in an explicit or implicit
cooperative process, player 1’s threat to play “down” cannot be ignored. Indeed, the
Nash solution—(3�3)—exhibits a side payment from player 2 to player 1, as does Shap-
ley’s original notion of value (see Section 2 for details.) Other authors, for example,
Green (2005) have also emphasized the impact of inferior strategies on the cooperative-
competitive outcome.

1.6 Organization of the paper

Section 2 discusses the historical development of the ideas. In Sections 3 and 4, we
define the axioms and state the main results—the axiomatic characterization and the
formula for computing the value. In Section 5, we apply the formula in a number of ex-
amples. In Section 6, we present a characterization of the von Neumann–Morgenstern–
Shapley value that parallels the characterization of the value, and in Section 7 we provide
the proofs of our main results. The Appendix shows that all the axioms are tight, that is,
if any of them is dropped then the uniqueness theorem is no longer valid.

2. History of the concepts

This section reviews the historical development of the ideas at the foundation of the
notion of value. Skipping this section will not affect the reader’s understanding of the
rest of the paper.

In the classic book, von Neumann and Morgenstern (1953), the starting point for the
cooperative analysis of strategic games is to reduce every such game to a characteristic
function, nowadays called a coalitional game, which assigns to every subset of players
(“coalition”) S a single number, v(S), defined as the total payoff that the members of
S can guarantee, that is, the maxmin of the sum of the payoffs to the members of S,
where the max is over all the correlated strategies of S and the min is over the correlated
strategies of the complement of S. Having reduced strategic games to coalitional games,
vNM focused on developing their solution concept for coalitional games, the “stable
set.”

In contrast to vNM’s set-valued solution, Shapley highlighted the need to define a
single-valued function that assigns to each strategic game a vector of payoffs, represent-
ing the value of each role in the game. Shapley accepted the vNM approach of reducing
strategic games to coalitional games; thus, he addressed the problem of defining a value
function for coalitional games. In a seminal paper, Shapley (1953) formulated properties
(“axioms”) that would be desirable in such a function and proved that—remarkably—a
mere four of them uniquely imply one particular function, the “Shapley value.”
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It would seem then that Shapley’s goal of defining a value function for strategic
games had been accomplished: given a strategic game, transform it to its vNM coali-
tional form, then apply the Shapley value. But there were doubts. The doubts, centering
on the adequacy of the vNM coalitional game, were raised by vNM15 and Shapley them-
selves, as well as by Luce and Raiffa (1957), Harsanyi (1963), and Myerson (1978). As
Shapley (1953) wrote: “The difficulty, intuitively, is that the characteristic function does
not distinguish between threats that damage just the threatened party and threats that
damage both parties.”

The difficulty with the vNM coalitional game—the reason that it does not properly
reflect the threat powers of the players—arises because a coalition is allowed to deploy
two different strategies, one for maximizing its own payoff and the other for minimizing
the complementary coalition’s payoff. Consider Example 1. The vNM coalitional game
is v(1)= 1, v(2)= 0, and v(1�2)= 6. (The players’ security levels—the maximum payoff
that each one of them can guarantee regardless of the strategies of the opponent—are
1 and 0, respectively.) Note that player 1 plays Up in order to maximize her own payoff,
but plays Down in order to minimize player 2’s payoff.

Harsanyi (1963) proposed a modification in the definition of the value that is moti-
vated by Nash’s “bargaining with variable threats,” and it is this modification that we call
“the value.” We describe Harsanyi’s method below. (See Kohlberg and Neyman 2020,
Appendix B, for a more complete description.)

Instead of considering two separate zero-sum games between a coalition S and its
complement, one that focuses on the payoff to S and the other on the payoff to N \ S,
we consider a single game that focuses on the difference between these payoffs; and
we assign to each coalition S a single number, δ(S), defined as the maximal difference
between the total payoffs to S and to N \ S that the members of S can guarantee. By the
minmax theorem, δ(S)= −δ(N \ S).

Now δ is not a coalitional game. It may fail to satisfy the single condition required
of a set function to qualify as a coalitional game, namely δ(∅) = 0. This condition is
essential for the formula of the Shapley value, which assigns to each player i an average
of her marginal contributions, including the marginal contribution v(i) − v(∅) = v(i).
However, we show in Kohlberg and Neyman (2018) that an appropriate modification of
the definition of the Shapley value applies to set functions such as δ, which satisfy the
condition that δ(S)= −δ(N \ S) for all S ⊆N , and which we call “games of threats.” The
value of the strategic game is then obtained by taking the Shapley value of δ. We refer
to this modification by Harsanyi of Shapley’s original notion as the value of a strategic
game.

It is easy to verify that the value coincides with the Nash variable-threats solution in
two-player games and that the value coincides with the vNM–Shapley value in constant-
sum games and in pure-exchange economies (Proposition 3).

15von Neumann and Morgenstern (1953) wrote: “In a general [-sum] game the advantage of one group
of players need not be synonymous with the disadvantage of the others. In such a game, moves—or rather
changes in strategy—may exist which are advantageous to both groups. . . . Does our approach not disregard
this aspect?”
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We wish to emphasize that neither Shapley’s original definition of a value for strate-
gic games nor Harsanyi’s modification rest on an axiomatic foundation; indeed, the first
step—that of reducing the strategic game to a coalitional form—is arbitrary.

Remark 2. Kalai and Kalai (2013) characterize the same concept for two-player games
as we do. (They call their concept the coco value.) However, their axioms differ from
ours. For example, payoff dominance is one of the Kalai and Kalai axioms for two-player
games, but it is unreasonable in games with more than two players. (See Kohlberg and
Neyman (2020), Appendix A.)

We end this section with an example that demonstrates the different responses of
the two notions of value to an increase in the cost of carrying out a threat. Consider
once again the two-player game of Example 1.[

1�5 2�4
0�0 0�0

]
�

The vNM coalitional game is v(1) = 1, v(2) = 0 and v(1�2) = 6. Thus, the vNM–
Shapley value is (3�5�2�5). (In a two-person game, the Shapley value of player i is
1
2v(i)+ 1

2v(1�2).) As we have seen, the value (i.e., the Nash solution) is (3�3).
Now consider the following variant.

Example 2. [
1�5 2�4

−1�0 0�0

]
� ♦

The security levels of the players are unchanged. Thus, the vNM coalitional game is
unchanged and the vNM–Shapley value is still (3�5�2�5). But the game of differences is
now [

−4 −2
−1 0

]

and its minmax value is −1. Thus, δ= −1 and s = 6; hence, by formula (1), the value is
(2�5�3�5): The increased cost of the threat has had an impact on the value solution.

3. The axioms

A strategic game is a triple G= (N�A�g), where

• N = {1� � � � � n} is a finite set of players,

• Ai is the finite16 set of player i’s pure strategies, andA= ∏n
1=1A

i,

16The assumption that the sets of players and strategies are finite is made for convenience. The results re-
main valid when the sets are infinite, provided the minmax value exists in the two-person zero-sum games
defined in the sequel.
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• gi : A→R is player i’s payoff function, and g= (gi)i∈N .

We use the same notation, g, to denote the linear extension

• gi : �(A)→R,

where for any set K, �(K) denotes the probability distributions onK, and we denote

• AS = ∏
i∈S Ai, and

• XS = �(AS) (correlated strategies of the players in S).

We define the direct sum of strategic games as follows.17

Definition 1. Let G1 = (N�A1� g1) and G2 = (N�A2� g2) be two strategic games. Then
G :=G1 ⊕G2 is the gameG= (N�A�g), whereA=A1 ×A2 and g(a)= g1(a1)+ g2(a2).

Remark 3. The game G1 ⊕G2 is a model for a competitive interaction where the same
set of players simultaneously play two games that are independent, that is, where the
moves in one game do not influence the other game.

Remark 4. It is easy to verify that the operation ⊕ is, informally, commutative and as-
sociative.18 However, there is no natural notion of inverse. (In general, G⊕ (−G) �= 0.)

Denote by G(N) the set of all n-player strategic games. Let γ : G(N)→ R
n. This may

be viewed as a map that associates with any strategic game an allocation of payoffs to
the players. We consider a list of axioms for γ. To that end, we first introduce a few
definitions.

LetG ∈G(N). We define the threat power of coalition S as follows:19

(δG)(S) := max
x∈XS

min
y∈XN\S

(∑
i∈S
gi(x� y)−

∑
i /∈S
gi(x� y)

)
� (2)

We say that i and j are interchangeable in G if Ai = Aj and gi = gj ; and for any
a�b ∈AN , if ai = bj�aj = bi, and ak = bk for all k �= i� j, then g(a)= g(b).

We say that i is a null player inG if gi(a)= 0 for all a; and if ak = bk for all k �= i, then
g(a)= g(b).

We consider the following axioms. For all strategic gamesG,

• Efficiency
∑
i∈N γiG= maxa∈AN(

∑
i∈N gi(a)).

• Balanced threats If (δG)(S)= 0 for all S ⊆N , then γi = 0 for all i ∈N .

• Symmetry If i and j are interchangeable inG, then γiG= γjG.

17von Neumann and Morgenstern (1953), Section 27.6.2, refer to this operation as the superposition of
games.

18Formally,G1 ⊕G2 is not the same game asG2 ⊕G1, becauseA1 ×A2 �=A2 ×A1.
19Expressions of the form max or min over the empty set should always be ignored.
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• Null player If i is a null player inG, then γiG= 0.

• Additivity γ(G1 ⊕G2)= γG1 + γG2.

• Individual rationality γi(G)≥ maxx∈Xi miny∈XN\i gi(x� y).

Remark 5. There are many additional desirable properties of the value that we do not
assume but rather deduce from the axioms. These include dependence on the reduced
form of the game (removing strategies that are convex combinations of other strategies
does not affect the value), homogeneity of degree one (γ(αG) = αγG for α > 0), time-
consistency (γ( 1

2G1 ⊕ 1
2G2)= 1

2γG1 + 1
2γG2; that is, it does not matter if the allocation is

determined before or after the resolution of uncertainty about the game), monotonicity
in actions (removing a pure strategy of a player does not increase the player’s value),20

independence of the set of players (addition of null players does not affect the value of
the existing players), shift-invariance (adding a constant payoff to a player increases the
player’s value by that constant), a stronger form of symmetry (the names of the players
do not matter), and continuity (γ(Gn)→ γG whenever Gn = (N�A�gn)�G= (N�A�g),
and gn → g).

Remark 6. We do not require, nor are we able to deduce, that γ(αG)= αγG for negative
α. Such a requirement, which is natural in the context of coalitional games, would make
no sense in the context of strategic games. The game −G involves dramatically different
strategic considerations than the game G, and so there is no reason to expect a simple
relationship between the values of the two games.

4. The main results

4.1 The value of strategic games

Our main result for strategic games is as follows.

Theorem 1. There is a unique map from G(N) to R
n that satisfies the axioms of effi-

ciency, balanced threats, symmetry, additivity, and null player. It may be described as
follows:

γiG= 1
n

n∑
k=1

δi�k� (3)

where δi�k denotes the average of (δG)(S) over all k-player coalitions S that include i.
Furthermore, this map satisfies the axiom of individual rationality.

We shall refer to the above map as the value for strategic games.

20These four properties follow from formula (3) below and the corresponding properties of the minmax
value of zero-sum games.



Theoretical Economics 16 (2021) Cooperative strategic games 835

Example 3. This is a three-payer game, G. Player 1 chooses the row, player 2 chooses
the column, and player 3 has only a single strategy. The payoff matrix is21

[
2�2�2 0�0�0
0�0�0 1�1�1

]
�

Now, denoting δG= δ,

δ(1)= maxmin

[
−2 0
0 −1

]
= −2

3
�

δ(1�3)= maxmin

[
2 0
0 1

]
= 2

3
�

δ(1�2)= max(2�0�1)= 2, and δ(1�2�3)= max(6�0�3)= 6.

Thus, γ1 = 1
3(δ(1)+ δ(1�2)+δ(1�3)

2 + δ(1�2�3))= 1
3 × (− 2

3)+ 1
3 × 2+ 2

3
2 + 1

3 × 6 = 2 2
9 , and

similarly γ2 = 2 2
9 ; therefore, γ = (2 2

9 �2 2
9 �1 5

9). Players 1 and 2 each receive a side payment
of 2

9 from player 3. ♦

Remark 7. There is only one n-player coalition, namely, N . Thus, δi�n = (δG)(N), the
maximum total payoff. The formula allocates to each player her equitable payoff, which
is 1

n th of this amount, adjusted according to the average threat powers of the proper
subsets that include the player.

Remark 8. Formula (3) implies that the value of G depends only on the threats,
((δG)(S))S⊆N . We wish to emphasize that this is not an assumption but rather a con-
clusion. Indeed, a key step in proving the main result is the derivation of this conclusion
from the axioms (Proposition 7).

Remark 9. At first blush, it might appear that a value solution ought to satisfy the fol-
lowing consistency condition: If a player who is a strategic dummy (i.e., a player who
has no strategic options) is dropped from the game, then the value of the remaining
players remains the same. However, further reflection shows that this requirement is
unwarranted: a player can exert influence on the outcome not only through her strate-
gic choices, but also through her willingness to make side payments. (Recall that the
value is an assessment of the cooperative outcome, where all players agree on the side
payments.) Example 3 is a case in point: The value is (2 2

9 �2 2
9 �1 5

9 ), but when player 3
(who is a strategic dummy) is dropped, the game becomes

[
2�2 0�0
0�0 1�1

]
�

21Player 1’s and player 2’s payoffs are identical and their strategies can be switched without impacting
any payoff. This is an example of interchangeable players.
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and the value is (2�2). One can interpret the side payments of 2
9 that player 3 makes

to each of players 1 and 2 as incentives to not deploy the threat strategies, Down and
Right.22

4.2 The value of Bayesian games

The uniqueness theorem and formula (3) are also valid for Bayesian games. In a Bayesian
game, each player has a finite set, Ci, of possible actions; the players do not know the
“true” payoff functions, ui : ∏

i∈N Ci → R; however, each player receives a signal, yi,
which is correlated with u = (ui)i∈N ; specifically, the players know the “prior” proba-
bility distribution, μ, over U × Y , where U and Y are the finite sets of possible payoff
functions and signals, respectively.

A pure strategy for player i is now a mapping, ai : Yi → Ci, from signals to actions,
and Ai is the set of pure strategies; the payoff function, gi : ∏

i∈N Ai → R is the expec-
tation gi(a) := Eμu

i(a(y)); and a (Bayesian) correlated strategy for a subset S is a prob-
ability distribution over mappings from

∏
i∈S Y i to

∏
i∈S Ci. Note that in a correlated

strategy the players in S not only coordinate their strategic choices, but they also pool
their information.

Denote by B(N) the set of all n-player Bayesian games, and let B ∈ B(N). We gener-
alize formula (2), defining the power of threat of a coalition S as follows:

(δBG)(S) := max
x∈X̂S

min
y∈X̂N\S

(∑
i∈S
gi(x� y)−

∑
i /∈S
gi(x� y)

)
�

where X̂S denotes the set of (Bayesian) correlated strategies of S.
We can now define the axiom of balanced threats for Bayesian games in analogy

with the definition for strategic games. Similarly, we define the axioms of efficiency and
of individual rationality in analogy with the definitions for strategic games, replacing a ∈
AN by x ∈ X̂N , and x ∈XN\i by x ∈ X̂N\i, respectively. Finally, we define the symmetry
and the null-player axioms in analogy with the definitions for strategic games, adding to
the definition of interchangeable players the requirement that their signals be identical,
and to the definition of a null player the requirement that the player receive no signals.

Theorem 2. There is a unique map from B(N) to R
n that satisfies the axioms of effi-

ciency, balanced threats, symmetry, additivity, and null player. It is described by formula
(3), modified by replacing δG with δBG. Furthermore, this map satisfies the axiom of
individual rationality.

Remark 10. The axiomatic characterization of the value in strategic games does not
automatically follow from the characterization in Bayesian games, that is, Theorem 1 is
not a special case of Theorem 2: in general, it is not true that if a list of axioms uniquely

22Note, however, that if the others’ choices cannot impact the dummy player’s payoff, then this consid-
eration becomes moot. Indeed, the “small worlds axiom” (Kohlberg and Neyman (2020), Appendix C) says
that if a player has no strategic options and her payoffs are unaffected by the choices of the other players,
then when the player is dropped from the game the value of the remaining players remains the same.
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determines a function on a certain domain then the specialization of the same axioms
to a subdomain will uniquely determine the function there.

4.3 The random-order approach

An alternative formula for computing the value is based on the random-order approach.
It is analogous to the Shapley (1953) random-order formula for the value of a cooperative
game. In some applications, it is more convenient23 to use than formula (3).

Proposition 1. The value of a strategic game24 Gmay be described as follows:

γiG= 1
n!

∑
R
(δG)

(
SRi

)
� (4)

where the summation is over the n! possible orderings of the set N and where SRi denotes
the subset consisting of i and those j ∈N that precede i in the ordering R.

The equivalence of formulas (3) and (4) is easy to verify.25

4.4 Proofs of the theorems

The proofs of Theorems 1 and 2 are given in Section 7.4. These proofs require the notion
of games of threats (Kohlberg and Neyman 2018). We provide the relevant definitions
and results in Section 7.1.

5. Applications of the value solution

In this section, we describe the application of the value solution in some simple game
models. More general results and their proofs will appear in forthcoming papers.

5.1 The economic worth of a public official

The examples below are highly simplified game models of a public official who has the
authority to make decisions in matters of financial importance to private individuals
or companies. The official’s value in the game provides a measure of his potential gain
from side payments, that is, bribes. Such a measure can be useful in designing systems
of incentives and penalties intended to deter bribery.

5.1.1 Authority to issue licenses

Example 4. Each one of players i= 1� � � � � n seeks approval (license) for a project. Player
A has the authority to approve up to k projects. This is a strategic game where player
A can choose any subset of players of size at most k, while players i = 1� � � � � n have no

23See the computation of the value for the Cournot Oligopoly example in Kohlberg and Neyman (2020).
24The proposition is valid for Bayesian games as well, provided δG is replaced by δBG.
25This equivalence is established in Proposition 3 of Kohlberg and Neyman (2020).
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strategic choices;26 player A′s payoff is identically zero, while player i′s payoff is αi or 0,
depending whether her project is approved or not. We assume that α1 ≥ · · · ≥ αn > 0. ♦

One can apply formula (3) to obtain an expression for the value of this game. We
describe this expression for the two extreme cases, k = n and k = 1. In the case k = n,
the value of playerA is

∑n
i=1 αi/2. This makes intuitive sense since playerA′s decision to

approve any project has no bearing on her ability to approve any other project; therefore,
we have, in effect, n independent 2-person games, each consisting of bargaining over the
profits, αi, from a single project.

In the case k = 1, the value of player A is
∑n
i=1

αi
i(i+1) . If all the projects are equally

profitable, that is, αi = α for i = 1� � � � � n, then this is a telescopic sequence that adds
up to α(1 − 1

n+1). Thus, when n is large player A gets essentially all the surplus. This
makes intuitive sense, since the different projects are perfect substitutes for one an-
other and, therefore, player A’s threat not to approve any specific project is extremely
powerful. Thus, the player whose project does get approved, concedes most of its profit
to playerA.

But when the different projects have different potential profits, then player A′s
threat to not approve the most profitable project is weakened by the realization that she
might have to approve a less profitable project. This point is captured by the formula for
the value of player A, which can be rewritten as follows: α1 − 1

2(α1 − α2)− 1
3(α2 − α3)−

· · · − 1
n(αn−1 − αn).

5.1.2 Authority to regulate economic activity One or more regulators has the authority
to regulate an economic activity, for example, the repurposing of offices to apartments
in a particular neighborhood. For simplicity, we assume that the regulation can only
consist of blanket prohibition or blanket approval.

Example 5. Each one of n players, i = 1� � � � � n seeks approval for a project worth 1.
Player A (a regulator) has the authority either to approve or to reject all the projects.
This is a strategic game where playerA has two strategies, while players i= 1� � � � � n have
no strategic choices; player A’s payoff is identically zero, while player i’s payoff is 1 or 0,
depending on whether playerA has approved or rejected the projects. ♦

When n is large, it is easy to see that the value of player A is approximately n
4 , while

the value of each of the other players is approximately 3
4 . Thus, player A receives about

one-fourth the total feasible output. In effect, the regulator’s threat to withhold approval
induces each of players i= 1� � � � � n to concede one-fourth of their output to the regula-
tor.

More generally, if there are k regulators whose approvals are required, then one can
apply a continuous version of formula (3) to conclude that the payoff to each regula-
tor divided by n converges, as n → ∞, to

∫ 1
1/2(2x − 1)xk−1 dx. In the case k = 2, this

26As we have seen, the availability of an inferior strategy may have an impact on the value. However,
in this case, giving each player i = 1� � � � � n the option to not execute her project even when it has been
approved, does not change the value of the game.
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amounts to 5
24 , that is, the two regulators jointly receive about 42% of the total feasible

output, compared with 25% in the case of a single regulator. Since k
∫ 1

1/2(2x− 1)xk−1 dx

converges, as k→ ∞, to 1, we see that when there are many regulators—all of whose
approvals are required—essentially all the economic output goes to them.

Finally, consider a variant of this game where there are k regulators, each one of
whose approvals is sufficient. In this game, the payoff to each regulator divided by n

converges, as n→ ∞, to 2−k
k(k+1) , and the combined payoff to all the regulators converges

to 2−k
(k+1) . When k= 2, this amounts to 1

12 . Thus, when there are two regulators, only one
of whose approvals is required, the fraction of the total value that they receive is about
8�5%, in contrast to 42% in the case where both approvals are required.

5.2 The value in a Cournot oligopoly27

Example 6. Consider a Cournot oligopoly with inverse demand function 1 − ∑n
1 qi,

where qi is the quantity of firm i, and with constant unit costs c1 < c2 < · · · < cn, and
assume that the firms intend to engage in a collusive arrangement. What is the profit
that each firm should expect to receive? In other words, denoting the monopoly profit
of firm i by Mi := maxq(10 − q − ci)q, how is the maximal available profit, M1, to be
divided among the firms? ♦

First, consider the case n= 2, that is, a duopoly. The Shapley value is (M1
2 �

M1
2 ). To see

this, note that each firm can only guarantee zero on its own, since its rival can threaten to
flood the market; therefore, v(1)= v(2)= 0 and v(1�2)=M1, where v denotes the vNM
coalitional form of the game. Since the coalitional game is symmetric, so is its Shapley
value.

But this solution does not seem to make sense—should the firm with the lower cost
not receive a larger share of the profit? The reason for obtaining a “nonsensical” solution
is precisely the difficulty mentioned in the Section 2, namely that the Shapley value fails
to take into account the damage that a threat inflicts on the party making the threat.
And, obviously, the damage to a firm flooding the market is greater the greater is the
firm’s unit cost.

In contrast to the Shapley value, the value solution does take account of the unit
costs. The solution is (M1 − M2

2 �
M2
2 ). Since M1 > M2, the value of firm 1 is, indeed,

greater than the value of firm 2.
In the case of three firms, the value is (M1 − 1

2M2 − 1
6M3�

1
2M2 − 1

6M3�
1
3M3), which

equals 1
3(M3�M3�M3)+ 1

2(M2 −M3�M2 −M3�0)+ (M1 −M2�0�0). More generally, in the
case of n firms the value may be described as follows: First, Mn, the monopoly profit of
the least efficient firm, is divided equally among all the firms. Next,Mn−1 −Mn is shared
equally among firms 1� � � � � n − 1. And so on, until finally M1 −M2 is received only by
firm 1.

27We are grateful to an anonymous referee for suggesting that we characterize the value solution in a
Cournot oligopoly.
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5.3 The value of information

In a Bayesian game, a player can impact the side payments that she makes or receives
not only through her strategic choices, but also by sharing or withholding information.
Thus, the value solution, by providing an a-priori assessment of the side payments,
quantifies the economic worth of information in a competitive environment. Below is a
numerical example.

First, consider a two-person strategic game with complete information: Firm 2 is
developing a new product and firm 1 is developing an add-on product. Each firm makes
a private choice about which one of two alternative technologies it will use; and the
market for the add-on product may attain one of two unknown states that are equally
likely. Firm 2’s profits will be the same, irrespective of the technology choices or the state
of the market. (For simplicity, assume this profit is zero.) Firm 1’s profit will be 4 if both
firms choose the same technology and the market attains the state that is favorable to
the chosen technology, and zero otherwise.

The maximal sum of (expected) payoffs in this game is 2. (The firms choose the same
technology; thus, firm 1 gets the payoff 4 with probability 50%.) What is the side pay-
ment that player 2 ought to receive for its cooperation? The value solution is (1�5�0�5),
that is, the side payment is 0�5. This makes intuitive sense, as player 2 can threaten to de-
prive firm 1 of 50% of its payoff (of 2) by randomizing with probabilities (0�5�0�5); thus,
the magnitude of the threat is 1, and player 1 concedes one-half of this amount.

Next, consider an additional firm, 3, that specializes in market research. Firm 3 has
no strategic choices but it knows which state will occur. (Note that the introduction of
a player with differential information has turned the example into a Bayesian game.28)
Clearly, the maximal sum of payoffs is 4. But what are the side payments? The value
solution is (2�1�1). It is interesting to note that the value of each one of the firms reflects
a different consideration. Firm 1’s value derives from its potential payoff of 4; firm 2’s
value derives from its threat to reduce player 1’s payoff; and firm 3’s value derives from
its knowledge of the true state.

It may also be interesting to consider a variant of the game with a fourth player who,
like player 3, knows the true state but has no strategic choices. The value of this game is
(2� 4

3 �
1
3 �

1
3): competition between the informed players has reduced their total value, to

the benefit of player 2.

6. The vNM–Shapley value of strategic games

In Section 2, we argued that the (von Neumann–Morgenstern–) Shapley value is a less
convincing solution concept than is the (Nash–Harsanyi–Shapley) value. Here, we
present a characterization of the vNM–Shapley value that parallels the characterization
the value and clarifies the relationship between the two concepts; and we indicate con-
ditions under which the concepts concide.29

28Formally, the two-player game is also a game of incomplete information. However, as noted earlier, if
the players’ information is symmetric, then we might as well view the game as a game of complete infor-
mation.

29For ease of exposition, we restrict attention to strategic games with complete information, but an anal-
ogous characterization holds for Bayesian games.
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6.1 Axiomatization of the vNM–Shapley value

The vNM–Shapley value of a strategic game G is the Shapley value of the vNM-
coalitional game vG that is defined by

(vG)(S) := max
x∈XS

min
y∈XN\S

∑
i∈S
gi(x� y)� (5)

LetG ∈G(N). Define

(δ̂G)(S) := (vG)(S)− (vG)(N \ S)� (6)

We introduce the following axiom. For allG ∈G(N)

Balanced security levels. If (δ̂G)(S)= 0 for every S ⊆N , then γ̂iG= 0 for all i ∈N .

Proposition 2. The vNM–Shapley value is the unique map from G(N) to R
n that satis-

fies the axioms of efficiency, balanced security levels, symmetry, null player, and additivity.
It may be described as follows:

γ̂iG= 1
n

n∑
k=1

δ̂i�k� (7)

where δ̂i�k denotes the average of (δ̂G)(S) over all k-player coalitions that include i. Fur-
thermore, this map satisfies the axiom of individual rationality.30

6.2 Games where the Shapley value and the value coincide

A pure-exchange economy is a model of strategic interaction between n agents, each
having an initial endowment, where each agent is free to trade with any other agent
and the payoff to each agent is a function of his final allocation. Note that we have the
following.

Proposition 3. In constant-sum games and in pure-exchange economies, the Shapley
value and the value coincide.

Proof. If the strategic game is constant-sum, then an optimal strategy for S in the
problem maxx∈XS miny∈XN\S

∑
i∈S gi(x� y) is also an optimal strategy for S in the prob-

lem maxy∈XN\S minx∈XS
∑
i∈N\S gi(x� y). This is also true, trivially, in an exchange econ-

omy, where the sum of the payoffs to the agents in any coalition depends only on the
strategies of the agents belonging to that coalition, so that any strategy for S is optimal
in minimizing the total payoff toN \ S.

In both of these cases, then the minmax strategies in the two person zero-sum game
where the payoff (to player 1) is the total payoff to S, are also minmax strategies in the
game where the payoff is the difference between the total payoff to S and the total payoff
toN \S. Thus, the optimal values in (5) and in (2) are the same. It follows that (δ̂G)(S)=
(δG)(S), hence δ̂i�k = δi�k for all 1 ≤ i�k≤ n and, therefore, by (7) and (3), γ̂G= γG.

30The proof of this proposition appears in Section 7.5.
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Remark 11. Note that the value and the vNM–Shapley value do not coincide in ex-
change economies with taxes or with voting (Aumann and Kurz 1977a, 1977b, Aumann
et al. 1983, 1987).

7. Proof of the main results

In this section, we present the proof of our main results, Theorems 1 and 2. In prepara-
tion, we provide background on games of threats and present an alternative definition
of the value in terms of such games. And we present preliminary results, some of which
are of interest in their own right.

7.1 Games of threats

A coalitional game of threats is a pair (N�d), where

• N = {1� � � � � n} is a finite set of players.

• d : 2N →R is a function such that d(S)= −d(N\S) for all S ⊆N .

Remark 12. A game of threats need not be a coalitional game as d(∅)= −d(N)may be
nonzero.

Remark 13. If d is a game of threats, then so is −d.

Denote by D(N) the set of all coalitional games of threats.
Let ψ : D(N)→ R

n. This may be viewed as a map that associates with any game of
threats an allocation of payoffs to the players. Following Shapley (1953), we consider the
following axioms.

For all games of threats (N�d), (N�d1)� (N�d2), and for all players i� j,

• Efficiency
∑
i∈N ψid = d(N).

• Symmetry ψid = ψjd if i and j are interchangeable in d (i.e., if d(S ∪ i) = d(S ∪ j)
∀S ⊆N\{i� j}).

• Null player ψid = 0 if i is a null player in d (i.e., if d(S ∪ i)= d(S) ∀S ⊆N).

• Additivity ψ(d1 + d2)=ψd1 +ψd2.

Below are two results from Kohlberg and Neyman (2018) that will be needed in the
sequel.

Proposition 4. There exists a unique map ψ : D(N)→ R
n satisfying the axioms of effi-

ciency, symmetry, null player, and additivity. It may be described as follows:

ψid = 1
n

n∑
k=1

di�k� (8)

where di�k denotes the average of d(S) over all k-player coalitions that include i.
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We refer to this map as the Shapley value for games of threats.

Definition 2. Let T ⊆N , T �= ∅. The unanimity game of threats, uT ∈D(N), is defined
by

uT (S)=

⎧⎪⎪⎨
⎪⎪⎩

|T | if S ⊇ T�
−|T | if S ⊆N\T�
0 otherwise�

Proposition 5. Every game of threats is a linear combination of the unanimity games
of threats uT .

7.2 Rephrasing the main result

Using the notion of games of threats, we can provide an alternative definition of the
value.

Proposition 6. The value of a strategic game G is the Shapley value of the game of
threats associated with G, that is, γ = ψ ◦ δ, where γ : G(N)→ R

n, ψ : D(N)→ R
n, and

δ : G(N)→D(N) are as in (3), (8), and (2), respectively.

Proof. Formula (3) is the same as formula (8), applied to the game of threats d = δG.

Thus, Theorem 1 can be rephrased as follows: γ =ψ◦δ is the unique map from G(N)

to R
n that satisfies the axioms of efficiency, balanced threats, symmetry, null player, and

additivity.

7.3 Preliminary results

In this section, we present properties of the mapping δ : G(N)→ D(N) that are needed
for the proof of the main result.

LetG ∈G(N). For any S ⊆N , let (δG)(S) be as in (2).

Lemma 1. δG is a game of threats.

Proof. By the minmax theorem, (δG)(S)= −(δG)(N\S) for any S ⊆N .

We refer to δG as the game of threats associated withG.

Lemma 2. δ : G(N)→D(N) satisfies:

• δ(G1 ⊕G2)= δG1 + δG2 for anyG1�G2 ∈G(N).

• δ(αG)= αδG for anyG ∈G(N) and α≥ 0.
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Proof. Let val(G) denote the minmax value of the two-person zero-sum strategic game
G. Then val(G1 ⊕G2)= val(G1)+ val(G2).

To see this, note that by playing an optimal strategy inG1 as well as an optimal strat-
egy inG2, each player guarantees the payoff val(G1)+ val(G2).

Now apply the above to all two-person zero-sum games played between a coalition
S and its complementN \ S, as indicated in (2).

The next lemma is an immediate consequence of the definition of δ.

Lemma 3. δ : G(N)→D(N) satisfies:

• (δG)(N)= maxa∈AN(
∑
i∈N gi(a)).

• If i and j are interchangeable inG then i and j are interchangeable in δG.

• If i is a null player inG, then i is a null player in δG.

Denote by 1T ∈ R
n the indicator vector of a subset T ⊆N , that is, (1T )i = 1 or 0 ac-

cording to whether i ∈ T or i /∈ T .

Definition 3. Let T ⊆ N , T �= ∅. The unanimity strategic game on T , henceforth the
unanimity game on T , is UT = (N�A�gT ), where

Ai = {0�1} for all i ∈N ,
gT (a)= 1T if ai = 1 for all i ∈ T , and gT (a)= 0 otherwise.

That is, if all the members of T consent then they each receive 1; however, if even
one member dissents, then all receive zero; the players outside T always receive zero.

Lemma 4. Let T �= ∅, and let UT ∈ G(N) be the unanimity game on T and uT ∈ D(N) be
the unanimity game of threats on T . Then δUT = uT .

Proof. Consider the two-person zero-sum game between S andN \ S.
If S∩T is neither ∅ nor T , then both S andN\S include a player in T . If these players

dissent, then all players receive 0. Thus, the minmax value, (δUT )(S), is 0.
If S ∩ T = T then, by consenting, the players in S can guarantee a payoff of 1 to each

player in T and 0 to all the others. Thus, (δUT )(S)= |T |.
If S ∩ T = ∅ then, by consenting, the players in N \ S can guarantee a payoff of 1 to

each player in T ⊂N \ S and 0 to all the others. Thus, (δUT )(S)= −|T |.
By Definition 2, δUT = uT .

Definition 4. The antiunanimity game on T is VT = (N�A�g), whereAi = {S ⊆ T : S �=
∅} and g(S1� � � � � Sn)= ∑

i∈T −1Si .

That is, each player in T chooses a nonempty subset of T where each member loses
1. Players outside T also choose such subsets, but their choices have no impact. Thus,
the payoff to any player, i, is minus the number of players in T whose chosen set in-
cludes i.
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Lemma 5. δVT = −uT .

Proof. Let S be a subset ofN such that T ⊆ S. In the zero-sum game between S and its
complement, each player in S chooses a subset of T of size 1. Thus, (δVT )(S)= −|T |.

Let S be a subset of N such that T ∩ S �= ∅ and T \ S �= ∅. In the zero-sum game
between S and its complement, the minmax strategies are for the players in S to choose
T \S and for the players inN \S to choose T ∩S. The resulting payoff is −t1t2 − (−t2t1)=
0, where t1 and t2 are the number of elements of T ∩ S and T \ S, respectively. Thus,
(δVT )(S)= 0.

Therefore, δVT = −uT .

Lemma 6. For every game of threats d ∈ D(N), there exists a strategic game U ∈ G(N)

such that δU = d. Moreover, there exists such a game that can be expressed as a direct sum
of nonnegative multiples of the unanimity games {UT }T⊆N and the antiunanimity games
{VT }T⊆N .

Proof. By Proposition 5, d is a linear combination of the unanimity games of threats
uT .

d =
∑
T

αTuT −
∑
T

βTuT where αT �βT ≥ 0 for all T�

By Lemmas 4 and 5,

d =
∑
T

δ(αTUT )+
∑
T

δ(βTVT )�

and, by Lemma 2,

d = δ
((⊕

T⊆N
αTUT

)
⊕

(⊕
T⊆N

βTVT

))
�

where ⊕T stands for the direct sum of the games parameterized by T .

Remark 14. In particular, Lemma 6 establishes that the mapping δ : G(N)→ D(N) is
onto.

As was pointed out earlier, the operation ⊕ does not have a natural inverse. However,
we have the following.

Lemma 7. For everyG ∈G(N), there exists a δ-inverse, that is,U ∈G(N) such that δ(G⊕
U)= 0. Moreover, if G′ ∈ G(N) is such that δG′ = δG then there exists U ∈ G(N) that is a
δ− inverse of bothG andG′.

Proof. Consider −δG ∈ D(N). By Lemma 6, there exists U ∈ G(N) such that −δG =
δU . By Lemma 2, δ(G ⊕ U) = 0. And if G′ is such that δG′ = δG then, by the same
argument, δ(G′ ⊕U)= 0.
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Proposition 7. If γ : G(N)→R
n satisfies the axioms of balanced threats, efficiency, and

additivity, then γG is a function of δG.

Proof. Let G�G′ ∈ G(N) be such that δG = δG′. We must show that γG = γG′. By
Lemma 7, there exists U ∈ G(N) such that δ(G⊕U) = 0 = δ(G′ ⊕U). By the axiom of
balanced threats, γ(G⊕U)= 0 = γ(G′ ⊕U). Thus, by the additivity axiom, γG= −γU =
γG′.

Lemma 8. For any T �= ∅ and α ≥ 0, the axioms of symmetry, null player, and efficiency
determine γ on the game αUT . Specifically, γ(αUT )= α1T .

Proof. Any i /∈ T is a null player in UT , and so γi = 0. Any i� j ∈ T are interchangeable
inUT , and so γi = γj . By efficiency, the sum of the γi is the maximum total payoff, which
since α> 0, is α|T |. Thus, each of the |T | nonzero γi is equal to α.

Lemma 9. For any α ≥ 0, the axioms (of symmetry, null player, additivity, balanced
threats, and efficiency) determine γ on the game αVT . Specifically, γ(αVT )= −α1T .

Proof. By Lemma 8, the axioms determine γ(αUT )= α1T . By Lemmas 4 and 5, δ(αVT ⊕
αUT ) = 0. Therefore, by the axiom of balanced threats, γ(αVT ⊕ αUN) = 0. Thus, by
additivity, γ(αVT )= −γ(αUT )= −α1T .

Remark 15. We cannot rely on the same proof as that of Lemma 8, by appealing to
symmetry and efficiency. In the game VT , it is not true that any two players, i� j ∈ T ,
are interchangeable, because the payoff functions are not identical. If we had adopted
a more restrictive version of the symmetry axiom—that the names of the players do not
matter—then any i� j ∈ T would be interchangeable and the direct proof would be valid.
But this more restrictive version of the axiom would lead to a weaker uniqueness theo-
rem.

Proposition 8. The map γ of formula (3) satisfies the axiom of individual rationality.

Proof. Let G = (N�A�g) be a strategic game. By symmetry, it is sufficient to prove
individual rationality for player 1, that is, that γ1G ≥ π1, where π1 denotes player 1’s
security level.

Let S1� S2 be a partition ofN\1. We claim that

(δG)(S1 ∪ 1)+ (δG)(S2 ∪ 1)≥ 2π1� (9)

To see this, let x̄1 be a strategy that guarantees player 1 her security level, that is,

min
xN\1∈XN\1

g1(x̄� xN\1) = max
x1∈X1

min
xN\1∈XN\1

g1(x1�xN\1) = π1� (10)
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We have

(δG)(S1 ∪ 1)

= max
x∈XS1∪1

min
y∈XS2

( ∑
i∈S1∪1

gi(x� y)−
∑
i∈S2

gi(x� y)

)

≥ max
x∈XS1

min
y∈XS2

( ∑
i∈S1∪1

gi
(
x̄1�x� y

) −
∑
i∈S2

gi
(
x̄1�x� y

))

≥ max
x∈XS1

min
y∈XS2

(
π1 +

∑
i∈S1

gi
(
x̄1�x� y

) −
∑
i∈S2

gi
(
x̄1�x� y

))

= π1 + max
x∈XS1

min
y∈XS2

(∑
i∈S1

gi
(
x̄1�x� y

) −
∑
i∈S2

gi
(
x̄1�x� y

))
� (11)

The first inequality follows since restricting the set of available strategies cannot increase
the maximum of a function, and the second inequality follows from (10) and the fact that
the maxmin of a function is monotonic in that function.

Similarly, we have

(δG)(S2 ∪ 1)≥ π1 + max
x∈XS2

min
y∈XS1

(∑
i∈S2

gi
(
x̄1�x� y

) −
∑
i∈S1

gi
(
x̄1�x� y

))
� (12)

By the minmax theorem, the sum of the right-hand sides of (11) and (12) is 2π1;
therefore, adding these two inequalities implies (9).

Now, as S1 ranges over all the sets of size k− 1 that do not include 1, S2 ranges over
all the sets of size n− k that do not include 1; thus, S1 ∪ 1 ranges over all the sets of size
k that include 1 and S2 ∪ 1 ranges over all the sets of size n− k+ 1 that include 1. Taking
the average of inequality (9) over all these sets, we have

δ1�k + δ1�n−k+1 ≥ 2π1�

where δ1�k denotes the average of (δG)(S) over all k-player coalitions that include 1.
Taking the average over k= 1� � � � � n, we obtain

2 × 1
n

n∑
k=1

δ1�k ≥ 2π1�

Thus, by formula (3), γ1G≥ π1.

7.4 Proof of Theorems 1 and 2

Proof of Theorem 1. We first prove uniqueness. Let G ∈ G(N). Consider δG ∈ D(N);
by Lemma 6 there exists a game U ∈ G(N) that is a direct sum of nonnegative multiples
of the unanimity games {UT }T⊆N and the antiunanimity games {VT }T⊆N , such that δG=
δU .
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By Proposition 7, γG = γU and so it suffices to show that γU is determined by the
axioms.

Now, by Lemmas 8 and 9, γ is determined on nonnegative multiples of the unanimity
games {UT }T⊆N and the antiunanimity games {VT }T⊆N . It then follows from the axiom
of additivity that γ is determined on U .

To prove existence, we show that the value, γ =ψ ◦ δ, satisfies the axioms.
Efficiency, symmetry, and the null player axiom follow from Lemma 3 and the corre-

sponding properties of the Shapley value ψ.
Additivity follows from Lemma 2 and the linearity of the Shapley value.
The axiom of balanced threats follows from formula (3). If (δG)(S)= 0 for all S ⊆N ,

then γiG= 0 for all i ∈N .
Finally, Proposition 8 establishes that γ satisfies the axiom of individual rationality.

The proof of Theorem 2 proceeds along the same lines as the proof of Theorem 1,
but with δB replacing δ.

7.5 Proof of Proposition 2

Uniqueness can be proved in the same way as in Theorem 1. It is straightforward to ver-
ify that all the lemmas that involve δ remain valid when δ is replaced by δ̂. In particular,
note that δ̂UT = δUT = uT and δ̂VT = δVT = −uT .

Recall that ψ denotes the Shapley value for games of threats. The proof that ψ ◦ δ̂
satisfies the axioms is similar to the proof in Theorem 1 that ψ ◦ δ satisfies the axioms of
that theorem. The proof that γ̂ =ψ ◦ δ̂ is similar to the proof of Proposition 6.

Appendix: The axioms for the value are tight

In this section, we show that the axioms for the value are tight; that is, if any one of them
is dropped then the uniqueness theorem is no longer valid. Furthermore, the axioms
are tight even if balanced threats and symmetry are replaced by their more restrictive
versions ((BT4) of Kohlberg and Neyman (2020)) and full symmetry, respectively). Again,
for ease of exposition we restrict attention to games with complete information, but
analogous results are valid for Bayesian games.

Let, for all i ∈N ,

γiG= 1
n
(δG)(N)� (13)

that is, each player receives the equitable allocation. It is easy to verify that we have the
following.

Claim 1. The mapping γ : G(N)→ R
n defined by (13) satisfies all the axioms except for

the null-player axiom.
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Let, for all i ∈N ,

γiG= 0� (14)

It is easy to verify the following.

Claim 2. The mapping γ : G(N)→ R
n defined by (14) satisfies all the axioms except for

efficiency.

For each integer 1 ≤ k≤ n, let πk be the order k�k+ 1� � � � � n�1� � � � �k− 1, and let, for
all i ∈N ,

γiG= 1
2n

n∑
k=1

(
(δG)

(
Pπki ∪ i) − (δG)(Pπki ))

� (15)

where Pπki consists of all players j that precede i in the order πk.

Claim 3. The mapping γ : G(N)→ R
n defined in (15) satisfies all the axioms except for

symmetry.

Proof. It is easy to verify that the axioms of null player, balanced threats, and additivity
are satisfied. As for efficiency, it is sufficient to verify it forG such that δG is a unanimity
game in D(N).

Let then δG be the unanimity game on T , that is, (δG)(S) = |T | if S ⊇ T , −|T | if
S ⊆N\T , and zero otherwise.

For i ∈ T , (δG)(Pπki ∪ i) = |T | if Pπki ∪ i ⊇ T , that is, if in the order πk, i is the last
among the members of T , and zero otherwise. Thus,

∑
i∈T

1
n

n∑
k=1

(δG)
(
Pπki ∪ i) = 1

n

n∑
k=1

∑
i∈T
(δG)

(
Pπki ∪ i) = 1

n

n∑
k=1

|T | = |T |�

where the third equality follows from the fact that in each order πk exactly one i ∈ T is
last among the members of T .

Similarly, for i ∈ T , (δG)(Pπki )= −|T | if Pπki ⊆N\T , that is, if in the order πk, i is the
first among the members of T , and zero otherwise. Since in each order πk exactly one
i ∈ T is first among the members of T , we have

∑
i∈T

1
n

n∑
k=1

(δG)
(
Pπki

) = 1
n

n∑
k=1

∑
i∈T
(δG)

(
Pπki

) = 1
n

n∑
k=1

(−|T |) = −|T |�

By (15),
∑
i∈T γi = 1

2(|T | + |T |)= |T |.
For i /∈ T , Pπki ∪ i ⊆ T if and only if Pπki ⊆ T , and Pπki ∪ i ⊆N\T if and only if Pπki ⊆

N\T . By (15), then γiG= 0.
Thus,

∑n
i=1 γi = |T | = (δG)(N), completing the proof of efficiency.

To see that γ of equation (15) does not satisfy the symmetry axiom, consider the
unanimity game on {1�2�5} in the game with player set {1� � � � �5}.
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Player 1 is first in T for the order π1 and last in T for the order π2. Thus, γ1 = 1
10(|T |−

(−|T |))= |T |
5 .

Player 2 is first in T for the order π2 and last in T for the orders π3�π4, and π5. Thus,
γ2 = 1

10(|T | − (−3|T |))= 2|T |
5 .

But 1 and 2 are interchangeable.

Next, observe that the vNM–Shapley value for strategic games satisfies all the axioms
except for the axiom of balanced threats (See Section 6).

Finally, consider the following map. All dummy players in G receive the same as in
the value formula (3), and the others share equally the remainder relative to (δG)(N).
It is easy to verify that this solution satisfies all the axioms except for additivity. (It does
not even satisfy consensus-shift invariance.)

We conclude this section by commenting on the axioms required to imply that the
value, γG, is a function of δG. The axiom of balanced threats says that if (δG)(S) = 0
for any subset S then γG = 0. It would seem then that this axiom alone would suffice.
However, this is not the case.

A solution that obeys the axiom of balanced threats, symmetry, efficiency, and the
null player axiom but is not a function of δG can be constructed as follows.

Let δ and vG be as defined in (2) and (5), respectively, and fix f :R×R →R such that
f (0� y)= f (x�0)= 0 and f (x�x)= x ∀x� y.

Define γ(G) as the Shapley value of the coalitional game u with u(S) := f ((δG)(S)�

(vG)(S)).

Claim 4. The mapping γ : G(N) → Rn defined above satisfies the axioms of balanced
threats, symmetry, efficiency, and null player, but it is not a function of δG.
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