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Convergence in models of misspecified learning

Paul Heidhues
Düsseldorf Institute for Competition Economics, Heinrich-Heine Universität Düsseldorf

Botond Kőszegi
Department of Economics and Business, Central European University

Philipp Strack
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We establish convergence of beliefs and actions in a class of one-dimensional
learning settings in which the agent’s model is misspecified, she chooses actions
endogenously, and the actions affect how she misinterprets information. Our
stochastic-approximation-based methods rely on two crucial features: that the
state and action spaces are continuous, and that the agent’s posterior admits
a one-dimensional summary statistic. Through a basic model with a normal–
normal updating structure and a generalization in which the agent’s misinterpre-
tation of information can depend on her current beliefs in a flexible way, we show
that these features are compatible with a number of specifications of how exactly
the agent updates. Applications of our framework include learning by a person
who has an incorrect model of a technology she uses or is overconfident about
herself, learning by a representative agent who may misunderstand macroeco-
nomic outcomes, and learning by a firm that has an incorrect parametric model
of demand.
Keywords. Misspecified model, Bayesian learning, convergence, Berk–Nash
equilibrium.

JEL classification. D83, D90.

1. Introduction

A significant literature in statistics studies inferences by an observer who has a misspec-
ified model of the world and receives exogenous—and in most papers independent—
signals. Some counterexamples notwithstanding, it has been shown that in this setting,
the observer’s beliefs converge under weak conditions (Berk 1966, Bunke and Milhaud
1998, Shalizi 2009). In many or most economic applications, however, a person is not
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only a passive observer of her economic environment, but she also chooses actions
based on her beliefs. Whenever this is the case, the action could affect what informa-
tion she observes, making signals endogenous and typically nonindependent. For this
type of learning with misspecification, little is known about the convergence of beliefs,
and previous work has identified economically natural conditions under which beliefs
do not converge (e.g., Nyarko 1991, Fudenberg et al. 2017).

In this paper, we establish convergence of beliefs and actions in models of misspeci-
fied learning with endogenous actions in which the state and action spaces are continu-
ous and the agent’s beliefs admit a one-dimensional summary statistic. As we illustrate
through a few examples, this class of models is sufficiently general to cover a number of
economically relevant settings.

After discussing related literature in Section 2, we present our framework in Sec-
tion 3. In each period t ∈ {1�2�3� � � � }, the agent produces observable output qt =
Q(at�bt), which depends on her action at ∈ (a�a) and external conditions bt beyond
her control. The states bt are independent normally distributed random variables with
mean equal to a fixed fundamental �, about which the agent’s prior is normal. The
agent attempts to learn about � from her outputs and to adjust her action optimally
in response, aiming to maximize discounted expected output. Crucially, she has a mis-
specified model: she believes that output is determined according to Q̃(at� bt). To guar-
antee that the agent can always find an explanation for her observations, we assume that
Q and Q̃ are strictly monotonic in bt , and that fixing at , the range of Q̃(at� bt) includes
the range ofQ(at�bt).

In Section 4, we apply tools from stochastic approximation theory to show that un-
der economically weak conditions, the agent’s beliefs converge with probability 1 to a
point belief and her actions also converge. Within our setting, this convergence result
supersedes previous ones in the literature, including those of Berk (1966), Bunke and
Milhaud (1998), and Shalizi (2009), where the agent does not take decisions based on her
beliefs, Esponda and Pouzo (2016a), where convergence to stable beliefs is established
only for nearby priors and in expectation approximately optimal actions, and Heidhues
et al. (2018), where the convergence proof requires strong supermodularity restrictions
on the environment. Because of our assumption that noise is inside the output function,
for any output qt , there is a unique state b̃t that the agent believes must have generated
qt . This implies that the agent’s updating follows a normal–normal structure, and her
posterior belief in period t can be described by her mean belief θ̃t , a one-dimensional
summary statistic. Since the agent puts less and less weight on her new observations as
time goes by, changes in her beliefs slow down, so the same change requires observing
more and more signals. Due to a version of the law of large numbers, this means that
changes in her beliefs can in the limit be well approximated by a deterministic process
governed by an ordinary differential equation (ODE). As the solution to this ODE con-
verges, so do the agent’s beliefs. We conclude that the agent’s beliefs converge to a point
where the external conditions b̃t that she thinks she has observed on average equal her
belief about the fundamental.
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In Section 5, we identify several variants of our model to which we can extend our
stochastic-approximation-based methods. For convergence as well as the determina-
tion of limiting beliefs, what matters is that we can reduce the agent’s beliefs to a one-
dimensional summary statistic and that his belief moves in the direction of her per-
ceived signal b̃t by an amount on the order of 1/t. This condition is satisfied by Bayesian
updating if the bt are exponentially distributed, since this also leads to a linear updating
rule. Furthermore, it is sufficient for the agent’s subjective model of the bt to be normal
or exponential. The true model can be any distribution with mean zero and finite vari-
ance, and a variant of our convergence result also obtains if the agent’s objective differs
from what she observes.

In Section 6, we identify a few economic applications of our abstract framework. The
agent might be a representative consumer seeking to adjust her behavior to macroeco-
nomic conditions she misunderstands. The agent might be learning about a technologi-
cal parameter�—such as the usefulness of a new fertilizer—and choosing its use at with
a misspecified model. The agent might be a firm trying to learn about a demand param-
eter � and set optimal prices at with a misspecified functional form for demand. As in
a correctly specified model, beliefs converge with probability 1 in each case, but they
also display properties that could not occur in a correctly specified model. First, in all
of our examples, the limiting belief is false and the limiting action is, therefore, subopti-
mal. In our price-setting model, for instance, the firm’s unique limiting belief about the
level of demand is correct, but its belief about the elasticity is not, so the price it chooses
is suboptimal. Second, in a variant of this model inspired by Fudenberg et al. (2017)
and Nyarko (1991), we demonstrate that without assuming continuous state and action
spaces, convergence can easily fail. Third, we illustrate that there may be multiple possi-
ble limiting beliefs. In the macroeconomic context, the agent becomes—depending on
her initial observations—either irrationally exuberant or irrationally pessimistic about
the economy. Similarly, the agent may under- or overestimate the effectiveness of fertil-
izer, but in either case, she underestimates its return net of usage costs.

Section 7 concludes by discussing other settings in which our methods can help to
characterize long-run beliefs.

2. Related literature

The statistics literature on learning with misspecified models, such as Berk (1966),
Bunke and Milhaud (1998), and Shalizi (2009), identifies conditions under which beliefs
converge. In these models, the observer does not take endogenous actions. There is a
growing literature on learning with misspecified models in which actions are endoge-
nous to beliefs and at the same time actions affect how the agent (mis)interprets infor-
mation. Most previous work establishes convergence under very restrictive conditions,
and there are examples in which convergence does not obtain. Indeed, it seems widely
recognized among researchers that proving convergence of beliefs is in most cases no-
toriously difficult.

In Heidhues et al. (2018), we study an overconfident agent’s often self-defeating
learning process and behavior when she chooses actions endogenously based on her
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beliefs. Our earlier paper assumes that noise is outside the production function (qt =
Q(at��)+ εt ), while in the current paper, noise is inside the production function (qt =
Q(at�bt)=Q(at��+ εt)). Our earlier paper establishes convergence of beliefs through
a different method that (i) requires restricting attention to situations in which there can
only be one limiting belief and (ii) relies heavily on the particular structure of Q and Q̃
(e.g., that overconfidence distorts the subjectively optimal action away from the optimal
one in the same direction as an underestimation of the state). By assuming that noise
is inside the production function, we can establish convergence for a far more general
class of technologies and misspecifications. In particular, we show convergence even
when the limiting belief is not unique, which is a natural and economically relevant fea-
ture, for instance, in the examples on equilibrium feedback and fertilizer use.

Given the above difference, the question arises as to which specification of noise is
more appropriate. While most previous researchers assumed that noise is outside the
production function, they did so mostly for tractability or by habit. In our case, having
the noise inside the production function leads to a more tractable model. Furthermore,
this specification may be more realistic in some situations. For instance, if the produc-
tion function depends on the agent’s action and the productivity of his teammate, then
any noise in the productivity of the teammate must go inside the production function.

Esponda and Pouzo (2016a) develop a general framework for studying games in
which players have misspecified models, and Esponda and Pouzo (2016b) extend the
framework to general dynamic single-agent Markov decision problems with nonmyopic
agents. Building on Berk (1966), Esponda and Pouzo (2016a) establish that if actions
converge, then beliefs converge to a limit at which a player’s predicted distribution of
outcomes is closest to the actual distribution. Our limiting beliefs have a similar prop-
erty, but we derive significantly stronger results on the convergence of beliefs.

Fudenberg et al. (2017) completely characterize the conditions under which beliefs
converge when the agent has a two-point prior and the signal is Brownian. Due to the
discrete nature of the state space, beliefs need not converge.1 For environments with
a finite action space, Esponda et al. (2019) use stochastic approximation techniques to
study the convergence of frequencies of actions (rather than beliefs) when the agent
learns with a misspecified model. Frick et al. (2020) establish sufficient conditions for
(non-)convergence of beliefs for environments with a finite, but not binary, state space,
and Fudenberg et al. (2020) provide such conditions for a finite action space. Finally, in
the context of optimal stopping problems, He (2018) models the gambler’s fallacy as a
dogmatic belief in negative correlation between consecutive signals and derives long-
run beliefs about the signal-generating distribution.

3. Learning environment

In this section, we introduce our framework, and perform a few preliminary steps of
analysis.

1More distantly related, Bohren (2016) and Bohren and Hauser (2020) study long-run beliefs in misspec-
ified social learning environments with a two-point prior and short-lived agents. Also in the context of
social learning, Frick et al. (2019) analyze the robustness of long-run beliefs with respect to small amounts
of misspecification about others’ preferences.
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3.1 Setup

The objective environment In each period t ∈ {1�2�3� � � � }, the agent produces observ-
able output qt ∈R according to the twice differentiable output functionQ(at�bt), which
depends on her action at ∈ (a�a)=A and an unobservable external state bt ∈R beyond
her control. We allow a and a to be finite or infinite. We assume that

bt =�+ εt�
where � ∈ R is an underlying fixed fundamental and the εt are independent normally
distributed random variables with mean zero and variance σ2. We denote by φ(·;θ�η2)

the density of the normal distribution with mean θ and variance η2.

The agent’s subjective beliefs The agent’s prior is that � is distributed normally with
mean θ̃0 and variance v0. While the agent understands the basic environment correctly,
she has a misspecified model regarding output: she believes that output is being pro-
duced according to the twice differentiable function Q̃(at� bt). Given her model, the
agent updates her beliefs about the fundamental in a Bayesian way and chooses her
action in each period to maximize perceived discounted expected output.

We impose a few important conditions on the misspecified and true models. First,
for any action a ∈ (a�a) and any state b ∈ R, there exists a subjective state b̃ such that
Q(a�b)= Q̃(a� b̃). This guarantees that the agent can find an explanation for any output
she observes. Without such an assumption, Bayes’ rule does not specify beliefs after
some histories. Second, the agent believes that an increase in the state always affects
output in the same direction, and we normalize this direction to be positive: Q̃b > 0.2

This ensures that the agent always infers a unique external state. Third, output also
changes monotonically with the state (i.e., Qb > 0 everywhere or Qb < 0 everywhere).
This implies that an agent with a correctly specified model can infer the realized state
for any action she took.

We also make economically weak technical assumptions on the misspecified model.
First, Q̃aa < 0 and lima→a Q̃a(a�b) > 0 > lima→a Q̃a(a�b) for all b. This guarantees that
there is always a unique optimal action when the agent is subjectively certain about the
state. Second, for any action a, the functions Q̃(a�b), Q̃a(a�b), Q̃ab(a�b), and Q̃aa(a�b)
are integrable with respect to admissible distributions over b.3 This implies that the
agent’s problem is well defined, and we can analyze the agent’s choices using first-order
methods and the implicit function theorem.

3.2 Preliminaries

We begin the analysis of our model by noting a few basic properties. After observing
output qt generated by the realized state bt , the agent believes that the realized state was
b̃t satisfying

Q̃(at� b̃t)= qt =Q(at�bt)� (1)

2Throughout we use sub-indices to denote partial derivatives.
3That is, we have that

∫
R

|Q̃(a�b)|φ(b;θ�η2)db <∞ for any θ and η2, and the identical condition for the
other functions.
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By assumption, there is a b̃t satisfying (1), and since Q̃b > 0, it is unique. Therefore,
the agent believes that whatever action she chooses, she can infer a unique signal b̃t
about �. Since she believes that b̃t is normally distributed with mean � and variance
σ2 independent of her action, she believes that all actions are equally informative. This
implies that she chooses her action in each period to maximize that period’s perceived
expected output. In addition, given her prior that the state is distributed according to
N (θ̃� v0) and her belief that b̃1� b̃2� � � � � b̃t are independent and identically distributed
(i.i.d.) according to N (��σ2), at the end of period t ≥ 1, her posterior belief is that � is
normally distributed with mean4

θ̃t =

σ2

v0
θ̃0 +

t∑
s=1

b̃s

σ2

v0
+ t

(2)

and variance

vt = 1

v−1
0 + tσ−2

�

Hence, when choosing her action in period t, the agent believes that � is normally dis-
tributed with mean θ̃t−1 and variance vt−1.

We denote byM :A×R → R the agent’s subjective expected payoff when she is sure
about the fundamental:

M(a� θ̃)=
∫
Q̃(a� b̃)φ

(
b̃; θ̃�σ2)db̃�

Lemma 1 (Optimal actions). The optimal action taken by the agent in period t is unique,
depends only on t and the mean of her posterior belief θ̃t−1, and is given by

a∗(t� θ̃t−1)= argmax
a∈A

∫
M(a�x)φ(x; θ̃t−1� vt−1)dx�

Furthermore, there is a unique action that the agent perceives as optimal if she is certain
that the fundamental is θ̃t−1, which is given by

a∗(θ̃t−1)= argmax
a∈A

M(a� θ̃t−1)�

Both a∗(t� θ̃t−1) and a∗(θ̃t−1) are differentiable with respect to θ̃t−1.

To keep track of how the agent misperceives the signals, we define b̃(b�a) as the state
b̃ that solves (1), i.e., the state the agent perceives as a function of the true state b and
her action a. We make three weak assumptions that bound the agent’s misinference and
the sensitivity of her misinference and behavior.

4See, for example, https://en.wikipedia.org/wiki/Conjugate_prior.

https://en.wikipedia.org/wiki/Conjugate_prior
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Assumption 1. (i) There exists a constant 
> 0 such that |b− b̃(b�a)| ≤ 
 for all b�a.

(ii) The function b̃a is bounded.

(iii) There exist constants d�k > 0 such that for any t and any θ̃, we have
|a∗(t� θ̃)− a∗(θ̃)| ≤ 1

tk
d.

Part (i) imposes that the agent’s misinference about the realized external state is
bounded by 
, guaranteeing that in the long run her beliefs are in a bounded inter-
val. Part (ii), a technical condition, bounds the derivative of the misinference with re-
spect to the chosen action. Part (iii) bounds the effect of the agent’s uncertainty about
the fundamental—which in period t is of order 1/t—on her action—that it should be
of order 1/tk and hence vanish over time. This assumption, easy to check in specific
applications, allows us to approximate the agent’s time-sensitive optimal action a∗(t� θ̃)
with her confident action a∗(θ̃). The following lemma identifies sufficient conditions on
primitives for Assumption 1 to be satisfied. As our fertilizer example in Section 6 shows,
these conditions are not necessary.

Lemma 2 (Sufficient conditions on primitives). (i) If |Q̃(a�b) − Q(a�b)| is uniformly
bounded and Q̃b is uniformly bounded away from zero, then part (i) of Assump-
tion 1 holds.

(ii) If Q̃
b̃
(a� b̃) is uniformly bounded from below, and |Qa(a�b)| and |Q̃a(a� b̃)| are uni-

formly bounded, then part (ii) of Assumption 1 holds.

(iii) If Q̃aa(a� b̃) is uniformly bounded away from zero and |Q̃ab(a� b̃)| is uniformly
bounded, then part (iii) of Assumption 1 holds.

4. Convergence of the agent’s beliefs

Establishing convergence is technically challenging because of the endogeneity of ac-
tions: as the agent updates her belief, she changes her action, thereby changing the
objective distribution of the perceived signal she uses to update her belief. This means
that we cannot apply results from the statistical learning literature, such as those of Berk
(1966) and Shalizi (2009), where the observer does not choose actions based on her be-
liefs. At the same time, several features of our model facilitate a convergence argument.
The assumption of a normal prior and normal signals ensures that (i) beliefs concentrate
for any sequence of signals and (ii) the expected changes in the agent’s beliefs vanish on
the order of 1/t. Property (i) implies that eventually the agent’s mean beliefs are suf-
ficient to describe her beliefs and actions arbitrarily well, so it suffices to analyze the
dynamics of mean beliefs. Property (ii) then allows us to use results from stochastic
approximation theory to establish that the agent’s mean beliefs converge.5

5Kushner and Yin (2003) introduce and discuss classic results in stochastic approximation theory, which
dates back to Robbins and Monro (1951) and Kiefer and Wolfowitz (1952), as well as modern developments
in the field.
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We now turn to the formal argument. Using (2), the dynamics of the agent’s beliefs
can be written as

θ̃t+1 = θ̃t + γt[b̃t+1 − θ̃t]� where γt = 1

t + 1 + σ2

v0

�

We define the function g : N×R→ R as the objective expectation of b̃t+1 − θ̃t :

g(t�x)= E
[
b̃
(
bt+1� a

∗(t + 1�x)
)] − x� (3)

The above expectation is the one of an outside observer who knows the true funda-
mental � and the agent’s subjective belief θ̃t , so that, being able to deduce the action
a∗(t + 1� θ̃t), she knows the distribution of b̃t+1. The function g can be thought of as the
agent’s mean surprise regarding the fundamental.

As we are interested in how the agent’s subjective beliefs are updated in the limit, we
define

g(x)= lim
t→∞g(t�x)= E

[
b̃
(
bt+1� a

∗(x)
)] − x�

We impose that g does not touch the horizontal axis without crossing.6

Definition 1 (Stationary point). A point θ̃ is stationary if g(θ̃)= 0.

Intuitively, the agent cannot have a nonstationary long-run belief θ̃, as her limiting
action a∗(θ̃) would generate subjective signals that push her systematically away from
θ̃. Specifically, when g(θ̃t) > 0, then the agent eventually generates signals that are on
average above θ̃t , so that her mean beliefs drift upward, and if g(θ̃t) < 0, then the agent’s
mean beliefs drift downwards.

Furthermore, intuition suggests that not every stationary belief is a possible limiting
belief: whenever g is negative on the left of θ̃ and positive on the right of θ̃, the agent’s
noisy perceived signals would still push her away from θ̃ in one of the two directions.
This motivates the following definition.

Definition 2 (Stable point). A stationary point θ̃ is stable if g crosses zero from above
at θ̃.7 We denote byH the set of stable points.

The main result of the paper shows that the set of stable beliefs completely describes
the set of possible long-run beliefs.

Theorem 1. Suppose that Assumption 1 holds. Then almost surely the agent’s mean be-
liefs (θ̃t) converge and the limit point is stable: limt→∞ θ̃t ∈H.

6Formally, for any x such that g(x)= 0, we have that g(x− δ)g(x+ δ) < 0 for any sufficiently small δ > 0.
7Formally, g(θ̃− δ) > 0 and g(θ̃+ δ) < 0 for any sufficiently small δ > 0.
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The mathematical intuition behind Theorem 1 is the following. Because the agent’s
posterior can be fully described by its mean and variance and the latter depends only on
time t, we study the dynamics of the agent’s mean beliefs θ̃t . Although—as we explained
above—the agent’s subjective signals are not independently and identically distributed
over time, we use a result from stochastic approximation that in our context requires the
perceived signals to be approximately independent over time conditional on the current
subjective belief. To use this result, for s ≥ t, we approximate the agent’s time-dependent
action a∗(s� θ̃s−1) by the time-independent confident action a∗(θ̃s−1). By Assumption 1,
the mistake we make in approximating a∗(s� θ̃s−1) in this way is of order 1/sk, and since
the perceived signal b̃s is Lipschitz continuous in as , the mistake we make in approxi-
mating b̃s is also of order 1/sk. When updating, since the agent’s newest signal gets a
weight of order 1/s, this means that the error in approximating the change in her beliefs
is of order 1/s1+k, and, hence, the total error in approximating beliefs from period t on-
ward is of order

∑∞
s=t 1/s1+k, i.e., finite. Furthermore, as t → ∞, the approximation error

from period t onward goes to zero.
Given the above considerations, on the tail we can think of the dynamics as driven

by those that would prevail if the agent chose a∗(θ̃t) in period t+1. The expected change
in the mean belief in period t + 1 is, therefore, a function of g(θ̃t). The expected change,
however, is a time-dependent function of g(θ̃t): as the agent accumulates observations,
she puts less and less weight on a single observation. Stochastic approximation theory,
therefore, defines a new time scale τt and a new process z(τ) that “speeds up” θ̃t to keep
its expected steps constant over time, also making z(τ) a continuous-time process by
interpolating between points. It then follows that on the tail, the realization of z can be
approximated by the ordinary differential equation

z′(τ)= g(z(τ))� (4)

which is a deterministic equation. Intuitively, since z(τ) is a sped-up version of θ̃t , as τ
increases, any given length of time in the process z(τ) corresponds to more and more of
the agent’s observations. Applying a version of the law of large numbers to these many
observations, the change in the process is close to deterministic. In this sense, on the
tail, the noisy model reduces to a noiseless model. Now because the solution to (4) con-
verges to a stable point, the agent’s beliefs converge to a stable point.

In line with the above intuition, the first step in the proof of Theorem 1 is to elimi-
nate actions from the formalism, simply approximating the agent’s signal b̃t with a time-
independent signal. Then we show that if the agent’s beliefs depend only on time and a
one-dimensional statistic in a way that admits a time-independent approximation with
an error on the order of 1/t1+k, then the statistic converges. Because the second ar-
gument allows us to cover additional economic applications, we formally prove it in a
separate Theorem 2 below.

We conclude this section by relating our theorem to Esponda and Pouzo’s (2016a)
concept of Berk–Nash equilibrium. Denote the log-likelihood ratio La(b� θ̃) between the
objective probability measure associated with realizations of b and the agent’s subjective
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probability measure over realizations of b̃(b�a) when she takes the action a as

La(b� θ̃)= log
(

φ(b−�)
φ

(
b̃(b�a)− θ̃)b̃b(b�a)

)
�

where φ(x) = φ(x;0�η2) is the density of a normally distributed random variable with
variance η2.8 The Kullback–Leibler divergence between the objective distribution of
signals and the subjective distribution when the agent believes the state equals θ̃ and
randomly takes an action a according to the mixed strategy ν ∈ 
(A) equals

Kν(θ̃)=
∫

E
[
La(b� θ̃)

]
dν(a)�

Definition 3 (Berk–Nash equilibrium). A distribution over actions ν ∈ 
(A) consti-
tutes a Berk–Nash equilibrium if there exists a probability distribution over states ζ ∈

(R) such that the following statements hold:

(i) The distribution over actions is optimal given the subjective belief ζ:
∫ ∫

M(a� θ̃)dζ(θ̃)dν(a)= max
a

∫
M(a� θ̃)dζ(θ̃)�

(ii) The support of the belief ζ is contained in the set of Kullback–Leibler minimizers:

suppζ ⊆ argmin
θ̃

Kν(θ̃)�

Intuitively, Berk–Nash equilibrium requires that (i) the agent randomizes over ac-
tions in an optimal way given her subjective beliefs and (ii) her subjective belief is the
belief that “best” explains the data she is observing given her actions. Furthermore, we
say that a Berk–Nash equilibrium is strict if any other distribution over actions is strictly
suboptimal in (i).

Proposition 1 (Characterization of Berk–Nash equilibria). (i) A distribution over ac-
tions is a Berk–Nash equilibrium if and only if it assigns probability 1 to a single
action a such that a= a∗(θ̃) for some stationary belief θ̃.

(ii) All Berk–Nash equilibria are strict.

(iii) Play never converges to a Berk–Nash equilibrium a= a∗(θ̃) associated with a sta-
tionary belief θ̃ that is not stable.

Combined with Theorem 1’s result that the agent’s beliefs converge with probability
1 to a stable stationary belief, the proposition says that the agent’s beliefs converge with

8Formally, L denotes the logarithm of the Radon–Nykodym derivative between the objective and the
subjective measure. The density of the objective measure follows as bt is normally distributed with mean
� and variance η2. The density of the subjective signal distribution follows as the agent misinterprets the
signal b as b̃(b�a) when taking the action a, and thinks that b̃ is normally distributed with mean θ̃ and
variance η2.
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probability 1 to a Berk–Nash equilibrium, but only the subset of Berk–Nash equilibria
corresponding to stable beliefs are possible limit points. Specifically, part (i) says that in
our model, the set of Berk–Nash equilibria coincides with the set of stationary beliefs,
i.e., beliefs at which the agent’s mean surprise about the fundamental is zero. Further-
more, part (ii) says that all Berk–Nash equilibria are strict, independently of whether the
associated stationary beliefs are stable or not. Using Theorem 1, we can conclude that
the agent’s beliefs converge with probability 1 to a strict Berk–Nash equilibrium. Part
(iii), however, implies that when there is an unstable stationary belief, then that belief
corresponds to a strict Berk–Nash equilibrium to which the agent’s beliefs do not con-
verge with positive probability. Hence, in our model these strict Berk–Nash equilibria do
not have a learning foundation.

5. Generalizations

While our model above assumes that the agent has a normal prior and observes nor-
mally distributed signals, weaker assumptions are sufficient to establish convergence
using our methodology. In this section, we outline a general, abstract learning model
and identify a few applications of it.

We consider a sequence of i.i.d. signals that are distributed according to some dis-
tribution F : (b�b)→ [0�1] with (potentially unbounded) support (b�b), strictly positive
density f > 0, and finite expectation and variance. We suppose that if the agent per-
ceives to have observed the sequence of signals b̃1� � � � � b̃t , then her posterior subjective
belief can be summarized by a single-dimensional “sufficient statistic”

θ̃t =
αθ̃0 +

t∑
s=1

b̃s

α+ t � (5)

where α is a free parameter. Furthermore, the subjective signal b̃t is only a function of
calendar time t, the agent’s last-period belief θ̃t−1, and the true signal bt :

b̃t ≡ b̃(t� bt� θ̃t−1)�

We assume that the difference between the objective and the subjective signals is
bounded (|b̃(t� b� θ̃) − b| ≤ 
 < ∞) and that the subjective signal b̃(t� b� θ̃) is differen-
tiable, strictly increasing in the objective signal b and continuous in the belief θ̃.

Let

g(x)= lim
t→∞E

[
b̃(t� bt� x)− x] (6)

be the long-run limit of the objective expectation of the difference between the subjec-
tive signal and the agent’s subjective belief x. We assume that g is well defined (i.e., the
above limit exists) and there exist constants d1�k > 0 such that for all x ∈ R and all t ≥ 1,

∣∣g(x)−E
[
b̃(t� bt� x)− x]∣∣ ≤ d1

1

tk
� (7)
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We impose that g does not touch the horizontal axis without crossing.9 We define sta-
tionary and stable points analogous to Definitions 1 and 2. We then have the following
theorem.

Theorem 2. Almost surely the sufficient statistic (θ̃t) converges and the limit point is
stable: limt→∞ θ̃t ∈H.

Despite differences in appearance, our main model with normally distributed sig-
nals and endogenous actions (Section 3) is a special case of the above setup. Namely,
the optimal action is only a function of the posterior belief in the previous period, which
is normal with mean θ̃t−1 and variance vt−1. Hence, the action in period t is only a func-
tion of θ̃t−1 and t. As the action at and the true signal bt determine the perceived signal,
the perceived signal b̃t is only a function of (t� bt� θ̃t−1). We use this insight to prove
Theorem 1 from Theorem 2 in Appendix A.2.

We next discuss how Theorem 2 can help establish convergence in variants of our
model in Section 3. Throughout, we assume that unless stated otherwise, any assump-
tion we have made in Section 3 holds.

5.1 Exponentially distributed signals

Consider a modification of our model in Section 3 in which the bt are i.i.d. exponentially
distributed random variables with mean �, and the agent’s prior about � is inverse-
gamma distributed with shape α0 > 2 and scale λ0 > 0. We denote by ψ(x;λ�α) =
λα

�(α) (1/x)
α+1 exp(−λ/x) the density of the inverse-gamma distribution with shape α and

scale λ.10 The agent’s posterior belief about � in period t is then inverse-gamma dis-
tributed with scale λt = λ0 + ∑t

s=1 b̃s and shape αt = α0 + t.11 The mean of the agent’s
posterior belief equals

θ̃t =
θ̃0(α0 − 1)+

t∑
s=1

b̃s

α0 − 1 + t � (8)

where θ̃0 = λ0
α0−1 equals the mean of the prior.12 The variance of the agent’s poste-

rior belief in period t is given by θ̃2
t

α0−2+t . Hence, the scale and shape parameter can

be uniquely identified from calendar time t and the posterior mean θ̃t , i.e., (αt�λt) =
(α0 + t� (α0 − 1 + t)θ̃t).

Given that (t� θ̃t) is, therefore, a sufficient statistic for the agent’s beliefs and that the
updating rule (8) is linear, our methods are easily adapted to establish convergence of

beliefs. To do so, we redefine the expected output M(a� θ̃) = ∫
Q̃(a� b̃) 1

θ̃
e−b̃/θ̃ db̃ when

9Formally, for any x such that g(x)= 0, g(x− δ)g(x+ δ) < 0 for any sufficiently small δ > 0.
10The equality �(α)= ∫ ∞

0 xα−1e−x dx is the gamma function.
11See https://en.wikipedia.org/wiki/Conjugate_prior.
12See https://en.wikipedia.org/wiki/Inverse-gamma_distribution.

https://en.wikipedia.org/wiki/Conjugate_prior
https://en.wikipedia.org/wiki/Inverse-gamma_distribution
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the agent is certain of the state. It follows from the same argument as in Lemma 1 that
the optimal action is continuous in the state and satisfies

at = a∗(t� θ̃t−1)= argmax
a∈A

∫
M(a�x)ψ

(
x; θ̃t−1(αt−1 − 1)�αt−1

)
dx�

By exactly the same proof as for Theorem 1, we obtain the following corollary.

Corollary 1. Suppose that Assumption 1 holds. Then almost surely the agent’s mean
beliefs (θ̃t) converge and the limit point is stable: limt→∞ θ̃t ∈H.

5.2 Other objective signal distributions

The general model immediately implies another point: that it is sufficient for the agent’s
subjective model to be normal or exponential; the true model generating the signals
bt can be something else. This does not modify the agent’s updating rule or behavior
given her beliefs; it only modifies the definition of g in (3). Since we do not use the
true distribution of b in the proof of Lemma 1 or Theorem 1, the next corollary follows
immediately.

Corollary 2. Suppose that the true distribution of bt is i.i.d. with mean � and finite
variance, and that Assumption 1 holds. Then almost surely the agent’s mean beliefs (θ̃t)
converge and the limit point is stable: limt→∞ θ̃t ∈H.

5.3 Decoupling the agent’s objective from her observations

Consider also decoupling the agent’s objective from her observations. Suppose that in
choosing at , the agent aims to maximize the expectation of some function Q̃(at� bt), she
observes Q(at�bt), and she believes that she observes Q̂(at� bt). For notational simplic-
ity, our model imposes Q̂= Q̃, but this is not necessary. In particular—supposing that Q̂
also satisfies all assumptions previously stated for Q̃—we can generalize the definition
of b̃t in (1) by replacing Q̃ with Q̂:

Q̂(at� b̃t)=Q(at�bt)�
This generalization, thus, changes only the definition of b̃ and a∗. But since Theorem 1
relies solely on the properties of b̃ and a∗ imposed through Assumption 1, we have the
following result.

Corollary 3. Suppose that Assumption 1 holds. Then almost surely the agent’s mean
beliefs (θ̃t) converge and the limit point is stable: limt→∞ θ̃t ∈H.

6. Economic applications

Developing detailed insights in specific economic settings is not the goal of this paper.
Nevertheless, to demonstrate the usefulness of our framework in a range of situations,
we identify a few applications and use our convergence result to make some simple
points in them. Throughout this section, we assume that the agent’s prior and the signals
are normally distributed.
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Mis-estimating equilibrium feedback Our framework can be used to analyze
representative–agent models in which the agent interprets macroeconomic observa-
tions incorrectly. As a simple example, suppose that the fundamental is a measure
of macroeconomic conditions, at is an action (such as one’s consumption or hous-
ing choice) that individuals look to align with macroeconomic conditions, and the
true fundamental � is normalized to zero. Each period t fundamental influences the
economy through a short-run shock bt , which equals the fundamental plus normal
noise. The representative agent chooses at to maximize the expectation of Q̃(at� bt) =
bt − L(at − bt), and observes a macroeconomic outcome (such as growth) given by
Q(at�bt) = bt + m(at) − L(at − (bt + m(at))), where L is a symmetric, twice differen-
tiable loss function satisfying L(0) = 0, L(x) ≥ 0, L′′(x) > 0, and |L′(x)| < k < 1 for all
x, and m is a twice differentiable function. While in reality the aggregate outcome de-
pends on the level of individuals’ choices through m(a), the representative agent does
not understand this and believes it depends only on how well his action at matches the
short-run shock bt .13 We suppose that m(a) and m′(a) are bounded from above and
below, andm(0)= 0,m′(0) > 1,m′(a) > 0 andm′′(a) < 0 for a > 0, andm(−a)= −m(a).

We argue that the agent’s beliefs almost always converge and the limiting belief
is ambiguous. Given that the agent’s posterior is symmetric and L is symmetric, she
chooses the action corresponding to her mean belief: at = θ̃t−1. Thus, a∗(t� θ̃) is in-
dependent of t and, hence, Assumption 1 part (iii) holds trivially. Furthermore, since
at = θ̃t−1, we have b̃(bt� at) = bt +m(at), so Assumption 1 part (i) holds because m(a)
is bounded. Part (ii) of Lemma 2 implies that Assumption 1 part (ii) also holds in this
application.14 In addition, since b̃(bt� at) = bt +m(at) and E[bt] = � = 0, we have that
g(θ̃)=m(θ̃)− θ̃. This implies that there is a unique θ̃∞ > 0 such that g(θ̃∞)= 0,15 and,
therefore, the set of stationary points is given by {−θ̃∞�0� θ̃∞}. But 0 is not a stable sta-
tionary point of g, so the set of stable points is given by H = {−θ̃∞� θ̃∞}. By Theorem 1,
the agent’s beliefs converge with probability 1 to one of θ̃∞ and −θ̃∞; in fact, by the
symmetry of the problem, it must be the case that the agent’s beliefs converge to each
with probability 1/2. Accordingly, the economy converges to either an overly high or an
overly low level of activity relative to what is justified by the fundamental. Which one
the economy and the agent’s beliefs converge to depends on early observations. If by
chance output happens to be high in initial periods, the representative agent chooses
high actions, and as she misinterprets the resulting observations as indicating strong
fundamentals, she develops optimistic, “irrationally exuberant” beliefs about the econ-
omy. The converse happens if by chance her initial observations of output are low.

13In an alternative interpretation motivated by Dal Bó et al. (2018), at is a policy chosen by voters and Q
is an economic outcome affected by the policy. While in reality the policy generates a general-equilibrium
feedback effectm(at), voters do not understand this.

14Since Q̃
b̃
(a� b̃) ≥ 1 − k, it is uniformly bounded from below, and since |Q̃a(a� b̃)| ≤ k and |Qa(a�b)| ≤

|m′(0)| + k+ k|m′(0)|, the absolute values of these derivatives are uniformly bounded, and hence part (ii)
of Lemma 2 applies.

15Sincem(a) is bounded and its derivative is positive and convex on the positive domain, it must be that

lima→∞m′(a)= 0, implying the existence of a θ̃∞ > 0 such that g(θ̃∞)= 0.
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A priori, it was not obvious that the agent’s beliefs converge. It may seem possible,
for instance, that the agent periodically receives signals that disconfirm her current di-
rection of belief and that are sufficiently strong for her to start developing an opposite
bias. Our framework says that this can happen only finitely many times.

Mislearning new technology Our basic model in Section 3 can capture learning about a
technology over time. As a specific example, consider fertilizer use in developing coun-
tries. It has long been hypothesized that many farmers use fertilizer to a lower extent
than optimal, and they seem to forego substantial returns by doing so (Duflo et al. 2008).
While one reason for this phenomenon is likely to be the lack of experimentation with
the new technology, it is possible that misspecified learning also plays a role. To model
this, suppose that � is a measure of the average effectiveness of fertilizer, at > 0 is the
amount of fertilizer the farmer uses, c is the unit cost of the fertilizer, and profit is de-
termined according to Q(at�bt) = k(at)expbt − cat . While the farmer understands the
general form of output, she misunderstands k: Q̃(at� bt) = k̃(at)expbt − cat . One pos-
sible reason for this misspecification is that Q̃ is the correct functional form for output
with the old technology, which the farmer is very familiar with. She understands that
she is currently facing a new technology and that she needs to assess its potential. But
in doing so, she neglects that she should reestimate k̃ and, instead, reestimates only the
fundamental value.

The functions k and k̃ are illustrated in Figure 1. The actual technology is quite
concave, so there is a small range of usage amounts that are optimal for a large range of
� and c. Because she is familiar with more traditional technologies, however, the agent
expects a less stark response pattern to usage. To complement the figure, we impose that
�+ σ2/2 = 0 and c = 1, k̃�k > 0, lima→0 k̃

′(a)= lima→0 k
′(a)= ∞, lima→∞ k̃′(a)= 0, and

k′′ < k̃′′ < 0. These assumptions imply that at the true fundamental �, the optimal and
perceived-optimal actions are identical and satisfy k′(a)= k̃′(a)= 1.16 Therefore, if the
agent knew or could learn the true fundamental, then despite her misspecification, she
would choose the optimal action. To ensure that the example satisfies our assumptions,
we furthermore suppose that (k′(a)/k(a))− (k̃′(a)/k̃(a)) is bounded from above as well
as that k̃′(a)/|k̃′′(a)| is bounded from above.

From (1), we have k̃(a∗(θ̃))exp(b̃(b�a∗(θ̃))) = k(a∗(θ̃))exp(b), so that b̃(b�a∗(θ̃)) −
b = log(k(a∗(θ̃))/k̃(a∗(θ̃))). Using this fact, one can verify that our example satis-
fies Assumption 1, which we do in Appendix A.4. Substituting b̃(b�a∗(θ̃)) into (3),
we obtain g(θ̃) = E [b + log(k(a∗(θ̃))/k̃(a∗(θ̃)))] − θ̃ = � − θ̃ + log(k(a∗(θ̃))/k̃(a∗(θ̃))).
Furthermore, the subjectively optimal action a∗(θ̃) satisfies the first-order condition
k̃′(a∗(θ̃))exp(θ̃ + σ2/2) = 1. This can be rewritten as k̃′(a∗(θ̃))exp(� + σ2/2 + θ̃ −
�) = 1, so using � + σ2/2 = 0 yields � − θ̃ = log(k̃′(a∗(θ̃))). Hence, we get g(θ̃) =
log[k̃′(a∗(θ̃))k(a∗(θ̃))/k̃(a∗(θ̃))]. The first-order condition also implies that the per-
ceived optimal action a∗(θ̃) is monotonically increasing in the agent’s mean belief θ̃,
goes to zero as θ̃→ −∞, and goes to plus infinity as θ̃→ ∞.

16To see why, note that the mean of a log-normal distribution with parametersμ and σ2 is exp(μ+σ2/2),
so that the expectation of exp(bt) is exp(�+ σ2/2)= 1.
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Figure 1. Actual and estimated returns to fertilizer use.

Now we can characterize the agent’s possible limiting beliefs. Observe that since
k̃′(a∗(�)) = 1 and k(a∗(�)) > k̃(a∗(�)), we have g(�) > 0. Furthermore, since
k̃′(a∗(θ̃)) < 1 for any θ̃ > �, at any belief θ̃ > � such that k(a∗(θ̃)) ≤ k̃(a∗(θ̃)), we have
g(θ̃) < 0. Hence, g has a stable zero above �. There could also be a stable zero below
�.17 These two types of long-run beliefs arise through the following mechanisms. If the
agent begins to conclude that the technology is not very productive, then she chooses
low usage. This choice leads to low productivity, but because she underestimates how
sensitive productivity is to usage, she attributes the low productivity in a large part to
the technology. As a result, she develops overly pessimistic beliefs about the technology
(θ̃∞ < �), and underuses it. If, instead, the agent begins to conclude that the fertilizer
is effective, she uses it heavily. This leads to high productivity, which she attributes too
much to the technology. As a result, she develops overly favorable views of the tech-
nology (θ̃∞ >�) and overuses it. Interestingly, even in this case she underestimates the
technology net of usage costs, as she believes that the high productivity requires high
usage. Hence, if she has an alternative technology she could use, then with either type
of limiting belief, she is too likely to use the alternative.

Estimating parameters of wrong demand model In a simple application of our model,
the decisionmaker is a firm. The firm chooses price at > 0 in each period and obtains
profits Q(at�bt), where bt is the stochastic demand state. The firm, however, believes
that profit is determined according to Q̃(at� bt).

17Assuming that g has finitely many zeros, a necessary and sufficient condition for this is that there is an

a′ < a∗(�) such that k̃′(a′)k(a′)/k̃(a′) < 1. This can happen, for instance, if k̃′(a) ≈ 1 (that is, k is almost
linear) in a sufficiently large range around a∗(�) to include a < a∗(�) for which k(a) is nontrivially less than
k̃(a). Then since lima→0 k̃

′(a)k(a)/k̃(a) > 1, there must be an a′′ < a′ such that k̃′(a′′)k(a′′)/k̃(a′′)= 1, and
the function k̃′(a)k(a)/k̃(a) crosses 1 at a′′ from above. The fundamental θ̃ that satisfies�− θ̃= log(k̃′(a′′))
is a stable zero of g.
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As a specific case, we consider a simplified version of the main example in Nyarko
(1991) and the nonconvergence result in Fudenberg et al. (2017). Suppose that true de-
mand is bt −m(at) with � = 6, whereas the agent believes that demand is determined
according to bt − at . Positing that marginal cost is zero, this implies that Q(at�bt) =
at(bt −m(at)) and Q̃(at� bt) = at(bt − at). Hence, if the agent believes that the funda-
mental is θ̃, then she chooses a price of θ̃/2. We suppose that m(at)= 3at for at ∈ [0�6],
that m(at) is twice differentiable, that m′(at) > 1 and bounded from above, and that
m(at)− at is bounded from above and below.

Here, b̃(bt� at) solves the equation bt −m(at)= b̃t −at , so b̃(bt� at)= bt − (m(at)−at)
and it is straightforward to verify that Assumption 1 holds.18 Using a∗(θ̃) = θ̃/2 yields

g(θ̃)= E[bt − (m(a∗(θ̃))− a∗(θ̃))] − θ̃=�−m(θ̃2 )− θ̃
2 , which (since �= 6) implies that

H = {3}. Hence, the agent comes to believe that the fundamental is 3, which is exactly
the belief at which the distribution of demand she expects to obtain with the perceived
optimal price of 3/2 equals the true distribution of demand. The agent understands the
level of demand correctly, but underestimates the responsiveness of demand to price,
so she sets an overly high price.

This convergence result relies on the continuity of the state and action spaces. Sup-
pose instead that (as in Nyarko) the agent entertains only two possible levels of the fun-
damental: θ̃ = 2 and θ̃ = 4. If she believes the former, then she chooses a price of 1,
generating an average demand of 3, which according to her model is consistent with
θ̃ = 4. Conversely, if she believes the latter, then she sets a price of 2, generating an av-
erage demand of 0, which according to her model is consistent with θ̃ = 2. Hence, her
beliefs cannot converge to either point belief. Furthermore, a single signal can move
any intermediate belief by a nontrivial amount, so her beliefs also cannot converge to
a nondegenerate belief.19 As a result, her beliefs and prices fluctuate forever. By the
same argument, if the agent’s prior is normal, but she can choose only two price levels,
1 and 2, then choosing one price eventually convinces the agent that the other price is
optimal, so her prices must fluctuate forever.

Overconfidence A large literature in psychology documents and recent economic re-
search explore the implications of the idea that individuals have unrealistically positive
views of their traits and prospects. This hypothesis can easily be captured in our frame-
work by assuming that Q̃(a�b) > Q(a�b), that is, for any action and any state, the agent

18Part (i) holds since m(at)− at is bounded, part (ii) since b̃a(bt � at) = 1 −m′(at) is bounded, and part

(iii) since a∗(t� θ̃)= a∗(θ̃).
19To see this, suppose that the agent assigns probability p to the fundamental being 2 and probability

(1 − p) to the fundamental being 4. For notational simplicity, denote the associated optimal action by a,
and denote the probability density function of a normal distribution with mean zero and variance σ2 by
φ(·). Upon deducing b̃(b�a), Bayes’ rule yields the new belief

p · 1

p+ (1 −p)φ
(
b̃(b�a)− 4

)
φ

(
b̃(b�a)− 2

)
�

Clearly, there is a b such that if b > b, then φ(b̃(b�a)− 4)/φ(b̃(b�a)− 2) > 2. For such b, the new beliefs are
below p/(2 −p). Hence, for any p, the agent’s beliefs drop from p to below p/(2 −p) with a nonvanishing
probability, contradicting that beliefs converge.
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expects higher output than is realistic. For instance, the agent’s productivity may be an
average of different skills, and in taking the average, the agent includes her strengths,
but neglects her weaknesses. The external state can be any other variable that influ-
ences output and to which the agent is trying to adjust her action. This model is very
similar to that in Heidhues et al. (2018), but has a different functional form for what
determines output. Our earlier paper explores the consequences of such a misspecifi-
cation in settings with a unique limiting belief. Our current model allows for multiple
possible limiting beliefs as well.

7. Conclusion

At the cost of additional notation, our methods can likely be extended to situations in
which the agent’s action and/or information are multidimensional. This does, how-
ever, require that the agent observes not only output, but also other information, so
that she believes she can recover the relevant multidimensional signal. In an industrial-
organization setting, for instance, the firm may model demand as linear, so that she
seeks to learn the intercept and slope. We conjecture that if she observes signals of the
level and variance of demand (e.g., because she has multiple stores), then a version of
our methods can be used to establish convergence of her beliefs.

While we have focused on situations in which the agent’s signals are endogenous and
nonindependent due to the endogenous actions she takes, our general methods apply to
models of mistaken learning in which endogenously dependent signals arise for other
reasons. These include situations in which the agent has a correct prior, but does not
use Bayes’ rule to update beliefs. She may, for example, be subject to an updating bias,
such as conservatism or confirmatory bias, in which her current belief colors how she
sees information. Such settings fit in the general framework of Theorem 2, so under
our conditions, the agent’s beliefs converge. In fact, we show in our working paper that
when the agent has conservatism or recency bias, her beliefs converge to the truth with
probability 1. Intuitively, for the agent to learn the true state, it is sufficient for her beliefs
to move in the direction of her newest signal: the exact speed at which this happens is
irrelevant.

Appendix: Proofs

Throughout, we denote by C the set of stationary points

C = {
x ∈R : g(x)= 0

}
(9)

and denote byH the set of stable points

H = {
x ∈ C : g(x− ε) > 0 and g(x+ ε) < 0 ∀ε small enough

}
�

A.1 Proof of Theorem 2

We begin by showing two auxiliary lemmas, which are useful in the proof of Theorem 2.
Throughout, we fix a state� and denote by μ= E[bt] the expected signal conditional on
the state.
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Lemma 3. The function g(x)= limt→∞E[b̃(t� bt� x)− x] is continuous and satisfies

μ− x−
≤ g(x)≤ μ− x+
�

Furthermore, C = {x : g(x)= 0} is finite andH is nonempty.

Proof. Define g(t�x)= E[b̃(t� bt+1�x)− x]. By the definition of g(t�x), we have that

g(t�x)+ x−E[bt] = E
[
b̃(t� bt+1�x)− bt

]
�

Taking the absolute value, applying the triangle inequality, and using that |b̃ − b| ≤ 


yields
∣∣g(t�x)− (μ− x)∣∣ ≤ E

[∣∣b̃(t� bt+1�x)− bt
∣∣] ≤ 
�

This implies that g(t�μ + 2
) ≤ μ − (μ + 2
) + 
 = −
 < 0 and that g(μ − 2
) ≥ μ −
(μ − 2
) − 
 = +
 > 0. Taking the limit t → ∞ yields that g(μ + 2
) ≤ −
 < 0 and
g(μ− 2
)≥ +
 > 0. As x → b̃(t� b�x) is continuous in x, x → g(t�x) is continuous, and
as g(t�x) converges to g(x) uniformly, the limiting function g is continuous. Thus, g
crosses zero at least once from above in the interval (μ− 2
�μ+ 2
).

To see thatC is finite, observe that g(x)= 0 implies that x ∈ [μ−2
�μ+2
]. Suppose
that |C| is infinite. Then there exists a converging sequence of points (xk)k with xk ∈ C.
As g is continuous, we have that the point y = limk→∞ xk satisfies g(y)= limk→∞ g(xk)=
0 and, thus, g(y) ∈ C. We, thus, know that for all δ small enough, we have that g(y −
δ)g(y + δ) < 0. This implies that g(xk) �= 0 for all k large enough, which contradicts
xk ∈ C. Thus, C is finite. As g(μ + 2
) < 0 and g(μ − 2
) > 0, and g is continuous, g
crosses zero at least once from above andH is nonempty.

Define the stochastic process (θt)t by

θt =
αθ̃0 +

t∑
s=1

bs

α+ t � (10)

Lemma 4. We have that limt→∞ θt = μ a.s. and |θ̃t − θt | ≤ 
.

Proof. The process (θt)t converges almost surely to μ by the law of large numbers. We
note that

θt+1 = θt + γt(bt+1 − θt)
θ̃t+1 = θ̃t + γt(b̃t+1 − θ̃t)�

where γt = 1
α+t+1 . This implies that θt+1 − θ̃t+1 = (1−γt)(θt − θ̃t)+γt(bt+1 − b̃t+1). Since

θ̃0 = θ0 and |bt − b̃t | ≤ 
, it follows by induction that |θ̃t − θt | ≤ 
.
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Lemma 5. The process (θ̃t) is almost surely bounded:

P

[
−∞< lim inf

t
θ̃t

]
= P

[
lim sup

t
θ̃t <∞

]
= 1�

Proof. As |θ̃t − θt | ≤ 
 and θt converges to μ a.s. by Lemma 4, lim supt→∞ θ̃t ≤ �+ 


and lim inft→∞ θ̃t ≥�−
 almost surely, which implies the result.

Proof of Theorem 2. The set of stationary points of the ODE

x′(t)= g(x) (11)

is given by C = {x : g(x) = 0} as defined in (9). As argued in Lemma 3, C is finite
and we denote the stationary points by C = {s1� s2� � � � � s|C|}. As g is continuous, and
limx→−∞ g(x) = +∞ and limx→∞ g(x) = −∞ due to Lemma 3, it follows that the num-
ber of crossing points |C| must be odd and g crosses zero from above at the odd points
H = {s1� s3� � � � � s|C|}. The domain of attraction for each of these points sk for the ODE
(11) is the interval

Ak = (sk−1� sk+1)�

where we set s0 = −∞ and s|C|+1 = +∞, i.e., x(0) ∈ Ak implies limt→∞ x(t) = sk. We
observe for every sk ∈ H and for every δ > 0, that if the initial value of the ODE (11)
satisfies ∣∣x(0)− sk

∣∣ ≤ min
{
δ� |sk − sk−1|� |sk+1 − sk|

}
then the path satisfies |x(t) − sk| < δ for all t > 0 and limt→∞ x(t) = sk. Thus, all the
stationary points inH ⊆ C are asymptotically stable in the sense of Liapunov.20

First, note that we can rewrite (5) as

θ̃t+1 = θ̃t + γt[b̃t+1 − θ̃t]� (12)

where γt = 1
α+1+t . The convergence follows from Theorem 2.1 of Kushner and Yin (2003,

p. 127) applied to dynamics given in (12). These dynamics are a special case of the dy-
namics given in Kushner and Yin (2003, equation (1.2), p. 120). As we established in
Lemma 5 that the process (θ̃t) is bounded with probability 1, we can apply the theo-
rem for the case in which the dynamics are bounded with probability 1 and there is no
constraint set. To do so, we have to verify that the assumptions for the theorem apply.

Below we follow the enumeration of assumptions used in Kushner and Yin and verify
them one by one:

(1.1) The theorem requires
∑∞
t=1 γt = ∞ and limt→∞ γt = 0. This is immediate from

the definition of γt = 1
1+t+α .

20A set A is said to be asymptotically stable in the sense of Liapunov if for each δ > 0, there exists δ1 > 0
such that all trajectories starting in the δ1 neighborhood of A never leave the δ neighborhood of A and all
trajectories ultimately go toA (see the definition in Kushner and Yin 2003, p. 104).
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(A2.1) The theorem requires that supt E[|b̃t+1 − θ̃t |2]<∞, where the expectation con-
ditions on the true state and is taken at time 0. We have that

b̃t+1 − θ̃t = (b̃t+1 − bt+1)+ (bt+1 −μ)+ (μ− θt)+ (θt − θ̃t)�
where θt was defined in (10). By the triangle inequality for the L2 norm, we
have that √

E
[|b̃t+1 − θ̃t |2

] ≤
√
E

[|b̃t+1 − bt+1|2
] +

√
E

[|bt+1 −μ|2]

+
√
E

[|μ− θt |2
] +

√
E

[|θt − θ̃t |2]

≤ 2
+ var(b1)+
√
E

[|μ− θt |2
]
�

The second to last line follows as |θt − θ̃t | ≤ 
 and |bt − b̃t | ≤ 
 by Lemma 4, and
μ= E[bt+1] and var(bt+1)= var(b1). It thus suffices to show that

sup
t

E
[|μ− θt |2

]
<∞�

To show this, we can use Young’s inequality and the fact that E[bt] = μ,

E
[|μ− θt |2

] = E

[∣∣∣∣αθ̃0 + tμ
α+ t − θt + α(μ− θ̃0)

α+ t
∣∣∣∣
2]

≤ 2E
[∣∣∣∣αθ̃0 + tμ

α+ t − θt
∣∣∣∣
2]

+ 2
(
α(μ− θ̃0)

α+ t
)2

≤ 2 var(θt)+ 2(μ− θ̃0)
2 = 2

t

(α+ t)2 var(b1)+ 2(μ− θ̃0)
2

≤ 2 var(b1)+ 2(μ− θ̃0)
2 <∞�

(A2.2) The theorem requires the existence of a function g : R → R and a sequence of
random variables (βt)t such that E[b̃t+1 − θ̃t | θ̃t] = g(θ̃t)+βt . Hence, we define

βt = E[b̃t+1 − θ̃t | θ̃t] − g(θ̃t)= g(t� θ̃t)− g(θ̃t)�
where g(t�x)= E[b̃(t� bt� x)− x] and g(x)= limt→∞ g(t�x) as defined in (6).

(A2.3) The theorem requires g(θ̃) to be continuous in θ̃, which follows as x →
b̃(t� b�x) is continuous.

(A2.4) The theorem requires
∑∞
t=1(γt)

2 <∞ which is immediate from the definition
of γt = 1

1+t+α .

(A2.5) The theorem requires
∑∞
t=1 γt |βt | <∞ with probability 1. By assumption (7),

we have that |βt | ≤ d1
1
tk

for some k > 1. We, thus, have that

∞∑
t=1

γt |βt | ≤ d1

∞∑
t=1

t−(k+1) <∞�
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(A2.6) The theorem requires the existence of a real-valued function f that satis-
fies f ′(θ̃) = −g(θ̃) and that f is constant on each connected subset of C =
{x : g(x)= 0}. We thus define f by

f (θ̃)= −
∫ θ̃

θ̃0

g(z)dz�

As g is bounded from above and below by a linear function, and as g is con-
tinuous by Lemma 3, f is well defined. Whereas C is finite, H is finite and f
trivially satisfies all conditions of the theorem.

Theorem 2.1 in Kushner and Yin (2003, p. 127) is, thus, applicable to the process and (in
our notation) can be stated as follows:

If sk ∈ C is locally asymptotically stable in the sense of Liapunov for (11) and θ̃t is in some
compact set in the domain of attractionAk of sk infinitely often with probability ≥ ρ, then
θ̃t → sk with at least probability ρ. Suppose that (A2.6) holds. Then, for almost all (θ̃t)
converges to a unique point in C.

By the second part of the theorem, we know that θ̃t converges almost surely to a
point in C. We show that it cannot converge to a point in C \H. Suppose, toward a con-
tradiction, that limt→∞ θ̃t = sk ∈ C \H. To begin, we show that either θ̃t ∈Ak−1 infinitely
often or θ̃t ∈Ak+1 infinitely often; either this is the case or θ̃t = sk infinitely often. Now
observe that as the distribution of bt admits a density, and b → b̃t(t� b� θ̃) is strictly in-
creasing and differentiable, the objective distribution of b̃t = b̃(t� b� θ̃) admits a density
and an interval that contains more than a single point as support. Thus, the distribution
of θ̃t+1 admits a density conditional on every t, θ̃t .

Hence, for every unstable stationary point sk ∈ C \H, we have that the probability
that θ̃t+1 equals sk is zero (P[θ̃t+1 = sk|θ̃t = sk] = 0) and, hence, we have that whenever
limt→∞ θ̃t = sk, the mean belief θ̃t is either inAk−1 or inAk+1 infinitely often with prob-
ability 1. Theorem 2.2 in Kushner and Yin (2003, p. 131) makes the following statement
under the conditions of Theorem 2.1:

Let the set A be locally asymptotically stable in the sense of Liapunov. Suppose that (θ̃t)t
visits a compact set in the domain of attraction of A infinitely often. Then θ̃t → A with
probability 1.

Thus, as we have shown that limt→∞ θ̃t = sk implies that θ̃t is infinitely often in the
domain of attraction of either sk−1 or sk+1 we have that limt→∞ θ̃t = sk+1 or limt→∞ sk−1
with probability 1, which contradicts limt→∞ θ̃t = sk. Hence, (θ̃t) cannot converge to a
point in C \H with positive probability.

A.2 Proving Theorem 1

Proof of Lemma 1. We established in the text that the agent’s posterior belief at the
beginning of period t is that� is normally distributed with mean θ̃t−1 and variance vt−1.
As the agent believes that the information she receives is independent of her action, she
behaves myopically and maximizes the expected flow payoff in each period. AsM(a��)
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is the expected payoff of the agent when the state equals� and as the agent believes the
state to be normally distributed with mean θ̃t−1 and variance vt−1, her action in period t
satisfies

at ∈ argmax
a∈A

∫
M(a�x)φ(x; θ̃t−1� vt−1)dx�

As Q̃ is strictly concave in a, so is the expectation M , and, thus, there is a unique op-
timal action a∗(t� θ̃t−1) whenever it exists. Since for all bt , lima→a Q̃a(a�bt) < 0 and
lima→a Q̃a(a�bt) > 0, an optimal action exists and is characterized by the first-order con-
dition

0 =
∫
Ma(a�x)φ(x; θ̃t−1� vt−1)dx� (13)

As |Q̃ab| and |Q̃aa| are integrable with respect to a normal distribution over the external
state, we can apply the dominated convergence theorem to show that the right-hand of
(13) is differentiable in a and θ. As Q̃ is strictly concave, it follows that Maa < 0. We can,
thus, apply the implicit function theorem to get that the optimal action is differentiable
in the mean belief of the agent θ̃ and that a∗

θ̃
(t� θ̃) is given by

a∗
θ̃
(t� θ̃)= −

∫
Maθ̃(a�x)φ(x; θ̃t−1� vt−1)dx∫
Maa(a�x)φ(x; θ̃t−1� vt−1)dx

�

The result for a∗(θ̃) follows from an identical argument.

Proof of Lemma 2. We first prove that condition (i) is a sufficient condition for part (i)
of Assumption 1. Let 
Q be a bound such that |Q̃(a�b)−Q(a�b)| ≤ 
Q and let Q̃

b
be a

bound such that Q̃b ≥ Q̃
b
> 0. For the sake of a contradiction, suppose that |b− b̃(b�a)|>


Q/Q̃b. Then using that |Q̃(a� b̃)− Q̃(a�b)| ≥ Q̃
b
|b̃−b| and that |Q̃(a�b)−Q(a�b)| ≤ 
Q,

one has

∣∣Q̃(a� b̃)−Q(a�b)∣∣ = ∣∣Q̃(a� b̃)− Q̃(a�b)+ Q̃(a�b)−Q(a�b)∣∣ ≥ Q̃
b
|b̃− b| − |
Q|> 0�

contradicting (1).
We next establish that condition (ii) implies part (ii) of Assumption 1. That b̃(b�a) is

differentiable in a follows from applying the implicit function theorem to (1), yielding

∂b̃(b�a)

∂a
= Qa(a�b)− Q̃a(a� b̃)

Q̃
b̃
(a� b̃)

�

Part (ii) of Assumption 1 follows since Q̃
b̃
(a� b̃) is uniformly bounded from below, and

Qa(a�b) and Q̃a(a� b̃) are uniformly bounded from above and below.
We next establish that condition (iii) implies part (iii) of Assumption 1. We estab-

lished in the text that the agent believes at the end of period t − 1 that � is normally
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distributed with mean θ̃t−1 and variance

vt−1 = 1

v−1
0 + (t − 1)σ−2

�

As conditional on �, bt has mean zero and variance σ2, the agent believes that b̃t is
normally distributed with variance σ2 + vt−1 and mean θ̃t−1. Thinking of the optimal
action as a function of the mean belief θ̃ and variance v of the agent’s belief about�, we
can use the fact that a∗ is interior and the output Q̃ is differentiable with respect to the
action to rewrite (13) as

0 = E
[
Q̃a

(
a∗(v� θ̃)� θ̃+η

√
σ2 + v) | η∼ N (0�1)

]
�

Because by assumption |Q̃ab| is bounded and |Q̃aa| is integrable with respect to a normal
distribution over the external state, we can apply the dominated convergence theorem
to show that the right-hand side of (13) is differentiable in a and η. We can, thus, apply
the implicit function theorem to get

∂a∗(v� θ̃)
∂v

= −
E

[
Q̃ab

(
a∗(v� θ̃)� θ̃+η

√
σ2 + v) × η

2
√
σ2 + v

∣∣∣ η∼ N (0�1)
]

E
[
Q̃aa

(
a∗(v� θ̃)� θ̃+η

√
σ2 + v) | η∼ N (0�1)

] �

Using the fact that Q̃aa is uniformly bounded away from zero and denoting this bound
by caa, we get that

−E
[
Q̃aa

(
a∗(v� θ̃)� θ̃+η

√
σ2 + v) | η∼ N (0�1)

] ≥ |caa|�

As there exists a constant ca�b > 0 such that |Q̃ab| ≤ cab, we get that
∣∣∣∣E

[
Q̃ab

(
a∗(v� θ̃)� θ̃+η

√
σ2 + v) × η

2
√
σ2 + v

∣∣∣ η∼ N (0�1)
]∣∣∣∣

≤ cabE
[ |η|

2
√
σ2 + v

∣∣∣ η∼ N (0�1)
]

= cab

√
2
πe

2
√
σ2 + v

≤ cab

√
2
πe

2
√
σ2
�

We, thus, have that

∣∣∣∣∂a
∗(v� θ̃)
∂v

∣∣∣∣ ≤ cab
|caa|

√
2
πe

2
√
σ2

=: κ�

Observing that limt→∞ vt = 0, we, thus, have that

∣∣a∗(vt� θ)− a∗(0� θ)
∣∣ =

∣∣∣∣
∫ vt

0

∂a∗(z� θ̃)
∂z

dz

∣∣∣∣ ≤
∫ vt

0

∣∣∣∣∂a
∗(z� θ̃)
∂z

∣∣∣∣dz
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≤ κvt = κ

v−1
0 + tσ−2

≤ 1
t
d

for d = κ
v0+σ−2 .

Proof of Theorem 1. We prove Theorem 1 by showing that the conditions of Theo-
rem 2 are satisfied. For this purpose, we define b̃(t� b� θ̃) as the signal the agent believes
to have observed when the true signal equals b and the agent took the optimal action in
period t:21

b̃(t� b� θ̃)= b̃(b�a∗(t� θ̃)
)
�

We note that |b̃(t� b� θ̃)− b| ≤ 
 by Assumption 1. As a∗ is differentiable by Lemma 1 and
b̃a is bounded by Assumption 1, it follows that x → b̃(t� b�x) is continuous. This implies
that

g(t�x)= E
[
b̃(t� bt� x)− x]

is continuous in x. Define ĝ(x)= limt→∞ g(t�x). We want to show that ĝ is well defined
and that ĝ(x)= g(x)= E[b̃(b�a∗(x))− x] Observe that by parts (ii) and (iii) of Assump-
tion 1, there exist constants d1� d2 > 0:

∣∣g(t�x)− g(x)∣∣ = ∣∣E[
b̃
(
b�a∗(t� θ̃)

) − b̃(b�a∗(θ̃)
)]∣∣ ≤ E

[∣∣b̃(b�a∗(t� θ̃)
) − b̃(b�a∗(θ̃)

)∣∣]

≤ d1E
[∣∣a∗(t� θ̃)− a∗(θ̃)

∣∣] ≤ d1d2
1

tk
�

Hence, ĝ= g and, furthermore, (7) holds.

A.3 Proof of Proposition 1

Proof of Proposition 1. As Q is strictly concave in a, it follows that for any belief ζ
there is a unique strict best action. Thus, there can be no Berk–Nash equilibria in mixed
strategies and all Berk–Nash equilibria are strict. We first note that the log-likelihood
ratio simplifies to

La(b� θ̃)= −[b−�]2

2η2 +
[
b̃(b�a)− θ̃]2

2η2 − log
(
b̃b(b�a)

)
�

The Kullback–Leibler divergence for a given action a equals

Kδa(θ̃)= E
[
La(b� θ̃)

] = E

[
−[b−�]2

2η2 +
[
b̃(b�a)− θ̃]2

2η2 − log
(
b̃b(b�a)

)]
�

As only the second part of the sum depends on θ̃ and as the square is strictly convex, we
get that the set of Kullback–Leibler minimizers is given by

argmin
θ̃

Kδa(θ̃)= {
θ̃ : θ̃= E

[
b̃(b�a)

]}
�

21Recall here that we defined b̃(b�a) as the signal the agent believes to have received when taking the
action a.
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Hence, a ∈A is a Berk–Nash equilibrium if and only if θ̃= E[b̃(b�a)] for a= a∗(θ̃), which
by the definition of C is equivalent to a= a∗(θ̃) for some θ̃ ∈ C. As we have established
in Theorem 1 that beliefs never converge to the points in C \H, it follows that the agent’s
action never converges to the corresponding Berk–Nash equilibria.

A.4 Additional calculations for the mislearning new technology example

We verify that Assumption 1 holds in the mislearning new technology example. Let ā
be the action above a∗(θ) at which k(ā) = k̃(ā). Since for all a ≥ ā, log(k(a)/k̃(a)) ≤ 0,
setting 
= maxa∈[0�ā] log(k(a)/k̃(a)) verifies that part (i) of Assumption 1 holds. Because
b̃a(b�a)= (k′(a)/k(a))− (k̃′(a)/k̃(a)), it is bounded and, thus, part (ii) of Assumption 1
is satisfied. To verify Assumption 1 part (iii), note that the subjectively optimal action at
time t is implicitly defined through

k̃′(a∗(t� θ̃)
)

exp
{
θ̃+ σ2 + vt−1

2

}
− 1 = 0�

Equivalently thinking of the subjectively optimal action as a function of the mean belief
θ̃ and variance vt−1, and applying the implicit function theorem, we have

∂a∗(v� θ̃)
∂v

= −1
2
k̃′(a∗(v� θ̃)

)
k̃′′(a∗(v� θ̃)

) �

Let κ be a bound so that k̃′(a)/|k̃′′(a)| ≤ κ. Then

∣∣a∗(t� θ̃)− a∗(θ̃)
∣∣ = ∣∣a∗(vt−1� θ̃)− a∗(0� θ̃)

∣∣ =
∣∣∣∣1
2

∫ σ2+vt−1

σ2

k̃′(a∗(v� θ̃)
)

k̃′′(a∗(v� θ̃)
) dv

∣∣∣∣ ≤ vt−1
κ

2
�

Hence, since vt goes to zero on the order of 1/t, so does |a∗(t� θ̃)− a∗(θ̃)|, which implies
that Assumption 1 part (iii) also holds.
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