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Robust scoring rules

Elias Tsakas
Department of Economics (AE1), Maastricht University

Is it possible to guarantee that the mere exposure of a subject to a belief elicita-
tion task will not affect the very same beliefs that we are trying to elicit? In this
paper, we introduce mechanisms that make it simultaneously strictly dominant
for the subject (a) not to acquire any information that could potentially lead to
belief updating as a response to the incentives provided by the mechanism itself,
and (b) to report his beliefs truthfully. Such mechanisms are called robust scoring
rules. We prove that robust scoring rules always exist under mild assumptions on
the subject’s costs for acquiring information. Moreover, every scoring rule can be-
come approximately robust, in the sense that if we scale down the incentives suf-
ficiently, we will approximate with arbitrary precision the beliefs that the subject
would have held if he had not been confronted with the belief-elicitation task.
Keywords. Noninvasive belief elicitation, prior beliefs, rational inattention,
posterior-separability, Shannon entropy, population beliefs.

JEL classification. C91, D81, D82, D83, D87.

1. Introduction

Subjective beliefs constitute one of the most common latent variables of interest in eco-
nomics (Manski 2004). Having recognized this, statisticians and economists have de-
veloped mechanisms, called proper scoring rules, that incentivize the economic agent
to reveal his true latent belief by—roughly speaking—rewarding reports that are close to
the realized state and punishing reports that are further away from it (Brier 1950, Good
1952). Due to their solid theoretical foundations (i.e., the fact that they are incentive-
compatible) together with the overwhelming experimental evidence which suggests that
incentives matter (Harrison and Rütstrom 2008, Harrison 2014), proper scoring rules
have been extensively used both in applications and in (lab and field) experiments.

One of the main concerns with proper scoring rules is that, by rewarding accurate
reports, they provide the agent not only with direct incentives to report truthfully, but
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also with indirect incentives to acquire information before stating their report. Such
information acquisition will typically lead to belief updating. Thus, even if the direct
effect is strong enough to induce truthful reporting in the end, the reported beliefs might
not be the ones that the agent would have held in the absence of the elicitation task. In
other words, as Schotter and Trevino (2014, p. 109) eloquently put it,

“the very act of belief elicitation may change the beliefs of subjects from their true latent
beliefs or the beliefs they would hold (respond to) if those beliefs were not elicited (we might
have a type of Heisenberg problem).”

Hence, our aim is to find mechanisms that provide strong enough incentives to induce
truth-telling, but at the same time not so strong to lead to information acquisition.

But why would one care about the beliefs the agent would have held before the elici-
tation task, rather than the (perhaps more accurate) ones that are typically formed after
information has been acquired as a response to the incentives provided by the elicita-
tion task? Take the example of an investigator whose aim is to elicit the distribution
of beliefs in a population. For instance, consider a marketing campaign interested in
eliciting the average subjective belief in a population of consumers (e.g., about a new
product being superior to the existing ones), or a political campaign interested in the
median belief in a population of voters (e.g., about a proposed project being successful
or about the outcome of the election). Such statistics of the population beliefs can be
used as explanatory variables for population behavior and, therefore, they are often cru-
cial for pending strategic decisions by the respective campaign. The bottom line is that
the investigator is not interested in learning the true state of nature per se, but rather in
finding out what the population believes about the state of nature. Thus, she draws a
representative sample from the respective population, she elicits individual beliefs from
the sample, and then she uses the empirical frequency to estimate the distribution of
the population beliefs. Crucially, the investigator wants the individuals in the sample to
report the beliefs they would have held, had the survey not taken place. Otherwise, her
estimate of the population beliefs will be biased.

As an alternative example, consider a lab experiment where both beliefs and choices
are observed. One of the main assumptions that we—implicitly or explicitly—impose
is stationarity of beliefs across the different tasks. For instance, if we want to use the
beliefs as an explanatory variable for choice, we would ideally want to make sure that
the elicited beliefs are the ones the subject would be holding at the time of his decision,
or at least they do not deviate much from those benchmark beliefs.

Thus, the general question addressed in this paper is whether we can construct non-
invasive scoring rules that elicit the beliefs the agent would have held in the absence of
our elicitation task. In other words, we want to guarantee that the agent will not find
it beneficial to acquire any information that could potentially distort his beliefs before
stating his report. Let us stress that we are not aiming at discussing the practical imple-
mentation of such mechanisms, nor do we have something significant to say in relation
to role of individual characteristics (e.g., risk-preferences) or biases (e.g., failure to do
Bayesian updating) that empirically affect the elicited beliefs. Instead, our contributions
are (i) to provide a theoretical benchmark for formally modeling and studying invasive-
ness of belief-elicitation tasks, and (ii) to establish conditions under which noninvasive
scoring rules can be constructed.
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Figure 1. Boxes above the line are observed symmetrically by the subject and the experimenter.
Boxes below the line are only observed by the subject. The shaded box is observed with a delay,
i.e., it is realized at t = 1 and observed at t = 5.

Formally, we consider scoring rules in a model with hidden information costs, which
typically emerge as an expression of rationally inattentive preferences (for an overview,
see Caplin 2016). In our formal model, there is a (male) agent—henceforth called the
subject—who has a latent (prior) probabilistic belief for some fixed event.1 A (female)
agent—henceforth called the experimenter— wants to elicit this belief, and to this end
she asks the subject to report it. In order to incentivize him to report truthfully, she de-
signs a scoring rule that rewards the subject on the basis of his report and the realization
of the event. Before stating his report, the agent can acquire information through a costly
attention strategy and then reports his belief after having perhaps updated his prior (see
Figure 1 for the timeline).

In order to guarantee that the subject’s prior belief is elicited, the scoring rule
must make it simultaneously (a) strictly dominant to not acquire any information (i.e.,
to choose the degenerate zero-attention strategy), and (b) strictly dominant to report
truthfully (i.e., the scoring rule must be proper). Such a mechanism is called robust scor-
ing rule. Two natural questions arise then. Does a robust scoring rule exist? And if yes,
how does it look like? Note that, in expectation, every attention strategy yields a benefit
(due to the fact that reporting is postponed until after information has been acquired
and the beliefs have been updated) and a cost (due to the fact that information acqui-
sition is costly). Thus, the experimenter’s problem boils down to finding a scoring rule
that provides sufficiently strong incentives for the agent to report truthfully, but not so
strong to offset the costs of acquiring information. In this sense, our work can be seen
as part of a larger literature that studies the tradeoff between material payoffs and cog-
nitive costs (Alaoui and Penta 2016, 2018, Alaoui et al. 2019). The novelty of our work is
that we try to exploit—rather than to overcome—the presence of such costs.

Before moving on with our results, let us make some important remarks on our ba-
sic model. First, our entire analysis can be directly extended from a rational inattention
framework (where costs are cognitive) to any costly information acquisition framework
(where costs may even be material) (e.g., Cabrales et al. 2013, 2017). For instance, in
a marketing survey like the one in our motivating example, an attention strategy may
correspond to a costly (Bayesian) experiment that the subject can undertake before re-
porting a belief, e.g., he may elect to buy a sample product and try it. Second, it is not
necessarily the case that the subject has at his disposal all possible attention strategies.

1Throughout the paper—being aligned with the rational inattention literature—the term “prior belief”
refers to the belief held by the subject in the absence of elicitation.
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In fact, depending on the specific environment/application, there may exist hard re-
strictions on the attention strategies that he can use. Nevertheless, since the aim of this
paper is to provide conditions under which no attention strategy is beneficial, we focus
on the unrestricted case.

Our first main theorem shows that robust scoring rules exist under a mild condi-
tion on the functional form of the attention costs (Theorem 1). In particular, it suf-
fices that the attention costs satisfy posterior-separability, a property that generalizes
Sims’s (2003) usual (Shannon) entropic specification of the cost function. Posterior-
separability has recently attracted interest within the rational inattention literature, pri-
marily due to its solid theoretical foundations (Caplin et al. 2019, Zhong 2017, Tommaso
2020) and the presence of supporting experimental evidence (Dean and Neligh 2019).
Later in the paper, we show that posterior-separability is a rather tight condition, in the
sense that minor relaxations lead to nonexistence of robust scoring rules (Section 6).
The proof of our theorem is constructive. Notably, not only do we show existence, but we
also explicitly identify an entire class of robust scoring rules for each posterior-separable
cost function. In this respect, our theory has strong empirical content.

We subsequently weaken our notion of robustness, in order to (simultaneously) ad-
dress two issues that frequently appear in practice. First, suppose that the experimenter
restricts herself to a specific family of scoring rules (e.g., she wants to use a quadratic
scoring rule), but unfortunately there is no robust scoring rule within this family. Sec-
ond, suppose that the experimenter is uncertain about the subject’s cost function (e.g.,
she knows that the subject’s attention costs are entropic but does not know the multi-
plier parameter). This is often the case when the experimenter does not have enough
data to calibrate each individual subject’s actual cost structure, and instead she has
formed a probabilistic estimate over the set of possible cost specifications based on past
(individual or population) data. The latter is particularly common in surveys that aim
at eliciting prior beliefs in a sample of individuals with heterogeneous cost functions.
Then we ask the following question: when one (or both) of the previous issues arises, how
closely can the experimenter approximate the subject’s prior beliefs?

A scoring rule scoring rule is called (ε�δ)-robust if, it elicits a belief sufficiently close
to the subject’s prior (viz., not further than ε-away) with sufficiently high probability
(viz., with probability at least 1 − δ). In other words, the experimenter is sufficiently
certain that the subject will not find it optimal to acquire a lot of information which
could potentially lead to a posterior far away from his prior. For practical purposes, an
approximation of the prior belief is good if the scoring rule is (ε�δ)-robust for small ε
and δ.

Our second main result proves that, if we take an arbitrary proper scoring rule, any
ε > 0 and any δ > 0 bounded by the probability of the cost function being nonposterior-
separable, we can weaken the incentives by proportionately reducing the rewards of the
scoring rule until it becomes (ε�δ)-robust (Theorem 2).2 The first implication of this
result is that essentially every scoring rule can be used to arbitrarily approximate the

2In fact, in our formal treatment we prove a stronger result that allows the scoring rule to be even weakly
proper.
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subject’s prior, thus suggesting that we do not need to resort to exotic mechanisms in
order for our theory to have a bite, e.g., simply put, the quadratic scoring rule always
does the job sufficiently well. This addresses our first issue. The second implication
is that we can always construct scoring rules that approximate the prior even if we are
uncertain about the subject’s cost function. This addresses our second issue.

This paper should be placed at the intersection of two different streams of litera-
ture, viz., belief elicitation via scoring rules and rational inattention. Scoring rules were
originally introduced by meteorologists (Brier 1950), before being further developed by
statisticians (Good 1952, McCarthy 1956, Savage 1971), and eventually being adopted by
several disciplines, such as economics, accounting, business, management, psychology,
political science and computer science (Offerman et al. 2009). For two recent literature
reviews, we refer to Schotter and Trevino (2014) and Schlag et al. (2015). On the other
hand, rational inattention models first appeared in macroeconomics (Sims 2003, 2006),
before attracting interest of microtheorists. The latter have mostly focused on providing
axiomatic foundations (De Oliveira et al. 2017, Ellis 2018) and on designing revealed-
preference tests for identifying the attention costs from choice data (Caplin and Dean
2015, Chambers et al. 2018, Caplin et al. 2019). For recent literature reviews, see Caplin
(2016) and Maćkowiak et al. (2018).

Of particular interest is the relationship between our paper and the one of Cham-
bers and Lambert (2017) in that they are among the handful of papers that study dy-
namic belief elicitation. To the best of our knowledge, the only other paper is the one by
Karni (2020).3 In their paper, Chambers and Lambert (2017) consider an agent who has
a latent prior belief and receives new information over time based on an exogenously
given dynamic process. Then they construct a mechanism which makes it incentive-
compatible for the agent to simultaneously reveal his prior, his anticipated information
flow and his realized posteriors. The conceptual difference to our paper is that the agent
does not strategically choose the process of his information flow (viz., the attention
strategy in our terminology). Moreover, the two papers differ in the formal approaches
that they employ, viz., as opposed to our paper, their mechanism does not rely on the
usual subgradient characterization, but rather on a randomization technique originally
introduced by Allais (1953). On the other hand, a major similarity is that both our paper
and the one of Chambers and Lambert (2017) truthfully elicit the agent’s prior beliefs.

Another paper that is closely related to our work is the one by Clemen (2002), who
also studies the possible effect of scoring rules in information acquisition. However,
unlike our paper, his aim is not to preclude information acquisition, as he considers
scoring rules that are primarily used as incentive schemes for experts. This approach
can be further explored in future research by studying the converse problem to the one
we study in our paper, viz., how to encourage the subject to acquire as much information
as possible in order to provide more accurate predictions.

Overall, ours is one of the few paper on mechanism design with rational inatten-
tion, with the distinctive feature that inattention is desired by the designer. In a different
framework, Yang (2020) studies a security design problem, where the seller wants to

3I am indebted to Chris Chambers for pointing out these connections.
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design the security in a way such that the optimal strategy of the rationally inattentive
buyer is not to acquire any or to acquire limited limited information, in order to avoid
adverse selection effects. One major difference is that our experimenter wants the sub-
ject to remain uninformed because she is inherently interested in her prior beliefs per se,
whereas in the type of problems that Yang (2020) studies, the seller’s interest in the buyer
remaining uninformed is simply a byproduct of the designer’s preference to maximize
expected monetary payoff.

In Section 2, we introduce our basic framework. In Section 3, we study exact ro-
bustness and we present our first main result. In Section 4, we introduce approximate
robustness, and we present our second main result. In Section 5, we study standard spe-
cial cases of scoring rules. In Section 6, we revisit our posterior-separability condition.
Section 7 contains a discussion. All proofs are relegated to the Appendix.

2. Preliminaries

2.1 Scoring rules

Consider a binary state space � = {ω0�ω1}. A risk-neutral (male) experimental subject
has a latent subjective belief μ0 ∈ [0�1] of ω0 occurring, which is not observed by the
(female) experimenter. The subject is asked to stateμ0 and reports some r ∈ [0�1], which
is not necessarily equal to μ0. A scoring rule is a function

S : [0�1] ×�→ R�

chosen by the experimenter, which takes the subject’s report (r) and the realized state
(ω) as an input and returns a monetary payoff (Sr(ω)) as an output. In economics, we
sometimes consider binarized scoring rules where the subject is paid in probabilities
of winning a fixed prize. Binarized scoring rules are used to elicit the subject’s belief
for arbitrary risk attitudes. Our entire analysis is directly extended to binarized scoring
rules, implying that our assumption of the subject being risk-neutral is without loss of
generality and can therefore be dispensed with (Section 5.2).

The subject is assumed to maximize his Subjective Expected Utility (SEU), i.e., given
the scoring rule (S) and a belief (μ), he chooses the report (r) that maximizes

Eμ(Sr) := μSr(ω0)+ (1 −μ)Sr(ω1)�

A scoring rule is called proper whenever, for every belief, it is strictly dominant to report
truthfully (Brier 1950, Good 1952). Hence, whenever the subject says r, the experimenter
directly infers that μ0 = r. Formally properness is defined as follows.

Definition 1 (Proper scoring rule). The scoring rule S is called proper, whenever

Eμ(Sμ) > Eμ(Sr)

for every r �= μ and every μ ∈ [0�1].

It is well known in the literature that each proper scoring rule is characterized by a
strictly convex function (McCarthy 1956, Savage 1971). Let us illustrate the idea behind
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0 1[ω1] [ω0]

Sμ0 (ω1)

Sμ0 (ω0)

Sr (ω1)

Sr (ω0)
S0(ω1)

S0(ω0)

φ

μ0

φ(μ0)

r

Eμ0 (S0)

Eμ0 (Sr )

(a) Proper scoring rule: The strictly convex func-
tion φ(μ) := Eμ(Sμ) generates a proper scoring rule
by taking an arbitrary tangent for each r and evalu-
ating it at 0 and 1, respectively. Properness follows
from the fact that the tangent at μ0 when evaluated
at μ0 lies higher than the tangent at any other r when
evaluated at μ0, i.e., Eμ0(Sμ0) > Eμ0(Sr).

0 1[ω1] [ω0]

φ

Sr0 (ω1)= Sμ0 (ω1)

Sμ0 (ω0)= Sr0 (ω0)

Sr1 (ω1)

Sr1 (ω0)

μ0

Eμ0 (Sr0 )=φ(μ0)

r0

Eμ0 (Sr1 )

r1

(b) Weakly proper scoring rule: The weakly convex function
φ(μ) := Eμ(Sμ) generates a weakly proper scoring rule by taking an
arbitrary tangent for each r and evaluating it at 0 and 1, respectively.
Weak properness follows from the fact that the tangent at μ0 when
evaluated at μ0 lies at least as high as the tangent at any other r when
evaluated at μ0. The subject is indifferent among all reports in the
shaded subinterval Iφ(μ0), i.e., Eμ0(Sμ0) > Eμ0(Sr1) while Eμ0(Sμ0) =
Eμ0(Sr0).

Figure 2. Subgradient characterization of properness and weak properness.

this characterization. For a graphical illustration, see Figure 2(a). First, define the sub-
ject’s subjective expected utility from reporting truthfully as a function of his beliefs, viz.,
for each μ ∈ [0�1], let

φ(μ) := Eμ(Sμ)�
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It is not difficult to verify that if S is proper then φ is strictly convex. This is because
properness implies φ(μ)= max{Eμ(Sr)|r ∈ [0�1]}, i.e., φ can be written as the pointwise
maximum of a family of linear functions. Interestingly, the converse is also true. Namely,
every strictly convex and subdifferentiable functionφ : [0�1] →R induces a unique class
of (essentially equivalent) proper scoring rules. Let us elaborate. We first consider a sub-
tangent tr(μ) := ar + brμ of the function φ at r ∈ [0�1]. Then we define a scoring rule S
induced by φ, by letting Sr(ω0) := tr(1) and Sr(ω1) := tr(0), i.e., if the subject reports r,
we take the tangent tr and evaluate it at 1 and 0 to obtain the two rewards that corre-
spond to ω0 and ω1, respectively. Of course by strict convexity of φ, the tangent at μ0
when evaluated at μ0 will lie higher than any other tangent evaluated at the same point
μ0. Hence, we obtain Eμ0(Sμ0) > Eμ0(Sr), implying that φ is proper.

Let us make two important remarks. First, by convexity of φ, a subtangent always
exists at every interior r ∈ (0�1). By requiring that φ is subdifferentiable, we guarantee
that it also exists at the boundaries, i.e., φ does not becomes infinitely steep either at
0 or at 1. This is needed in order to guarantee that S0(ω0) and S1(ω1) remain finite.
This last condition can be dispensed with, if we allow S to take values in R instead of
R, as often done in statistics. Second, when the subtangent is not unique (e.g., when φ
is not differentiable, like at μ0 in Figure 2(a)) we arbitrarily select one of the infinitely
many subtangents, implying that there is an entire class of scoring rules induced by φ.
Nevertheless, irrespective of which of those scoring rules we pick, the subject’s optimal
expected utility will remain the same (equal toφ(μ0) in this case), which is why we have
earlier said that all scoring rules derived from φ are essentially equivalent.

Example 1 (Quadratic scoring rule). The most commonly used proper scoring rule
is the quadratic scoring rule (QSR), which is defined by Sr(ω0) := α − β(1 − r)2 and
Sr(ω1) := α−βr2, where α ∈R and β> 0. Accordingly, the subject is paid a fixed amount
αminus a penalty which is proportional to the squared distance from the realized state.
The strictly convex function that characterizes the quadratic scoring rule is

φβ(μ) := α−βμ(1 −μ)�
Notice that we explicitly index the characteristic function of the quadratic scoring rule
with the parameter β that determines the strength of the incentives provided by the
scoring rule. ♦

For a review of other standard proper scoring rules, we refer to Schlag et al. (2015,
Section 2), while for an overview of the subgradient characterization that we presented
above we recommend Gneiting and Raftery (2007).

A scoring rule is weakly proper if reporting truthfully is one of the optimal reports,
but not necessarily the only one. Formally, weak properness is defined as follows.

Definition 2 (Weakly proper scoring rule). The scoring rule S is called weakly proper,
whenever

Eμ(Sμ)≥ Eμ(Sr)

for every r ∈ [0�1] and every μ ∈ [0�1].
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Geometrically, the function φ that characterizes S is (only) weakly convex (Fig-
ure 2(b)). The set of optimal reports (at some belief μ) is denoted by

Iφ(μ) := arg max
r∈[0�1]

Eμ(Sr)�

Geometrically, Iφ(μ) := [r−φ(μ)� r+φ(μ)] is the largest interval of μ where φ is linear, e.g.,
Iφ(μ0) is the shaded subinterval in Figure 2(b). It is straightforward to verify that Sr = Sr′
for every r� r′ ∈ int(Iφ(μ)), as all points in the interior of Iφ(μ) share the same subtan-
gent. The rewards of reports that lie on the boundary of Iφ(μ) may or may not be the
same too, asφmay have multiple subtangents at such a boundary point. This is the case
when φ is not differentiable, like for instance at the kinks of the graph in Figure 2(b).

Definition 3 (ε-proper scoring rule). A weakly proper scoring ruleφ is called ε-proper,
for some ε≥ 0, whenever ∣∣Iφ(μ)∣∣ ≤ ε
for every μ ∈ [0�1], where |Iφ(μ)| := r+φ(μ)− r−φ(μ) is the length of the interval Iφ(μ).

Intuitively, ε puts a uniform bound on the errors that the (weakly proper) scoring
rule can yield, i.e., ε-properness guarantees that the subject will never report further
than ε-away from his true belief. Obviously, the scoring rule is proper if and only if
Iφ(μ)= {μ} for every μ ∈ [0�1], i.e., whenever φ is 0-proper.

2.2 Costly attention

We now enrich the agent’s preferences to allow for information acquisition by means
of costly attention. An attention strategy is an experiment (viz., a Bayesian signal), de-
signed by the subject in an attempt to acquire information about the state space, and it
typically leads him to update his subjective beliefs. Given his prior μ0, each attention
strategy is identified by a (Bayes-plausible) distribution over posteriors, chosen from
the set �(μ0) := {π ∈ ([0�1]) : ∫ 1

0 μdπ = μ0}. We define the degenerate zero-attention
strategy μ̂0 ∈�(μ0), as the one that does not carry any information and, therefore, yields
the prior μ0 with probability 1. On the other hand, by π∗

μ0
∈�(μ0) we denote the most

informative attention strategy given the prior μ0, implying that π∗
μ0

attaches probabil-
ity μ0 to the posterior that puts probability 1 to ω0 and probability 1 − μ0 to the pos-
terior that puts probability 1 to ω1. For notation simplicity, we henceforth denote by
�̂(μ0) := �(μ0) \ {μ̂0} the set of all nondegenerate attention strategies, observing that
�̂(μ0)=∅ whenever μ0 ∈ {0�1}.

As usual, attention is assumed to be costly. In particular, there is a continuous cost
function,

C : ([0�1]) →R+

assigning a nonnegative cost to every attention strategy π ∈ �(μ) for every prior μ ∈
[0�1]. In Section 7.3, we clarify why our continuity assumption is without loss of gen-
erality. Attention costs can be identified from state-dependent stochastic-choice data
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(Caplin and Dean 2015, Chambers et al. 2018) or from menu-choice data (De Oliveira
et al. 2017, Ellis 2018). Throughout the literature, some structure on the cost function is
either postulated or derived from primitive axioms of choice. In this paper, we consider
cost functions that satisfy a property that has recently attracted interest in the rational
inattention literature (Caplin et al. 2019).

Definition 4 (Posterior-separability). A cost functionC is said to be posterior-separable,
if there is a strictly concave function K : [0�1] →R such that

C(π)=K(μ)− 〈K�π〉 (1)

for every π ∈�(μ) and every μ ∈ [0�1], where 〈·� ·〉 denotes the inner product as usual.

Notice that for every posterior-separable cost function there is in fact an entire
class of strictly concave functions that satisfy equation (1), viz., for any linear function
L : [0�1] → R, the function K + L satisfies (1) if and only if K satisfies it too. Through-
out the paper, we uniquely identify the posterior-separable C by the function K from
the aforementioned class such that K(0)=K(1)= 0, and with slight abuse of terminol-
ogy we often refer to K as the subject’s cost function. In this case, K(μ) is naturally
interpreted as the cost of the most informative attention strategy for each prior μ, i.e.,
formally, K(μ) := C(π∗

μ). Finally note that by continuity of C, the function K is also
continuous.

Posterior-separability is supported by recent experimental findings (Dean and Ne-
ligh 2019) and has solid theoretical foundations (Caplin et al. 2019, Zhong 2017, Tom-
maso 2020). Later in the paper we further elaborate regarding how restrictive our
posterior-separability assumption is, both in a general axiomatic sense, as well as in the
context of our results (Section 6).

Example 2 (Entropic attention costs). The most common functional form of attention
costs in the literature is the entropic specification (Sims 2003, 2006, Caplin et al. 2019),
which among other nice properties, allows us to provide microeconomic foundations to
the multinomial logit model (Matĕjka and McKay 2015, Steiner et al. 2017) and is more-
over assumed in various applications (Matĕjka 2016, Martin 2017, Yang 2020). Accord-
ingly, the cost of π ∈�(μ0) is equal to

Cκ(π) := κ(
H(μ0)− 〈H�π〉)�

whereH(μ) := −μ logμ− (1−μ) log(1−μ) is the Shannon entropy (Shannon 1948), and
κ > 0 is a multiplier parameter. It is straightforward to verify that Cκ is posterior separa-
ble with K = κH being the corresponding function whose expected decrease gives the
cost of attention. ♦

2.3 Cost-benefit analysis

Given a prior μ0 and a weakly proper scoring rule φ, the (expected) benefit of an atten-
tion strategy π ∈�(μ0) is equal to

Bφ(π) := 〈φ�π〉 −φ(μ0)� (2)
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By convexity of φ, we obtain Bφ(π) ≥ 0, with equality holding if and only if supp(π) ⊆
Iφ(μ0). Clearly, wheneverφ is proper, by strict convexity, every nondegenerate attention
strategy yields a strictly positive expected benefit.

Taking into account simultaneously the expected benefits and the costs, the subject
will choose an attention strategy in �(μ0) that maximizes the value

Vφ(π) := Bφ(π)−C(π)�
The idea is that, after (optimally) choosing some π ∈�(μ0), the subject will first update
his beliefs to some (also latent) posteriorμ ∈ supp(π), and then—asφ is weakly proper—
he will report some posterior belief that yields expected utility equal toφ(μ), i.e., he will
report some posterior belief in Iφ(μ). The fact that Vφ obtains a maximum in �(μ0)

follows from C being continuous. Now, take the function

ψ :=K +φ�
and, by (1) and (2), rewrite the subject’s value as follows:

Vφ(π)= 〈ψ�π〉 −ψ(μ0)�

The latter implies, that the subject’s optimal value is equal to ψ(μ0) − ψ(μ0), where
ψ(μ) := max{〈ψ�π〉|π ∈�(μ)} is the concave closure of ψ.

The optimal attention strategies can be easily computed, using the (concavification)
method which was first introduced in the repeated games literature by Aumann and
Maschler (1995), and was later extensively used in the Bayesian persuasion literature
starting with Kamenica and Gentzkow (2011). Accordingly, we first define the interval

Jψ(μ) := [
aψ(μ)�bψ(μ)

]
� (3)

which is the longest interval of μ where ψ is linear (see shaded subinterval in Fig-
ure 3(b)). Obviously, if ψ is not linear in any interval of μ, then Jψ(μ) := {μ}. Then
an attention strategy π ∈�(μ) is optimal if and only if π({ν ∈ Jψ(μ) : ψ(ν)= ψ(ν)})= 1.
Clearly, the strategyπ that satisfiesπ({aψ(μ)�bψ(μ)})= 1 is the most informative among
all optimal attention strategies.

3. Exact robustness

Recall that the experimenter wants to elicit the subject’s prior. In order to guarantee that
the subject will not acquire any information (thus making sure that he will not update his
prior belief), she must design a scoring rule that makes μ̂ a strictly dominant attention
strategy for every μ ∈ [0�1]. If moreover the scoring rule is proper, then it will also be
strictly dominant to report the prior. A scoring rule that satisfies these two conditions is
called robust.

Definition 5 (Robust scoring rules). A scoring rule φ is robust, if it is proper and satis-
fies

Vφ(μ̂) > Vφ(π)

for every π ∈ �̂(μ) and every μ ∈ [0�1].
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aψ(μ)

φ

1

K

bψ(μ)
μ

Bφ(π)

C(π)

(a) Cost-benefit analysis: The expected cost of the
attention strategy π ∈ �(μ) is given by the expected in-
crease of φ, whereas the corresponding cost is given by
the expected decrease of K. The value of π is the length
difference of the respective shaded areas in the vertical
axis.

ψ

ψ

aψ(μ) 1μ bψ(μ)

Vφ(π)

(b) Concavification of the value function: Take
the concave closure ψ of the function ψ := K + φ, and
find the longest subinterval Jψ(μ) of μ where ψ is linear
(shaded area). The optimal attention strategies are those
that put positive probability only to posteriors in Jψ(μ)
such that ψ coincides with ψ.

Figure 3. Optimal attention strategy.

The overall idea is that the scoring rule provides strong enough incentives to induce
truth-telling (viz., φmust be strictly convex), but not so strong to lead the subject to ac-
quire information (viz.,φ should not be “too convex”). The following intermediate result
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uses the concavification method that we presented in the previous section to character-
ize those proper scoring rules that satisfy our robustness criterion, under the assump-
tion that the cost function is posterior-separable.

Lemma 1. Fix a posterior-separable cost function K and a proper scoring rule φ. Then φ
is robust, if and only if,K +φ is strictly concave.

The intuition is quite obvious: K +φ is is strictly concave if and only if K is strictly
“more concave” than −φ, which is in turn equivalent to the costs of attention always
offsetting the benefits, as required by robustness.

Example 3 (Robust QSR when the costs are entropic). Let the attention costs be en-
tropic (as in Example 2) and take a quadratic scoring rule (as in Example 1). Is there
a specification (i.e., parameters α and β) such that the quadratic scoring rule is robust
(given the cost parameter κ)? First, we take the functionψβ(μ) := κH(μ)+α−βμ(1−μ).
By Lemma 1, the scoring rule φβ is robust if and only if ψ′′

β ≤ 0 with equality holding at
finitely many points in [0�1]. Solving the previous inequality yieldsβ≤ 2κ, implying that
we must bound the incentives provided by the scoring rule from above, in order to guar-
antee robustness. Finally, observe that only the parameter β is relevant for robustness.
This is not surprising, given that the incentives of a scoring rule are measured in terms
of its convexity, and the constant α does not affect the degree of convexity of φβ, but
rather it simply rescales the payments by adding a constant. ♦

Our following first main result shows that robust scoring rules exist, not only when
costs are entropic, but rather for all posterior-separable specifications.

Theorem 1. If the cost function is posterior-separable, there is a robust scoring rule.

The proof is constructive, thus allowing us not only to prove that a robust scoring
rule exists, but also to identify its functional form. Let us sketch the main steps here,
while the full proof is relegated to Appendix A.

Sketch of the proof. We begin by considering the function

f := a− bK�

where a ∈ R and b ∈ (0�1). If a function φ : [0�1] → R is such that f −φ is convex, then
K +φ is strictly concave. Therefore, if φ is strictly convex and subdifferentiable, we can
use it as our robust scoring rule (by Lemma 1). The next intermediate result shows that
such a φ exists, thus completing our proof.

Lemma 2. Consider a strictly convex function f : [0�1] → R. Then there exists a strictly
convex and subdifferentiable function φ : [0�1] → R such that f −φ is convex.
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The proof of Lemma 2 is constructive, implying that not only do we prove existence,
but we also identify an entire family of robust scoring rules. Let us illustrate the proof
of the previous lemma for a function f which is continuously differentiable in (0�1) and
becomes infinitely steep at 0 and 1. Define F : [0�1] → R as the slope of f , i.e., F(x) :=
f ′(x) for every x ∈ (0�1), while F(0)= −∞ and F(1)= ∞. Then, define the composition
�(x) := tan−1(F(x)), and let φ be a primitive of �. Since both tan−1 and F are strictly
increasing, so is �, implying that φ is strictly convex. Moreover, since tan−1 is Lipschitz
with constant less than 1, F −� is increasing and, therefore, f −φ is convex. The proof
is easily extended to the nondifferentiable case.

Note that the proof of our previous theorem describes the construction of only one
class of robust scoring rules. In fact, there are many more scoring rules that serve the
same purpose of eliciting the subject’s prior beliefs, e.g., when the costs are entropic,
the robust scoring rule that we obtain following the steps of our proof is one possibility,
while the robust QSR from Example 3 is another. Hence, we naturally ask whether ev-
erything goes, viz., does every scoring rule become robust if we shrink the incentives via
multiplication with a sufficiently small constant? The following example illustrates that
this is not the case, implying that (exact) robustness may rule out widely-used families of
scoring rules, such as for instance the quadratic scoring rule. This observation is further
discussed in the next section.

Example 4. Consider the posterior-separable cost function K(μ) = μ− μ3. Note that
the second derivative of K is not bounded away from 0, i.e., the cost function becomes
arbitrarily flat (close to 0). Now consider a quadratic scoring rule φβ, and observe that
its second derivative is bounded away from 0, irrespective of how small β is. Thus, we
obtain ψ′′

β(μ) = 2β − 6μ, implying that ψβ = K + φβ is convex in [0�β/3]. Hence, by
Lemma 1, it follows that φβ is not robust for any β> 0. ♦

4. Approximate robustness

Two natural questions are posed at this point. First, if we fix some scoring rule, how
close can we get to the subject’s prior by weakening the incentives? Second, if we relax
the assumption that the experimenter knows the subject’s cost function, can we still
approximate the subject’s prior beliefs?4 In this section, we will answer both questions
simultaneously through a single result.

Let us begin by observing that often times the experimenter accepts small errors
in the elicitation of the subject’s beliefs, either because she understands that there are
restrictions in the experimental technology or because she does not care about minor
mistakes. In our context, for a given small ε ≥ 0, assume that the experimenter is satis-
fied if she can elicit a belief not further than ε away from the subject’s prior. A scoring
rule that achieves this goal will be called ε-robust.

4I am indebted to Burkhard Schipper for suggesting this approach.
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Definition 6 (ε-robust scoring rule). A weakly proper scoring rule φ is ε-robust, if for
all μ ∈ [0�1], for all π ∈ arg maxρ∈�(μ) Vφ(ρ) and for all ν ∈ supp(π), it is the case that

Iφ(ν)⊆ Bε(μ)�

where Bε(μ) := {ν ∈ [0�1] : |μ− ν| ≤ ε} is the closed ε-neighborhood of μ.

Intuitively, there are two forces that may bring the optimal report away from the
prior. On the one hand, φ can be locally linear, due to the fact that the scoring rule is
just weakly convex. On the other hand, K + φ can be locally nonconcave, due to the
incentives to acquire information. So the idea behind ε-robustness is that even when
combined, these two forces will not lead to a posterior further than ε away from the
prior belief. Clearly, a proper scoring rule is ε-robust, if every optimal attention strategy
yields posteriors at most ε away from the prior, i.e., in this case, only the second force
(viz., the incentives to acquire information) may lead the subject to misreport.

Now turning to our second question, sometimes the experimenter cannot pin down
the subject’s cost function with certainty. This is typically due to the experimenter not
having enough data to calibrate the subject’s (actual) cost function. In such cases, she
instead resorts to an estimated probability distribution over cost functions. Can the ex-
perimenter then be sufficiently certain that she will approximate the subject’s prior be-
liefs with sufficient precision? Formally speaking, can the experimenter find a scoring
rule which is ε-robust with sufficiently high probability?

Let C denote the space of continuous (weakly) concave functions K : [0�1] → R, to-
gether with the topology induced by the sup norm ‖ · ‖∞. Let K ⊂ C be the space of
strictly concave functions such that K(0) = K(1) = 0. As we have already mentioned,
each posterior-separable cost function is identified by a unique K ∈ K. Nonposterior-
separable costs that correspond to functions K ∈ C \ K are studied in Section 6. Un-
certainty about the subject’s costs is described by a distribution P ∈ (C). When-
ever P(K) = 1, the experimenter is certain that the subject’s cost function is posterior-
separable.

For each scoring rule φ, define the function εφ : C →R+ by

εKφ := inf{ε≥ 0 :φ is ε-robust givenK}�

which provides a uniform bound on the approximation of the prior that the experi-
menter can achieve with φ for some K ∈ C. Note that εφ is upper semicontinuous
(Lemma B.1). Hence, {K ∈ C : εKφ ≤ ε} is Borel measurable. That is, the event that “the
scoring rule φ is ε-robust” is expressible in the experimenter’s language and, therefore,
the experimenter assigns some probability to it.

Definition 7 ((ε�δ)-robust scoring rule). A weakly proper scoring rule φ is (ε�δ)-
robust, if

P
({
K ∈ C : εKφ ≤ ε}) ≥ 1 − δ�

given some fixed ε≥ 0 and δ≥ 0.
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In other words, approximate robustness guarantees that the probability of eliciting
a belief further than ε away from the prior is smaller than δ. Although both ε and δ
place bounds in the precision of the scoring rule, the two bounds operate in different
probability spaces, viz., ε is a bound in the space of (the subject’s) probabilities over �,
whereas δ is a bound in the space of (the experimenter’s) probabilities over C. Obviously,
the concept has a bite when both ε and δ become sufficiently small. When they both
collapse to 0, we are essentially back to exact robustness.

Theorem 2. Let P(K)= p, and fix an arbitrary ε̃-proper scoring rule φ. Then, for every
ε > ε̃ and every δ > 1 −p, there exists some λ > 0 such that λφ is (ε�δ)-robust.

The intuition of the previous result is that we can begin with any weakly proper scor-
ing rule, and by shrinking its incentives enough we can arbitrarily approximate the sub-
ject’s prior beliefs. Below we present the main ideas underlying our proof, and the full
proof is relegated to Appendix B.

Sketch of the proof. Fix some ε̃-proper scoring ruleφ and some posterior-separable
cost functionK. For starters, we trivially observe that λφ is also ε̃-proper for every λ > 0.
Indeed, for every belief in [0�1], the optimal reports under φ and coincide with the
optimal reports under λφ. Then, for each prior belief μ ∈ [0�1], the most informative
among all optimal attention strategies (given the scoring rule λφ and the cost function
K) distributes all probability mass between the posteriors aλ(μ)≤ μ and bλ(μ)≥ μ, i.e.,
all posteriors that the subject can rationally form belong to the interval [aλ(μ)�bλ(μ)].
Hence, by ε̃-properness of the scoring rule, the subject will eventually report a belief in
[aλ(μ)− ε̃� bλ(μ)+ ε̃]. The crucial step is then to prove that aλ(μ) ↑ μ and bλ(μ) ↓ μ as
λ ↓ 0 (Lemma B.2). Therefore, for every ε > ε̃ there exists a sufficiently small λ > 0 such
that [

aλ(μ)− ε̃� bλ(μ)+ ε̃] ⊆ [μ− ε�μ+ ε]�
Finally, notice that while λ approaches 0, the set of cost functions that satisfy the pre-
vious inclusion becomes larger approaching the entire set K. Hence, the probability of
the actual cost function satisfying this inclusion approaches the probability of K from
above, thus completing the proof.

Let us now present two examples which illustrate that the previous result simultane-
ously answers the two questions we posed at the beginning of this section.

Example 4 continued. Recall from the previous section that there is no (exactly) ro-
bust QSR φβ(μ)= α− βμ(1 − μ) when the posterior-separable cost function is K(μ)=
μ−μ3. So, how far can we get using only a QSR? We begin by noticing that the concave
closure of the function ψβ =K+φβ is strictly concave in the interval [β/2�1] and linear
in the interval [0�β/2]. The latter implies that the subject will choose the zero-attention
strategy when his prior is larger than β/2. On the other hand if his prior is smaller than
β/2, he will optimally choose an attention strategy that will yield posterior beliefs either
equal to 0 or equal to β/2. In both cases, since the QSR is proper, he will truthfully report
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his posterior. Hence, the prior will be misreported only in the interval (0�β/2), in which
case the subject will say either 0 or β/2. Therefore, for any fixed ε > 0, by making β suf-
ficiently small (and in particular, by taking β< 2ε), we guarantee that the scoring rule is
ε-robust. We generalize our analysis of ε-robust QSR in Section 5.1.

Example 5 (Approximate robustness under unknown entropic costs). Let P be uni-
formly distributed over the set of entropic cost functions in E := {Cκ|κ ∈ [0�1]} ⊂ K. Ob-
viously, if we knew the exact value of κ, we would be able to find an exactly robust QSR
(Example 2). Is it still possible to approximately elicit the subject’s beliefs with a QSR
even without knowing κ? Observe that the smaller β becomes the more likely it is for
QSR to be robust. In particular, for every β ∈ (0�1), the QSR φβ is robust for all cost
functions with κ≥ β/2. Hence, if we fix some δ > 0, then for every β≤ 2δ the probability
of the scoring rule being robust is at least 1 − δ. ♦

So far our approach has been to fix a pair (ε�δ) and then shrink φ until it becomes
(ε�δ)-robust. Let us now briefly discuss a dual approach. Namely, if we begin with a
fixed φ, what is the best we can achieve in terms of approximating the subject’s prior?

Let us first observe that since (ε�δ)-robustness specifies two upper bounds, typically
we cannot obtain a unique “best approximation” of the prior beliefs. This is because
there is often a tradeoff between our two bounds, i.e., the more permissive we are in
terms of how far from the prior we are willing to allow the elicited beliefs, the higher the
probability of the subject’s cost function being such that the elicited beliefs are within
the margin of error that we allow. Formally, for each ε ≥ 0, the lowest δ ≥ 0 such that φ
is (ε�δ)-robust is defined by

δφ(ε) := inf
{
δ≥ 0 : P({

K ∈ C : εKφ ≤ ε}) ≥ 1 − δ}�
It is not difficult to verify that the function δφ is (weakly) decreasing, indicating that there
is indeed a tradeoff between ε and δ. Finally, observe that weakening the incentives ofφ
shifts the entire graph of δφ downwards. Indeed, for every ε≥ 0, it is the case that δλφ(ε)
is decreasing in λ. If we then fix some ε̃ > 0 and δ > 1 − p, there is some small enough
λ ∈ (0�1) such that δλφ(ε)≤ δ for all ε > ε̃, which is another way of stating Theorem 2.

5. Usual scoring rules

5.1 Quadratic scoring rules

As we have already illustrated, an approximately robust QSR exists, even in cases where
an exactly robust QSR does not (Example 4). In fact, it follows as a direct consequence
of our Theorem 2 that this is always the case, i.e., an approximately robust QSR always
exists.

Corollary 1. Let P(K)= p. Then, for every ε > 0 and every δ > 1 −p, there exists some
β> 0 such that the quadratic scoring rule φβ is (ε�δ)-robust.

Clearly, if the (posterior-separable) cost function is known to the experimenter, the
previous result can be further refined along the lines of Example 4, viz., for a givenK ∈ K
and for an arbitrary ε > 0, there exists some β> 0 such that the φβ is ε-robust.
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5.2 Binarized scoring rules

A binarized scoring rule is one that pays in probability units of winning a fixed prize
(Hossain and Okui 2013, Schlag and van der Weele 2013). Formally, a binarized scoring
rule S takes values in [0�1], with the interpretation that Sr(ω) ∈ [0�1] is the objective
probability of the subject winning the prize when he reports r and the realized state
is ω. In this case, the subject’s expected utility is linear in the probability of winning the
prize irrespective of his risk preferences, and our analysis follows verbatim except for
one small detail, viz., in order for a function φ to characterize a proper (resp., weakly
proper) binarized scoring rule, not only should it be subdifferentiable, but it should also
have at every point a subtangent that takes values in [0�1] both when evaluated at 0 and
at 1. It is not difficult to see that for every (weakly) convex and subdifferentiable function
f there exists some λ > 0 and some c ∈ R such that φ := c + λf satisfies ∂φ(μ) ∩ [0�1] �=
∅ for every μ ∈ [0�1], i.e., if a function is subdifferentiable, we can multiply it with a
sufficiently small λ so that the subdifferential become sufficiently small to take values
in [0�1]. Then the following result shows that our two main theorems hold for binarized
scoring rules, too.

Corollary 2. The following two conditions hold:

(i) If the cost function is posterior-separable there exists a robust binarized scoring rule.

(ii) Let P(K) = p, and fix an ε̃-proper binarized scoring rule φ. Then, for every ε > ε̃
and every δ > 1 − p, there exists some λ > 0 such that λφ is an ε-robust binarized
scoring rule.

It is important to mention that binarized scoring rules have been criticized based
on experimental evidence (Selten et al. 1999), although such criticism is not unanimous
(Harrison et al. 2013, 2014, 2015).

5.3 Discrete scoring rules

A scoring rule is called discrete whenever the subject can only give a report from a finite
setR⊆ [0�1]. In this case, the scoring rule becomes a function S :R×�→ R. We hence-
forth focus on the most common discrete scoring rule, viz., one where R= { 0

n �
1
n � � � � �

n
n }

for an arbitrary n ∈N. We call such a scoring rule n-discrete. For instance, a 100-discrete
scoring rule is one where the subject is asked to report a percentage.

The practical advantage is that discrete scoring rules are easier to implement, as they
can be presented to the subject in the form of a list. On the negative side, the fact that
there are only finitely many reports implies that there is no proper, and a fortiori there is
no robust scoring rule. So we need to settle for the second best, i.e., to approximate the
subject’s prior beliefs. The best approximation that we can theoretically achieve with
an n-discrete scoring would be to elicit a belief within 1/2n from his true prior. That is,
whenever the subject reports k/n, we can guarantee that his prior belongs to the interval
[kn − 1

2n �
k
n + 1

2n ].
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Corollary 3. Fix an arbitrary n ∈N \ {0}. Then the following hold:

(i) If the cost function is posterior-separable, there exists a 1
2n -robust n-discrete scoring

rule.

(ii) Let P(K) = p, and fix a weakly proper n-discrete scoring rule φ. Then, for every
ε > 1

2n and every δ > 1 − p, there exists some λ > 0 such that λφ is a (ε�δ)-robust
n-discrete scoring rule.

The trick to obtain the previous result is to view an n-discrete scoring rule as an 1
2n -

proper scoring rule, characterized by a convex piecewise linear function φ with kinks at
every point in { 1

2n �
3

2n � � � � �
2n−1

2n }. In particular, whenever the subject reports k/n, he will
be paid the act that φ would yield if a report in the interval [kn − 1

2n �
k
n + 1

2n ] was given.

6. Posterior-separability revisited

6.1 Axiomatic characterization

Throughout the paper, we have focused on cost functions that satisfy posterior-
separability. As we have already mentioned, this specification is supported by recent
experimental evidence and is general enough to accommodate usual functions, such
as costs that are proportional to the expected decrease in Shannon entropy. As the fol-
lowing result illustrates, posterior-separability also has solid theoretical foundations.
In particular, it can be characterized by means of three mild axioms. A similar result
has been proven by Zhong (2017) in a somewhat different context, relying on standard
properties of mutual information (e.g., Cover and Thomas 2006).

Proposition 1. The cost function C is posterior-separable if and only if it satisfies:

(C1) Normalization: C(μ̂)= 0 for all μ ∈ [0�1].
(C2) Attention is Costly: C(π) > 0 for all π ∈ �̂(μ) and all μ ∈ [0�1].
(C3) Dynamic Consistency for Full Information: C(π∗

μ) = C(π)+ Eπ(C ◦ π∗)
for all π ∈�(μ) and all μ ∈ [0�1].

The first two axioms are quite standard in the literature, postulating that an atten-
tion strategy is costly if and only if it carries some information. The third axiom on the
other hand is relatively new, postulating that the cost of learning the true state does
not depend on the order of collecting information, i.e., only the “acquired information”
matters, and not the “process of acquiring it.”5 Intuitively, suppose that the subject (with
prior μ) chooses a sequential attention strategy, according to which he first picks some

5In a previous version of the paper, we used a stronger dynamic consistency axiom, viz., we postulated
that the cost of any attention strategy (not only the one that reveals the state) depends only on the distribu-
tion of posteriors, and not on the underlying process that yields this distribution (Tsakas 2019). However,
it turns out that the two systems of axioms are equivalent, which is why we present the weaker form of
dynamic consistency here.
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arbitrary π ∈ �(μ) (first-period attention strategy) and then conditional on observing
each posterior ν ∈ supp(π) he picks the most informative attention strategy π∗

ν (second-
period attention strategy), implying that the subject learns the state in two steps. Then
the total cost that he incurs is equal to the cost of his first-period strategy (viz., C(π))
plus the expected cost of his second-period strategies (viz., Eπ(C ◦ π∗)= ∫ 1

0 C(π
∗
ν )dπ).

Dynamic consistency postulates that the cost C(π∗
μ) of directly choosing the most infor-

mative attention strategy π∗
μ is equal to the total cost of the aforementioned sequential

attention strategy.6

It is not difficult to see that posterior-separability is a special case of the class of cost
functions that satisfy the basic regularity conditions, viz., Blackwell monotonicity and
convexity (Caplin and Dean 2015, De Oliveira et al. 2017). Formally, for two attention
strategies π�ρ ∈�(μ), we say that π is Blackwell more informative than ρ, and we write
π � ρ, whenever 〈f�π〉 ≥ 〈f�ρ〉 for every convex function f : [0�1] → R (Blackwell 1953).
Then C is called regular, whenever the following two properties are satisfied:

(C4) Blackwell Monotonicity: C(π)≥ C(ρ) for all π�ρ ∈�(μ) with π � ρ.

(C5) Convexity: C(λπ + (1 − λ)ρ)≤ λC(π)+ (1 − λ)C(ρ) for all π�ρ ∈�(μ) and all
λ ∈ (0�1).

Proposition 2. Every posterior-separable cost function is regular.

Of course the converse is not necessarily true, i.e., regularity does not imply
posterior-separability. Intuitively, this is because (C3) imposes some basic coherency
on the costs across different priors, similarly to recent work on dynamic information
acquisition (Hébert and Woodford 2017, Zhong 2017), as opposed to (C4)–(C5) that put
structure on the attention costs given a fixed prior but remain silent on the relation-
ship of the costs across the different priors (Caplin and Dean 2015, De Oliveira et al.
2017). Consider for instance the weaker version of posterior-separability which allows
the strictly convex function K to be prior-dependent, i.e., formally, for each μ ∈ [0�1]
there exists a strictly convex Kμ : [0�1] → R such that C(π) = Kμ(μ) − 〈Kμ�π〉 for all
π ∈�(μ). Clearly, such a cost function satisfies (C4) and (C5) without being posterior-
separable. We further elaborate on this point below.

6.2 Weakenings

We are going to consider two variations of posterior-separability, corresponding to dif-
ferent weakenings of our axioms (C1)–(C3). Throughout this section, for simplicity pur-
poses, we will maintain the assumption that the experimenter knows the subject’s cost
function. Nevertheless, our analysis can be fully generalized to the case where the ex-
perimenter holds probabilistic beliefs over the subject’s cost functions.

6Our notion of dynamic consistency is similar in spirit to the one in the standard characterization of dy-
namic variational preferences (Maccheroni et al. 2006). Of course in their paper the interpretation is differ-
ent in that costs are incurred by nature, rather than by the decision maker. Nevertheless their condition—
similar to ours—guarantees that that costs are time-consistent. I am indebted to Fabio Maccheroni and
Massimo Marinacci for pointing out this connection to me.
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6.2.1 Weak posterior-separability Let us begin by removing (C2) from our axiomatic
system, i.e., we allow some attention strategies to be cost-free. In this case, costs are
characterized by a property that weakens posterior-separability. In particular, we say
that a cost function C is weakly posterior-separable if there exists a (weakly) convex
function K : [0�1] → R satisfying (1) for all π ∈ �(μ) and all μ ∈ [0�1]. In other words,
every weakly posterior-separable cost function is identified by some K ∈ C.

Proposition 3. A cost function is weakly posterior-separable if and only if it satisfies
(C1) and (C3).

The proof is a straightforward adjustment of the one of Proposition 1. Moreover,
it is not difficult to verify that weak posterior-separability also implies regularity, thus
extending Proposition 2, i.e., (C1) and (C3) suffice for (C4) and (C5). Nevertheless,
again the converse does not hold, i.e., regularity does not suffice for weak posterior-
separability either, for the same reasons why regularity does not imply the strong version
of posterior-separability.

Intuitively, defining [aK(μ)�bK(μ)] as the largest interval of μ where K is linear, im-
plies that every attention strategy π ∈�(μ)with supp(π)⊆ [aK(μ)�bK(μ)] is necessarily
costless. In fact, the attention strategy that distributes all probability to aK(μ) and bK(μ)
is the most informative attention strategy that the subject can use for free. Obviously, if
aK(μ) = bK(μ) for all μ ∈ [0�1], the function K becomes strictly concave, and conse-
quently the cost function becomes posterior-separable in the strong sense. Then we de-
fine ε̂K := sup{bK(μ)− aK(μ)|μ ∈ [0�1]} as the largest deviation from the prior without
the subject incurring any cost.

Now, the fact that K is weakly convex does not alter the logic of our analysis. In
particular, Lemma 1 still holds verbatim, i.e., a proper scoring rule φ is robust if and
only if K + φ is strictly concave. Obviously, if K is not strictly concave, K + φ will not
be either, implying that we will not be able to find a robust scoring rule. Intuitively, this
is because the subject will always prefer to choose an attention strategy that induces
updating to aK(μ) or bK(μ) over the zero attention strategy μ̂. So we resort to our second
best solution, i.e., to approximate the subject’s prior beliefs.

Proposition 4. Consider a weakly posterior-separable K, and take an arbitrary proper
scoring rule φ. Then, for every ε > ε̂K , there exists some λ > 0 such that λφ is ε-robust.

The intuition is straightforward. Given that, for any properφ, the subject will always
want to use an attention strategy that induces updating fromμ to either aK(μ) or bK(μ),
we will choose some λφ > 0 that provides weak enough incentives to at least guarantee
that the updated beliefs will not be outside [aK(μ)− ε�bK(μ)+ ε].
6.2.2 Prior-dependent posterior-separability Let us now attempt to weaken (C3). In
fact, we will depart from (C3) minimally, by considering for each μ ∈ (0�1) some (pos-
sibly different) strictly concave Kμ : [0�1] → R such that C(π) = Kμ(μ) − 〈Kμ�π〉 for
every π ∈ �(μ). Let us call a cost function that satisfies the previous condition, prior-
dependent posterior-separable. Such cost functions have also appeared in the literature
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(Caplin et al. 2019), and obviously satisfy regularity (i.e., Blackwell monotonicity and
convexity). Nevertheless, the relationship across costs for different priors can be quite
arbitrary, as we do not impose any restrictions on the relationship between Kμ and Kν
for two different μ�ν ∈ [0�1]. This is exactly why we cannot always elicit the subject’s
prior beliefs. In fact, often we cannot even approximate the prior beliefs, as illustrated
below.

Example 6. Fix some strictly concave K, and let Kμ(ν) := μK(ν), implying that Kμ be-
comes arbitrarily flat for priors close to 0. Hence, for any proper scoring ruleφ, there ex-
ists some μ̃ ∈ (0�1) such that the optimal attention strategy at everyμ< μ̃ is the most in-
formative one, implying that there is not even an ε-robust scoring rule, for any ε < 1. ♦

The previous example also illustrates that regularity alone does not put enough
structure to guarantee that we can elicit the subject’s prior, even when it is augmented
with additional assumptions (e.g., prior-dependent posterior-separability and continu-
ity). Hence, in some sense the most essential part of posterior-separability (viz., our
dynamic consistency axiom, (C3)) seems to be rather tight.

7. Discussion

7.1 Alternative methodologies

As we have already discussed, our theory is useful for eliciting population beliefs. Of
course, this is not the only methodology that can be used for this purpose. So, let us
provide a comparison between robust scoring rules and such alternative methods.

For starters, note that traditional surveys are typically not incentivized, mainly due
to practical reasons, e.g., providing monetary incentives can sometimes be very costly
(for an exception to this rule, see Grisley and Kellogg 1983). Nevertheless, as we have al-
ready mentioned, there is strong evidence that supports the use of monetary incentives
(Harrison and Rütstrom 2008, Harrison 2014). Within the class of incentivized mech-
anisms, one can find widely-used methods such as prediction markets (Hanson 2003).
While a prediction market is an incentive compatible mechanism, it suffers from two
specific shortcomings that lead to biased estimates of population beliefs. First, the in-
centives are formed endogenously as the prices of the traded asset fluctuate over time,
implying that the experimenter cannot intervene to weaken them in order to guaran-
tee that information will not be acquired. Second, traders in prediction markets do not
typically form a representative sample of the population. Of course, we should recog-
nize that the whole aim of prediction markets is to obtain good forecasts, rather than
unbiased estimates of population beliefs.

Let us also present two alternative approaches, inspired by the rational inattention
literature, which can be used to estimate population beliefs.7 First, following either the
revealed-preference approach (Caplin and Dean 2015, Chambers et al. 2018) or the ax-
iomatic approach (De Oliveira et al. 2017, Ellis 2018), instead of trying to supress infor-
mation acquisition, the experimenter can just let it occur and identify the prior beliefs

7I would like to thank one of the referees for suggesting these two alternatives.
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from choice data. A major drawback of this approach is that it requires a large number of
choice observations for each individual, while our method works with a single observa-
tion. Of course, this is due to the fact that our method requires some ex ante knowledge
of the cost function, as opposed to this alternative which identifies the costs simulta-
neously with the prior beliefs. A second drawback of this approach is that it relies on a
common stationarity assumption, namely that the subject does not carry his updated
beliefs from one decision problem to the next, thus maintaining the same prior across
observations.

A second alternative method for estimating population beliefs is based on eliciting
individual beliefs with a proper (but not necessarily robust) scoring rule from a large
sample of homogeneous individuals (i.e., individuals with the same prior, the same vNM
preferences and the same cost functions) and then average across individuals.8 While
this approach theoretically works smoothly, it crucially relies on two assumptions that
make it relatively less appealing than robust scoring rules: first, it requires a large sam-
ple of homogeneous subjects which is difficult to recruit, and second it implicitly as-
sumes that the realizations of the respective attention strategies are independent across
subjects.

7.2 Eliciting multinomial prior beliefs

Throughout the paper, we have focused on binary state spaces, thus eliciting the prob-
ability of a single event. Now suppose that the subject has a (multinomial) prior belief
μ0 ∈ (�) that the experimenter would like to elicit, where � is an arbitrary finite state
space. The technical difficulty with directly extending Theorem 1 to this richer environ-
ment lies on the extension of Lemma 2 to higher-dimension euclidean spaces not being
straightforward. In particular, it is not clear whether for every strictly convex function
f : (�)→ R there exists a convex and subdifferentiable φ : (�)→ R such that f −φ

is convex. Intuitively, this is because all the directional derivatives of φ must decrease
slower than those of f , and it is not clear how this could be achieved as the directional
derivatives are not independent. In the unidimensional case on the other hand, there is
a single derivative, which we compose with a Lipschitz function with constant less than 1
thus obtaining aφwith slower rate of change (see proof of Lemma 2), which constitutes
the main step for constructing our robust scoring rule.

Nevertheless, for practical purposes, this problem is of minor concern. Indeed, on
the one hand, whenever the strictly concave function K : (�)→ R is subdifferentiable
at the boundary of (�), this lemma is not needed and our Theorem 1 holds verbatim
for any finite �. Furthermore, Theorem 2 also holds verbatim for an arbitrary finite
state space �. Hence, our assumption on � being binary is essentially without loss of
generality.

7.3 Continuity of the cost function

Throughout the paper, we have considered exclusively continuous cost functions C,
having pointed out that this is without loss of generality. Let us elaborate on why this

8This approach was independently suggested by Jakub Steiner who I would also like to thank.
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is the case. First, since we focus on (weakly) posterior-separable cost functions, K
is (weakly) concave. Hence, it is continuous in the interior (0�1), and possible dis-
continuities could only be encountered at the boundaries. Take some concave func-
tion K̃ : (0�1)→ R, and consider its continuous extension K̂ : [0�1] → R and any other
concave extension K : [0�1] → R. Then it is straightforward to verify that for every
π ∈ ([0�1]) we obtainK(μ)− 〈K�π〉 ≥ K̂(μ)− 〈K̂�π〉. Hence, any scoring rule which is
robust (resp., ε-robust) given the continuous cost K̂ will also be robust (resp., ε-robust)
givenK.

Appendix A: Proofs of Section 3

Proof of Lemma 1. For arbitrary π ∈ �̂(μ) and μ ∈ (0�1), it is the case that

Vφ(π) = Bφ(π)−C(π)
= (〈φ�π〉 −φ(μ)) − (

K(μ)− 〈K�π〉)
= 〈K +φ�π〉 − (K +φ)(μ)�

Then, obviously Vφ(π) < 0 for all π ∈ �̂(μ) and all μ ∈ (0�1), if and only if, K + φ is
strictly concave, which completes the proof.

Proof of Lemma 2. If f is subdifferentiable in [0�1] then the result follows trivially by
setting φ := f . Therefore, we assume that there exists x ∈ {0�1} such that the subderiva-
tive

∂f (x) := {
t ∈R : f (y)≥ f (x)+ t(y − x) for all y ∈ [0�1]}

is empty.
Step 1: For each x ∈ [0�1], define the left ax := f ′−(x) and right bx := f ′+(x) derivative,

respectively. We adopt the notational convention that a0 = −∞ and b1 := ∞. It follows
from (strict) convexity of f that ∂f (x) = [ax�bx], with ax = bx whenever f is differen-
tiable at x. Moreover, ∂f is strictly increasing, i.e., x < y if and only if ax ≤ bx < ay ≤ by .
Obviously, f is subdifferentiable if and only if −∞< b0 < a1 <∞, in which case we sim-
ply set φ := f , as we have already mentioned above. Hence, we henceforth focus on
the case where ∂f (x) = ∅ for some x ∈ {0�1}, i.e., b0 = −∞ or a1 = ∞. Let x0 ∈ [0�1] be
the unique minimizer of f , and define the strictly increasing function F : [0�1] → R as
follows: F(x) := ax > 0 for all x ∈ (x0�1], F(x) := bx < 0 for all x ∈ [0�x0), and F(x0)= 0.

Step 2: Since f is continuous in a closed interval, it is also absolutely continuous
and, therefore, by the fundamental theorem of calculus, F is Lebesgue integrable and

f (x)= f (0)+
∫ x

0
F(t)dt� (A.1)

Take a strictly increasing Lipschitz function h : R → [−1�1] (with Lipschitz constant
c ≤ 1), and let � := h ◦ F . Since F is Lebesgue integrable, so is �. Thus, we can define
φ : [0�1] →R by

φ(x) := f (0)+
∫ x

0
�(t)dt� (A.2)
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Since � is strictly increasing, φ is strictly convex and, therefore, subdifferentiable in
(0�1). Moreover, since � takes values in [−1�1], it is the case that

∫ x
0 �(t)dt ≥ −2x, im-

plying thatφ(x)≥φ(0)− 2x for every x ∈ [0�1], i.e.,φ is subdifferentiable at 0. We prove
identically thatφ subdifferentiable also at 1, implying that it is subdifferentiable in [0�1].

Step 3: Let us finally prove that f −φ is convex. Consider arbitrary 0 ≤ x1 < x2 ≤ 1.
Since h is Lipschitz with constant c ≤ 1, it is the case that F(x2)−F(x1)≥�(x2)−�(x1),
implying that F −� is increasing. Moreover, by (A.1) and (A.2), we obtain (f −φ)(x)=∫ x

0 (F(t)−�(t))dt, implying that f −φ is convex, which completes the proof.

Proof of Theorem 1. For arbitrary a ∈R and b ∈ (0�1), define the strictly convex func-
tion f := a− bK. Then, by Lemma 2, there exists some strictly convex and subdifferen-
tiable function φ, such that f −φ is convex. By strict convexity and subdifferentiability
of φ, it follows that φ is a proper scoring rule. Finally, notice that K +φ is strictly con-
cave, as it is the sum of a strictly concave function (viz., K + f ) and a concave function
(viz., φ− f ). Therefore, by Lemma 1, the scoring rule φ is robust.

Appendix B: Proofs of Section 4

Lemma B.1. For every weakly proper scoring rule φ, the function εφ is upper
semicontinuous.

Proof. Fix an arbitrary scoring ruleφ, and take an arbitrary sequence (Kt)∞t=1 in K con-
verging to someK0 ∈ K in the topology induced by the sup norm.

Step 1: ByKt −K0 =ψt −ψ0, we obtain ψt →ψ0, where as usual ψt :=Kt +φ. That
is, for every δ > 0 there exists some tδ ∈ N such that ‖ψt − ψ0‖∞ := supμ∈[0�1] |ψt(μ) −
ψ0(μ)| < δ for every t > tδ. Now, for every t ∈ N, take the concave closure ψt(μ) :=
supπ∈�(μ)〈ψt�π〉, and observe that

∣∣ψt(μ)−ψ0(μ)
∣∣ =

∣∣∣ sup
π∈�(μ)

〈ψt�π〉 − sup
π∈�(μ)

〈ψ0�π〉
∣∣∣

≤
∣∣∣ sup
π∈�(μ)

〈ψt −ψ0�π〉
∣∣∣

≤ sup
π∈�(μ)

∣∣〈ψt −ψ0�π〉∣∣

≤ sup
π∈�(μ)

〈|ψt −ψ0|�π
〉
�

Then, by the definition of the sup norm, we obtain

‖ψt −ψ0‖∞ ≤ sup
μ∈[0�1]

sup
π∈�(μ)

〈|ψt −ψ0|�π
〉

≤ sup
μ∈[0�1]

|ψt −ψ0|

= ‖ψt −ψ0‖∞�

implying that ψt →ψ0.
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Step 2: Fix an arbitrary μ ∈ (0�1). For each t ∈ N, define [at(μ)�bt(μ)] := Jψt (μ)

like in (3). Then we define a∗
t (μ) := r−φ(at(μ)) and b∗

t (μ) := r+φ(bt(μ)), i.e., the interval
[a∗
t (μ)�b

∗
t (μ)] is the smallest closed interval that contains all the posteriors that can be

optimally reported by the subject when his prior is μ. In other words, a∗
t (μ) and b∗

t (μ)

are the worst-case scenarios, in terms of distance from μ. Throughout Step 2, for nota-
tion simplicity, we omit writing the prior μ.

We will now show that

a∗
0 ≤ lim infa∗

t ≤ lim supb∗
t ≤ b∗

0� (B.1)

For every t ∈ N, the (most dispersed) optimal attention strategy at μ is denoted by
πt ∈�(μ) and is distributed over {at� bt}. Hence, by continuity of ψt which follows from
continuity ofKt , we obtain ψt(μ)= 〈ψt�πt〉 and, therefore, by Step 1,

〈ψt�πt〉 → 〈ψ0�π0〉� (B.2)

Now suppose—contrary to what we want to show—that lim infa∗
t < a

∗
0 or lim supb∗

t > b
∗
0.

Since infk≥t a∗
k is increasing and supk≥t b∗

k is decreasing in k, there exists a subsequence
of (a∗

t � b
∗
t ), identified by a countable subset T ⊆ N, such that for each t ∈ T it is the case

that a∗
t < a

∗
0 −δ∗ or b∗

t > b
∗
0 +δ∗, for some δ∗ > 0. The latter implies that Iφ(at)∩ Iφ(a0)=

∅ or Iφ(bt)∩ Iφ(b0)=∅ for all t ∈ T . Let us now consider two cases:

(i) a0 > a
∗
0, i.e., a0 is in the interior or at the upper bound of Iφ(a0): Then there is

some δa > 0 such that at < a0 − δa. Likewise, if b0 < b
∗
0, there exists δb > 0 such

that bt > b0 + δb.

(ii) a0 = a∗
0, i.e., a0 is at the lower bound of Iφ(a0): Then, there exists a neighborhood

Bδa(a0) such that φ is strictly convex in the left part of the neighborhood, viz.,
in {ν ∈ Bδa(a0) : ν ≤ a0}; otherwise, a∗

0 < a0 and we are back to the previous case.
Hence, at < a0 −δa. Likewise, if b0 = b∗

0, there is some δb > 0 such that bt > b0 +δb.

In either case, there exists some strictly positive δ <min{δa�δb} such that at < a0 − δ or
bt > b0 + δ. Now, define the attention strategy π ∈�(μ) with supp(π)= {a0 − δ�b0 + δ},
and observe that 〈ψ0�π〉< 〈ψ0�π0〉, while 〈ψt�π〉 = 〈ψt�πt〉 for all t ∈ T . Since, 〈ψt�π〉 →
〈ψ0�π〉, the latter obviously contradicts (B.2), thus proving (B.1).

Step 3: Define first d∗
t (μ) := b∗

t (μ)− a∗
t (μ), and subsequently εt := supμ∈[0�1] d∗

t (μ).

Then it is straightforward to verify that εt = εKtφ . Then, by Step 2,

d∗
0(μ) = b∗

0(μ)− a∗
0(μ)

≥ lim supb∗
t (μ)− lim infa∗

t (μ)

≥ lim sup
(
b∗
t (μ)− a∗

t (μ)
)

= lim supd∗
t (μ)�

Therefore, it follows directly that lim supεt ≤ ε0, which completes the proof.
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Lemma B.2. Fix a sequence of continuous functions (ψk)∞k=1 in [0�1] such that (a)ψk+1 −
ψk is concave, and (b) there exists some strictly concaveψ0 such thatψk →ψ0 in the topol-
ogy induced by the sup norm. For any belief μ ∈ [0�1], it is the case that aψk(μ) ↑ μ and
bψk(μ) ↓ μ.

Proof. First, we introduce the simpler notation, ak := aψk(μ) and bk := bψk(μ). For
every k ∈ N \ {0}, by definition, there exists some linear function Lk : [0�1] → R, such
that

(�1) Lk(ak)=ψk(ak) and Lk(bk)=ψk(bk), and

(�2) Lk(ν)≥ψk(ν) for all ν ∈ [0�1], with strict inequality for all ν /∈ [ak�bk].
Step 1: We will first prove that ak is increasing and bk is decreasing in k. Obviously,

if ak+1 = bk+1 = μ, then it is trivially the case that ak ≤ μ ≤ bk. So, let ak+1 < μ < bk+1,
and assume—contrary to what we want to prove—that ak+1 < μ ≤ bk < bk+1, implying
that there exists some θ ∈ (0�1) such that bk = θak+1 + (1 − θ)bk+1.

By (�1)–(�2) applied for k+ 1, we obtain

ψk+1(bk)− (
θψk+1(ak+1)+ (1 − θ)ψk+1(bk+1)

) ≤ 0� (B.3)

By concavity of ψk+1 −ψk, we obtain

(ψk+1 −ψk)(bk)− (
θ(ψk+1 −ψk)(ak+1)+ (1 − θ)(ψk+1 −ψk)(bk+1)

) ≥ 0� (B.4)

Combining (B.3) and (B.4) yields

ψk(bk)− (
θψk(ak+1)+ (1 − θ)ψk(bk+1)

) ≤ 0� (B.5)

But then, by (�1)–(�2) applied for k, we obtain

ψk(bk)− (
θψk(ak+1)+ (1 − θ)ψk(bk+1)

)
> 0�

which contradicts (B.5). Hence, bk is decreasing, and likewise we show that ak is
increasing.

Step 2: For each k ∈N \ {0}, define

�k :=ψk(μ)− (
θkψk(ak)+ (1 − θk)ψk(bk)

)
�

where μ = θkak + (1 − θk)bk, also noticing that �k ≤ 0 for every k ∈ N \ {0} (by (�1)–
(�2)). Observe that�k is increasing in k:

�k ≤ ψk(μ)− (
θk+1ψk(ak+1)+ (1 − θk+1)ψk(bk+1)

)
(B.6)

≤ ψk+1(μ)− (
θk+1ψk+1(ak+1)+ (1 − θk+1)ψk+1(bk+1)

)
(B.7)

=�k+1�

where (B.6) follows from [ak+1� bk+1] ⊆ [ak�bk] (Step 1) combined with (�1)–(�2), while
(B.7) follows from ψk+1 −ψk being concave.
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Step 3: Since both sequences (ak)∞k=1 and (bk)
∞
k=1 are monotonic in [0�1], they

converge to the respective limits ak ↑ a∗
0 and bk ↓ b∗

0. Assume—contrary to what we
want to prove—that a∗

0 < b∗
0. Without loss of generality let μ ∈ (a∗

0� b
∗
0). Then, by

ak ≤ a∗
0 < b

∗
0 ≤ bk (Step 1), we obtain

�k ≥ψk(μ)− (
θ∗

0ψk
(
a∗

0
) + (

1 − θ∗
0
)
ψk

(
b∗

0
))
� (B.8)

where μ= θ∗
0a

∗
0 + (1 − θ∗

0)b
∗
0. Then it is the case that

0 ≥ lim
k→∞

�k (B.9)

≥ ψ0(μ)− (
θ∗

0ψ0
(
a∗

0
) + (

1 − θ∗
0
)
ψ0

(
b∗

0
))

(B.10)

> 0 (B.11)

with (B.9) following from �k ≤ 0 combined with the fact that the limit exists (Step 2),
(B.10) follows from (B.8) combined with ψk → ψ0, while (B.11) follows from strict con-
cavity of ψ0. This obviously contradicts ψ0 being strictly concave, thus completing the
proof.

Proof of Theorem 2. Step 1: Fix a strictly decreasing sequence (λt)t∈N in (0�1) such
that λt ↓ 0, and for each t ∈ N define the scoring rule φt := λtφ. Notice that since φ is
ε̃-proper, φt is also ε̃-proper for every t ∈N. Fix arbitrary ε > ε̃ andK ∈ K, and define

TK := min{t ∈ N :φt is ε-robust givenK}�
Let us first prove that TK is well-defined. In particular, we will show that there exists
some T ∈N such that φt is ε-robust givenK for all t > T .

For each t ∈ N and each μ ∈ [0�1], define [at(μ)�bt(μ)] := Jψt (μ) as in (3). Take ε∗ :=
ε − ε̃, and consider some N ∈ N such that 1/N < ε∗. Then, by Lemma B.2, for every
n ∈ {0� � � � �N − 1}, there exists some tn ∈N such that

bt

(
n

N

)
< at

(
n+ 1
N

)

for all t > tn. Then define T ∗ := max{tn|n ∈ {0� � � � �N − 1}}, and observe that

bt(μ)− at(μ) < 1
N

for all t > T ∗ and all μ ∈ [0�1]. The latter implies that

μ− ε∗ < at(μ)≤ bt(μ) < μ+ ε∗� (B.12)

By definition, if π ∈ arg maxρ∈�(μ) Vφt (ρ) and ν ∈ supp(π), then

bt(μ)≤ ν ≤ at(μ)�
Moreover, since φt is ε̃-proper, it is the case that

bt(μ)− ε̃≤ ν− ε̃≤ ν+ ε̃≤ at(μ)+ ε̃� (B.13)



Theoretical Economics 15 (2020) Robust scoring rules 983

Hence, by combining (B.12) with (B.13), we obtain Iφt (ν) ⊆ Bε(μ), implying that φt is
ε-robust for every t > T ∗ givenK, as required.

Step 2: For each t ∈N� define

Kt := {K ∈ K : TK ≤ t}�
trivially noticing that Kt ⊆ Kt+1. Moreover, since TK exists for every K ∈ K (by Step 1), it
is obviously the case that Kt ↑ K. Therefore, by Billingsley (1995, Theorem 2.1), we obtain
P(Kt ) ↑ p, implying that for every δ > 1 −p there is some Tδ ∈N such that P(Kt )≥ 1 − δ
for all t ≥ Tδ, thus completing the proof.

Appendix C: Proofs of Section 6

Proof of Proposition 1. Sufficiency. Let C be posterior separable. Then it is obvi-
ous that C(μ̂)= 0 for every μ ∈ [0�1], thus proving (C1). By strict concavity of K, it fol-
lows that C(π)=K(μ)− 〈K�π〉> 0 for every π ∈ �̂(μ) and every μ ∈ [0�1], thus proving
(C2). For an arbitrary π ∈�(μ),

C(π)+Eπ
(
C ◦π∗) = K(μ)− 〈K�π〉 +Eπ

(
K − 〈

K�π∗〉)
= K(μ)− 〈K�π〉 + 〈K�π〉 − 〈

K�π∗
μ

〉
= C

(
π∗
μ

)
�

with the first and the third equation following from posterior-separability, and the sec-
ond one following from the linearity of the expectation (Eπ) and the inner product
(〈K� ·〉). Hence, (C3) is also proven.

Necessity. Assume that C satisfies (C1)–(C3), and let K : [0�1] → R be the cost
of learning the state with certainty, i.e., K(μ) := C(π∗

μ) for each μ ∈ [0�1]. Now, for an
arbitrary π ∈�(μ),

C(π) = C
(
π∗
μ

) −Eπ
(
C ◦π∗)

= K(μ)− 〈K�π〉� (C.1)

with the first equation following directly from rearranging (C3), and the second one fol-
lowing from the definition of K. Hence, it suffices to prove that K is strictly concave.
Take arbitrary 0 ≤ μ1 < μ2 ≤ 1 and θ ∈ (0�1), and let π0 ∈ �̂(θμ1 + (1 − θ)μ2) be the
attention strategy that assigns probability θ to μ1 and probability 1 − θ to μ2. Then

K
(
θμ1 + (1 − θ)μ2

) = C(π0)+ θK(μ1)+ (1 − θ)K(μ2)

> θK(μ1)+ (1 − θ)K(μ2)�

with the equation above following from (C.1), and the inequality following from (C2).
Hence,K is strictly concave, thus completing the proof.

Proof of Proposition 2. (C4) Take π�ρ ∈ �(μ) such that π � ρ. Then, by definition
since −K is convex, we obtain −〈K�π〉 ≥ −〈K�ρ〉. The latter implies K(μ) − 〈K�π〉 ≥
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K(μ) − 〈K�ρ〉 and, therefore, by posterior-separability, C(π) ≥ C(ρ), which completes
the proof.

(C5) Take π�ρ ∈�(μ) and λ ∈ (0�1). Then we obtain

C
(
λπ + (1 − λ)ρ) = K(μ)− 〈

K�λπ + (1 − λ)ρ〉
= K(μ)− λ〈K�π〉 − (1 − λ)〈K�ρ〉
= λC(π)+ (1 − λ)C(ρ)�

implying an even stronger result, i.e., C is linear in �(μ).

Proof of Proposition 4. Define [aK(μ)�bK(μ)] as the largest interval of μwhereK is
linear. Then fix an arbitrary ε > ε̂K and a strictly decreasing sequence (λt)t∈N in (0�1)
such that λt ↓ 0, and for each t ∈ N define the scoring rule φt := λtφ. Notice that since φ
is proper, φt is also proper for every t ∈ N. Define [at(μ)�bt(μ)] := Jψt (μ) like in (3), and
observe that φt is ε-robust if

[
at(μ)�bt(μ)

] ⊆ [
aK(μ)− ε�bK(μ)+ ε] (C.2)

for all μ ∈ (0�1).
Note that the sequence of continuous functions (φt)∞t=1 satisfies (a)ψt+1 −ψt is con-

cave, and (b) there exists some weakly concave ψ0 such that ψt →ψ0 in the topology in-
duced by the sup norm. Then, for any beliefμ ∈ [0�1] it is the case that at(μ) ↑ aK(μ) and
bt(μ) ↓ bK(μ). The proof follows proceeds exactly the same as the one of Lemma B.2. Fi-
nally, similar to the proof of Theorem 2, we obtain that there exists some t ∈N satisfying
(C.2) for every μ ∈ (0�1), thus completing the proof.
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