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Network structure and naive sequential learning

Krishna Dasaratha
Department of Economics, Harvard University

Kevin He
Division of Humanities and Social Sciences, California Institute of Technology and Department of

Economics, University of Pennsylvania

We study a sequential-learning model featuring a network of naive agents with
Gaussian information structures. Agents apply a heuristic rule to aggregate pre-
decessors’ actions. They weigh these actions according the strengths of their so-
cial connections to different predecessors. We show this rule arises endogenously
when agents wrongly believe others act solely on private information and thus
neglect redundancies among observations. We provide a simple linear formula
expressing agents’ actions in terms of network paths and use this formula to char-
acterize the set of networks where naive agents eventually learn correctly. This
characterization implies that, on all networks where later agents observe more
than one neighbor, there exist disproportionately influential early agents who can
cause herding on incorrect actions. Going beyond existing social-learning results,
we compute the probability of such mislearning exactly. This allows us to compare
likelihoods of incorrect herding, and hence expected welfare losses, across net-
work structures. The probability of mislearning increases when link densities are
higher and when networks are more integrated. In partially segregated networks,
divergent early signals can lead to persistent disagreement between groups.

Keywords. Network structure, sequential social learning, naive inference, mis-
learning, disagreeement.

JEL classification. D85, D83, D90.

1. Introduction

Consider an environment with a sequence of agents facing the same decision problem
in turn, where each agent considers both her private information and the behavior of
those who came before her in reaching a decision. When consumers choose between
rival products, for instance, their decisions are often informed by the choices of early
customers. When doctors decide on a treatment for their patients, they consult best
practices established by other clinicians who came before them. Additionally, when a
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new theory or rumor is introduced into a society, individuals are swayed by the discus-
sions and opinions of those who have already taken a clear stance on the new idea.

A key feature of these examples is that agents observe only the behavior of a cer-
tain subset of their predecessors. For example, a consumer may know about her friends’
recent purchases, but not the product choices of anyone outside her social circle. In
general, each sequential social-learning problem has an observation network that de-
termines which predecessors are observable to each agent. Observation networks asso-
ciated with different learning problems may vary in density, extent of segregation, and
other structural properties. Hence, our central research question: how does the struc-
ture of the observation network affect the probability of correct social learning in the
long run?

To answer this question, our model must capture key behavioral patterns in how
individuals process social information in these learning settings. Empirical research
on social learning suggests that humans often exhibit inferential naiveté, failing to un-
derstand that their predecessors’ actions reflect a combination of private information
and the inference those predecessors have drawn from the behavior of still others (e.g.,
Chandrasekhar et al. 2020, Eyster et al. 2015). Returning to the examples, a consumer
may mistake a herd on a product for evidence that everyone has positive private infor-
mation about the product’s quality. In an online community, a few early opinion-makers
can make a rumor go viral, due to people not thinking through how the vast majority of
a viral story’s proponents are just following the herd and possess no private information
about the rumor’s veracity.

The present study examines the effect of the observation network on the extent of
learning, in a setting where players suffer from inferential naiveté. We analyze the the-
oretical implications of a tractable log-linear learning rule that aggregates observations
in a manner related to the DeGroot heuristic. Agents who fail to account for correlations
in their observations (as in Eyster and Rabin 2010) choose actions according to this log-
linear rule. We also introduce weighted networks and a weighted version of log-linear
behavior, where agents place different weights on different neighbors’ actions. We show
that such decision weights arise when agents additionally misperceive the precisions of
predecessors’ signals according to the strengths of their links to said predecessors.

When combined with a Gaussian informational environment, our weighted log-
linear learning rule lets us compute naive agents’ exact probability of taking the correct
action (“learning accuracy”) on arbitrary weighted networks. In contrast, the existing lit-
erature on social learning has focused on whether long-run learning outcome exhibits
certain properties (e.g., convergence to dogmatic beliefs in the wrong state) with posi-
tive probability, but not on how these probabilities vary across environments. In settings
where learning is imperfect (i.e., society does not almost surely learn the correct state in
the long run), we obtain a richer characterization of the learning outcome and compute
comparative statics of learning accuracy with respect to network structures.

Under our weighted log-linear learning rule, actions take a simple form: given a
continuous action space and a binary state space, we can express each agent’s action
as a log-linear function of her predecessors’ private signal realizations with coefficients
depending on the weighted network structure. We exploit this expression to develop
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a necessary and sufficient condition for society to learn completely: no agent has too
much “influence.” Imperfect learning is the leading case: some agent in the network
must have disproportionate influence whenever all but finitely many people observe
more than one neighbor. Since this condition applies to a very broad class of networks,
our analysis focuses on comparing differentially inefficient learning outcomes across
networks. The detailed comparative statics we obtain from this approach are crucial:
imperfect learning implies a wide range of welfare losses on different networks.

Introducing naiveté generates predictions matching empirical observations in sev-
eral domains where the rational model’s implications are unclear or counterfactual.
We prove that increasing network density leads to more inaccurate social-learning out-
comes in the long run. This prediction is supported by the experimental results in our
companion paper (Dasaratha and He 2019), where we find human subjects’ accuracy
gain from social learning is twice as large on sparse networks compared to dense net-
works. As another example, disagreement among different communities is common in
practice. In the domain of product adoption, respective subcommunities frequently in-
sist upon the superiority of their preferred products. We prove that if agents’ actions
only coarsely reflect their beliefs and society is partially segregated, then two social sub-
groups can disagree forever.1 Because of the limited information conveyed by actions,
disagreement can persist even when agents observe the actions of unboundedly many
individuals from another group. This presents a sharp contrast with Bayesian social-
learning models (and other leading learning models such as DeGroot learning), where
asymptotic agreement is a robust prediction.

1.1 Related literature

1.1.1 Effect of network structure on learning Much of the literature on how network
structure matters for learning outcomes has focused on networked agents repeatedly
guessing a state while learning from the same set of neighbors each period (e.g., Bala
and Goyal 1998).

The leading behavioral model here is the DeGroot heuristic, which forms a belief in
each period by averaging the beliefs of neighbors in the previous period. A key predic-
tion of DeGroot learning is that society converges to a long-run consensus (DeMarzo
et al. 2003), which will be correct in large networks as long as the network is not too
unbalanced (Golub and Jackson 2010). Much of the analysis focuses on how network
structure (e.g., homophily) matters for the speed of convergence to correct consensus
beliefs (Golub and Jackson 2012). We find that in a sequential setting, natural changes
in network structure matter for asymptotic accuracy, not only for speed of learning.
Changing network density, which has no effect on DeGroot learning in large networks,
can substantially alter the probability that a society learns correctly. One intuition for
this difference is that DeGroot agents assign weights adding up to 1 to their neighbors,
but agents in our setting have increasing out-degrees with increasing network density
and therefore can overweight their social information. Homophily also matters for this
probability and even for whether consensus is ever reached.

1Segregation is extensively documented in social networks (see McPherson et al. 2001 for a survey).



418 Dasaratha and He Theoretical Economics 15 (2020)

While DeGroot proposes the averaging rule as an ad hoc heuristic, several re-
cent papers have developed behavioral microfoundations for learning in the repeated-
interaction setting (Molavi et al. 2018, Mueller-Frank and Neri 2019, Levy and Razin
2018). These models closely resemble ours at the level of individual behavior, but their
predictions about society’s long-run beliefs are more in line with DeGroot. As such,
changes in network structure again have a limited scope for affecting learning outcomes
in this literature.

1.1.2 Sequential social learning We consider the same environment as the extensive
literature on sequential social learning beginning with Banerjee (1992) and Bikhchan-
dani et al. (1992). Acemoglu et al. (2011) and Lobel and Sadler (2015) characterize net-
work features that lead to correct asymptotic learning for Bayesians who move sequen-
tially. By providing a thorough understanding of rational learning in sequential settings,
this literature provides a valuable benchmark as we study naive learning. We find that
among network structures where Bayesian agents learn asymptotically, there is large
variation in the probability of mislearning for naive agents.

Several authors look at sequential behavioral learning on a particular network struc-
ture, usually the complete network (Eyster and Rabin 2010, Bohren 2016, Bohren and
Hauser 2018). We characterize several ways in which the choice of network structure
matters for the distribution of long-run outcomes. Eyster and Rabin (2014) exhibit a gen-
eral class of social-learning rules, which includes the weighted log-linear rule we study
for certain values of the weights, where mislearning occurs with positive probability. We
go beyond this general result by deriving expressions for the exact probabilities of mis-
learning on different networks, whose associated welfare losses cannot be compared
using the binary classification of Eyster and Rabin (2014).

2. Model

2.1 Sequential social learning on a weighted network

There are two possible states of the world, ω ∈ {0�1}, both equally likely. There is an
infinite sequence of agents indexed by i ∈ N. Agents move in order, each acting once.

On her turn, agent i observes a private signal si ∈R. Private signals (si) are Gaussian
and independent and identically distributed (i.i.d.) given the state. When ω = 1, we
have si ∼ N (1�σ2) for some conditional variance σ2 > 0. When ω = 0, we have si ∼
N (−1�σ2).

In addition to her private signal, agent i also observes the actions of previous agents.
Then i chooses an action ai ∈ [0�1]. In our microfoundation for Definition 1, agent i
chooses ai to maximize the expectation of

ui(ai�ω) := −(ai −ω)2

given her belief about ω, which we describe later. So her chosen action corresponds to
the probability she assigns to the event {ω= 1}.

We find it convenient to work with the following change of variables.
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Notation 1. We have s̃i := ln(P[ω=1|si]
P[ω=0|si]) and ãi := ln( ai

1−ai ).

In words, s̃i is the log-likelihood ratio of the events {ω = 1} and {ω = 0} given sig-
nal si, while it is easy to show that ãi is the log-likelihood ratio of {ω = 1} and {ω = 0}
corresponding to action ai. That is to say, if ai is optimal given i’s beliefs, then ãi is the
log-likelihood ratio of {ω= 1} and {ω= 0} according to i’s beliefs. Note that the transfor-
mations from si to s̃i and from ai to ãi are bijective, so no information is lost when we
relabel variables.

Agents are linked to all of their predecessors on a weighted network, with a lower-
triangular adjacency matrix M where all diagonal entries are equal to 0. For i > j, the
weight of the link from i to j is given by Mi�j ∈ [0�1]. The weights of the edges deter-
mine the relative importance agents place on others’ actions in forming their beliefs. In
Section 4, we derive comparative statics with respect to the network structure. Because
studying continuous changes in the network is more tractable than discrete changes, we
consider a model that allows interior network weights.

Throughout, we study naive agents who choose actions equal to a weighted sum of
their observations according to the following log-linear updating rule.

Definition 1. Agents use the weighted log-linear rule if each agent i plays

ãi = s̃i +
∑
j<i

Mi�jãj�

In words, each agent i’s log action is a weighted sum of her predecessors’ log ac-
tions and her own log signal. The networkM exogenously determines the relative influ-
ences of different predecessors’ behavior on i’s play, with j’s influence proportional to
the strength of i’s social connection to her. By contrast, a society of rational agents would
put endogenous weights on others’ actions that are not simply proportional to strengths
of the network links between them. For example, if agents only observe the actions of
linked neighbors, rational agents would play the unique perfect Bayesian equilibrium
of the social-learning game, in which case some equilibrium decision weights may be
negative.2

Remark 1. The formula in Definition 1 resembles the DeGroot updating rule. A key dis-
tinction is that we allow for agents to have any out-degree, while the DeGroot heuristic
requires all agents’ weights sum to 1. In an unweighted network, any agent with multiple
observations has an out-degree greater than 1. This distinction is not just a normaliza-
tion, but is, in fact, the source of redundancy under naive inference.

2.2 Microfoundation for weighted log-linear rule

In this subsection, we provide a psychological microfoundation for the weighted log-
linear rule from Definition 1. We first show that on unweighted networks (i.e., when

2We omit the proof that actions are log linear at the perfect Bayesian equilibrium. This can be shown by
induction, and the key step is a calculation similar to Lemma 3.
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each Mi�j is either 0 or 1), this rule follows from a primitive assumption about agents’
inference.

A growing body of recent evidence in psychology and economics shows that peo-
ple learning from peers are often not fully correct in their treatment of social structure
(Chandrasekhar et al. 2020, Enke and Zimmermann 2017). Instead of calculating the
optimal Bayesian behavior that fully takes into account all they know about the network
and signal structure, agents often apply heuristic simplifications to their environment.
When networks are complicated and/or uncertain, determining Bayesian behavior can
be intractable (Hązła et al. forthcoming) and these heuristic learning rules become es-
pecially prevalent (Eyster et al. 2015). Motivated by this observation, we consider the
following behavioral assumption.

Assumption 1. Each agent wrongly believes that each predecessor chooses an action to
maximize her expected payoff based only on her private signal and not on her observation
of other agents.

This inferential mistake can be equivalently described as agent i misperceiving
Mj�k = 0 for all k < j < i. Under this interpretation, i acts as if her neighbors do not
take into account their own predecessors’ actions.

In the sequential-learning literature, Assumption 1 was first studied on the complete
network by Eyster and Rabin (2010), who coined the term “best-response trailing naive
inference” (BRTNI) to describe this behavior. The laboratory games in Eyster et al. (2015)
and Mueller-Frank and Neri (2015) find evidence for this behavioral assumption.

Agents who make this inferential mistake use the log-linear rule on unweighted net-
works, providing a psychological microfoundation for the behavior we study.

Lemma 1. On an unweighted network where agents observe only the actions of linked
predecessors, Assumption 1 implies agents use the weighted log-linear rule.

Due to the inferential mistake, agent i wrongly infers that j’s log action equals her
log signal. (This inference is possible since the continuum action set is rich enough
to exactly reveal beliefs of predecessors.) The action ai is the product of the relevant
likelihoods because an agent satisfying Assumption 1 thinks her observations are based
on independent information, and therefore ãi is the sum of the corresponding log-
likelihood ratios.

Remark 2. Inference under Assumption 1 is cognitively simple in that it does not rely on
agents’ knowledge about the network (beyond their own neighborhoods) or even knowl-
edge about the order in which their predecessors moved. Our model therefore applies
even to complex environments with random arrival of agents. In such environments, As-
sumption 1 may be more realistic than assuming full knowledge about the observation
structure and move order.

Next we give a microfoundation for the same behavior on weighted networks. We
provide an interpretation of network weights that formalizes the idea that agents place
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more trust in neighbors with whom their connections are stronger: we suppose that
agents underestimate the precision of others’ private signals in a way that depends on
Mi�j .

Assumption 2. Given network weight Mi�j ∈ [0�1], agent i believes j’s private signal has
conditional variance σ2/Mi�j given the state.

Weizsäcker’s (2010) meta-analysis of sequential social-learning experiments finds
that laboratory subjects underuse social information relative to their own private sig-
nals. Our Assumption 2 is consistent with this evidence, but also allows for different de-
grees of underuse for different predecessors. Weaker network connections formally cor-
respond to predecessors whose signals are believed to be less informative about the state
or less relevant. Conversely, if we know that i acts as if j’s signal has conditional variance
Vi�j ≥ σ2, then we can construct a weighted network with weightsMi�j = σ2/Vi�j .

The next result shows the combination of the inferential mistake about others’ social
information and the underestimation of others’ signal precisions (Assumptions 1 and 2)
provides a microfoundation for the weighted log-linear rule.

Lemma 2. Agents who satisfy Assumptions 1 and 2 use the weighted log-linear rule.

By a property of the Gaussian distribution, a log-transformed Gaussian variable is
also Gaussian, which is the key to showing the above lemma.

2.3 Complete learning and mislearning

We define what it means for society to learn completely in terms of convergence of ac-
tions.

Definition 2. Society learns completely if (an) converges to ω in probability.

Since an reflects agent n’s belief in {ω= 1} in our microfoundation of weighted log-
linear inference, this definition also describes a property about the convergence of be-
liefs.3 In a setting where society learns completely, agent n becomes very likely to believe
strongly in the true state of the world as n grows large.

One failure of complete learning is when society becomes fully convinced of the
wrong state of the world with positive probability, an event we call mislearning.

Definition 3. Society mislearns when limn→∞ an = 0 but ω= 1 or when limn→∞ an = 1
but ω= 0.

Remark 3. Mislearning is not the only obstacle to complete learning. Consider a net-
work where, for i≥ 3, we haveMi�1 =Mi�2 = 1 andMi�j = 0 for all j �= 1�2. Clearly this so-
ciety neither learns completely nor mislearns with positive probability. Instead, agents’
beliefs almost surely do not converge.

3In general, we treat an as the belief of a naive agent who plays ãn.
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3. Social influence and learning

In this section, we develop a necessary and sufficient condition on the network for soci-
ety to mislearn. We argue that this condition is satisfied by a large class of networks of
economic relevance.

3.1 Path-counting interpretation of actions

We now show that with naive agents, actions have a simple (log-) linear expression in
terms of paths in the network. Unlike the expression in Definition 1, this next result
expresses actions in terms of only signal realizations and the network structure, making
no reference to predecessors’ actions.

LetM[n] refer to the n× n upper-left submatrix ofM .

Proposition 1. Consider any weighted network M . For each n, the actions of the first n
agents are determined by ⎛

⎜⎝
ã1
���

ãn

⎞
⎟⎠ = (

I −M[n])−1 ·
⎛
⎜⎝
s̃1
���

s̃n

⎞
⎟⎠ �

So ãi is a linear combination of (s̃j)ij=1, with coefficients given by the number of weighted
paths from i to j in the network with adjacency matrixM .

From a combinatorial perspective, the formula says that the influence of j’s signal
on i’s action depends on the number of weighted paths from i to j. In unweighted
networks where all entries in M are 1 or 0, this is just the number of paths. In gen-
eral, “weighted paths” means the path passing through agents i0� � � � � iK is counted with
weight

∏K−1
k=0 Mik�ik+1 .

Our Proposition 1 resembles a formula for agents’ actions in Levy and Razin (2018).
In a setting of repeated interaction with a fixed set of neighbors instead of sequential so-
cial learning, Levy and Razin (2018) also find that the influence of i’s private information
on j’s period t posterior belief depends on the number of length-t paths from i to j in
the network.

3.2 Condition for complete learning

We now use the representation result of Proposition 1 to study which networks lead to
mislearning by naive agents.

We define below a notion of network influence for the sequential social-learning en-
vironment, which plays a central role in determining whether society learns completely
in the long run.

Definition 4. Let bi�j := (I −M[i])−1
i�j be the number of weighted paths from i to j in

networkM .
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Because of Proposition 1, these path counts are important to our analysis.

Definition 5. For n > i, the influence of i on n is I(i→ n) := bn�i/∑n
j=1 bn�j .

That is to say, the influence of i on n is the fraction of paths from n that end at i.
A different definition of influence appears in Golub and Jackson (2010), who study

DeGroot learning in a network where agents act simultaneously each period. For them,
the influence of an agent i is determined by the unit left eigenvector of the belief-
updating matrix, which is proportional to i’s degree in an undirected network with sym-
metric weights. Both definitions are related to the proportion of walks terminating at an
agent, but because of the asymmetry between earlier and later agents in the sequential
setting, the distribution of walks tends to be more unbalanced.

For Proposition 2 only, we consider networks that satisfy the following connected-
ness condition.

Definition 6. Network M satisfies the connectedness condition if there is an integer N
and constant C > 0 such that for all i > N , there exists j < N with bi�j ≥ C.

Intuitively, this says that all sufficiently late agents are indirectly influenced by some
early agent. An unweighted network satisfies the connectedness condition if and only if
there are only finitely many agents who have no neighbors. If such a network violates the
connectedness condition, then clearly the infinitely many agents without neighbors will
prevent society from learning completely. All weighted networks studied in Section 4
also satisfy the connectedness condition.

Proposition 2. Consider any weighted network satisfying the connectedness condition.
Society learns completely if and only if limn→∞ I(i→ n)= 0 for all i.

Proposition 2 says that beliefs always converge to the truth if and only if no agent
has undue influence in the network. This is a recurring insight in research on social
learning on networks, beginning with the “royal family” example and related results in
Bala and Goyal (1998). Other examples where excessive influence hinders social learn-
ing in networks include Golub and Jackson (2010), Acemoglu et al. (2010), and Mossel
et al. (2015). The main contribution of Proposition 2 is to identify the relevant mea-
sure of influence in our sequential-learning setting with naive agents. In our setting,
unlike on large unordered networks as in Golub and Jackson (2010), the ordering of
agents creates an asymmetry that prevents society from learning completely on most
natural networks. Early movers influence many successors, an asymmetry unique to
the sequential-learning setting. For instance, the results of Golub and Jackson (2010)
imply that when agents move simultaneously and every agent weights every other agent
equally, society converges to complete learning as the size of the network grows. But
as we show in Section 4.2, society does not learn completely in the uniform weighted
network where each agent is connected to every predecessor with the same weight.

The idea behind the proof is that if there were some i and ε > 0 such that I(i→ n) > ε

for infinitely many n, then i exerts at least ε influence on all these future players. Since s̃i
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is unbounded, there is a rare but positive probability event where i gets such a strong but
wrong private signal that any future player who puts εweight on s̃i and (1 − ε)weight on
other signals would come to believe in the wrong state of the world with high probability.
But this would mean infinitely many players have a high probability of believing in the
wrong state of the world, so society fails to learn completely. To gain an intuition for the
converse, first observe that ãn = ‖	bn‖1

∑n
i=1 I(i→ n)s̃i. In the event thatω= 1, the mean

of ãn converges to infinity with n. So, provided the variance of ãn is small relative to its
mean, ãn will converge to infinity in probability and society will learn completely. Since
the log signals (s̃i) are i.i.d., the variance of ãn is small relative to its mean precisely when
all of the weights I(i→ n) in the summand are small; this is guaranteed by the condition
on influence limn→∞ I(i→ n)= 0.

We now argue, both analytically and through an example, that the condition for
complete learning in Proposition 2 is violated by a large class of weighted networks. The
out-degree of an agent i is

∑
j<i Mi�j , interpreted as the total number of neighbors who

directly affect i’s play. We first show that on any network where all but finitely many
agents have out-degree at least 1 + ε for some ε > 0, complete learning fails.

Proposition 3. Suppose there exists ε > 0 so that
∑
j<i Mi�j ≥ 1 + ε for all except finitely

many agents i. Then society does not learn completely.

The proof establishes that such a network satisfies the connectedness condition,
but the influence of at least one of the early agents does not converge to 0, so com-
plete learning fails by Proposition 2. The intuition is that if an influential later agent
has an out-degree greater than 1, then the earlier agents whose action indirectly affects
her must have even more influence. We construct a correspondence between weighted
paths ending at early agents and weighted paths ending at later agents.

The condition in Proposition 3 is satisfied by all of the weighted networks studied
in Section 4, which all feature mislearning with positive probability. The network in
Remark 3 also satisfies the condition in Proposition 3 and almost surely leads to non-
convergence of beliefs.

As an additional example, consider a network where network weights decay expo-
nentially in distance, so Mi�j = δi−j for some δ ≥ 0. When the rate of decay is strictly
above the threshold of 1

2 , late enough agents have out-degree bounded away from 1, so
society does not learn completely by Proposition 3. When the rate of decay is strictly
below the same threshold, we can show the connectedness condition fails and agents’
beliefs do not converge to ω due to lack of information. At the threshold value of δ= 1

2 ,
private signals of all predecessors are given equal weight, so the law of large numbers im-
plies complete learning. This highlights the fragility of complete learning in our model.

Example 1. SupposeMi�j = δi−j for some δ≥ 0. Society learns completely if and only if
δ= 1

2 . ♦

Details of the arguments are provided in the Appendix.
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4. Probability of mislearning and network structure

In this section, we compare the probability of mislearning in networks where complete
learning fails by Proposition 2. To do so, we first derive a formula for the probability of
mislearning as a function of the observation network. Then applying this expression to
several canonical network structures, we compute comparative statics of this probability
with respect to network parameters.

The first network structure we consider assigns the same weight to each link. Next,
we study a homophilic network structure with agents split into two groups, allowing
different weights on links within groups and between groups.

4.1 Probability of mislearning

Due to the Gaussian signal structure, we can give explicit expressions for the distribu-
tions of agent actions in each period. We show that the probability that agent n is correct
about the state is related to the ratio of �1 norm to �2 norm of the vector of weighted path
counts to n’s predecessors, 	bn := (bn�1� � � � � bn�n). The ratio ‖	bn‖1/‖	bn‖2 can be viewed as
a measure of distributional equality for the vector of weights 	bn.4 Indeed, among posi-
tive n-dimensional vectors 	bn with ‖	bn‖1 = 1, the �1/�2 ratio is minimized by the vector
	bn = (1�0� � � � �0) and maximized by the vector 	bn = ( 1

n �
1
n � � � � �

1
n).

We can express in terms of the network structure the ex ante probability that agent
n puts more confidence in the state being ω = 1 when this is, in fact, true. This gives
the key result that later lets us compare the probabilities of mislearning on different
networks.

Proposition 4. On any network, the probability that agent n thinks the correct state is
more likely than the incorrect one is

P[ãn > 0 |ω= 1] =	
(

1
σ

· ‖	bn‖1

‖	bn‖2

)
�

where	 is the standard Gaussian distribution function.

As ‖	bn‖1
‖	bn‖2

increases, the probability of agent n playing higher actions in stateω= 1 also

increases. In other words, the agent is more likely to be correct about the state when the
vector of path counts is more evenly distributed. This should make intuitive sense as
she is more likely to be correct when her action is the average of many independent
signals with roughly equal weights, and less likely to be correct when her action puts
disproportionally heavy weights on a few signals.

The proof of Proposition 4 first expresses ãn = ∑n
i=1 bn�is̃i using Proposition 1 and

then observes that (si) are distributed i.i.d. N (1�σ2) conditional on ω= 1. This means
(s̃i) are also conditionally i.i.d. Gaussian random variables, since the proof of Lemma 2
establishes that s̃i = 2si/σ2. As a sum of conditionally i.i.d. Gaussian random variables,

4In fact, the ratio of �1 to �2 norm has been used in the applied mathematics literature as a measure of
normalized sparsity.
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the action ãn is itself Gaussian. The result follows from calculating the mean and vari-
ance of this sum.

For the remainder of this section, we study specific weighted networks where the
ratio ‖	bn‖1/‖	bn‖2 can be expressed in terms of interpretable network parameters. Our
basic technique is to count paths on a given network using an appropriate recurrence
relation, and then to apply Proposition 4. This allows us to relate network parameters to
the probability distribution over learning outcomes.

4.2 Uniform weights

The simplest network we consider assigns the same weight q ∈ [0�1] to each feasible
link. By varying the value of q, we can ask how link density affects the probability of
mislearning, which we now define.

Proposition 5. Consider the q-uniform weighted network. When 0 < q ≤ 1, almost
surely agents’ actions an converge to 0 or 1. The probability that society mislearns is

	

(
− 1
σ

·
√
q+ 2
q

)
�

This probability is strictly increasing in q.

The first statement of the proposition tells us that agents eventually agree on the
state of the world and that these beliefs are arbitrarily strong after some time. These
consensus beliefs need not be correct, however. The probability of society converging to
incorrect beliefs is nonzero for all positive q, and increases in q. When the observational
network is more densely connected, society is more likely to be wrong, as in Figure 1.

When the observation network is sparse (i.e., q is low), early agents’ actions convey
a large amount of independent information because they do not influence each other

Figure 1. Probability that society learns correctly (an →ω) on a network where all feasible links
have weight q. See Remark 5 for the discontinuity at q= 0.
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too much. This facilitates later agents’ learning. For high q, early agents’ actions are
highly correlated, so later naive agents cannot recover the true state as easily. A related
intuition compares agents’ beliefs about network structure to the actual network: as q
grows, agents’ beliefs about the network weights chosen by their neighbors differ more
and more from the true weights. For small q, however, underweighting of social informa-
tion partially mitigates the error due to Assumption 1. To complement this theoretical
result, in a companion paper we conduct a sequential-learning experiment to evaluate a
related comparative static (Dasaratha and He 2019). In line with the intuition above, we
find that human subjects indeed exhibit lower long-run accuracy in the learning game
when the density of the observation network increases.

The proof relies on the recurrence relation bn�i = (1 + q)bn−1�i. To see that this re-
currence holds, let 
[n→ i] be the set of all paths from n to i and let 
[(n− 1)→ i] be
the set of all paths from n− 1 to i. For each ψ ∈
[(n− 1)→ i] passing through agents
(n − 1), j1� j2� � � � � i, we associate two paths ψ′�ψ′′ ∈ 
[n→ i], with ψ′ passing through
n� j1� j2� � � � � i, and ψ′′ passing through n, (n − 1), j1� j2� � � � � i. This association exhaus-
tively enumerates all paths in
[n→ i] as we consider allψ ∈
[(n− 1)→ i]. Pathψ′ has
the same weight as ψ since they have the same length, while path ψ′′ has q fraction of
the weight of ψ since it is longer by 1. This shows that the weight of all paths in
[n→ i]
is equal to 1+q times the weight of all paths in
[(n−1)→ i]; hence, bn�i = (1+q)bn−1�i.

Remark 4. The case q = 1 is studied in Eyster and Rabin (2010), who use a slightly dif-
ferent signal structure. In their setting, Eyster and Rabin (2010) show that agents’ beliefs
converge to 0 or 1 almost surely and derive a nonzero lower bound on the probability of
converging to the incorrect belief. By contrast, our result gives the exact probability of
converging to the wrong belief for any 0< q≤ 1, under a Gaussian signal structure.

Remark 5. There is a discontinuity at q= 0. As q approaches 0, the probability of society
eventually learning correctly approaches 1. But when q = 0, each agent uses only her
own private signal, so there is no social learning. This nonconvergence of actions means
that society never learns correctly.

While we have focused on long-run learning accuracy, there is a trade-off between
the speed of convergence and asymptotic accuracy for naive agents. The next proposi-
tion illustrates an extreme form of this trade-off. Start with a uniform-weights network
with any link weight 0< q∗ ≤ 1. Sufficiently sparse uniform-weights networks will have
worse accuracy than the q∗-uniform network for arbitrarily many early agents due to
a lack of information aggregation. However, as implied by Proposition 5, late enough
agents will have higher accuracy on these very sparse networks than on the q∗-uniform
network.

Proposition 6. For any 0 < q∗ ≤ 1 and N ∈ N, there exists some q̄ ∈ (0� q∗) so that
P[ãn > 0 |ω= 1] is strictly larger on the q∗-uniform weights network than the q-uniform
weights network for all 2 ≤ n≤N and q ∈ (0� q̄).
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Figure 2. First four agents in a two-groups network. Odd-numbered agents are in one group
while even-numbered agents are in another group. Solid arrows have weight qs and dashed ar-
rows have weight qd .

4.3 Two groups

We next consider a network with two groups and different weights for links within
groups and between groups. By varying the link weights, we consider how homophily
(i.e., segregation in communication) changes learning outcomes.

Odd-numbered agents are in one group and even-numbered agents are in a sec-
ond group. Each feasible within-group link has weight qs (s for same) and each feasible
between-group link has weight qd (d for different), so that for i > j, the link Mi�j = qs
if i ≡ j (mod 2) and Mi�j = qd otherwise. Figure 2 illustrates the first four agents in a
two-group network.

We denote the probability of mislearning with weights qs and qd as ξ(qs�qd).

Proposition 7. Consider the two-groups network with within-group link weight qs and
across-group link weight qd . When 0 ≤ qs ≤ 1 and 0 < qd ≤ 1, almost surely agents’ ac-
tions an converge to 0 or 1. The partial derivatives of the mislearning probability ξ(qs�qd)
satisfy

∂ξ

∂qd
>
∂ξ

∂qs
> 0�

i.e., the probability is increasing in qs and qd , but increasing qd has a larger effect than
increasing qs .

The first statement again says that agents eventually agree on the state and even-
tually have arbitrarily strong beliefs. The fact that ξ is increasing in qs and qd is an-
other example of higher link density implying more mislearning. The comparison
∂ξ/∂qd > ∂ξ/∂qs tells us that more integrated (i.e., less homophilic) networks are more
likely to herd on the wrong state of the world.

Convergence of beliefs is more subtle with two groups, as we might imagine the two
homophilic groups holding different beliefs asymptotically. This does not happen be-
cause agents have continuous actions that allow them to precisely convey the strength
of their beliefs. As such, eventually one group will develop sufficiently strong beliefs to
convince the other given any arbitrarily weak connection qd > 0 between groups. (In
Section 5, however, we show that disagreement between two homophilic groups is pos-
sible with a coarser action space.)
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To see that convergence must occur, observe that the belief of a later agent n depends
mostly on the number of paths from that agent to early agents (and those agents’ signal
realizations). When n is large, most paths from agent n to an early agent pass between
the two groups many times. So the number of paths does not depend substantially on
agent n’s group. Put another way, when qs � qd > 0 and n is large, agent n has many
more length-1 paths to her own group than to the other group, but roughly the same
total number of paths across all lengths to both groups. Therefore, agent n’s belief does
not depend substantially on whether n is in the odd group or the even group.5

Coleman’s (1958) homophily index equals (qs − qd)/(qs + qd) for this weighted net-
work. To explore how homophily affects mislearning probability while holding fixed
the average degree of each agent, we consider the total derivative d

d�ξ(qs + ��qd − �).
To interpret, we are considering the marginal effect on mislearning of a � increase to
all the within-group link weights, coupled with a � decrease to all the between-groups
link weights. These two perturbations, applied simultaneously, leave each agent with
roughly the same total degree and increases the homophily index by (2�)/(qs + qd). Us-
ing the chain rule and Proposition 7,

d

d�
ξ(qs +��qd −�)= ∂ξ

∂qs
− ∂ξ

∂qd
< 0�

which means increasing the homophily index of the society and fixing average degrees
always decreases the probability of mislearning. Note that this result holds regardless of
whether society is currently homophilic (qs > qd) or heterophilic (qs < qd).

An important insight from the literature about social learning on networks is that
beliefs converge more slowly on more segregated networks (Golub and Jackson 2012). In
our model, faster convergence of beliefs tends to imply a higher probability of incorrect
beliefs. When beliefs converge quickly, agents are putting far too much weight on early
movers, while when beliefs converge more slowly, agents wait for more independent
information. Since agents eventually agree, segregation helps society form strong beliefs
more gradually.

5. Disagreement

In Section 4.3, we saw that even on partially segregated networks, agents eventually
reach a consensus on the state of the world. This agreement relies crucially on the rich-
ness of the action space available to agents, which allows agents to communicate the
strength of their beliefs. In this section, we modify our model so that the action space
is binary and show that the two groups can disagree forever about the state of the world
even when the number of connections across the groups is unbounded.

The contrasting results for the binary-actions model versus the continuum-actions
model echo a similar contrast in the rational-herding literature, where society herds on
the wrong action with positive probability when actions coarsely reflect beliefs (Banerjee

5Each path transitions between the two groups, and eventually the probability of ending in a given group
is approximately independent of the starting group. This is analogous to a Markov chain approaching its
stationary distribution.
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1992, Bikhchandani et al. 1992), but almost surely converges to the correct action when
the action set is rich enough (Lee 1993). Interestingly, while the rational-herding liter-
ature finds that an unboundedly informative signal structure prevents herding on the
wrong action even when actions coarsely reflect beliefs (Smith and Sørensen 2000), we
will show below that even with Gaussian signals, two groups may disagree with positive
probability.

Suppose that the state of the world and the signal structure are the same as in Sec-
tion 2, but agents now choose binary actions ai ∈ {0�1}. Agents still maximize the ex-
pectation of ui(ai�ω) := −(ai − ω)2 given their beliefs about ω, under the psycholog-
ical errors given by Assumptions 1 and 2. This utility function now implies that an
agent chooses the action corresponding to the state of world she believes is more likely.
Agents live on the two-groups network from Section 4.3: for i > j, the link Mi�j = qs
if i ≡ j (mod 2) and Mi�j = qd otherwise. We assume qs > qd > 0, so that agents have
stronger connections with predecessors from their own groups.

Proposition 8. Consider the two-groups network. Suppose qs > qd > 0 and agents play
binary actions. Then there is a positive probability that all odd-numbered agents choose
action 0 while all even-numbered agents choose action 1.

Persistent disagreement is sustained even though agent n has approximately nqd/2
weighted links to agents from the other group (when n is large) taking opposite actions.

Our result extends to two groups of unequal sizes as long as for all later agents, the
total number of weighted links to their own group is larger than the total number of
weighted links to the other group.

We also get the same result on a random-network analog of the two-groups model,
where edges are unweighted and qs is the probability of link formation within groups
while qd is the probability of link formation between groups. Agents observe only the
actions of the predecessors to whom they are linked and wrongly believe all observed
actions derive from private signals.6 By contrast, with rational agents, Theorem 2 of
Acemoglu et al. (2011) implies the groups almost surely agree asymptotically on this
random network.

This result adds a new mechanism to the literature on disagreement in connected
societies (Acemoglu et al. 2013, 2016, Sethi and Yildiz 2012). Bohren and Hauser (2018)
also study disagreement in a binary sequential-learning setting with behavioral agents,
but their results concern disagreement on a complete network among agents with dif-
ferent types of behavioral biases. By contrast, our Proposition 8 says that when all agents
use the same naive heuristic, they can still disagree by virtue of belonging to two differ-
ent homophilic social groups, even when there are many connections between those
groups.

6Details of the statement and a proof are available in a previous draft at https://arxiv.org/pdf/1703.
02105v5.pdf.

https://arxiv.org/pdf/1703.02105v5.pdf
https://arxiv.org/pdf/1703.02105v5.pdf
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6. Conclusion

In this paper, we have explored the influence of network structures on learning out-
comes when agents move sequentially and use a log-linear learning rule due to inferen-
tial naiveté. We have compared long-run welfare across networks by deriving the exact
probabilities of mislearning on arbitrary networks.

We have studied the simplest possible social-learning environment to focus on the
effect of network structure, but several extensions are straightforward. Analogs of our
general results hold for finite state spaces with more than two elements, where we can
define a log-likelihood ratio for each pair of states. We can also make the order of moves
random and unknown, in which case naive behavior conditional on a given turn order
is the same as when that order is certain.

We prove our comparative statics results for weighted networks as they are analyt-
ically more tractable than random graphs. For each weighted network with weights in
[0�1], there corresponds an analogous (unweighted) random graph model where the
i → j link exists with probability Mi�j . In numerical simulations, all comparative stat-
ics results proved for weighted networks in Section 4 continue to hold in the analogous
random network models. The major obstacle to extending our proofs is that because
our networks are directed and acyclic, the relevant adjacency matrices have no nonzero
eigenvalues. As a consequence, most techniques from spectral random graph theory do
not apply (but perhaps other methods would).

Appendix: Proofs

A.1 Proof of Lemma 1

The log-likelihood ratio of state ω= 1 and state ω= 0 conditional on the signal realiza-
tions of i’s linked predecessors is

ln
(
P
[
ω= 1|si� (sj)j:Mi�j=1

]
P
[
ω= 0|si� (sj)j:Mi�j=1

])

= ln
(
P
[
si� (sj)j:Mi�j=1|ω= 1

]
P
[
si� (sj)j:Mi�j=1|ω= 0

])
(two states equally likely)

= ln
(
P[si|ω= 1]
P[si|ω= 0] ·

∏
j:Mi�j=1

P[sj|ω= 1]
P[sj|ω= 0]

)
(by independence)

= ln
(
P[ω= 1|si]
P[ω= 0|si]

)
+

∑
j:Mi�j=1

ln
(
P[ω= 1|sj]
P[ω= 0|sj]

)

= s̃i +
∑

j:Mi�j=1

s̃j

= s̃i +
∑
j<i

Mi�j s̃j �
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Due to Assumption 1, i thinks each predecessor j must have received signal sj such
that s̃j = ãj . When i observes only the play of linked predecessors, her log-likelihood
ratio of state ω = 1 and state ω = 0 given her social observations and private signal is
therefore s̃i + ∑

j<i Mi�jãj . She maximizes her expected payoff by choosing an action
ai corresponding to her belief in state ω = 1, which implies that ãi is equal to this log-
likelihood ratio.

A.2 Proof of Lemma 2

We first establish an auxiliary lemma.

Lemma 3. We have s̃i = 2si/σ2.

Proof. The log-likelihood ratio is

ln
(
P[ω= 1|si]
P[ω= 0|si]

)
= ln

(
P[si|ω= 1]
P[si|ω= 0]

)

= ln
(exp

(−(si − 1)2

2σ2

)

exp
(−(si + 1)2

2σ2

)
)

= −(
s2i − 2si + 1

) + (
s2i + 2si + 1

)
2σ2 = 2si/σ2�

We now turn to the proof of Lemma 2.
Due to Assumptions 1, i thinks that j will choose aj such that ãj = 2sj/σ2 by the result

just established, since j thinks the conditional variance of her signal is σ2. But since i
believes j’s signal has conditional variance σ2/Mi�j by Assumption 2, in i’s view

ln
(
P[ω= 1|sj]
P[ω= 0|sj]

)
= 2sj
σ2/Mi�j

=Mi�jãj�

again applying the result above.
Omitting analogous algebraic arguments as in the proof of Lemma 1,

ln
(
P
[
ω= 1|si� (sj)j<i

]
P
[
ω= 0|si� (sj)j<i

])
= ln

(
P[ω= 1|si]
P[ω= 0|si]

)
+

∑
j<i

ln
(
P[ω= 1|sj]
P[ω= 0|sj]

)

= s̃i +
∑
j<i

Mi�jãj�

So s̃i+∑
j<i Mi�jãj is i’s log-likelihood ratio of stateω= 1 and stateω= 0 given her social

observations and private signal.
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A.3 Proof of Proposition 1

By weighted log-linear inference, for each i we have ãi = s̃i + ∑
j∈Ni Mi�jãj . In vector

notation, we therefore have ⎛
⎜⎝
ã1
���

ãn

⎞
⎟⎠ =

⎛
⎜⎝
s̃1
���

s̃n

⎞
⎟⎠ +M[n] ·

⎛
⎜⎝
ã1
���

ãn

⎞
⎟⎠ �

Algebra then yields the desired expression. Note that (I−M[n]) is invertible because
M[n] is lower triangular with all diagonal entries equal to 0.

To see the path-counting interpretation, write (I − M[n])−1 = ∑∞
k=0M[n]k. Here,

(M[n]k)i�j counts the number of weighted paths of length k from i to j.

A.4 Proof of Proposition 2

Without loss of generality, assume ω = 1. (The case of ω = 0 is exactly analogous and
is omitted.) Note that an converges in probability to 1 if and only if ãn converges in
probability to ∞.

First suppose that limn→∞ I(j → n) �= 0 for some j. Then there exists ε > 0 such that
I(j→ n) > ε for infinitely many n. For each such n, the probability that agent n chooses
an action with ãn < 0 is equal to the probability that

∑n
i=1 I(i→ n)s̃i is negative.

Because s is Gaussian, s̃ has finite variance, so we can find positive constants C and
δ independent of n such that

∑
i �=j I(i→ n)s̃i < C with probability at least δ (for example,

by applying Markov’s inequality to |s̃i|). Then agent n will be wrong if s̃j <−C/ε, which
is a positive probability event since s̃ is unbounded. So the probability that an agent n
such that I(j→ n) > ε chooses ãn < 0 is bounded from below by a positive constant.

For the converse, suppose that limn→∞ I(i → n) = 0 for all i. By the independence
of the log signals s̃i, the log action ãn = ∑n

i=1 I(i→ n)s̃i is a random variable with mean
‖	bn‖1 and standard deviation ‖	bn‖2σ when ω= 1. We now use the connectedness con-
dition to show that ‖	bn‖1/‖	bn‖2 → ∞.

Find N and C ≤ 1 as in the connectedness condition. For each ε > 0, we can choose
Mε such that I(i→ n) < ε whenever i < N and n > Mε by the hypothesis limn→∞ I(i→
n) = 0 applied to the finitely many members i < N . But now for any j ≥ N and any
n >max(j�Mε), concatenating a path from j to nwith a path from i to j gives a path from
i to n whose weight is the product of the weights of the two subpaths. This shows bn�i ≥
bj�i ·bn�j , which implies I(i→ n)≥ I(j→ n) ·bj�i. We have I(j→ n)≤ mini<N I(i→ n)/bj�i,
where bj�i ≥ C for at least one i < N by the connectedness condition. This shows for any
j ∈N and for n >Mε, that we get I(j→ n)≤ ε/C.

We have for all n >Mε,

‖	bn‖2

‖	bn‖1
≤ max

j

√
‖	bn‖1 · bn�j

‖	bn‖1
= max

j<n

√
I(j→ n) <

√
ε/C�

Because ε > 0 is arbitrary, ‖	bn‖1/‖	bn‖2 converges to infinity.
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Let someK > 0 be given. We now show that P[ãn < K|ω= 1] → 0, hence proving that
ãn converges to ∞ in probability. We compute

zn := E[ãn|ω= 1] −K
Std[ãn|ω= 1] =

‖	bn‖1 · 2

σ2

‖	bn‖2 · 2
σ

− K

‖	bn‖2 · 2
σ

�

Since ‖	bn‖1/‖	bn‖2 → ∞, the first term converges to infinity. By the connectedness
condition, ‖	bn‖2 ≥ C for all large enough n, so the second term is bounded. This implies
zn → ∞. By Chebyshev’s inequality, P[ãn < K|ω = 1] ≤ z−2

n . This shows P[ãn < K|ω =
1] → 0.

We note that this shows convergence in probability, but does not characterize the
joint distribution of actions, so these methods do not guarantee almost sure conver-
gence (without further structure on the networks as in Section 4).

A.5 Proof of Proposition 3

By the hypothesis of the proposition, there exists some ε > 0 and N ∈ N so that for all
i > N ,

∑
j<i Mi�j ≥ 1 + ε. Modify the network to set all links originating from any of the

firstN agents to have weight 0, that is,Mi�j = 0 for all i� j ≤N .
We prove by induction that

∑
j≤N bi�j ≥ 1 + ε for all i ≥ N + 1 on the modified net-

work. Consider agentN+1. Since
∑
j<N+1MN+1�j ≥ 1+ε and all of (N+1)’s out-degree

comes from links to agents in position N or earlier,
∑
j≤N bN+1�j ≥ 1 + ε. By induction,

suppose
∑
j≤N bN+k�j ≥ 1 + ε holds for all 1 ≤ k ≤K. A lower bound on

∑
j≤N bN+K+1�j

is

∑
j≤N

MN+K+1�j +
∑

N+1≤i≤N+K
MN+K+1�i ·

( ∑
j′≤N

bi�j′
)

≥
∑
j≤N

MN+K+1�j +
∑

N+1≤i≤N+K
MN+K+1�i · (1 + ε)

≥
∑

j≤N+K
MN+K+1�j

≥ 1 + ε�

where in the first inequality we used the inductive hypothesis and in the last inequality
we used the fact that N + K + 1 has an out-degree of at least 1 + ε. This establishes∑
j≤N bN+K+1�j ≥ 1 + ε and so by induction,

∑
j≤N bN+k�j ≥ 1 + ε for all k≥ 1.

This result holds a fortiori on the original network with higher link weights. By the
pigeonhole principle, the original network satisfies the connectedness condition with
C = 1

N (1 + ε).
Now return to the modified network (so M refers to the possibly modified network

weights). We develop some notation for the rest of the proof and establish an intermedi-
ary lemma. For j < i, let
[i→ j] be the set of all paths from i to j. Let 
̂[i→ [N]] be the
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set of paths from i to some agent k ≤N , such that the path contains no links between
two different agents among the first N . Let 
̂[i → [N] | j] be the subset of such paths
that pass through j.

For a path ψ passing through agents i1� i2� � � � � iL, let W (ψ) := ∏L−1
�=1 Mi�+1�i� denote

its weight and let D(ψ) := ∏L−1
�=1 (

∑
j<i�

Mi��j) denote the product of out-degrees of all
agents on the path except the last one.

Lemma 4. For n >N ,
∑
ψ∈
̂[n→[N]]

W (ψ)
D(ψ) = 1.

Proof. We prove by induction on n. For n = N + 1, the set 
̂[n→ [N]] is the set of N
paths each consisting of a link from N + 1 to some agent j ≤ N . Each ψ ∈ 
̂[n→ [N]]
therefore hasD(ψ)= ∑

j<N+1MN+1�j , and the path terminating at j hasW (ψ)=MN+1�j .
So the claim holds for n=N+1. By induction suppose it holds for all n≤N+K for some
K ≥ 1. For n=N +K + 1, partition 
̂[n→ [N]] into K + 1 groups. For 1 ≤ k ≤K, each
path ψ ∈
(k) in the kth group consists of the link n→ (N +k) concatenated in front of
a path ψ′ ∈ 
̂[(N +k)→ [N]], so ψ= ((n�N +k)�ψ′). The final (K+ 1)th group consists
of paths where n links directly to an agent among the first N . We have

∑
ψ∈
̂[n→[N]]

W (ψ)

D(ψ)
=

K∑
k=1

( ∑
ψ′∈
̂[(N+k)→[N]]

W
(
(n�N + k)�ψ′)

D
(
(n�N + k)�ψ′)

)
+

N∑
j=1

Mn�j∑
h<n

Mn�h

=
K∑
k=1

( ∑
ψ′∈
̂[(N+k)→[N]]

Mn�N+k ·W (
ψ′)∑

h<n

Mn�h ·D(
ψ′)

)
+

N∑
j=1

Mn�j∑
h<n

Mn�h

=
K∑
k=1

(
Mn�N+k∑
h<n

Mn�h

· 1
)

+
N∑
j=1

Mn�j∑
h<n

Mn�h

(by inductive hypothesis)

=

∑
h<n

Mn�h

∑
h<n

Mn�h

= 1�

So by induction, this claim holds for all n >N .

We now return to the proof of Proposition 3. ForN < i < n,

bn�i =
∑

ψ∈
[n→i]
W (ψ)=

∑
ψ∈
[n→i]

[
W (ψ) ·

( ∑
ψ̂∈
̂[i→[N]]

W (ψ̂)

D(ψ̂)

)]
�

where the second equality follows because Lemma 4 implies the term in the inner paren-
theses is 1. For a path ψ passing through i, letψ[i] denote the subpath starting with i. So
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the above says

bn�i =
∑

ψ∈
̂[n→[N]|i]

W (ψ)

D
(
ψ[i]) �

Summing across i, we may re-index the sum by paths in 
̂[n→ [N]]. To be more precise,
for ψ ∈ 
̂[n→ [N]], write A(ψ)⊆ {N + 1� � � � � n− 1} to be the set of agents that ψ passes
through. For each j ∈A(ψ), we have ψ ∈ 
̂[n→ [N] | j], so it contributes W (ψ)/D(ψ[j])
to the overall sum,

n−1∑
i=N+1

bn�i =
n−1∑
i=N+1

∑
ψ∈
̂[n→[N]|i]

W (ψ)

D
(
ψ[i])

=
∑

ψ∈
̂[n→[N]]

∑
j∈A(ψ)

W (ψ)

D
(
ψ[j])

≤
∑

ψ∈
̂[n→[N]]
W (ψ) ·

∑
j∈A(ψ)

1

(1 + ε)|ψ[j]|−1

≤
∑

ψ∈
̂[n→[N]]
W (ψ) · 1

ε
�

where |ψ[j]| denotes the number of agents in the subpathψ[j]. On the third line, we used
the fact that all agents on ψ except the last one must have out-degree at least 1 + ε, so
D(ψ[j])≥ (1+ε)|ψ[j]|−1. The result

∑n−1
i=N+1 bn�i ≤

∑
ψ∈
̂[n→[N]]W (ψ) · 1

ε also holds for the
original network, since we have not modified the subnetwork among agentsN+1� � � � � n.

We also have
∑N
i=1 bn�i = ∑

ψ∈
̂[n→[N]]W (ψ). On the original network, we have
higher link weights among the firstN agents, so we in fact have

N∑
i=1

bn�i ≥
∑

ψ∈
̂[n→[N]]
W (ψ)�

So, on the original network,

N∑
i=1

I(i→ n)≥ 1
1 + 1/ε

�

This inequality holds for every n, so it cannot be the case that limn→∞ I(i→ n)= 0 for all
1 ≤ i≤N .

A.6 Proof of Example 1

The coefficients bi�n satisfy the recurrence relation bn�i = 2δbn−1�i whenever n− i > 1.
When δ = 1

2 , from the recurrence relation, all predecessors’ signals are given equal
weight, so by the law of large numbers, actions converge to ω almost surely.
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When δ > 1
2 ,

∑∞
k=0 δ

k > 1, so
∑
j<i Mi�j is bounded above 1 for n large enough. So by

Proposition 3, society does not learn correctly.
The final case is δ < 1

2 . We show that P[an ≤ 1
2 |ω= 1] is bounded away from 0 for all

n≥ 1, so (an) cannot converge in probability to ω.
Without loss of generality, normalize to σ = 1. From the recurrence relation for

the coefficients bn�i, it is easy to check that ãn = 2δãn−1 + s̃n − δs̃n−1 for each n. Evi-
dently bi+1�i = δ, so from recursion, bn�i = (2δ)n−i−1δ for i ≤ n − 1, bn�n = 1. So ãn =
s̃n + δ∑n−2

j=0 (2δ)
j · s̃n−1−j , meaning

ãn | (ω= 1)∼ N
(

1 + δ1 − (2δ)n−1

1 − 2δ
�1 + δ2 1 − (

4δ2)n−1

1 − 4δ2

)
�

So

P[ãn ≤ 0 |ω= 1] ≥	
(

−1 − δ

1 − 2δ

)

for all n, which implies for all n,

P

[
an ≤ 1

2

∣∣∣ω= 1
]

≥	
(

−1− δ

1 − 2δ

)
�

A.7 Proof of Proposition 4

We first state and prove a lemma that gives the ex ante distribution of agent n’s log action.

Lemma 5. When ω= 1, the log action of agent n on any weighted network is distributed
as

ãn ∼ N
(

2

σ2 ‖	bn‖1�
4

σ2 ‖	bn‖2
2

)
�

Proof. By Proposition 1, ãn = ∑n
i=1 bn�is̃i. This is equal to

∑n
i=1 2bn�isi/σ2 according to

Lemma 3. Conditional on ω= 1, (si) are i.i.d. N (1�σ2) random variables, so

n∑
i=1

2bn�i
σ2 si ∼ N

(
2

σ2

n∑
i=1

bn�i�
4

σ2

n∑
i=1

b2
n�i

)
=N

(
2

σ2 ‖	bn‖1�
4

σ2 ‖	bn‖2
2

)
�

Now we give the proof of Proposition 4.
By Lemma 5, ãn|(ω= 1)∼ N ( 2

σ2 ‖	bn‖1�
4
σ2 ‖	bn‖2

2). So using properties of the Gaussian
distribution,

P[ãn > 0 |ω= 1] =	
( 2

σ2 ‖	bn‖1

2
σ

‖	bn‖2

)
=	

(
1
σ

· ‖	bn‖1

‖	bn‖2

)
�
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A.8 Proof of Proposition 5

The numbers of paths from various agents to agent i satisfy the recurrence relation bn�i =
(1 + q)bn−1�i when n− i > 1. By a simple computation, we find that

ãn =
n−1∑
i=1

q(1 + q)n−i−1s̃i + s̃n�

Since s̃i are independent Gaussian random variables, our argument uses the fact that
for n large, ãn has the same sign as another Gaussian random variable, whose mean and
variance we can compute.

We first show that ãn converges to −∞ or ∞ almost surely. Consider the random
variable

Xn(	s) := 1
2

n−1∑
i=1

(1 + q)−is̃i�

where 	s := (si)
∞
i=1 is the profile of private signal realizations. By a standard result, Xn(	s)

converges almost surely to a random variableY(	s) such that the conditional distribution
of Y in each state of the world is Gaussian. For each n, ãn(	s)= 2q(1 + q)n−1 ·Xn(	s)+ s̃n.
Since

∑∞
n=1 P[s̃n > n]<∞, by the Borel–Cantelli lemma, P[s̃n > n infinitely often] = 0. So

almost surely, limn→∞ ãn(	s) = limn→∞ 2q(1 + q)n−1 · Y(	s) + s̃n ∈ {−∞�∞}. This in turn
shows that an converges to 0 or 1 almost surely.

Now we show P[an → 0 |ω= 1] =	(−σ−1
√
(q+ 2)/q), which is the same probability

as P[ãn → −∞ | ω = 1]. The random variable Y(	s) that Xn(	s) converges to a.s. has the
distribution N (1/(σ2q)�1/(σ2q(q+ 2))) when ω= 1, and ãn has the same sign as Xn(	s)
with probability converging to 1 for n large. The distribution N (1/(σ2q)�1/(σ2q(q+2)))
assigns	(−σ−1

√
(q+ 2)/q) probability to the positive region. The symmetric argument

holds for ω= 0.

A.9 Proof of Proposition 6

First, we derive a closed-form expression for the probability that the nth agent thinks
the correct state is more likely in the uniform weights network, conditional on ω= 1.

Lemma 6. In the q-uniform weights network,

P[ãn > 0 |ω= 1] =	
(

1
σ

· (1 + q)n−1 · √(2 + q)√
2 + q(1 + q)2n−2

)
�

This probability is strictly increasing in nwhen 0< q≤ 1.

Proof. From the proof of Proposition 5, we have

ãn =
n−1∑
i=1

q(1 + q)n−i−1s̃i + s̃n�
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where the different s̃is are conditionally independent given ω = 1, with s̃i | (ω = 1) ∼
N (2/σ2�4/σ2) from Lemma 3. Thus, the sum ãn is conditionally Gaussian with a mean
of

2

σ2 ·
[

1 +
n−1∑
i=1

q(1 + q)n−i−1

]
= 2

σ2 ·
[

1 + q · (1 + q)n−1 − 1
(1 + q)− 1

]

= 2

σ2 · (1 + q)n−1

and a variance of

4

σ2 ·
[

1 +
n−1∑
i=1

q2(1 + q)2n−2i−2

]
= 4

σ2 ·
[

1 + q2 · (1 + q)2n−2 − 1

(1 + q)2 − 1

]

= 4

σ2 · 2 + (1 + q)2n−2q

2 + q �

Thus, 0 is

2

σ2 · (1 + q)n−1

√
4

σ2 · 2 + (1 + q)2n−2q

2 + q

= 1
σ

· (1 + q)n−1 · √(2 + q)√
2 + q(1 + q)2n−2

standard deviations below the mean in the distribution of ãn | (ω= 1), so

P[ãn > 0 |ω= 1] =	
(

1
σ

· (1 + q)n−1 · √(2 + q)√
2 + q(1 + q)2n−2

)
�

To see that this expression is strictly increasing, let n≥ 1. Then

P[ãn+1 > 0 |ω= 1] =	
(

1
σ

· (1 + q) · (1 + q)n−1 · √(2 + q)√
2 + (1 + q)2 · q(1 + q)2n−2

)

>	

(
1
σ

· (1 + q) · (1 + q)n−1 · √(2 + q)√
(1 + q)2 · 2 + (1 + q)2 · q(1 + q)2n−2

)

=	
(

1
σ

· (1 + q)n−1 · √(2 + q)√
2 + q(1 + q)2n−2

)

= P[ãn > 0 |ω= 1]

as desired.

Now we give the proof of Proposition 6.
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Let P[ã2 > 0 |ω= 1] on the q∗-uniform weights network be denoted by p. Lemma 6
implies P[ãn > 0 |ω= 1] is strictly increasing in n on the q∗-uniform weights network, so
p>	(1/σ) and, furthermore, P[ãn > 0 |ω= 1] ≥ p for all n≥ 2 on the same network.

The function

q �→	

(
1
σ

· (1 + q)N−1 · √(2 + q)√
2 + q(1 + q)2N−2

)

is continuous and equals 	(1/σ) when q= 0. So we may find a small enough q̄ ∈ (0� q∗)
so that whenever 0< q < q̄,

	

(
1
σ

· (1 + q)N−1 · √(2 + q)√
2 + q(1 + q)2N−2

)
<p�

From the monotonicity result of Lemma 6, this also implies

	

(
1
σ

· (1 + q)n−1 · √(2 + q)√
2 + q(1 + q)2n−2

)
<p

for all 2 ≤ n≤N .

A.10 Proof of Proposition 7

Suppose we have two groups, and agents observe predecessors in the same group with
weight qs and predecessors in the other group with weight qd . Then the coefficients bn�i
satisfy the recurrence relation

bn�i = qdbn−1�i + (1 + qs)bn−2�i

when n− i > 2. Since the network is translation invariant, bn�i only depends on n− i. By
a standard algebraic fact, there exist constants c+, c−, ζ+, ζ− (only depending on n− i)
so that

bn�i = c+ζn−i+ + c−ζn−i− �

where ζ± are the solutions to the polynomial x2 − qdx− (1 + qs)= 0 and c+, c− are con-
stants that we can determine from b2�1 and b3�1. We compute

ζ± = qd ± √
4qs + qd + 4

2
�

where ζ+ > 1 and ζ− < 0. By arguments analogous to those in the proof of Proposition 5,
we may again establish that an converges to 0 or 1 almost surely. We now analyze the
probability of mislearning.

Since ζ+ > |ζ−|, the exponential term with base ζ+ dominates as n grows large. This
shows c+ > 0, since bn�i counts the number of weighted paths in a network so it must be
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a positive number. This also shows that P[ãn < 0 |ω= 1] → P[∑∞
i=0(ζ+)−is̃i < 0 |ω= 1]

as n→ ∞. Conditional on ω= 1, the sum
∑∞
i=0(ζ+)−is̃i has the distribution

N
(

2

σ2(ζ+ − 1)
�

4

σ2(ζ+ − 1)(ζ+ + 1)

)
�

so it is easy to show that the probability assigned to the negative region is increasing in
ζ+.

Having shown that the probability of mislearning is monotonically increasing in ζ+,
we can take comparative statics:

∂ζ+
∂qd

= qd

2
√

4qs + qd + 4
+ 1

2
and

∂ζ+
∂qs

= 1√
4qs + qd + 4

�

It is easy to see that ∂ζ+/∂qd > ∂ζ+/∂qs > 0 for all qs ≥ 0 and qd > 0.

A.11 Proof of Proposition 8

Proof. Define κq to be a naive agent i’s log-likelihood ratio of state ω= 1 versus state
ω= 0 upon observing one neighbor j who picks action 1 with weight q. Then we have

κq := ln
(
P[ω= 1|sj ≥ 0]
P[ω= 0|sj < 0]

)
> 0�

whereP is taken under i’s beliefs about the conditional distributions of sj under Assump-
tion 2, that is, sj | (ω= 1)∼ N (1�σ2/q) and sj | (ω= 0)∼ N (−1�σ2/q). In particular, this
log likelihood κq is decreasing in q and so κqs − κqd > 0 for qs > qd .

By symmetry of the Gaussian distribution, the log-likelihood ratio after observing
one neighbor who chooses action 0 with weight q is −κq.

Suppose after 2n agents have moved, the actions taken so far involve every odd-
numbered agent playing 1 and every even-numbered agent playing 0. Then agent 2n+ 1
has a log-likelihood ratio of n(κqs − κqd) from her social observations. The probability
that private signal s2n+1 is so strongly in favor of ω= 0 as to make 2n+ 1 play 0 is

εn := P

[
si ∈ R : ln

(
P[ω= 1|si]
P[ω= 0|si]

)
<−n(κqs − κqd) |ω= 1

]
�

For the Gaussian distribution, ln(P[ω= 1|si]/P[ω= 0|si])= 2si/σ2, so

∞∑
n=1

εn =
∞∑
n=1

	

(
−σ

2

2
n(κqs − κqd);1�σ2

)
<∞

because the Gaussian distribution function tends to 0 faster than geometrically. This
shows that there is a positive probability that every odd-numbered agent plays 1.

By an analogous argument, there is also a positive probability that every even-
numbered agent plays 0. In that argument we would use the fact that

∞∑
n=1

[
1 −	

(
σ2

2
n(κqs − κqd);1�σ2

)]
<∞�
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