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The implementation of stabilization policy

Olivier Loisel
CREST, ENSAE Paris, Institut Polytechnique de Paris

In locally linearized dynamic stochastic rational-expectations models, I introduce
the concepts of feasible paths (paths on which the policy instrument can be ex-
pressed as a function of the policymaker’s observation set) and implementable
paths (paths that can be obtained, in a minimally robust way, as the unique local
equilibrium under a policy-instrument rule consistent with the policymaker’s ob-
servation set). I show that, for relevant observation sets, the optimal feasible path
under monetary policy can be non-implementable in the new Keynesian model,
while constant-debt feasible paths under tax policy are always implementable in
the real business cycle model. The first result sounds a note of caution about one
of the main lessons of the new Keynesian literature, namely the importance for
central banks to track some key unobserved exogenous rates of interest, while the
second result restores to some extent the role of income or labor-income taxes in
safely stabilizing public debt. For any given implementable path, I show how to
design arithmetically a policy-instrument rule consistent with the policymaker’s
observation set and implementing this path as the robustly unique local equilib-
rium.
Keywords. Stabilization policy, local-equilibrium determinacy, observation set,
feasible path, implementable path, optimal monetary policy, debt-stabilizing tax
policy.

JEL classification. E32, E52.

1. Introduction

Two traditions stand alongside each other in the literature on macroeconomic stabi-
lization policy in locally linearized dynamic stochastic rational-expectations models.
One tradition studies some specific exogenous-shock-contingent paths of interest for
the endogenous variables (e.g., the path that they follow under Ramsey-optimal pol-
icy) without asking whether and how these paths could be implemented as the unique
local equilibrium given the policymaker’s observation set. The other tradition consid-
ers some specific policy-instrument rules ensuring local-equilibrium determinacy and
involving only observed variables (e.g., the interest-rate rule proposed by Taylor 1993),
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without requiring these rules to implement a given exogenous-shock-contingent path
of interest.

My aim, in this paper, is to build a bridge between these two separate traditions. The
starting point of my analysis consists of three inputs: (i) a given model of the private
sector’s behavior, i.e., a given system of equilibrium conditions excluding the policy-
instrument rule, (ii) a given targeted path for all the endogenous variables as functions
of current and past exogenous shocks, which the policymaker would like to implement,
and (iii) a given observation set for the policymaker, made of the history of some endoge-
nous variables and/or exogenous shocks until some current or past date. Given these
inputs, I ask two questions: does there exist a policy-instrument rule consistent with the
policymaker’s observation set and implementing the targeted path as the unique local
equilibrium in the model? And, if there exists such a rule, how to design it? The first
question is the question of the implementability of the targeted path; the second is the
question of its implementation.

There are, of course, two trivial ways in which a given path may not be imple-
mentable. First, the path may be inconsistent with at least one structural equation, i.e.,
one equilibrium condition describing the private sector’s behavior. Second, it may be
inconsistent with the policymaker’s observation set, in the sense that the policy instru-
ment cannot be expressed, on this path, as a function of only elements of this observa-
tion set. (Such is the case, for instance, when the path makes the policy instrument de-
pend on current exogenous shocks, while the observation set includes only past exoge-
nous shocks or past endogenous variables.) To rule out these two uninteresting cases,
I focus on the paths that are consistent both with the structural equations and with the
observation set. I call them feasible paths. So the questions I ask in this paper are, more
specifically, those of the implementability and implementation of feasible paths.

I make two main contributions. First, I show, through two case studies, that the
(non-)implementability of feasible paths can be an issue in textbook models for stan-
dard policy instruments, relevant observation sets, and interesting feasible paths, with
important policy implications. Second, I develop an arithmetic method of designing
a policy-instrument rule consistent with a given observation set and implementing a
given implementable path as the unique local equilibrium. I fully characterize this
method in a class of univariate models (i.e., models with only one endogenous variable
outside the policy instrument), and I illustrate how it can be applied to larger models.

For simplicity, I start the analysis with the class of univariate models. In this class,
when there are at least as many unobserved exogenous shocks as observed endogenous
variables, there is a limited set of policy-instrument rules consistent with the observa-
tion set and the feasible path considered. I show that this set is spanned by a single
rule. If the system made of the structural equation and this rule satisfies Blanchard and
Kahn’s (1980) conditions, then the feasible path considered is implementable, and it is
implemented by this rule. Alternatively, if this system does not satisfy Blanchard and
Kahn’s (1980) conditions, then there does not exist any rule in that set such that the sys-
tem made of the structural equation and this rule satisfies these conditions, and the path
is not implementable.
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The path may be non-implementable because the system has fewer “unstable
eigenvalues” (i.e., eigenvalues outside the unit circle of the complex plane) than non-
predetermined variables, and because it has, therefore, an infinity of local equilibria,
one of which coincides with the path. But it may also be non-implementable because
the system has more unstable eigenvalues than non-predetermined variables. In the lat-
ter case, because of a stochastic singularity, the system has, nevertheless, a unique local
equilibrium, which coincides with the path. However, if an exogenous policy shock of
arbitrarily small variance (capturing, e.g., the policymaker’s “trembling hand” or round-
off errors) were added to the rule, then the system would no longer have a local equi-
librium. In this sense, the rule does not robustly ensure local-equilibrium determinacy.
I say that the path is not implementable in this case so as to rule out knife-edged and
practically useless implementability results.

Alternatively, when there are fewer unobserved exogenous shocks than observed en-
dogenous variables, there are additional degrees of freedom in the choice of a policy-
instrument rule consistent with the observation set and the feasible path considered.
I show that it is always possible to find one such rule that robustly ensures local-
equilibrium determinacy. Thus, all feasible paths are implementable. Moreover, for any
feasible path, I show how to design arithmetically, i.e., with a finite number of arithmetic
operations (addition, subtraction, multiplication, and division), a policy-instrument
rule consistent with the observation set and implementing this path as the robustly
unique local equilibrium. The coefficients of the rule are thus explicitly expressed as ra-
tional functions of the structural and feasible-path parameters, i.e., as fractions of poly-
nomial functions of these parameters. These functions are particularly easy to manip-
ulate analytically. For instance, their derivatives can be easily computed to determine
how the coefficients of the rule respond to an arbitrarily small change in the value of the
structural or feasible-path parameters.

These (non-)implementability and implementation results, obtained in a class of
univariate models, usefully prepare the ground for the two case studies, which involve
multivariate models.

In the first case study, I consider (i) the new Keynesian (NK) model, with the central
bank as the policymaker and the interest rate as the policy instrument, (ii) the central
bank’s observation set made of all past endogenous variables, and (iii) the optimal feasi-
ble path, i.e., the path that maximizes welfare subject to the structural equations and the
central bank’s observation-set constraint. In this bivariate framework with as many un-
observed shocks as observed variables, some feasible paths may be non-implementable
essentially in the same ways and for the same reasons as in the univariate analysis. I find
that, for some values of the structural parameters, the optimal feasible path is not imple-
mentable because all the interest-rate rules consistent with the observation set and this
path lead to local-equilibrium multiplicity. For other values, it is not implementable be-
cause adding an exogenous monetary-policy shock (even of arbitrarily small variance)
to any of these rules leads to nonexistence of a local equilibrium.

These non-implementability results sound a note of caution about one of the main
lessons of the NK literature, namely the importance for central banks to track some key
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unobserved exogenous rates of interest, such as, for instance, the counterfactual “nat-
ural rate of interest” (as emphasized by, e.g., Galí 2015, Chapter 9, and Woodford 2003,
Chapter 4). From a normative perspective, the most important of these rates of interest
is, ultimately, the exogenous-shock-contingent value taken by the interest rate on the
optimal feasible path. As my results show, however, even when this value can be in-
ferred in different ways, on the optimal feasible path, from the variables observed by the
central bank, there may be no way of setting the interest rate as a function of these vari-
ables that implements this path as the robustly unique local equilibrium. In this case,
any attempt to track this rate of interest and implement the optimal feasible path in-
evitably results, in the presence of exogenous policy shocks of arbitrarily small variance,
in either local-equilibrium multiplicity or nonexistence of a local equilibrium.

The second case study is about debt-stabilizing tax policy in the real business cycle
(RBC) model. Schmitt-Grohé and Uribe (1997) consider, in this model, a labor-income
tax-rate or income tax-rate rule that stabilizes the stock of public debt both in and out
of equilibrium. They find that this rule leads to local-equilibrium multiplicity for many
empirically relevant values of the structural parameters. This finding has largely been
interpreted as an argument against the use of labor-income or income taxes to stabilize
debt.

Building on my univariate analysis, however, I show that in the same RBC model,
for the same alternative tax instruments, and for a reasonable observation set of the
tax authority (with more observed variables than unobserved shocks), all constant-debt
feasible paths are implementable for all structural-parameter values. I also show how to
design arithmetically, for any given constant-debt feasible path, an income tax-rate or
labor-income tax-rate rule that is consistent with the tax authority’s observation set and
implements this path as the robustly unique local equilibrium.

These implementability and implementation results show that labor-income or in-
come taxes can always be used to stabilize debt in equilibrium without generating local-
equilibrium multiplicity. Pursuing the debt-stabilization objective also out of equilib-
rium, as in Schmitt-Grohé and Uribe (1997), may seem natural, but it may prevent the
tax authority from putting the economy on an explosive path following a given deviation
from the targeted feasible path, simply because all explosive paths may involve an explo-
sive debt. In this case, it is only by threatening to put the economy on an explosive-debt
path that the tax authority can implement the targeted constant-debt feasible path as
the robustly unique local equilibrium. Despite making debt explode out of equilibrium,
this tax policy is “locally Ricardian” in the sense of Woodford (2003, Chapter 4), because
it makes debt explode only if the other endogenous variables explode as well. But it re-
quires that the debt-stabilization objective be conditional on other variables being on
target, so that this objective can be abandoned out of equilibrium.

This paper is the first one to raise and study the issue of feasible-path (non-
)implementability. In the literature, the only result that can be interpreted as a feasible-
path non-implementability result is that no feasible path may be implementable when
the policymaker observes only exogenous shocks (as first shown by Sargent and Wal-
lace 1975). However, the case in which the policymaker observes only exogenous shocks
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seems practically irrelevant. Bassetto (2002, 2004, 2005) is a precursor in the study of im-
plementability problems in a broader sense. But the constraints faced out of equilibrium
by the policymaker are of a different nature in his papers: e.g., physical (impossibility of
spending resources that do not exist), not informational as in my paper (impossibility of
setting the policy instrument as a function of unobserved variables).

This paper is also the first one to propose a method to design analytically a policy-
instrument rule consistent with the policymaker’s observation set and implementing
a given implementable path as the (robustly) unique local equilibrium. Evans and
Honkapohja (2003), Svensson and Woodford (2005), and Woodford (2003, Chapter 7)
design analytically a policy-instrument rule implementing a specific path as the unique
local equilibrium in a specific model. But these rules are not required to be consistent
with a given observation set for the policymaker, and the method used to design them
can be applied only to simple paths in simple models, as it requires checking whether
the system made of the structural equations and a candidate rule satisfies Blanchard
and Kahn’s (1980) conditions for all structural-parameter values. Giannoni and Wood-
ford (2017), building on their earlier work reported in Woodford (2003, Chapter 8), de-
sign analytically, in a general framework, “target criteria” that are consistent with a given
path and ensure local-equilibrium determinacy. However, these target criteria do not
address the issue of (operational) implementation, as they are typically not formulated
as policy-instrument rules, let alone as policy-instrument rules consistent with a given
observation set for the policymaker.

The rest of the paper is organized as follows. Section 2 introduces the concepts of
feasible path and implementable path in a simple framework. Section 3 studies the
implementability and implementation of feasible paths in a class of univariate models.
Sections 4 and 5 are devoted to the two case studies: one about optimal monetary policy
in the NK model; the other about debt-stabilizing tax policy in the RBC model. I then
conclude and provide a technical appendix.

2. Feasibility and implementability in a simple model

In this section, I use a simple monetary-policy model to introduce the concepts of feasi-
ble path and implementable path, and to illustrate the two ways in which a feasible path
may not be implementable. For now, I set aside the issue of implementation; I explain
why at the end of the section and I address this issue in the next section.

2.1 Structural equation and observation set

I consider an endowment economy whose agents are a private sector (PS) and a central
bank (CB). At each date t ∈ Z, the PS sets the inflation rate πt and the CB sets the nom-
inal interest rate it . The behavior of the PS obeys the (locally log-linearized) structural
equation

it = Et{πt+1} + ξt� (1)

which is a Fisher equation derived from the consumption Euler equation, the goods-
market-clearing condition, and the endowment assumption. The exogenous term ξt
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can be interpreted as a preference disturbance. It is assumed to follow a first-order
moving-average process,

ξt = εt + θεt−1� (2)

where θ ∈R and εt is an independent and identically distributed (i.i.d.) exogenous shock
of mean zero realized at date t.1 The operator Et{·} denotes the rational-expectations
operator conditionally on the observation set of the PS when it sets πt . For simplicity,
this observation set is assumed to be made of all current and past endogenous variables
and exogenous shocks (including πt itself, following the standard convention). I thus
abstract from any observation constraint for the PS , so as to focus on the implications
of the CB’s observation constraints.

The observation set of the CB when she sets it is assumed to be

Ot ≡
{
πt� it−1}�

where, for any variable z and any date t, zt ≡ {zt−k|k ∈ N} denotes the history of vari-
able z until date t included.2 Thus, the CB observes current and past inflation rates and
past interest rates, but no current or past shocks (arguably a reasonable assumption for
preference shocks). The behavior of the CB is described by a rule that expresses it as a
(locally log-linearized) function of elements of Ot . For the sake of practical relevance
and convenience, I impose the constraint that this function should have a finite (but
unbounded) number of arguments.3

2.2 Implementable paths

At this stage of the exposition, a well established tradition in the literature would specify
a given interest-rate rule for the CB—a rule that is consistent with the observation set
Ot and ensures local-equilibrium determinacy (i.e., existence and uniqueness of a local
equilibrium). Consider, for instance, the Taylor rule

it =φπt� (3)

withφ> 1. This rule is consistent with Ot (since it expresses it as a function of πt , which
belongs to Ot ) and delivers a unique local equilibrium (as is well known and shown in,
e.g., Woodford 2003, Chapter 2). It is straightforward to check that, in this unique local
equilibrium, the endogenous variables follow the exogenous-shock-contingent path

[
πt
it

]
=

⎡⎢⎢⎣
θ+φ
φ2 εt + θ

φ
εt−1

θ+φ
φ

εt + θεt−1

⎤⎥⎥⎦ � (4)

1I discuss the moving-average assumption at the end of Section 2.4.
2For convenience, throughout the paper, I refer to the policymaker with the female pronoun “she.”
3This constraint, which I impose more generally throughout the paper, enables me to work with polyno-

mials (rather than power series).
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In this paper, I do not follow this tradition. I do not start from a given rule (as the

input) to get a local path (as the output). Instead, I start from a given local path (as

the input), which I assume the policymaker would like the economy to follow, and I

ask the question of whether a policy-instrument rule exists that is consistent with the

policymaker’s observation set and implements, in a minimally robust way, this given

local path as the unique local equilibrium. The “minimal-robustness” requirement that

I impose is that the addition of an exogenous policy shock of arbitrarily small variance

to the policy-instrument rule in question (capturing, e.g., the policymaker’s trembling

hand or round-off errors) should still result in a unique local equilibrium, arbitrarily

close to the path considered, rather than no local equilibrium at all. In Section 2.5, I

explain why this minimal-robustness requirement matters and why I impose it.

If such a rule exists, I say that the path is implementable; otherwise, I say it is not

implementable. In my simple setup, for instance, the path (4) is implementable because

an interest-rate rule exists, namely (3), that has the following three properties: (i) it is

consistent withOt ; (ii) it implements this path as the unique local equilibrium; (iii) when

added to an exogenous policy shock, it still delivers a unique local equilibrium (which

converges to the path considered as the variance of the policy shock goes to zero).

2.3 Feasible paths

There are two trivial ways in which a given local path may not be implementable: it may

be inconsistent with at least one structural equation or with the policymaker’s observa-

tion set. To illustrate these two cases, consider the two paths[
πt
it

]
=

[
εt−1

θεt−1

]
� (5)

[
πt
it

]
=

[
0

εt + θεt−1

]
� (6)

The path (5) is consistent with the CB’s observation set Ot , since (5) implies it = θπt

and πt ∈ Ot . However, it is not consistent with the structural equation (1), since (5) im-

plies it − Et{πt+1} = −εt + θεt−1 �= ξt . Alternatively, the path (6) is consistent with the

structural equation (1), since (6) implies (1). However, it is not consistent with the CB’s

observation set Ot , since, on the path (6), it depends on εt , but no element of Ot does,

so that it cannot be expressed as a function of only elements of Ot .

To rule out these two uninteresting cases, I focus on the local paths that are con-

sistent both with the structural equations and with the policymaker’s observation set.

I say that these paths are feasible, and that the other paths are not feasible. So the imple-

mentability question that I ask is, more specifically, the question of the implementability

of feasible paths.



684 Olivier Loisel Theoretical Economics 16 (2021)

2.4 Feasible-path (non-)implementability

To illustrate the two different ways in which a feasible path may not be implementable,
consider the path [

πt
it

]
=

[
ψεt

εt + θεt−1

]
� (7)

where ψ ∈ R� {0}. This path is consistent with the structural equation (1), since (7) im-
plies (1). Moreover, it is also consistent with the observation set Ot , since (7) implies
it =ψ−1πt + θψ−1πt−1 and {πt�πt−1} ⊂Ot . Therefore, the path (7) is feasible. The ques-
tion I now ask is whether it is implementable.

To answer this question, I start by noting that the (locally log-linearized) interest-rate
rules consistent with the observation set Ot are rules of type

P(L)it +Q(L)πt = 0� (8)

with P(X) ∈ R[X], P(0) �= 0, and Q(X) ∈ R[X], where L denotes the lag operator and
R[X] denotes the set of polynomials inX with real-number coefficients. The restriction
P(0) �= 0 ensures that the rule involves it . If P(X) has no roots inside the unit circle of the
complex plane, then the operator P(L) is invertible, and the rule (8) can be equivalently
rewritten as it = −P(L)−1Q(L)πt (where P(X)−1Q(X) is typically a power series, not a
polynomial). But I also allow P(X) to have some roots inside the unit circle, implying
that the operator P(L) is not invertible.4

Among the rules consistent with Ot , i.e., among the rules of type (8), the rules that
are also consistent with the path (7) are those such that P(X)(1 + θX) + Q(X)ψ = 0.
Replacing Q(L) by −ψ−1P(L)(1 + θL) in (8), I can rewrite these rules as those of type

P(L)
(
it − 1

ψ
πt − θ

ψ
πt−1

)
= 0� (9)

So the question of whether the path (7) is implementable can be equivalently restated
as the question of whether a P(X) ∈ R[X] exists with P(0) �= 0 such that the rule (9)
robustly ensures local-equilibrium determinacy. By “robustly,” I mean again that the
addition of an exogenous policy shock to the rule in question should still result in a
unique local equilibrium, rather than no local equilibrium at all.

To answer the restated question, I add an exogenous policy shock et to the rule (9)
and ask whether a P(X) ∈R[X] exists with P(0) �= 0 such that the resulting rule,

P(L)
(
it − 1

ψ
πt − θ

ψ
πt−1

)
= et� (10)

ensures local-equilibrium determinacy. Clearly, if P(X) has (at least) one root inside the
unit circle, then (10) has no stationary solution in the variable it − (1/ψ)πt − (θ/ψ)πt−1,
and, hence, no stationary solution in the variables πt and it . I can, therefore, restrict my

4In this case, the rule (8) is said to be superinertial in the terminology used in the literature (e.g., Wood-
ford 2003, Chapter 8). I discuss superinertial rules in Sections 3 and 4.
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search to the polynomials P(X) that have no roots inside the unit circle. In this case,
P(L)−1 exists and (10) can be equivalently rewritten as

it = 1
ψ
πt + θ

ψ
πt−1 +P(L)−1et� (11)

Replacing it in (1) by the right-hand side of (11), I then get the dynamic equation in πt :

Et
{(
ψ−L− θL2)(πt+1 −ψεt+1)

} =ψP(L)−1et � (12)

It is straightforward to solve (12) for πt by applying Blanchard and Kahn’s (1980) anal-
ysis. Whether (12) has a unique stationary solution in πt does not depend on the poly-
nomial P(X). It depends, however, on the structural parameter θ and the feasible-path
parameter ψ. The following three alternative cases are possible.

First, θ and ψ may be such that one root of the characteristic polynomial C(X) ≡
ψX2 −X − θ lies inside the unit circle and the other lies outside. In this case, with one
outside root for one non-predetermined variable, (12) has a unique stationary solution
in πt for any P(X). So there exists an infinity of rules consistent with the observation set
Ot and the path (7), and robustly ensuring local-equilibrium determinacy. Therefore,
the path (7) is implementable.

Second, θ andψmay be such that both roots of C(X) lie inside the unit circle. In that
case, with zero outside root for one non-predetermined variable, (12) has an infinity
of stationary solutions in πt for any P(X). So there does not exist any rule consistent
with the observation set Ot and the path (7), and robustly ensuring local-equilibrium
determinacy. Therefore, the path (7) is not implementable.

Finally, θ andψmay be such that both roots of C(X) lie outside the unit circle. In this
last case, with two outside roots for only one non-predetermined variable, (12) has no
stationary solution in πt for any P(X). So no rule consistent with the observation set Ot
and the path (7), and robustly ensuring local-equilibrium determinacy exists. Therefore,
the path (7) is not implementable.

The last two cases illustrate two different ways in which a feasible path may be non-
implementable. One is that all the rules consistent with the observation set and this
path may lead to local-equilibrium multiplicity. The other is that all these rules, when
added to an exogenous policy shock et , may lead to nonexistence of a local equilibrium.

When θ= 0, we have C(X)= (ψX−1)X , so that the first two cases may arise, but not
the third case. Thus, in this simple framework, a nondegenerate moving-average distur-
bance (i.e., θ �= 0) is not needed to illustrate implementable and non-implementable
feasible paths, but it is needed to illustrate the two different ways in which a feasible
path may be non-implementable. In general, however, moving-average disturbances
are not necessary for feasible-path non-implementability of either kind, as we will see
in Section 4.5.

2.5 Minimal-robustness requirement

The minimal-robustness requirement that I impose for implementability does matter.
If I did not impose it, the set of rules consistent with the observation set Ot and the path
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(7) would still be the set of rules of type (9) with P(X) ∈ R[X] and P(0) �= 0. But the
path (7) would then be implementable if and only if there exists one rule in this set that
ensures local-equilibrium determinacy (instead of “robustly ensures local-equilibrium
determinacy,” i.e., instead of “ensures local-equilibrium determinacy even when added
to an exogenous policy shock”). As a consequence, the path (7) would be implementable
in the third case, i.e., when both roots of C(X) lie outside the unit circle. Indeed, by
construction, all rules of type (9) are consistent with the path (7), so that the system
made of the structural equation (1) and any one of these rules has at least one stationary
solution, namely, the path (7). In the third case, with more unstable eigenvalues than
non-predetermined variables, this system has no other stationary solution. Therefore,
the path (7) would be implementable in the third case if I did not impose the minimal-
robustness requirement for implementability.

Such an implementability result would, however, be knife-edged and practically use-
less. In general, a system with more unstable eigenvalues than non-predetermined vari-
ables “is overdetermined and thus has almost always” no stationary solution (Blanchard
and Kahn 1980, p. 1310, with my emphasis in Italics). The reason why the specific sys-
tem made of the structural equation (1) and the rule (9) has, nevertheless, one station-
ary solution in the third case is that one equation of this system—namely, the rule—is
precisely designed to make the system have one stationary solution—namely, the tar-
geted feasible path (7). To achieve this goal, the rule must involve no exogenous policy
shock whatsoever. If a policy shock were added to the rule (9), then this rule would
turn into (10), and the system would no longer have a stationary solution in the third
case. In particular, adding a policy shock of arbitrarily small variance (capturing, e.g.,
the policymaker’s trembling hand or round-off errors) would not result in a unique lo-
cal equilibrium arbitrarily close to the targeted feasible path, but would, instead, result
in no local equilibrium at all. Because arbitrarily small policy shocks are unavoidable
in practice, declaring the targeted feasible path “implementable” in this case would not
be palatable. It is for this reason that I impose the minimal-robustness requirement for
implementability.5

The third case, in which non-implementability is due to non-robustness, might be
viewed at this stage as a mathematical curiosity with little economic significance, on the
grounds that the path (7) is arbitrary from an economic point of view. In this flexible-
price endowment economy, indeed, there is no particular reason why the central bank
would want to implement this specific path rather than another one, since inflation
and the interest rate do not matter for welfare. In Section 4, however, I show that non-
implementability due to non-robustness can also arise for interesting paths (the opti-
mal feasible path) in textbook models (the NK model), and that it can, therefore, also be
economically relevant.

5Alternatively and equivalently, I could consider a finite starting date and some initial conditions prior
to that date, and require that the rule (without policy shock) ensure local-equilibrium determinacy for any
initial conditions. However, paths and rules would then have to take transitional dynamics into account,
which would substantially and fruitlessly burden the exposition.
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2.6 Discussion

In this illustrative section, I have focused on a specific model and a specific observation
set, and I have studied the implementability of a specific feasible path. I have not ex-
plicitly addressed the question of how to implement this path when it is implementable,
simply because the answer is trivial: if the path (7) is implementable, then, for instance,
the rule it = ψ−1πt + θψ−1πt−1, corresponding to (9) with P(X) = 1, is consistent with
the observation set and implements this path as the robustly unique local equilibrium.

The implementability results (and the trivial implementation result) that I have ob-
tained may well, however, be driven by the specificities of my illustrative framework.
Beyond the simplicity of the model (1)–(2) and the poor dynamics of the feasible path
(7), two specificities stand out in particular: there are as many unobserved exogenous
shocks (one: εt ) as observed endogenous variables outside the policy instrument (one:
πt ), and the unobserved shock can be inferred from the observed variable on the feasi-
ble path considered (εt =ψ−1πt ). These two specificities imply that one rule consistent
with the observation set and the path (7) can be obtained simply by replacing (εt� εt−1)

with (ψ−1πt�ψ
−1πt−1) in the second line of (7), and that this rule spans the set of rules

consistent with the observation set and the path (7), i.e., the set of rules of type (9).
The analysis conducted so far, thus, leaves many implementability and implemen-

tation questions unanswered. What if there are still as many unobserved shocks as ob-
served variables, but some unobserved shocks cannot be inferred from the observed
variables on the feasible path because this path involves non-invertible autoregressive
moving-average (ARMA) processes? What if some unobserved shocks cannot be inferred
from the observed variables because there are more unobserved shocks than observed
variables? What if there are fewer unobserved shocks than observed variables, and,
therefore, a larger set of rules consistent with the observation set and the feasible path?
What if the model is more complex and the feasible path has richer dynamics? In the
next section, I answer these questions by generalizing the analysis in terms of model,
observation set, and feasible path, and by studying not only the implementability of
feasible paths, but also their implementation.

3. Implementability and implementation in univariate models

I now turn to a more general (but abstract) class of models in which I study the imple-
mentability and implementation of all feasible paths, depending on the policymaker’s
observation set. Based on my previous discussion, I consider three cases in turn, de-
pending on whether the number of unobserved exogenous shocks is equal to, higher
than, or lower than the number of observed endogenous variables. In the first two cases,
I derive a simple necessary and sufficient condition for a feasible path to be imple-
mentable; when the feasible path is implementable, its implementation is straightfor-
ward. In the third case, I show that all feasible paths are implementable, and I develop
an arithmetic method to design a policy-instrument rule consistent with the observation
set and implementing a given feasible path as the robustly unique local equilibrium.

Although more general than the simple model of the previous section, the class of
models that I consider in this section is, for simplicity, restricted to univariate models,
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i.e., models with only one variable set by the private sector and, therefore, only one
structural equation. As I explain at the end of the section, nonetheless, this univari-
ate analysis usefully lays the groundwork for the multivariate analyses of the next two
sections.

3.1 Structural equation

The agents are a private sector (PS) and a policymaker (PM). The behavior of the PS
consists in setting, at each date t ∈ Z, an endogenous variable zt according to the (locally
log-linearized) structural equation

Et
{
L−δA(L)zt

} +B(L)it + ξt + cξ′
t = 0� (13)

where it denotes the policy instrument set by the PM at date t, ξt and ξ′
t are two exoge-

nous disturbances, and Et{·} is the rational-expectations operator conditional on the
observation set of the PS when it sets zt . As previously, I assume for simplicity that the
PS ’s observation set is made of all current and past endogenous variables and exoge-
nous shocks.

The structural equation (13) is parametrized by δ ∈ N� {0}, (A(X)�B(X)) ∈ R[X]2,
and c ∈ {0�1}. I rule out the uninteresting case δ = 0, in which the structural equation
involves no expectation terms. Without any loss of generality, I assume that A(0) �= 0
(so that δ is the highest horizon of the expectation terms in the structural equation)
and that B(X) �= 0 (so that the policy instrument affects the endogenous variable set
by the PS). I also assume that A(X) and B(X) have no common roots, so as to rule
out a tedious zero-measure case. The parameter c enables me to consider either one
exogenous disturbance only (when c = 0) or two (when c = 1). Finally, the disturbances
ξt and ξ′

t follow some stationary ARMA processes driven, respectively, by the i.i.d. shocks
εt and ε′

t , which are of mean zero and orthogonal to each other. The simple model of
the previous section corresponds to the particular case in which A(X)= 1, B(X)= −1,
c = 0, δ= 1, and ξt follows a (moving-average) MA(1) process.

LetOt denote the observation set of the PM when she sets it . I assume that the PM
observes the current and past values of the endogenous variable set by the PS (zt ⊂Ot ),
as well as the past values of her policy instrument (it−1 ⊂ Ot ), but may or may not ob-
serve current and past exogenous shocks. In the rest of this section, I consider three al-
ternative cases in turn, depending on whether the number of unobserved shocks (which
can be zero, one, or two) is equal to, higher than, or lower than the number of observed
variables outside the policy instrument (which is one).

3.2 As many unobserved shocks as observed variables

I start with the case in which there is only one shock, and this shock is not observed by
the PM: c = 0 and Ot = {zt� it−1}. In this case, there are as many unobserved shocks
(one: εt ) as observed variables outside the policy instrument (one: zt ). This is the case
on which I focused in the previous section.
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I consider the set of paths on which each endogenous variable follows a stationary
(but possibly non-invertible) ARMA process driven by the exogenous shock εt , i.e., the
set of paths of type

Sz(L)zt = Tz(L)εt� (14)

Si(L)it = Ti(L)εt� (15)

where (Sz(X)�Si(X)�Tz(X)�Ti(X)) ∈ (R[X] � {0})4, Sz(0) �= 0, Si(0) �= 0, and Sz(X) and
Si(X) have no roots inside the unit circle. Without any loss of generality, I impose that
the ARMA representations (14) and (15) be minimal, i.e., that Sz(X) and Tz(X) have no
common roots and that Si(X) and Ti(X) have none either. For simplicity, I also impose
that Tz(X) and Ti(X) have no common roots; relaxing this restriction would not affect
the results substantially, but would make the analysis more tedious.

A path of type (14)–(15) is feasible if and only if two conditions are met. First, the
structural equation (13) must be satisfied on this path. Second, it must be expressible as
a function of Ot on this path. This second condition is equivalent to

Tz(0) �= 0�

To show this equivalence, suppose first that Tz(0) �= 0. Then, multiplying (14) by Ti(L)
and using (15) leads to Si(L)Tz(L)it = Sz(L)Ti(L)zt . The coefficient of it in this equation
is Si(0)Tz(0) �= 0. Therefore, this equation expresses it only as a function of elements of
Ot . Now suppose, alternatively, that Tz(0) = 0. Then zt is independent of εt in (14).
Because Tz(X) and Ti(X) are coprime, however, Tz(0) = 0 implies Ti(0) �= 0, so that it
depends on εt in (15). Since it depends on εt and since zt is independent of εt , there is
no way to express it only as a function of elements of Ot on the path (14)–(15).

Now consider an arbitrary feasible path of type (14)–(15), denoted by P . To see
whether P is implementable, I proceed along the same lines as in Section 2.4. I start
by noting that the (locally log-linearized) policy-instrument rules consistent with the
observation set Ot are the rules of type

P(L)it +Q(L)zt = 0� (16)

with (P(X)�Q(X)) ∈ R[X]2 and P(0) �= 0. Among these rules, those that are also consis-
tent with the path P are those such that

P(X)Si(X)−1Ti(X)+Q(X)Sz(X)−1Tz(X)= 0� (17)

Let S(X) denote the greatest common divisor of Sz(X) and Si(X), defined up to a
nonzero real-number multiplicative factor. Multiplying (17) by Sz(X)Si(X)/S(X) leads
to

P(X)S̃z(X)Ti(X)+Q(X)S̃i(X)Tz(X)= 0� (18)

where S̃z(X) ≡ Sz(X)/S(X) and S̃i(X) ≡ Si(X)/S(X) are coprime polynomials. Multi-
plying (16) by S̃i(L)Tz(L) and using (18) then leads to

P(L)
[
S̃i(L)Tz(L)it − S̃z(L)Ti(L)zt

] = 0� (19)
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The coefficient P(0)S̃i(0)Tz(0) of it in (19) is nonzero, notably because of the feasibil-
ity condition Tz(0) �= 0. Therefore, all the equations of type (19) with P(X) ∈ R[X]
and P(0) �= 0 are policy-instrument rules consistent with the observation set Ot and the
path P . Conversely, all the policy-instrument rules consistent with Ot and P are of type
(19) with P(X) ∈ R[X] and P(0) �= 0. The reason is that S̃i(X)Tz(X) and S̃z(X)Ti(X)
have no common roots.6 They have no common roots because each of the pairs S̃i(X)
and S̃z(X), Ti(X) and Tz(X), S̃i(X) and Ti(X), and S̃z(X) and Tz(X) is, by assumption
or construction, a pair of coprime polynomials. So the question of whether the path P
is implementable can be equivalently restated as the question of whether P(X) ∈ R[X]
with P(0) �= 0 exists such that the rule (19) robustly ensures local-equilibrium determi-
nacy. I can then conduct exactly the same reasoning as in Section 2.4 and conclude that
a rule of type (19) exists that robustly ensures local-equilibrium determinacy if and only
if the specific rule

S̃i(L)Tz(L)it = S̃z(L)Ti(L)zt� (20)

corresponding to P(X)= 1, robustly ensures local-equilibrium determinacy in the first
place. So the question of whether the path P is implementable eventually boils down to
the question of whether the system made of the structural equation (13) and the specific
rule (20) satisfies Blanchard and Kahn’s (1980) conditions. Moreover, when the path P
is implementable, the question of its implementation is trivially answered: the rule (20),
whose coefficients are simple arithmetic functions of the feasible-path parameters, is
consistent with Ot and implements P as the robustly unique local equilibrium.

These implementability and (trivial) implementation results are more general, but
very similar to those of the previous section. In particular, allowing the ARMA process
(14) to be non-invertible, i.e., allowing Tz(X) to have roots inside the unit circle (so that
the unobserved shock εt cannot be inferred from the history of the observed variable zt
on the feasible path), does not substantially change the analysis. The only consequence
of this non-invertibility is that all the rules consistent with the observation set and the
feasible path, i.e., all the rules of type (19), are then “superinertial” in the terminology of
Woodford (2003, Chapter 8), in the sense that the polynomial P(L)S̃i(L)Tz(L) in factor
it in these rules has some roots inside the unit circle (since this polynomial is a multiple
of Tz(L)). Because the superinertial nature of a rule is neither necessary nor sufficient
for indeterminacy, however, the issues of non-invertibility and non-implementability of
feasible paths seem largely unrelated to each other. I will illustrate this point in Section 4.

3.3 More unobserved shocks than observed variables

I now turn to the case in which there are two shocks, and these shocks are not observed
by the PM: c = 1 and Ot = {zt� it−1}. In this case, there are more unobserved shocks
(two: εt and ε′

t ) than observed variables outside the policy instrument (one: zt ).

6If they had a common root, say a real number r, then the equation S̃i(L)Tz(L)(r − L)−1it =
S̃z(L)Ti(L)(r−L)−1zt would also express it as a function of a finite number of elements ofOt and, therefore,
would also be a policy-instrument rule consistent with Ot and P .
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I consider the set of paths on which each endogenous variable follows a stationary
ARMA process driven by the exogenous shocks εt and ε′

t , i.e., the set of paths of type

Sz(L)zt = Tz(L)εt and Si(L)it = Ti(L)εt � (21)

where (Sz(X)�Si(X)) ∈ R[X]2, Sz(0) �= 0, Si(0) �= 0, Sz(X) and Si(X) have no roots in-
side the unit circle, εt ≡ [εtε′

t]T , and (Tz(X)�Ti(X)) ∈ (R1×2[X] � {0})2.7 Without any
loss of generality, I impose that the ARMA representations in (21) be minimal, i.e., that
Sz(X) and Tz(X) have no common roots and that Si(X) and Ti(X) have none either.
For simplicity, I also impose that Tz(X) and Ti(X) have no common roots.

A path of type (21) is feasible if and only if two conditions are met. First, the structural
equation (13) must be satisfied on this path. Second, it must be expressible as a function
of Ot on this path. This second condition requires in particular that

d ≡ det

[
Tz(X)
Ti(X)

]
= 0�

where det[·] denotes the determinant operator. Indeed, for it to be expressible as a func-
tion of Ot on the path (21), there must exist (P(X)�Q(X)) ∈ R[X]2 with P(0) �= 0 such
that P(L)it = Q(L)zt on this path. Multiplying this equation by Sz(L)Si(L) and using
(21) leads to P(L)Sz(L)Ti(L)εt =Q(L)Si(L)Tz(L)εt and, hence, to [P(X)Sz(X)]Ti(X)=
[Q(X)Si(X)]Tz(X). So feasibility requires that the vectors Ti(X) and Tz(X) be collinear,
i.e., that d = 0.

In turn, d = 0 implies that (Tz(X)�Ti(X)) ∈ (R[X] � {0})2 and T(X) ∈ R
1×2[X] � {0}

exist such that Tz(X)= Tz(X)T(X) and Ti(X)= Ti(X)T(X). Therefore, if the path (21)
is feasible, then it can be rewritten as

Sz(L)zt = Tz(L)νt and Si(L)it = Ti(L)νt� (22)

where νt ≡ T(L)εt . Equation (22) is the same as (14)–(15), except for the replacement
of εt by νt . So I can analyze the feasibility and implementability of the path (22) in
the same way as I analyzed the feasibility and implementability of the path (14)–(15)
in the previous subsection. Whether the shock is εt or νt plays no role in this analysis.
Therefore, defining (S̃i(X)� S̃z(X)) from (Si(X)�Sz(X)) in the same way as in the pre-
vious subsection, I straightforwardly get the following three results. First, the path (21)
is feasible if and only if d = 0 and Tz(0) �= 0. Second, when it is feasible, the path (21)
is implementable if and only if the specific rule (20) robustly ensures local-equilibrium
determinacy. Third, when it is implementable, the path (21) can be implemented by the
rule (20), in the sense that (20) is consistent with the observation set and implements
this path as the robustly unique local equilibrium.

7Throughout the paper, boldface letters denote vectors and matrices that have (at least potentially) more
than one element; in particular, 0 denotes a vector or a matrix whose elements are all equal to 0 and whose
dimension depends on the specific context in which it is used. The superscript T denotes the transpose
operator. For any (m�n) ∈ (N � {0})2, Rm×n[X] denotes the set of polynomials in X that have coefficients
that arem× nmatrices with real-number elements.
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These implementability and (trivial) implementation results are essentially the same
as those of the previous subsection. When there are two unobserved shocks for only
one observed variable (outside the policy instrument), the policymaker cannot infer the
two shocks (εt and ε′

t ) separately, but on any feasible path, only a combination of these
shocks (νt ) matters. So the questions of whether and how feasible paths can be im-
plemented receive essentially the same answers as when there is only one unobserved
shock.

3.4 Fewer unobserved shocks than observed variables

The last case I consider is the case in which there is only one shock, and this shock is ob-
served by the PM: c = 0 and Ot = {zt� it−1� εt}. In this case, there are fewer unobserved
shocks (zero) than observed variables outside the policy instrument (one: zt ).

I consider again the set of paths on which each endogenous variable follows a sta-
tionary (but possibly non-invertible) ARMA process driven by the exogenous shock εt ,
i.e., the set of paths of type (14)–(15). Since (15) already expresses it only as a function
of elements of Ot , a path of type (14)–(15) is feasible simply if and only if the structural
equation (13) is satisfied on this path.

Now consider an arbitrary feasible path, characterized by (14)–(15) for some Sz(X),
Si(X), Tz(X), and Ti(X). This path is implementable if and only a policy-instrument
rule exists that is consistent with Ot and such that the path is the robustly unique sta-
tionary solution of the system made of the structural equation (13) and that rule. In this
subsection, I show that such a rule exists and I design it arithmetically, i.e., with a finite
number of arithmetic operations (addition, subtraction, multiplication, and division).

To that aim, consider the class of rules of type

Sz(L)Si(L)
[
Ri(L)it −Rz(L)zt

] −Rε(L)εt = 0� (23)

with (Ri(X)�Rz(X)�Rε(X)) ∈ R[X]3, Ri(0) �= 0, and Rz(X) �= 0. Since the coefficient
Sz(0)Si(0)Ri(0) of it in (23) is nonzero, (23) expresses it only as a function of elements of
Ot , i.e., it is a policy-instrument rule consistent with Ot . Moreover, since all the roots of
Sz(X) and Si(X) lie outside the unit circle, (23) is equivalent to

Ri(L)it = Rz(L)zt + Sz(L)−1Si(L)
−1Rε(L)εt � (24)

The system made of the structural equation (13) and the rule (24) can easily be written
in Blanchard and Kahn’s (1980) form with exactly δ non-predetermined variables (cor-
responding to the expectations Et{zt+δ}, . . . , Et{zt+1}, sinceA(0) �= 0). For this system to
satisfy Blanchard and Kahn’s (1980) root-counting condition, we need its characteristic
polynomial to have exactly δ roots outside the unit circle (as many as there are non-
predetermined variables in the system). The characteristic polynomial of this system
is the same, up to a multiplicative factor of type Xp with p ∈ N, as the characteristic
polynomial C(X) of the corresponding perfect-foresight deterministic system, which is
made of the equations A(L)zt + LδB(L)it = 0 and Ri(L)it = Rz(L)zt . The reciprocal
polynomial of C(X) is, straightforwardly,

R(X)≡A(X)Ri(X)+XδB(X)Rz(X)�
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For Blanchard and Kahn’s (1980) root-counting condition to be satisfied, therefore, we
need R(X) to have exactly δ roots inside the unit circle, all of them nonzero.

Let dA and dB denote the degrees of A(X) and B(X). Consider an arbitrary poly-
nomial �(X) ∈ R[X] with the following three properties: (i) �(X) has exactly δ roots
inside the unit circle, none of which is zero, (ii) the degree of�(X) is lower than or equal
to max(dA − 1�0)+ dB + δ, and (iii) �(X) is not a multiple of A(X), except, of course, if
dA = 0. In the following, I arithmetically design (R∗

i (X)�R
∗
z(X)) ∈R[X]2 such that

R∗(X)≡A(X)R∗
i (X)+XδB(X)R∗

z(X)=�(X)�

Start with the case in which dA = 0. In this case, the arithmetic design of R∗
i (X) and

R∗
z(X) is trivial: since A(X) =A(0) �= 0, one can choose, e.g., R∗

z(X) = 1 and R∗
i (X) =

[�(X)−XδB(X)]/A(0). This choice is, straightforwardly, such that R∗(X)=�(X).
Now turn to the alternative case in which dA ≥ 1. In this case, I use the Sylvester

matrix of A(X) and B(X) to design arithmetically some R∗
i (X) of degree lower than

or equal to dB + δ− 1 and some R∗
z(X) of degree lower than or equal to dA − 1. More

specifically, let (ak)0≤k≤dA , (bk)0≤k≤dB , and (φk)0≤k≤dA+dB+δ−1 denote the coefficients
ofA(X), B(X), and �(X) (which are known), and let (rz∗k )0≤k≤dA−1 and (ri∗k )0≤k≤dB+δ−1

denote those of R∗
z(X) and R∗

i (X) (which are unknown):

A(X) = a0 + · · · + adAXdA�

B(X) = b0 + · · · + bdBXdB�

�(X) = φ0 + · · · +φdA+dB+δ−1X
dA+dB+δ−1�

R∗
z(X) = rz∗0 + · · · + rz∗dA−1X

dA−1�

R∗
i (X) = ri∗0 + · · · + ri∗dB+δ−1X

dB+δ−1�

The equation R∗(X)=�(X) can then be rewritten as

S

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rz∗dA−1
���

rz∗0
ri∗dB+δ−1

���

ri∗0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎣φdA+dB+δ−1
���

φ0

⎤⎥⎦ � where S ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bdB adA
���

� � �
���

� � �

b0
� � � bdB a0

� � �
� � �

� � �
���

� � �
� � � adA

b0
� � �

���
a0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(dA+dB+δ)×dA (dA+dB+δ)×(dB+δ)

is the transpose of the Sylvester matrix of the polynomials A(X) and XδB(X).8

A Sylvester matrix of two polynomials (with real-number coefficients) is invertible if
and only if these polynomials have no common (real or complex) roots. Now the poly-
nomials A(X) and XδB(X) have no common roots, since A(X) and B(X) are coprime

8To lighten the exposition, I display only the elements of S that may be nonzero.
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and A(0) �= 0. Therefore, their Sylvester matrix is invertible and so is its transpose S, so
that the coefficients of R∗

z(X) and R∗
i (X) can be arithmetically obtained as[

rz∗dA−1 � � � rz∗0 ri∗dB+δ−1 � � � ri∗0

]T = S−1
[
φdA+dB+δ−1 � � � φ0

]T
�

By construction, these polynomials R∗
i (X) and R∗

z(X) are such that R∗(X)=�(X).
Whether dA = 0 or dA ≥ 1, the polynomials R∗

i (X) and R∗
z(X) that I just designed are

admissible choices for Ri(X) and Rz(X) in (23), because they are such that R∗
i (0) �= 0

and R∗
z(X) �= 0. Indeed, R∗(X) = �(X) implies R∗(0) = A(0)R∗

i (0) = �(0) (since
δ ≥ 1) and, hence, R∗

i (0) = �(0)/A(0) �= 0 (since �(0) �= 0). If dA ≥ 1, then �(X) is
not a multiple of A(X), so that R∗(X) = �(X) implies R∗

z(X) �= 0. If dA = 0, then
R∗
z(X)= 1 �= 0.

So consider the rule (23) with (Ri(X)�Rz(X)) = (R∗
i (X)�R

∗
z(X)) for an arbitrary

Rε(X). As mentioned above, the property R∗(X) = �(X), together with the fact that
�(X) has exactly δ roots inside the unit circle (none of which is zero), implies that the
system made of the structural equation (13) and this rule satisfies Blanchard and Kahn’s
(1980) root-counting condition.

In addition, this system also satisfies Blanchard and Kahn’s (1980) no-decoupling
condition, except possibly for a zero-measure set of polynomials �(X).9 More specifi-
cally, the rule in this system has two properties that preclude two variants of decoupling.
First, R∗

z(X) �= 0 ensures that the dynamics of it are not decoupled from the dynamics of
zt in the rule (which is, in this sense, a feedback rule). Second, as I show in Appendix A.1,
R∗
i (X) and R∗

z(X) have no common roots—in particular, no common roots inside the
unit circle—except possibly for a zero-measure set of polynomials �(X). This second
property matters for the following reason. If R∗

i (X) and R∗
z(X) had a common root in-

side the unit circle, say a real number r ∈ (−1�1)� {0}, then the rule could be rewritten as
Sz(L)Si(L)(1−L/r)vt = Rε(L)εt , where the variable vt ≡ (1−L/r)−1[R∗

i (L)it−R∗
z(L)zt]

would be well defined as it would involve a finite number of elements ofOt ∪{it}. There-
fore, the rule would generate explosive dynamics for the variable vt , and, hence, also for
zt and/or it .10 In essence, the system would have an “unstable eigenvalue” (1/r), the
eigenvector of which would be a predetermined variable (vt ).

Since they make the system satisfy both the root-counting and the no-decoupling
conditions of Blanchard and Kahn (1980), all the rules of type (23) with (Ri(X)�

Rz(X)) = (R∗
i (X)�R

∗
z(X)) robustly ensure local-equilibrium determinacy. Among

them, in particular, the rule

Sz(L)Si(L)
[
R∗
i (L)it −R∗

z(L)zt
] −R∗

ε(L)εt = 0� (25)

9The no-decoupling condition requires that the system should not be “decoupled” in the sense of Sims
(2007). It is formulated as a matrix-rank condition in Blanchard and Kahn (1980, p. 1308) and is often called
the rank condition in the literature. Sims’ (2007) bare-bones example of a system meeting the root-counting
condition but not the no-decoupling condition is xt = 1�1xt−1 + εt and Et{yt+1} = 0�9yt + νt .

10More precisely, the rule would generate explosive dynamics for vt unless r is also a root of Rε(X). But
if r is also a root of Rε(X), then explosive dynamics would reemerge as soon as an exogenous policy shock,
even of arbitrarily small variance, is added to the rule.
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where R∗
ε(X) ≡ Sz(X)Ti(X)R∗

i (X) − Si(X)Tz(X)R∗
z(X), is satisfied on the path (14)–

(15). This rule, therefore, implements that path as the robustly unique local equilib-
rium. So, to sum up, (25) is a policy-instrument rule consistent with Ot and implement-
ing the path (14)–(15) as the robustly unique local equilibrium. As a consequence, this
path is implementable and the rule (25) that I have arithmetically designed implements
it.

These implementability and implementation results differ substantially from those
of the previous subsections. When there are fewer unobserved shocks than observed
variables (outside the policy instrument), there are additional degrees of freedom in
the choice of a rule consistent with the observation set and the feasible path, and it
is always possible to find one such rule that robustly ensures local-equilibrium deter-
minacy. Thus, all feasible paths are implementable. Moreover, for any feasible path,
I have shown how to design arithmetically a policy-instrument rule that is consistent
with the policymaker’s observation set and implements this path as the robustly unique
local equilibrium.

This arithmetic method of designing rules does not require, in particular, determin-
ing any polynomial roots (except trivially roots of polynomials of degree 1) or any in-
equality condition for determinacy. Instead, it directly transforms (i) the polynomials
and parameter characterizing the structural equation (A(X), B(X), δ), (ii) the polyno-
mials characterizing the targeted feasible path (Sz(X), Tz(X), Si(X), Ti(X)), and (iii) a
polynomial, the roots of which include the inverses of the “unstable eigenvalues” chosen
to match the non-predetermined variables (�(X)), into the polynomials characterizing
the rule (R∗

j (X) for j ∈ {i� z�ε}). Because the rule is arithmetically designed, its coeffi-
cients are explicitly expressed as rational functions of the structural and feasible-path
parameters, i.e., as fractions of polynomial functions of these parameters. Such func-
tions are particularly easy to manipulate analytically. For instance, their derivatives can
be easily computed—with the help of a symbolic-computation software—to determine
how the coefficients of the rule respond to an arbitrarily small change in the value of the
structural or feasible-path parameters.

3.5 Discussion

In this section, I have focused on a class of univariate models, i.e., a class of models with
only one variable set by the private sector. The implementability and implementation
analysis conducted in this class of models will prove useful for the next two sections,
even though the models in these sections are multivariate.

In Section 4, I will consider a framework with as many unobserved shocks as ob-
served variables (outside the policy instrument), as in Section 3.2. One difference is that
there will be two unobserved shocks and two observed variables, not one and one. This
difference will not fundamentally change the analysis, as we will see. Another differ-
ence is that I will assume that the policymaker does not observe current variables. This
difference will not play a major role either: in Section 3.2, replacing Ot = {zt� it−1} by
Ot = {zt−1� it−1} without changing the structural equation (13) is equivalent to replacing
B(X) by B(X)X in (13) without changing Ot , and does not fundamentally change the
analysis.
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In Section 5, I will consider a framework with fewer unobserved shocks than ob-
served variables (outside the policy instrument), as in Section 3.4. One difference is that
there will be two unobserved shocks and seven observed variables, not zero and one.
This difference will not fundamentally change the analysis. In essence, I will first follow
the same steps as in Section 3.4 to design a rule involving only one observed variable
and the two unobserved shocks. Then I will use the structural equations to replace the
unobserved shocks in this rule by some functions of observed variables, in a way that is
neutral for robust local-equilibrium determinacy.11

4. Optimal monetary policy in the NK model

In this section, I study the implementability of the welfare-maximizing feasible path in
the NK model, with the central bank as the policymaker and the interest rate as the pol-
icy instrument. Rotemberg and Woodford (1999, p. 103) once wrote that “the construc-
tion of a feedback rule for the funds rate that implements the optimal allocation—that
is not only consistent with it but also renders it the unique stationary equilibrium con-
sistent with the proposed policy rule—remains a nontrivial problem.” In essence, this
statement is still valid today when the optimal allocation and the feedback rule are re-
quired to be consistent with a given observation set of the central bank. In fact, as I show
in this section, such a feedback rule may simply not exist for a reasonable observation
set of the central bank.

In most of the section, I focus on the basic NK model, presented in detail in Wood-
ford (2003, Chapters 2, 4, and 6) and Galí (2015, Chapter 3). At the end of the section, I
extend the analysis to Svensson and Woodford’s (2005) NK model with monetary-policy
transmission lags.

4.1 Structural equations and observation set

I consider an economy described by the basic NK model and hit by two exogenous dis-
turbances, one affecting the discount factor and the other the elasticity of substitution
between differentiated goods. In this economy, at each date t ∈ Z, the private sector (PS)
sets the inflation rate πt and the output level yt according to the (locally log-linearized)
investment-saving (IS) equation and Phillips curve,

yt = Et{yt+1} − 1
σ

(
it −Et{πt+1}

) +ηt� (26)

πt = βEt{πt+1} + κyt + ut� (27)

11In essence, I will illustrate how my arithmetic method of designing rules in univariate models can
be extended to multivariate models with observed shocks or with shocks that are unobserved but can be
recovered from observed variables using only the structural equations. This method, however, cannot be
easily extended to multivariate models with both (i) fewer unobserved shocks than observed variables and
(ii) some unobserved and nonrecoverable shocks. Extending my implementability and implementation
analysis to such models is beyond the scope of this paper.
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where it denotes the interest rate set by the central bank (CB) at date t. I assume that the
exogenous disturbances ηt and ut follow stationary ARMA(1�1) processes

ηt = ρηηt−1 + εηt + θηεηt−1� (28)

ut = ρuut−1 + εut + θuεut−1� (29)

where εηt and εut are two orthogonal i.i.d. exogenous shocks of mean zero. The structural
parameters satisfy 0<β< 1, σ > 0, κ > 0, −1< ρη < 1, and −1< ρu < 1 (while θη and θu
may take any real-number value).

The observation set that I consider for the CB is

Ot ≡
{
πt−1� yt−1� it−1}�

This observation set has two notable features. First, it contains no exogenous shocks,
which seems reasonable given the nature of the two shocks considered. Second, it con-
tains no current endogenous variables. This second feature can be viewed as a con-
sequence of the timing in which the CB plays before the PS within each period. This
timing is arguably better suited than the reverse timing to capture the fact that, due to
information-collecting, information-processing, and decision-making frictions, central
banks take their decisions at a lower frequency than the private sector considered as a
whole (though not necessarily than each individual private agent). Many papers that
study the conduct of monetary policy, from Poole (1970) and Sargent and Wallace (1975)
to Svensson and Woodford (2005) and Atkeson et al. (2010), explicitly assume that the
central bank plays before the private sector at each date and, hence, does not observe
current endogenous variables when setting the interest rate. I follow them.12

4.2 Optimal feasible path

The optimal feasible path is the path that maximizes welfare subject to the structural
equations (26)–(27) and to the CB’s observation-set constraint. I assume for simplic-
ity that the steady state of the model is efficient, due to an employment or produc-
tion subsidy offsetting the monopolistic-competition distortion. Therefore, the welfare-
loss function, i.e., the opposite of the second-order approximation of households’ in-
tertemporal utility function in the neighborhood of the steady state, can be written as
Lt = Et{∑+∞

k=0β
k[(πt+k)2 + λ(yt+k)2]}, where λ > 0.

The optimal feasible path that I consider is, more specifically, the optimal feasi-
ble path under Woodford’s (1999) timeless perspective. This path can be defined as the
limit of the date-t0 Ramsey-optimal feasible path as t0 → −∞. I consider the timeless-
perspective optimal feasible path, rather than the date-t0 Ramsey-optimal feasible path,
to avoid having to deal with initial conditions (as explained in footnote 5).

To determine this path, denoted by P , I proceed in three steps. First, I show
that all the non-sunspot-driven paths that are feasible under the observation set Ot ≡

12In addition, this second feature of the observation set is necessary for the existence of a well defined
optimal feasible path, as I explain in Appendix A.2.



698 Olivier Loisel Theoretical Economics 16 (2021)

{πt−1� yt−1� it−1}, including the path P , are also feasible under the observation set Õt ≡
{εη�t−1� εu�t−1}. Second, I determine the timeless-perspective optimal feasible path un-
der Õt . Third, I show that the latter path, denoted by P̃ , is feasible under Ot . I con-
clude that the two paths P and P̃ coincide with each other. The advantage of this three-
step procedure is that P̃ , contrary to P , can be easily obtained with the undetermined-
coefficients method.

In the first step, I consider an arbitrary path that is feasible under Ot and does not
involve sunspot shocks. On this path, it can be expressed only as a function of ele-
ments of Ot ; I denote by (E) the corresponding equation. Moreover, on this path, the
forecast errors πt+1 − Et{πt+1} and yt+1 − Et{yt+1} depend only on the fundamental in-
novation εt+1 ≡ [εηt+1 εut+1]T . Therefore, the structural equations (26) and (27) can be
rewritten as πt +σ(1 −L)yt = it−1 −σηt−1 + v1εt and (β−L)πt + κyt−1 = −ut−1 + v2εt ,
where (v1�v2) ∈ (R1×2)2. These two equations, together with (28)–(29) and (E), form a
backward-looking system that can be solved recursively to get πt and yt as functions of
{εη�t� εu�t}, and get it as a function of Õt . Thus, all non-sunspot-driven feasible paths
under Ot are also feasible under Õt .

In the second step, to determine P̃ , I specify the interest rate it as a linear function of
the elements of {εη�t−1� εu�t−1}, and specify the inflation rate πt and output yt as linear
functions of the elements of {εη�t� εu�t}. I look for the values of the coefficients of these
linear functions that minimize Lt subject to the structural equations (26) and (27). The
computations, which are standard and of no particular interest, are available upon re-
quest. Definingμ≡ (2βλ)−1[λ+βλ+κ2 −√

(λ+βλ+ κ2)2 − 4βλ2] ∈ (0�1) and focusing
on the generic case ρu �= μ, I get the minimal ARMA representation for P̃ ,

(1 − ρuL)(1 −μL)
[

I2 0
0 (1 − ρηL)

][
Zt
it

]
=

[
TZ(L)
Ti(L)L

]
εt � (30)

where Zt ≡ [πt yt]T , I2 denotes the 2 × 2 identity matrix, TZ(X) ∈ R
2×2[X], with

det[TZ(0)] �= 0, and Ti(X) ∈R
1×2[X].

In the third step, to show that P̃ is feasible under Ot , I rewrite the first two lines of
(30) as

det
[
TZ(L)

]
εt = (1 − ρuL)(1 −μL)adj

[
TZ(L)

]
Zt (31)

by using Laplace’s expansion adj[TZ(X)]TZ(X) = det[TZ(X)]I2, where adj[TZ(X)] ∈
R

2×2[X] denotes the adjugate of TZ(X) (i.e., the transpose of its cofactor matrix). I
then multiply the left- and right-hand sides of the last line of (30) by (1 − ρuL)

−1(1 −
μL)−1 det[TZ(L)] and use (31) to get

(1 − ρηL)det
[
TZ(L)

]
it = Ti(L)adj

[
TZ(L)

]
Zt−1� (32)

Since det[TZ(0)] �= 0, (32) expresses it only as a function of elements of Ot . Therefore,
the path P̃ is feasible under Ot .
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So, to sum up, P is optimal over the set S of non-sunspot-driven feasible paths under
Ot , this set S is included in the set S̃ of feasible paths under Õt , P̃ is optimal over S̃, and
P̃ belongs to S. I conclude that P = P̃ and, hence, that P is characterized by (30).13

4.3 (Non-)implementability of the optimal feasible path

I now turn to the question of whether the optimal feasible path P is implementable un-
der Ot . To answer this question, I proceed in the same way as in Sections 2.4 and 3.2.
I start by noting that the (locally log-linearized) interest-rate rules consistent with the
observation set Ot are the rules of type

P(L)it +Q(L)Zt−1 = 0� (33)

with P(X) ∈ R[X], P(0) �= 0, and Q(X) ∈ R
1×2[X]. Among these rules, the rules that are

also consistent with the path P—characterized by (30)—are those such that

P(X)Ti(X)+ (1 − ρηX)Q(X)TZ(X)= 0� (34)

Multiplying (34) by adj[TZ(X)] and using Laplace’s expansion TZ(X)adj[TZ(X)] =
det[TZ(X)]I2 leads to

P(X)Ti(X)adj
[
TZ(X)

] + (1 − ρηX)det
[
TZ(X)

]
Q(X)= 0� (35)

Multiplying (33) by (1 − ρηL)det[TZ(L)] and using (35) then leads to

P(L)
{
(1 − ρηL)det

[
TZ(L)

]
it − Ti(L)adj

[
TZ(L)

]
Zt−1

} = 0� (36)

Since det[TZ(0)] �= 0, all the equations of type (36) with P(X) ∈ R[X] and P(0) �= 0 are
interest-rate rules consistent with Ot and P . Conversely, all the interest-rate rules con-
sistent with Ot and P are (generically) of type (36) with P(X) ∈R[X] and P(0) �= 0, given
that (1−ρηX)det[TZ(X)] and Ti(X)adj[TZ(X)] have no common roots (except in zero-
measure cases).

So the question of whether the path P is implementable can be equivalently restated
as the question of whether P(X) ∈ R[X] with P(0) �= 0 exists such that the rule (36)
robustly ensures local-equilibrium determinacy. I can then conduct exactly the same
reasoning as in Section 2.4 and conclude that a rule of type (36) exists that robustly en-
sures local-equilibrium determinacy if and only if the specific rule (32), corresponding
to P(X) = 1, robustly ensures local-equilibrium determinacy in the first place. So, the
question of whether the path P is implementable eventually boils down to the question
of whether the system made of the structural equations (26)–(27) and the specific rule
(32) satisfies Blanchard and Kahn’s (1980) conditions.

13On this path, interestingly, the endogenous variables respond persistently to bothηt and ut , even when
these disturbances are i.i.d. As is well known since Clarida et al. (1999) and Woodford (1999), a persistent
response to ut is optimal because, by making Et{πt+1} depend negatively on ut , it relaxes the constraint
imposed on (πt� yt) by the Phillips curve (27). In my setup, similarly, a persistent response to ηt is optimal
because, by making Et{yt+1} + (1/σ)Et{πt+1} depend negatively on ηt , it relaxes the constraint imposed on
yt by the IS equation (26) and by ηt /∈Ot .
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Figure 1. Implementability of the optimal feasible path in the basic NK model when the CB
observes only past endogenous variables.

This question can be straightforwardly answered numerically. For instance, let me
consider Galí’s (2015, Chapter 3) and Woodford’s (2003, Chapter 4) calibrations of the
basic NK model, respectively characterized by (β�σ�κ�λ)= (0�99�1�00�0�125�0�021) and
(β�σ�κ�λ) = (0�99�0�16�0�022�0�003), and let me focus on the values of ρη, ρu, θη, and
θu such that ρη = ρu ≡ ρ and θη = θu ≡ θ (so that the two disturbances follow identical
stochastic processes). As shown in Figure 1, I then obtain that P is not implementable
for many values of ρ and θ, broadly the same values under both calibrations.

For some values of ρ and θ (light-gray areas in Figure 1), P is not implementable
because all the interest-rate rules consistent with Ot and P lead to local-equilibrium
multiplicity. For other values of ρ and θ (dark-gray areas in Figure 1), it is not im-
plementable because adding an exogenous monetary-policy shock (even of arbitrarily
small variance) to any interest-rate rule consistent with Ot and P leads to nonexistence
of a local equilibrium. For still other values of ρ and θ (very-dark-gray areas in Figure 1),
P is not implementable because all the interest-rate rules consistent with Ot and P lead
to local-equilibrium multiplicity in the absence of exogenous monetary-policy shocks
and to nonexistence of a local equilibrium in the presence of such shocks.

In the first two cases, the system made of the structural equations (26)–(27) and the
specific rule (32) does not meet Blanchard and Kahn’s (1980) root-counting condition
because it has strictly fewer (in the first case) or strictly more (in the second case) eigen-
values outside the unit circle than non-predetermined variables. In the third case, this
system meets Blanchard and Kahn’s (1980) root-counting condition but not their no-
decoupling condition (which I discuss in Section 3.4). Sims (2007) claims that systems
meeting the root-counting condition but not the no-decoupling condition “can easily
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arise in economic research.” This third case provides a concrete economic example in
support of that claim.14

As is apparent from Figure 1, P is not implementable if and only if the moving-
average parameter θ is sufficiently large in absolute value. More specifically, for any
of the two calibrations and any value of the autoregressive parameter ρ, two threshold
values θ < 0 and θ > 0 exist such that P is not implementable if and only if θ < θ or
θ > θ. In particular, P is not implementable at the limit when θ → −∞ or θ → +∞.
This limit case can be interpreted as a situation in which news shocks perfectly inform
the PS about one-period-ahead disturbances. Indeed, as θ goes to minus or plus in-
finity, and the variance of εηt and εut go to zero at speed θ2 (so that the variances of
ε̃
η
t ≡ θε

η
t and ε̃ut ≡ θεut are constant), the stochastic processes of ηt and ut converge to

ηt = ρηt−1 + ε̃
η
t−1 and ut = ρut−1 + ε̃ut−1, so that ε̃ηt and ε̃ut can be interpreted as news

shocks that perfectly inform the PS about ηt+1 and ut+1.
Despite P being non-implementable if and only if |θ| is sufficiently large, there is

no apparent link between the (non-)implementability of P and the (non-)invertibility
of the ARMA processes of the exogenous disturbances (28)–(29). Indeed, the non-
implementability thresholds θ and θ are such that −1 < θ < 1 < θ (or, equivalently,
−1/2 < θ(1 + |θ|)−1 < 1/2 < θ(1 + |θ|)−1 in Figure 1). Thus, denoting by (N)I-(N)I the
(non-)implementability of P and the (non-)invertibility of (28)–(29), we have NI-NI for
θ <−1, NI-I for −1< θ< θ, I-I for θ < θ < 1, I-NI for 1< θ< θ, and NI-NI again for θ < θ.
Therefore, non-invertibility of the ARMA processes of the exogenous disturbances is nei-
ther necessary nor sufficient for non-implementability of the optimal feasible path.15

There is also no apparent link between the (non-)implementability of P and the
(non-)invertibility of the VARMA process (31) relating Zt to εt on P . For the whole grid
of values of ρ and θ that I consider under both calibrations, I find that det[TZ(X)] has
at least one root inside the unit circle, so that (31) is not invertible and εt cannot be in-
ferred from Zt on P . Yet, P is implementable for many values of ρ and θ, as is clear from
Figure 1. So non-invertibility of a feasible path is not a sufficient condition for non-
implementability of this path.16 As in Section 3.2, the non-invertibility of P implies that
all the rules consistent with Ot and P , i.e., all the rules of type (36), are superinertial; but
superinertial rules may very well ensure robust local-equilibrium determinacy.

4.4 Policy implications

This non-implementability result sounds a note of caution about one of the main
lessons of the NK literature, namely the importance for central banks to track some key

14I obtain this numerical result using indifferently my own Matlab code, Sims’ (2001) gensys.m code, or
Dynare.

15It is true that the borderline between the implementability and non-implementability areas in Fig-
ure 1 apparently goes through the limit points (−0�5�1) and (0�5�−1) in the (θ(1 + |θ|)−1, ρ) plane un-
der both calibrations. This result, however, may reflect the peculiarity of these two limit points (at which
θ = −ρ, and, hence, ηt = ε

η
t and ut = εut ), rather than a link between non-invertibility of (28)–(29) and

non-implementability of P .
16It is also not a necessary condition. In Section 2.4, for instance, the first line of the path (7) is trivially

invertible, yet this path may be non-implementable.
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unobserved exogenous rates of interest such as, for instance, the counterfactual “nat-
ural rate of interest” (as emphasized by, e.g., Galí 2015, Chapter 9, and Woodford 2003,
Chapter 4).17 This lesson is drawn from analyses that implicitly assume that the central
bank can produce an exogenous estimate of these exogenous rates of interest, that is to
say, in effect, that it can infer them from its observation of exogenous shocks only. Under
this assumption, the interest-rate rule can involve that estimate as an exogenous term,
which is neutral for robust local-equilibrium determinacy.18 Add to this term a suitably
chosen out-of-equilibrium reaction, and the resulting rule implements, as the robustly
unique local equilibrium, a path along which the interest rate is equal to that estimate.

In my framework, for instance, if the CB’s observation set were {εη�t−1� εu�t−1�πt−1�

yt−1� it−1} instead of Ot ≡ {πt−1� yt−1� it−1}, then the CB could follow the rule

it = i∗t +φ(
πt−1 −π∗

t−1
)
� (37)

with 1<φ< 1 + 2(1 +β)σ/κ, where

i∗t ≡ (1 − ρηL)−1(1 − ρuL)−1(1 −μL)−1Ti(L)εt−1�

π∗
t ≡ (1 − ρuL)−1(1 −μL)−1

[
1 0

]
TZ(L)εt

denote the exogenous-shock-contingent values taken by it and πt on the path P . This
rule is consistent with the path P , in the sense that it is satisfied on this path. Moreover,
it robustly ensures local-equilibrium determinacy, as I show in Appendix A.3. Therefore,
this rule robustly implements the path P as the unique local equilibrium. Thus, pro-
ducing an (exact) exogenous estimate of i∗t (and of π∗

t−1), that is to say, inferring i∗t (and
π∗
t−1) from the observed past exogenous shocks {εη�t−1� εu�t−1} only, enables the CB to

robustly implement P as the unique local equilibrium.
As my analysis shows, however, things are different when the central bank can only

produce endogenous estimates of these exogenous rates of interest, as seems more rea-
sonable to assume, i.e., when it has to infer them from its observation of endogenous
variables. The result that I obtain is that even when i∗t (and π∗

t−1) can be inferred in
many alternative ways, on the optimal feasible path P , from the endogenous variables
{πt−1� yt−1� it−1} observed by the central bank, there may be no way of setting the in-
terest rate it as a function of these variables that implements this path as the robustly
unique local equilibrium. In this case, any attempt to track the rate of interest i∗t and
implement the optimal feasible path will inevitably result, in the presence of exoge-
nous policy shocks of arbitrarily small variance, in either local-equilibrium multiplicity
or nonexistence of a local equilibrium (depending on the values of the structural param-
eters). Central banks should, therefore, make a cautious use of the key unobserved rates
of interest that the NK literature recommends that they track.

17In Galí’s (2015, Chapter 9) words, “these new models identify tracking the natural equilibrium of the
economy, which is not directly observable, as an important challenge for central banks.” In Woodford’s
(2003, Chapter 4) words, “keeping track of its current value would be an important (and far from trivial)
task of central-bank staff.”

18Interest-rate rules involving such exogenous rates of interest can be found in, e.g., Woodford (2003,
Chapters 4, 5, 7, and 8), and, more recently, Barsky et al. (2014), Cúrdia et al. (2015), and Galí (2015, Chap-
ters 4, 5, and 8).
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4.5 Policy-transmission lags

I have so far considered the basic NK model, and found that the optimal feasible path
is non-implementable only when the stochastic process of the exogenous disturbances
has a (sufficiently strong) moving-average component. In this subsection, I introduce
monetary-policy-transmission lags into the basic NK model, and I show that the optimal
feasible path can then be non-implementable even for a zero moving-average parame-
ter.

More specifically, I consider Svensson and Woodford’s (2005) model, which amounts
to the basic NK model with one-period monetary-policy-transmission lags and two
AR(1) exogenous disturbances with nonnegative autoregressive parameters. When
these disturbances are interpreted as affecting the discount factor for one and the elas-
ticity of substitution between differentiated goods for the other (as previously), the only
changes to be brought to the setup described in Section 4.1 are that the IS equation (26)
and the Phillips curve (27) should be replaced, respectively, by

yt = Et−1{yt+1} − 1
σ

(
Et−1{it} −Et−1{πt+1}

) +ηt� (38)

πt = βEt−1{πt+1} + κEt−1{yt} + ut� (39)

and that the parameters in (28) and (29) now satisfy (ρη�ρu) ∈ [0�1)2 and θη = θu = 0.19

The structural equations (38) and (39) involve expectations formed at date t− 1 because
the PS makes its decisions one period in advance in this model. This feature gener-
ates one-period monetary-policy-transmission lags, in the sense that an unexpected an-
nouncement made by the CB at date t can affect (πt+1� yt+1), but not (πt� yt).

I consider the same observation set for the CB as previously, namelyOt ≡ {πt−1� yt−1�

it−1}. Svensson and Woodford (2005) compute the timeless-perspective optimal feasible
path when the CB’s observation set is {εη�t−1� εu�t−1} instead of Ot . Using their results, it
is easy to get the minimal ARMA representation for this path,

(1 − ρuL)(1 −μL)
[

I2 0
0 (1 − ρηL)

][
Zt
it

]
=

[
TSW
Z (L)

TSW
i (L)L

]
εt � (40)

where TSW
Z (X) ∈ R

2×2[X] and TSW
i (X) ∈ R

1×2[X], with det[TSW
Z (0)] �= 0.20 This represen-

tation is the same as (30), except for the replacement of TZ(X) and Ti(X) by TSW
Z (X)

and TSW
i (X). So I can directly infer two results from my analysis in Sections 4.2 and 4.3.

First, the path (40) is the timeless-perspective optimal feasible path not only under the
observation set {εη�t−1� εu�t−1}, but also under the observation set Ot . Second, this path
is implementable under Ot if and only if the specific rule

D(L)−1(1 − ρηL)det
[
TSW
Z (L)

]
it =D(L)−1TSW

i (L)adj
[
TSW
Z (L)

]
Zt−1 (41)

19Svensson and Woodford (2005) allow the mean of ηt to be nonzero; for simplicity and without any loss
of generality, I set it to zero. They also write the IS equation and the Phillips curve in terms of the welfare-
relevant output gap, rather than the output level; under my interpretation of the exogenous disturbances,
these two variables coincide with each other.

20The superscript “SW” stands for Svensson–Woodford. The computations, which are straightforward
and of no particular interest, are available upon request.
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Figure 2. Implementability of the optimal feasible path in Svensson and Woodford’s (2005)
model when the CB observes only past endogenous variables.

robustly ensures local-equilibrium determinacy. This rule is the same as (32) except
for: (i) the replacement of TZ(X) and Ti(X) by TSW

Z (X) and TSW
i (X), and (ii) the divi-

sion of the left- and right-hand sides by D(L), where D(X)≡ (1 − ρuX)(1 − μX) is the
greatest common divisor, defined up to a nonzero real-number multiplicative factor, of
(1 −ρηX)det[TSW

Z (X)] and TSW
i (X)adj[TSW

Z (X)]. So the optimal feasible path (40) is im-
plementable if and only if the system made of the structural equations (38)–(39) and the
specific rule (41) satisfies Blanchard and Kahn’s (1980) conditions. Under the same two
alternative calibrations as previously, I then obtain that this path is not implementable
for many values of ρη and ρu, as shown in Figure 2.

For some values of ρη and ρu (light-gray areas in Figure 2), and, in particular, for
ρη = ρu = 0 (i.i.d. disturbances), the path (40) is not implementable because all the
interest-rate rules consistent withOt and this path lead to local-equilibrium multiplicity.
For some other values of ρη and ρu (dark-gray area in Figure 2), it is not implementable
because adding an exogenous monetary-policy shock (even of arbitrarily small variance)
to any interest-rate rule consistent withOt and this path leads to nonexistence of a local
equilibrium. This result, thus, shows that moving-average disturbances are not neces-
sary for feasible-path non-implementability of either kind.

Moreover, as in Section 4.3, I do not find any apparent link between the (non-
)implementability of the optimal feasible path and the (non-)invertibility of the vector
autoregressive moving-average (VARMA) process relating Zt to εt on this path. More
specifically, I find here that any of the following four possibilities can arise, depending
on the calibration (Galí’s or Woodford’s) and the value of (ρη�ρu): NI-NI, NI-I, I-NI, and
I-I, where (N)I-(N)I denotes the (non-)implementability of the path (40) and the (non-
)invertibility of the first two lines of (40). This result shows, again, that non-invertibility
of a feasible path is neither necessary nor sufficient for non-implementability of this
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path. If the path (40) is not invertible, i.e., if det[TSW
Z (X)] has at least one root inside the

unit circle, then the rule (41) is superinertial, and so are all the other rules consistent
with the observation set Ot and the path (40); but again, as already discussed in Sec-
tion 3.2 and illustrated in Section 4.3, superinertial rules may very well ensure robust
local-equilibrium determinacy.

5. Debt-stabilizing tax policy in the RBC model

In the previous section, I illustrated how feasible-path non-implementability can be an
issue in a textbook model (the NK model), for a standard policy instrument (the interest
rate), a relevant observation set (made of past endogenous variables), and an interest-
ing feasible path (the optimal feasible path). In the current section, I illustrate this time
how feasible-path implementability can obtain, against conventional wisdom, in a text-
book model (the RBC model), for a standard policy instrument (the labor-income tax or
income-tax rate), a relevant observation set (made of endogenous variables), and inter-
esting feasible paths (constant-debt feasible paths). I also address the issue of feasible-
path implementation in this context.

Schmitt-Grohé and Uribe (1997) consider, in the RBC model, a labor-income tax-
rate or income tax-rate rule that stabilizes the stock of public debt both in and out of
equilibrium.21 They find that this rule leads to local-equilibrium multiplicity for many
empirically relevant values of the structural parameters. Their finding has largely been
interpreted as an argument against the use of labor-income or income taxes to stabilize
public debt. However, the fact that this (labor-)income tax-rate rule fails to ensure local-
equilibrium determinacy does not imply that all the (labor-)income tax-rate rules that
stabilize public debt in equilibrium fail to ensure local-equilibrium determinacy.

In this section, I challenge the interpretation commonly made of their finding by
showing that, in the same model, for the same alternative tax instruments and for a
reasonable observation set of the tax authority, all constant-debt feasible paths are im-
plementable for all structural-parameter values.22 I show the implementability of each
of these feasible paths by designing arithmetically a (labor-)income tax-rate rule that
is consistent with the tax authority’s observation set and implements this path as the
robustly unique local equilibrium.

5.1 Structural equations and observation set

In Schmitt-Grohé and Uribe’s (1997) model, at each date t ∈ Z, the private sector (PS)
sets output yt , the capital stock kt , investment xt , hours worked ht , consumption ct ,
the (after-tax) rental price of capital rt , the (after-tax) wage wt , and the stock of public

21Most of Schmitt-Grohé and Uribe’s (1997) analysis is conducted in continuous time. I refer here to the
discrete-time analysis conducted in Section 4 and in the Appendix of their paper.

22Since Schmitt-Grohé and Uribe (1997), several papers have shown that policy instruments other than
labor-income or income taxes (e.g., government purchases in Guo and Harrison 2004) can be used in the
same model to stabilize public debt without generating local-equilibrium multiplicity. My point is that this
can be done even with labor-income or income taxes.
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debt bt , according to the structural equations, log-linearized in the neighborhood of the
zero-debt steady state,

yt = at + (1 − α)kt + αht (42)

kt = (1 − δ)kt−1 + δxt−1 (43)

yt = sggt + sxxt + (1 − sg − sx)ct (44)

wt = σct +χht (45)

ct = Et{ct+1} − [
1 −β(1 − δ)]σ−1

Et{rt+1} (46)

rt = at − α(kt − ht)−ωτ(1 − τ)−1τt (47)

wt = at + (1 − α)(kt − ht)− τ(1 − τ)−1τt (48)

bt = β−1bt−1 + sggt −
[
α+ (1 − α)ω]

τ(yt + τt)� (49)

where τt denotes the labor-income tax rate (when ω = 0) or the income tax rate (when
ω = 1) set by the tax authority (T A) at date t.23 The structural parameters satisfy 0 <
α < 1, 0< β < 1, 0< δ < 1, χ > 0, σ > 0, 0< sg < 1, 0< sx < 1, 0< sg + sx < 1, 0< τ < 1,
and ω ∈ {0�1}. To lighten the exposition, I assume that the exogenous productivity and
government-purchases disturbances at and gt are not only orthogonal and of mean zero,
but also i.i.d.24

The observation set that I consider for the T A is Ot ≡ {yt�xt�ht� ct�ut�wt� bt� τt−1}.
I thus assume that the T A observes all endogenous variables, except the capital stock,
and no exogenous disturbances.25

5.2 Constant-debt feasible paths

To characterize the set of constant-debt feasible paths, I replace bt and bt−1 in (49) by 0
and get

τt = −yt + sg[
α+ (1 − α)ω]

τ
gt� (50)

which corresponds to the balanced-budget tax-rate rule considered by Schmitt-Grohé
and Uribe (1997). I can rewrite (42)–(45), (47)–(48), and (50) as[

yt xt ht ct rt wt τt

]T = A
[
κt κt−1 at gt

]T
� (51)

where κt ≡ kt+1 is determined at t and A ∈R
7×4 (the closed-form expression of A is avail-

able upon request). Using (51), I can in turn rewrite (46) as

Et
{
S(L)κt+1

} =A43at +A44gt� (52)

23All variables are expressed in percentage deviation from their steady-state value except public debt bt ,
which is expressed as a fraction of steady-state output (since steady-state public debt is zero).

24The analysis can be extended to stationary and invertible ARMA processes of arbitrary orders for these
two exogenous disturbances. Schmitt-Grohé and Uribe (1997) assume that they follow AR(1) processes.

25The results would be identical if the T A were assumed to observe the capital stock and/or one or the
two exogenous disturbances.
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where

S(X)≡
[
A41 − 1 −β(1 − δ)

σ
A51

]
+

[
A42 −A41 − 1 −β(1 − δ)

σ
A52

]
X −A42X

2

and, for any matrix M, Mij denotes its row-i column-j element. I focus on the case in
which the two roots of S(X) lie outside the unit circle, implying that (52) has multiple
stationary solutions for κt , as it is the case in which Schmitt-Grohé and Uribe’s (1997)
balanced-budget tax-rate rule (50) leads to indeterminacy. In this case, the set of sta-
tionary constant-debt paths that do not involve sunspot shocks is characterized block-
recursively by (51) and the stationary ARMA(2�1) process for κt ,

S(L)κt =ψaat +A43at−1 +ψggt +A44gt−1� (53)

which is parametrized by (ψa�ψg) ∈ R
2.26 On any of these paths, (44) and (50) are satis-

fied and together imply the relationship

τt = −yt + yt − sxxt − (1 − sg − sx)ct[
α+ (1 − α)ω]

τ
�

which expresses τt only as a function of elements of Ot . As a consequence, any of these
paths is feasible, and the set of constant-debt feasible paths is also characterized by (51)
and (53). Note finally, for later use, that (51) and (53) imply the stationary ARMA(2�2)
process for τt ,

S(L)τt = Ta(L)at + Tg(L)gt� (54)

where Ta(X)≡ (A71 +A72X)(ψa +A43X)+A73S(X) and Tg(X)≡ (A71 +A72X)(ψg +
A44X)+A74S(X).

5.3 Implementability and implementation of these paths

Consider an arbitrary constant-debt feasible path, characterized by (51) and (53) for
some (ψa�ψg) ∈ R

2. This path, denoted by P , is implementable if and only if there ex-
ists a tax-rate rule consistent with Ot and such that P is the robustly unique stationary
solution of the system made of the structural equations (42)–(49) and that rule. In this
subsection, I show that such a rule exists, and I design it arithmetically, building notably
on the analysis in Section 3.4.

I proceed in four steps. In the first step, I point out that under any tax-rate rule that
does not involve the debt level, (yt� xt�ht� ct� rt�wt�kt� τt) is (uniquely or not uniquely)
determined by the system made of (42)–(48) and that rule, while bt is residually deter-
mined by (49). Now, in the presence of a tax-policy shock (even of arbitrarily small vari-
ance), (49) generates explosive dynamics for bt , since β−1 > 1. Therefore, any tax-rate
rule that does not involve the debt level fails to robustly ensure local-equilibrium de-
terminacy. In essence, the system made of the structural equations and any such rule

26I exclude constant-debt paths involving sunspot shocks from the analysis because the tax authority is
unlikely to be interested in implementing such paths.
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fails to meet Blanchard and Kahn’s (1980) no-decoupling condition: β−1 is an “unstable
eigenvalue” of this system, and the associated eigenvector is the predetermined variable
bt .27 Thus, the rule that I am looking for necessarily involves the debt level.

In the second step, I rewrite the system of structural equations (42)–(49) in a block-
recursive way. More specifically, I rewrite (42)–(45) and (47)–(48) as[

yt xt ht ct rt wt

]T = B
[
κt κt−1 τt at gt

]T
� (55)

where B ∈ R
6×5 (the closed-form expression of B is available upon request). In turn,

using (55), I rewrite (46) and (49) as

Et
{
Pk(L)κt+1 + Pτ(L)τt+1

} + Paat + Pggt = 0 (56)

Qb(L)bt +Qk(L)κt +Qττt +Qaat +Qggt = 0� (57)

where (Pk(X)�Pτ(X)�Qb(X)�Qk(X)) ∈R[X]4 and (Pa�Pg�Qτ�Qa�Qg) ∈R
5 (the closed-

form expression of these polynomials and parameters is available upon request).
The third step directly draws on the analysis in Section 3.4. In this step, I design a

rule that implements P as the robustly unique local equilibrium, but is not consistent
with Ot . Consider the class of rules of type

S(L)
[
Rτ(L)τt −Rb(L)bt

] −Ra(L)at −Rg(L)gt = 0� (58)

with (Rb(X)�Rτ(X)�Ra(X)�Rg(X)) ∈ R[X]4, Rτ(0) �= 0, and Rb(X) �= 0. Since the co-
efficient S(0)Rτ(0) of τt in (58) is nonzero, (58) expresses τt only as a function of ele-
ments of Ot , i.e., it is a tax-rate rule consistent with Ot . Moreover, since the two roots of
S(X) lie outside the unit circle, (58) is equivalent to

Rτ(L)τt = Rb(L)bt + S(L)−1[Ra(L)at +Rg(L)gt
]
� (59)

Under any rule of type (58), (bt�κt� τt) is (uniquely or not uniquely) determined by the
system made of (56)–(57) and (59), while (yt� xt�ht� ct� rt�wt) is residually determined by
(55).

The system made of (56)–(57) and (59) can easily be written in Blanchard and Kahn’s
(1980) form with exactly one non-predetermined variable, corresponding to the term
Et{Pk(0)κt+1 + Pτ(0)τt+1} in (56). For this system to satisfy Blanchard and Kahn’s (1980)
root-counting condition, thus, we need its characteristic polynomial to have exactly one
root outside the unit circle. The characteristic polynomial of this system is the same,
up to a multiplicative factor of type Xp with p ∈ N, as the characteristic polynomial
C(X) of the corresponding perfect-foresight deterministic system, which is made of the
equationsPk(L)κt+Pτ(L)τt = 0,Qb(L)bt+Qk(L)κt+Qττt = 0, and Rτ(L)τt = Rb(L)bt .
The reciprocal polynomial of C(X) is, straightforwardly,

R(X)≡Zτ(X)Rτ(X)+Zb(X)Rb(X)�

27In particular, Schmitt-Grohé and Uribe’s (1997) balanced-budget tax-rate rule (50) does not robustly
ensure local-equilibrium determinacy, as I discuss in Section 5.4.
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where Zτ(X) ≡ Pk(X)Qb(X) and Zb(X) ≡ Pk(X)Qτ − Pτ(X)Qk(X). Blanchard and

Kahn’s (1980) root-counting condition is satisfied, therefore, if R(X) has exactly one

root inside the unit circle and this root is nonzero.

Except for a zero-measure set of structural-parameter values, Zτ(X) is of degree 3,

Zb(X) is of degree 2, and they have no common roots, so that their Sylvester matrix is

invertible. Therefore, for an arbitrary real number φ ∈ (−1�1)� {0}, I can arithmetically

design R∗
τ(X) ∈ R[X] of degree at most 1 and R∗

b(X) ∈ R[X] of degree at most 2 such

that

R∗(X)≡Zτ(X)R∗
τ(X)+Zb(X)R∗

b(X)=X −φ�

following exactly the same procedure as in Section 3.4 with (Zτ(X)�Zb(X)�X −
φ�R∗

τ(X)�R∗
b(X)) playing the role of (A(X)�XδB(X)��(X)�R∗

i (X)�R
∗
z(X)). The poly-

nomials R∗
τ(X) and R∗

b(X) thus designed are admissible choices for Rτ(X) and Rb(X)

in (58), because they are generically such that R∗
τ(0) �= 0 and R∗

b(X) �= 0 (where “generi-

cally,” in this subsection, means “except possibly for a zero-measure set of values for the

structural parameters and the parameter φ”).

So consider the rule (58) with (Rτ(X)�Rb(X))= (R∗
τ(X)�R∗

b(X)) for some arbitrary

Ra(X) and Rg(X). As mentioned above, the property R∗(X) = X − φ, together with

φ ∈ (−1�1)� {0}, implies that the system made of the structural equations and this rule

satisfies Blanchard and Kahn’s (1980) root-counting condition. In addition, this system

also generically satisfies Blanchard and Kahn’s (1980) no-decoupling condition, as the

rule generically has two properties that preclude the two variants of decoupling dis-

cussed in Section 3.4: (i) R∗
b(X) �= 0, i.e., the rule involves the debt level (as explained in

the first step of my current analysis), and (ii) R∗
τ(X) and R∗

b(X) have no common roots

inside the unit circle.

Since they make the system satisfy both the root-counting and the no-decoupling

conditions of Blanchard and Kahn (1980), all the rules of type (58) with (Rτ(X)�

Rb(X)) = (R∗
τ(X)�R∗

b(X)) robustly ensure local-equilibrium determinacy. Among

them, in particular, the rule

S(L)
[
R∗
τ(L)τt −R∗

b(L)bt
] −R∗

a(L)at −R∗
g(L)gt = 0� (60)

where R∗
a(X)≡ R∗

τ(X)Ta(X) and R∗
g(X)≡ R∗

τ(X)Tg(X), is satisfied on the path P , since

it is satisfied when both bt = 0 and (54) hold. This rule, therefore, implements P as the

robustly unique local equilibrium.

In the fourth and last step, I transform the rule (60) designed in the previous step

into a rule consistent with Ot in a way that is neutral for robust local-equilibrium deter-

minacy. Note that (42) and (43) together imply

[
1 − (1 − δ)L]

at =
[
1 − (1 − δ)L]

(yt − αht)− (1 − α)δxt−1� (61)
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Multiplying the left- and right-hand sides of (60) by 1 − (1 − δ)L, using (61) to replace
[1 − (1 − δ)L]at , and using (44) to replace gt , I get[

1 − (1 − δ)L]
S(L)

[
R∗
b(L)bt +R∗

τ(L)τt
]

+R∗
a(L)

{[
1 − (1 − δ)L]

(yt − αht)− (1 − α)δxt−1
}

+ s−1
g

[
1 − (1 − δ)L]

R∗
g(L)

[
yt − sxxt − (1 − sg − sx)ct

] = 0� (62)

The rule (62) expresses τt only as a function of elements of Ot . Moreover, because the
only equations used to transform (60) into (62) are the structural equations (42)–(44),
the system made of all structural equations and the rule (60) is equivalent to the sys-
tem made of all structural equations and the rule (62). Since P is the unique stationary
solution of the former system, it is therefore also the unique stationary solution of the
latter system. Finally, because the root of the polynomial 1 − (1 − δ)X lies outside the
unit circle, (62) still ensures local-equilibrium determinacy when one adds an exoge-
nous tax-policy shock to it, like (60). So, to sum up, (62) is a tax-rate rule consistent with
Ot and implementing P as the robustly unique local equilibrium. As a consequence, P
is implementable, and the rule (62) that I have arithmetically designed implements it.

5.4 Policy implications

I have just shown that, in Schmitt-Grohé and Uribe’s (1997) model, for any of their two
alternative tax instruments and under the observation set that I consider, all constant-
debt feasible paths are implementable for all structural-parameter values. Thus, a
tax authority can always stabilize public debt in equilibrium without generating local-
equilibrium multiplicity. This result differs from Schmitt-Grohé and Uribe’s (1997) re-
sult, which is that a tax authority cannot always stabilize public debt both in and out of
equilibrium without generating local-equilibrium multiplicity. Let me elaborate on the
difference.

If stabilizing debt is the only objective of the tax authority, then it seems natural to
think that it will pursue this objective under whatever circumstances might arise, i.e.,
both in and out of equilibrium. In this case, it will follow the rule (50), as in Schmitt-
Grohé and Uribe (1997). Under this rule, for some structural-parameter values, there are
multiple local equilibria. These equilibria include all the constant-debt feasible paths
characterized in Section 5.2, as well as sunspot-driven paths. They differ from one an-
other in the values of the endogenous variables other than debt.

Alternatively, however, the tax authority’s objective could be to stabilize debt condi-
tionally on some endogenous variables (other than debt and the tax instrument) taking
the same values as on a given targeted constant-debt feasible path. Were these variables
to deviate from that path, the tax authority would no longer be required to stabilize debt.
Under this conditional objective, the tax authority could follow the rule (62) that I have
designed. Under this rule, there is a unique local equilibrium. In this equilibrium, which
coincides with the targeted constant-debt feasible path, debt is stabilized and the other
endogenous variables are on target.



Theoretical Economics 16 (2021) Implementation of stabilization 711

Requiring that debt be stabilized out of equilibrium, as under the rule (50), may
prevent the tax authority from putting the economy on an explosive path following a
deviation from the targeted feasible path, simply because all explosive paths may in-
volve an explosive debt. In this case, it is only by threatening to put the economy
on an explosive-debt path, as under the rule (62), that the tax authority can imple-
ment the targeted constant-debt feasible path as the robustly unique local equilib-
rium.

Despite making debt explode out of equilibrium, the tax policy described by the rule
(62) is “locally Ricardian” in the sense of Woodford (2003, Chapter 4), because it makes
debt explode only if the other endogenous variables explode as well. Debt cannot ex-
plode alone because the rule (62) links the tax rate to the debt level, so as to make the
system satisfy Blanchard and Kahn’s (1980) no-decoupling condition, as discussed in
Section 5.3. Adding a tax-policy shock to the rule (62) does not fundamentally change
this feedback loop from the debt level to the tax rate, so this tax policy is still locally
Ricardian in the presence of tax-policy shocks.

By contrast, the tax policy described by the rule (50), i.e., the balanced-budget policy
studied in Schmitt-Grohé and Uribe (1997), is locally non-Ricardian in the presence of
tax-policy shocks. Indeed, adding a shock et to the rule (50) and using the resulting rule
to replace τt in (49) leads to bt = β−1bt−1 −[α+ (1−α)ω]τet . As a result, the debt level bt
explodes over time independently of the dynamics of the other endogenous variables.
The basic reason is that the rule (50) does not create a feedback loop from the debt level
to the tax rate, and, therefore, the system does not satisfy Blanchard and Kahn’s (1980)
no-decoupling condition.28

6. Concluding remarks

This paper has sought to dig deeper into the modeling of stabilization policy. The start-
ing point for stabilization-policy modeling should be to specify the policymaker’s obser-
vation set—a key feature of the environment that should be explicitly stated alongside
other features such as preferences, technologies, and markets. Once this observation set
is specified, two concepts naturally emerge: those of feasible paths and implementable
paths. The goal of this paper has been to show, through two case studies, that feasible-
path (non-)implementability can be an issue in textbook models for standard policy in-
struments, relevant observation sets, and interesting feasible paths (with important pol-
icy implications), and to develop and illustrate an arithmetic method of designing, for a
given implementable path, a policy-instrument rule consistent with the observation set
and implementing this path as the robustly unique local equilibrium.

28The system is made of two independent subsystems: the equation bt = β−1bt−1 − [α + (1 − α)ω]τet
determines the debt level, while the equations (42)–(48) and (50) (with the shock et in the last equation)
separately determine the other endogenous variables. The first subsystem has one excess unstable eigen-
value, while the second one may have one excess stable eigenvalue (as shown by Schmitt-Grohé and Uribe
1997). Thus, the whole system does not satisfy Blanchard and Kahn’s (1980) no-decoupling condition, but
it may satisfy their root-counting condition, which can be seen as another concrete economic example in
support of Sims’ (2007) claim discussed in Section 4.3.
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As in most of the literature on stabilization policy, I have focused throughout the pa-
per on local-equilibrium determinacy, that is to say that I have abstracted from the pos-
sible existence of nonlocal equilibria. In the context of interest-rate rules, as argued by
Cochrane (2011), there is usually no solid economic reason to assume away the existence
of nonlocal equilibria. The most common policy proposal to eliminate them, made ini-
tially by Christiano and Rostagno (2001) and Benhabib et al. (2002), discussed by Wood-
ford (2003, Chapter 2), and used notably by Atkeson et al. (2010), consists in switching
from an interest-rate rule ensuring local-equilibrium determinacy to a money-growth
rule (possibly accompanied by a non-Ricardian fiscal policy) when the economy goes
outside a specified neighborhood of the steady state considered. The interest-rate rules
that I design (when the policy instrument is the interest rate) fit naturally into this pro-
posal, insofar as they are followed inside the specified neighborhood.

Appendix

A.1 Coprimeness of R∗
i (X) and R∗

z(X)

In this appendix, I show that the polynomials R∗
i (X) and R∗

z(X) designed in Section 3.4
have no common roots, except possibly for a zero-measure set of polynomials �(X).

If dA = 0, then R∗
z(X)= 1. Therefore, R∗

i (X) and R∗
z(X) have no roots in common,

since R∗
z(X) has no roots at all.

Alternatively, if dA ≥ 1, then suppose that R∗
i (X) and R∗

z(X) have at least one com-
mon root. This root, denoted by γ, may be real or complex (nonreal). Consider first
the case in which γ is a real number. Since A(X)R∗

i (X)+XδB(X)R∗
z(X)=�(X), γ is

also a root of �(X). Therefore, we have A(X)R̃∗
i (X) +XδB(X)R̃∗

z(X) = �̃(X), where
(R̃∗

i (X)� R̃
∗
z(X)� �̃(X))≡ (R∗

i (X)/(X−γ)�R∗
z(X)/(X−γ)��(X)/(X−γ)) ∈R[X]3. The

latter equation can be rewritten as

vr = S−1vφ with

⎧⎪⎨⎪⎩vr ≡
[
0 r̃z∗dA−2 � � � r̃z∗0 0 r̃i∗dB+δ−2 � � � r̃i∗0

]T
�

vφ ≡
[
0 φ̃dA+dB+δ−2 � � � φ̃0

]T
�

where (̃rz∗k )0≤k≤dA−2, (̃ri∗k )0≤k≤dB+δ−2, and (φ̃k)0≤k≤dA+dB+δ−2 denote the coefficients of
R̃∗
z(X), R̃∗

i (X), and �̃(X), respectively.
Let E ≡ R

dA+dB+δ and, for any k ∈ {1� � � � � dA + dB + δ}, let ek denote the vector
of E whose kth element is 1 and whose other elements are 0. The vector vφ belongs
to the hyperplane Hφ ≡ {v ∈ E|eT1 v = 0}. The image of Hφ by S−1 is the hyperplane
Hr ≡ {v ∈E|bdBeT1 v +adAeTdA+1v = 0}. Given the constraints imposed on�(X), the set of
admissible values for vφ is an open (nonempty) subset of Hφ. Therefore, the set of ad-
missible values for S−1vφ is an open (nonempty) subset of Hr , denoted by Sr . However,
vr = S−1vφ belongs to the subspace {v ∈ E|eT1 v = eTdA+1v = 0}, which is one dimension
smaller than Hr and, hence, of measure zero relative to Hr , and, therefore, of measure
zero relative to Sr . As a consequence, the set of polynomials �(X) such that R∗

i (X) and
R∗
z(X) have at least one common real root is of measure zero.

Now turn to the alternative case in which the common root γ is a complex (nonreal)
number. In this case, its conjugate γ is also a common root of R∗

i (X) and R∗
z(X), and
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both γ and γ are also roots of�(X). Therefore, I can divide R∗
i (X), R

∗
z(X), and�(X) by

(X−γ)(X−γ) and proceed in a way similar to above to show that the set of polynomials
�(X) corresponding to this case is of measure zero.

A.2 Observation of current variables in the basic NK model

To understand why no optimal feasible path would exist in Section 4 if the CB also
observed current endogenous variables, suppose that the CB’s observation set is Ot ≡
{πt� yt� it−1} instead of Ot ≡ {πt−1� yt−1� it−1}. For the sake of the argument, assume for
simplicity that the exogenous disturbance ηt is i.i.d. (i.e., ρη = θη = 0 and ηt = ε

η
t ),

and that there is no disturbance ut (i.e., ut = 0). Consider first the optimal path, i.e.,
the path that minimizes Lt subject only to the structural equations (26) and (27), in
the absence of any observation-set constraint. This path, denoted by P�, is trivially
[πt yt it] = [0 0 σε

η
t ]: on this path, it reacts to εηt so as to insulate πt and yt from

ε
η
t and get Lt = 0. Thus, on this path, it depends on εηt , but no element of Ot does, so it

cannot be expressed as a function of only elements of Ot . Therefore, the path P� is not
feasible.

Now turn to the path [πt yt it] = [εκεηt εε
η
t (1 − ε)σεηt ], where ε ∈R� {0}. This

path, denoted by Pε, is consistent with the structural equations (26) and (27) (since it im-
plies them), and also with the observation set Ot (since it implies it = (1 − ε)σπt/(κε),
with πt ∈ Ot ). Therefore, Pε is feasible. As ε shrinks to zero, the feasible path Pε con-
verges to the non-feasible path P� and the value taken by Lt on Pε goes to zero. Thus,
the set of feasible paths is not closed, and the optimal path P� lies at the bound-
ary of this set. Therefore, there is no optimal feasible path under the observation
set Ot .

A.3 Taylor rule with lagged inflation in the basic NK model

In this appendix, I show that the rule

it = i∗t +φ(
πt−1 −π∗

t−1
)

(37)

robustly ensures local-equilibrium determinacy in the basic NK model if and only if

1<φ< 1 + 2(1 +β)σ
κ

� (63)

To do so, I use the Phillips curve (27) to replace yt and yt+1 in the IS equation (26), I use
the rule (37) to replace it , and I get the dynamic equation in inflation,

Et

{
πt+2 −

(
1 + 1

β
+ κ

βσ

)
πt+1 +

(
1
β

)
πt +

(
κφ

βσ

)
πt−1

}
= 0�

where I have ignored all exogenous terms to lighten the exposition, as they do not matter
for the analysis. This dynamic equation has two non-predetermined variables (Et{πt+2}
and Et{πt+1}), and its characteristic polynomial is

C(X)≡X3 −
(

1 + 1
β

+ κ

βσ

)
X2 +

(
1
β

)
X +

(
κφ

βσ

)
�
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Therefore, the rule (37) robustly ensures local-equilibrium determinacy if and only if
C(X) has two roots outside the unit circle and one root inside. One necessary condition
for that is that C(−1) and C(1) should be of opposite signs. Since

C(−1)= κφ

βσ
−

(
2 + 2

β
+ κ

βσ

)
<
κφ

βσ
− κ

βσ
= C(1)�

C(−1) and C(1) are of opposite signs if and only if C(−1) < 0< C(1), that is to say if and
only if (63) holds.

Conversely, suppose that (63) holds. Then C(−1) < 0 < κφ/(βσ) = C(0). So C(X)
has at least one real root in (−1�0), which I denote by r1. Since C(X) is of type X3 −
a2X

2 +a1X+a0, we have r1 + r2 + r3 = a2 ≡ 1+1/β+κ/(βσ) > 2, where r2 and r3 denote
the other two roots of C(X). Therefore, r2 + r3 = a2 − r1 > 2, which implies that r2 and
r3 lie outside the unit circle. As a consequence, the rule (37) robustly ensures local-
equilibrium determinacy.
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