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Costly verification in collective decisions

Albin Erlanson
Department of Economics, University of Essex

Andreas Kleiner
Department of Economics, W. P. Carey School of Business, Arizona State University

We study how a principal should optimally choose between implementing a new
policy and maintaining the status quo when information relevant for the decision
is privately held by agents. Agents are strategic in revealing their information; the
principal cannot use monetary transfers to elicit this information, but can ver-
ify an agent’s claim at a cost. We characterize the mechanism that maximizes
the expected utility of the principal. This mechanism can be implemented as a
cardinal voting rule, in which agents can either cast a baseline vote, indicating
only whether they are in favor of the new policy, or make specific claims about
their type. The principal gives more weight to specific claims and verifies a claim
whenever it is decisive.
Keywords. Collective decision, costly verification.

JEL classification. D71, D82.

1. Introduction

The usual mechanism design paradigm assumes that agents have private information
and the only way to learn this information is by giving agents incentives to reveal it truth-
fully. This is a suitable model for many situations, most importantly when agents have
private information about their preferences. But there are a number of environments
where agents’ private information is based on hard facts. This could enable an outside
party to learn the private information of the agents, at a potentially significant cost.

For example, consider a chief executive officer (CEO) in a company who faces an
investment decision. Board members have relevant information but could have mis-
aligned incentives because the investment has different effects on different divisions.
The CEO can take the information provided by a board member at face value or hire
consultants to check various claims made by a board member. Another example is large
mergers in the European Union, which must be approved by the European Commission.
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If a proposed merger has a potentially large impact and its evaluation is not clear, a de-
tailed investigation is initiated. The Commission collects information from the merging
companies, third parties, and competitors. According to the Commission, this investi-
gation “typically involves more extensive information gathering, including companies’
internal documents, extensive economic data, more detailed questionnaires to market
participants, and/or site visits.” The analyses carried out by the Commission on po-
tential efficiency gains require that “claimed efficiencies must be verifiable” (European
Union 2013). Last, consider the example, taken from Sweden, of the decision of whether
a newly approved pharmaceutical drug should be subsidized. A producer of a drug can
apply for a subsidy by providing arguments for the clinical and cost-effectiveness of the
drug. Other stakeholders are also given an opportunity to participate in the delibera-
tions by contributing information relevant to the decision. Importantly, the applicant
and other stakeholders should provide documentation supporting their claims (Phar-
maceutical Benefits Board 2019).

So as to study such situations, we formulate a model with costly verification in which
a principal decides between introducing a new policy and maintaining the status quo.
The principal’s optimal choice depends on agents’ private information, summarized by
each agent i’s type ti ∈ R. Agents can be in favor of or against the new policy, and they
are strategic in revealing their information since it influences the decision made by the
principal. We exclude monetary transfers, but before taking the decision, the principal
can verify any agent and learn his information at a cost ci. We determine the mechanism
that maximizes the expected payoff of the principal; it optimally solves the trade-off be-
tween the benefits from using detailed information as input to the decision rule and the
implied costs of verifying agents’ claims to make the mechanism incentive compatible.

In the optimal mechanism, agents can vote in favor of or against the new policy;
moreover, they have the option to report their exact type. If agent i reports his type,
the principal adjusts the reported type by the verification cost ci to obtain agent i’s net
type, which is ti − ci if i votes in favor and ti + ci if he votes against (see Figure 1 for an
illustration). If an agent does not report his type the principal assumes this agent has
a default net type, namely ω+

i if he voted in favor of the new policy and ω−
i if he voted

against. This induces bunching, since an agent who is in favor reports only his type if
it is high enough and otherwise casts only a vote (and conversely if he is against). The
optimal decision rule for the principal is then to implement the new policy whenever
the sum of net types is positive. A report is decisive whenever it changes the decision
compared to this agent not sending a report; in the optimal mechanism each decisive
report is verified.

Our analysis provides at least two important insights for the design of mechanisms in
applications similar to our model. We illustrate them by connecting our analysis to the
European Commission’s decision on whether to approve a merger. In a merger review,
the Commission “analyses claimed efficiencies which the companies could achieve
when merged together. If the positive effects of such efficiencies for consumers would
outweigh the mergers’ negative effects, the merger can be cleared” (European Union
2013). Our analysis suggests, first, that the Commission should not always use claimed
efficiencies (which must be verifiable), but might benefit by assuming that a merger has
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type

net type

ti + ci

ω−
i

ω+
i

ti − ci

Figure 1. Illustration of how types are transformed to net types. The principal implements the
new policy whenever the sum of net types is positive.

a predetermined estimated efficiency gain, even if no verifiable documentation is pro-
vided. Moreover, it might be beneficial to discount efficiency claims that are difficult
and expensive to verify. Second, before starting the process of verifying claimed effi-
ciencies and other reports, the Commission should first determine which reports are
decisive and subsequently verify only them. While there are other verification rules that
could be used, this is a particularly simple rule that is easy to implement in practice and
it provides robust incentives for truth-telling.

To explain the intuition behind the optimal mechanism, we now describe in more
detail our main results. We show first that the principal can, without loss of generality,
use an incentive compatible direct mechanism, which can be implemented as follows.
In the first step, agents communicate their information. For each profile of reports, a
mechanism then provides answers to three questions: First, which reports should be
verified (verification rule)? Second, what is the decision regarding the new policy (deci-
sion rule)? Finally, what is the penalty when someone is revealed to be lying? Because
we can focus on incentive compatible mechanisms, penalties will be imposed only off
the equilibrium path. The principal can, therefore, always choose the severest possible
penalty, as this weakens incentive constraints but does not affect the decision made on
the equilibrium path. In general, the principal can implement any decision rule by al-
ways verifying all agents. However, the principal has to make a trade-off between using
detailed information for “good” decisions and incurring the costs of verification.

Key to solving the principal’s problem is that incentive constraints are tractable.
Each agent wants to send the report that maximizes the probability that his preferred
decision is implemented. We show that if there is a profitable deviation for some type,
any type that has a lower equilibrium probability of getting his preferred outcome also
finds this deviation profitable. This suggests that incentive constraints are hardest to
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satisfy for the types that have the lowest equilibrium probability of getting their pre-
ferred decision; we call these types the worst-off types.1 It follows that a mechanism is
incentive compatible if and only if it is incentive compatible for the worst-off types.

We can now explain how and why the optimal mechanism differs from the first best
outcome. First, in the optimal mechanism the principal incurs costs of verification. Ver-
ifications are clearly necessary if information is private and, since the incentive con-
straints for worst-off types are exactly binding, the optimal mechanism uses costly verifi-
cations as rarely as possible. Second, the decision is distorted compared to the first-best
because there is bunching at the bottom. This is optimal for the principal because, as
observed above, incentive constraints are hardest to satisfy for worst-off types. Suppose
instead there was no bunching at the bottom and a single type had the lowest probability
of getting the preferred decision. Then any higher report has to be verified sometimes to
make the worst-off type indifferent between reporting truthfully and deviating. Now if
we increase the probability that the worst-off type gets his preferred outcome, this only
changes the decision for this type, which has essentially no effect on the principal’s ex-
pected utility from the decision. But this makes it less attractive for the worst-off type to
claim to be of a different type and the principal can, therefore, verify all other types with
a strictly lower probability. Thus, this change allows the principal to save on verification
costs for almost all reports, but it changes only the decision for one type. This implies
that the cost-saving effect dominates. We conclude that the original mechanism, with
a single worst-off type, could not have been optimal and that the optimal mechanism
must feature bunching at the bottom. Finally, the principal’s first-best decision would
be to implement the new policy whenever the sum of types is positive, but in the opti-
mal mechanism, the principal uses net types instead to determine the decision, which
introduces a further distortion. Whenever an agent’s report ti is verified, the principal
pays the verification cost ci. If the principal implements the new policy because agent i
reported a high type, i’s effect on the principal’s payoff is only his net value ti −ci and not
his actual type ti, because the principal has to pay the verification cost ci. It is, therefore,
optimal for the principal to distort the decision rule by using net types instead of true
types.

The remainder of the paper is organized as follows. After reviewing relevant litera-
ture, we present in Section 2 our main model and describe the principal’s objective. In
Section 3, we discuss the optimal mechanism. We consider various extensions in Sec-
tion 4, including an analysis of the optimal mechanism with imperfect verification. All
proofs that are not found in the main body of the paper are relegated to the Appendix.

Related literature

There is a substantial literature on collective choice problems with two alternatives
when monetary transfers are not possible. A particular strand of this literature, dating
back to the seminal work of Rae (1969), assumes that agents have cardinal utilities and

1Since we allow for general utility functions, these are not necessarily the types with the lowest expected
utility.
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compares decision rules with respect to ex ante expected utilities. Because money can-

not be used to elicit cardinal preferences, Pareto-optimal decision rules are simple and

can be implemented as voting rules, where agents indicate only whether they are in fa-

vor of or against the policy (Schmitz and Tröger 2012, Azreli and Kim 2014). Introducing

a technology to learn the agents’ information allows a much richer class of decision rules

to be implemented. Our main interest lies in understanding how this additional possi-

bility allows for other implementable mechanisms and changes the optimal decision

rule.

Townsend (1979) introduces costly verification in a principal–agent model with a

risk-averse agent. Our model differs from his and the literature that builds on it (see, e.g.,

Gale and Hellwig 1985, Border and Sobel 1987), since monetary transfers are not feasible

in our model. Allowing for monetary transfers yields different incentive constraints and

economic trade-offs than in a model without money.

Recently, there has been growing interest in models with state verification that do

not allow for transfers. Ben-Porath et al. (2014, henceforth BDL) consider a principal that

wishes to allocate an indivisible good among a group of agents, and each agent’s type

can be learned at a given cost. The principal’s trade-off is between allocating the object

efficiently and incurring the cost of verification. BDL characterize the mechanism that

maximizes the expected utility of the principal: it is a favored-agent mechanism, where

a predetermined favored agent receives the object unless another agent claims a value

above a threshold, in which case the agent with the highest (net) type gets the object. We

study a similar model of costly verification and without transfers, but we are interested

in optimal mechanisms in collective choice problems. In these problems more complex

voting mechanisms are feasible, even in the absence of verification possibilities. More

recently, Mylovanov and Zapechelnyuk (2017) study the allocation of an indivisible good

when the principal always learns the private information of the agents but only after

having made the allocation decision and having only limited penalties at his disposal.

Halac and Yared (2019) introduce costly verification in a delegation setting and describe

the conditions under which interval delegation with an “escape clause” is optimal.

Glazer and Rubinstein (2004) and Glazer and Rubinstein (2006) consider a situation

in which an agent has private information about several characteristics and tries to per-

suade a principal to take a given action, and the principal can only check one of the

agent’s characteristics. Recently, Ben-Porath et al. (2019) study a class of mechanism

design problems with evidence. They show that the optimal mechanism does not use

randomization, commitment is not an issue, and robust incentive compatibility does

not entail any cost. Additionally, they show that costly verification models can be em-

bedded as evidence games as an alternative way to find optimal mechanisms, but the

results on commitment and robustness do not apply to costly verification models.2

2For additional papers on mechanism design with evidence, see also Green and Laffont (1986), Bull and
Watson (2007), Deneckere and Severinov (2008), and Ben-Porath and Lipman (2012).
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2. Model and preliminaries

There is a principal and a set of agents I = {1�2� � � � � I}. The principal decides between
implementing a new policy and maintaining the status quo.3 Each agent holds private
information, summarized by his type ti ∈ R. The payoff to the principal is

∑
i ti if the

new policy is implemented, and it is normalized to 0 if the status quo remains. Monetary
transfers are not possible. The private information held by the agents is verifiable. The
principal can check agent i at a cost of ci, in which case he learns the true type of agent i.
Being verified imposes no costs on the agent. Agent i with type ti obtains a utility of
ui(ti) if the policy is implemented and 0 otherwise. For example, if ui(ti) = ti for each
agent, the principal maximizes utilitarian welfare; in general, the principal could have
divergent preferences, for example, because he cares only about how the new policy
affects him.4 Types are drawn independently from the type space Ti ⊂R according to the
distribution function Fi with finite moments and density fi. Let t ≡ (ti)i∈I and T ≡ ∏

i Ti.
The principal can design a mechanism and agents play a Bayesian Nash equilibrium

in the game induced by the mechanism. A mechanism could potentially be an indirect
and complicated dynamic mechanism that includes multiple rounds of communication
and checking. However, we show in Appendix A.1 that it is without loss of generality to
focus on direct mechanisms with truth-telling as a Bayesian Nash equilibrium. To allow
for stochastic mechanisms we introduce a correlation device as a tool to correlate the
decision rule with the verification rules. Assume that s is a random variable that is drawn
independently of the types from a uniform distribution on [0�1] and observed only by
the principal. A direct mechanism (d�a� �) consists of a decision rule d : T × [0�1] →
{0�1}, a profile of verification rules a≡ (ai)i∈I , where ai : T × [0�1] → {0�1}, and a profile
of penalty rules � ≡ (�i)i∈I , where �i : T × Ti × [0�1] → {0�1}. In a direct mechanism
(d�a� �), each agent sends a message mi ∈ Ti to the principal. Given these messages, the
principal verifies agent i if ai(m� s) = 1. If no one is found to have lied, the principal
implements the new policy if d(m� s)= 1.5 If the verification reveals that agent i has lied,
the new policy is implemented if and only if �i(m� ti� s)= 1, where ti is agent i’s true type.
If more than one agent lied, it is arbitrary what decision to take. For each agent i, let
T+
i := {ti ∈ Ti|ui(ti) > 0} denote the set of types that are in favor of the new policy, and

let T−
i := {ti ∈ Ti|ui(ti) < 0} denote the set of types that are against the policy. We assume

that t−i < t+i for all t−i ∈ T−
i and t+i ∈ T+

i . This assumption ensures a weak alignment
between the agents’ and the principal’s preferences: if an agent is in favor of the new
policy, this increases the principal’s expected utility from implementing the policy. This
implies that no agent has an incentive to misrepresent his ordinal type, for example, by
claiming that he is in favor of the new policy while he actually is against the new policy.
To simplify notation, we also assume that no agent is indifferent, so Ti = T+

i ∪ T−
i .

3We discuss in Section 4 how our analysis changes if the principal can decide between more than two
actions.

4Another interpretation of the objective function, suggested by a referee, is that the principal is interested
in the mean of an unknown parameter.

5With slight abuse of notation, we drop the realization of the randomization device as an argument
whenever the correlation is irrelevant. In these cases, Es[d(m� s)] is simply denoted as d(m) and Es[ai(m� s)]
is denoted as ai(m).
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Example 1. To illustrate a situation in which the general utility function ui(ti) is use-
ful, consider a principal deciding whether to provide a public good. Agents are privately
informed about their value for the public good, which is always positive. The princi-
pal bears the cost k of providing the public good and maximizes the sum of the agents’
values minus the potential cost of providing the public good.

This example can be mapped into our model by defining the type of an agent that
values the public good at vi to be ti = vi−k/I and by setting ui(ti) > 0 for all ti. Clearly, all
agents are in favor, even if their types are negative, and the principal’s payoff of providing
the public good is

∑
ti = ∑

vi − k. ♦

Truth-telling is a Bayesian Nash equilibrium for the mechanism (d�a� �) if and only
if the mechanism (d�a� �) is Bayesian incentive compatible, which is formally defined as
follows.

Definition 1. A mechanism (d�a� �) is Bayesian incentive compatible (BIC) if, for all
i ∈ I and all ti� t ′i ∈ Ti,

ui(ti) ·Et−i�s
[
d(ti� t−i� s)

]
≥ ui(ti) ·Et−i�s

[
d
(
t ′i� t−i� s

)[
1 − ai

(
t ′i� t−i� s

)] + ai
(
t ′i� t−i� s

)
�i

(
t ′i� t� s

)]
�

The left-hand side of the equation in Definition 1 is the interim expected utility if
agent i truthfully reports his type ti and all others also report truthfully. The right-hand
side is the interim expected utility if agent i instead lies and reports to be of type t′i .

The aim of the principal is to find an incentive compatible mechanism that maxi-
mizes his expected utility. The expected utility of the principal for a given mechanism
(d�a� �) is

Et

[∑
i

(
d(t)ti − ai(t)ci

)]
�

where expectations are taken over the prior distribution of types.
Because the principal uses an incentive compatible mechanism, lies occur only off

the equilibrium path and, therefore, do not directly enter the objective function. The
principal can, therefore, always choose the severest possible penalty for a lying agent.
This does not affect the outcome on the equilibrium path, but it weakens the incentive
constraints. For example, if an agent is found to have lied and his true type supports the
new policy, the penalty is to maintain the status quo. Henceforth, without loss of opti-
mality, we assume that the principal uses this penalty scheme and we drop the reference
to a profile of penalty functions when we describe a mechanism.

At this point, we have all the prerequisites and definitions required to formally state
the aim of the principal:

max
d�a

Et

[∑
i

(
d(t)ti − ai(t)ci

)]

such that (d�a) is Bayesian incentive compatible.

(P)
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The following lemma provides a characterization of Bayesian incentive compatible
mechanisms.

Lemma 1. A mechanism (d�a) is Bayesian incentive compatible if and only if, for all i ∈ I
and all ti ∈ Ti,

inf
t ′i∈T+

i

Et−i�s
[
d
(
t ′i� t−i� s

)] ≥ Et−i�s
[
d(ti� t−i� s)

[
1 − ai(ti� t−i� s)

]]
�

sup
t ′i∈T−

i

Et−i�s
[
d
(
t ′i� t−i� s

)] ≤ Et−i�s
[
d(ti� t−i� s)

[
1 − ai(ti� t−i� s)

] + ai(ti� t−i� s)
]
�

We call a type a worst-off type if the infimum (respectively, the supremum) in
Lemma 1 is attained for this type. The intuition for Lemma 1 is as follows. First, because
of the binary nature of the principal’s decision, an agent maximizes his utility by sending
a report that maximizes the probability of getting the preferred decision. Now if type ti
can increase this probability by deviating to a report t ′i , any other type can use the same
deviation t ′i to get the same probability (since types are distributed independently). By
construction, worst-off types have the lowest probability of getting their preferred deci-
sion when being truthful. Thus, whenever some type has a profitable deviation, so do
the worst-off types.

Proof of Lemma 1. Let i ∈ I . We consider two cases: one when agent i is in favor of
the policy (t ′i ∈ T+

i ) and the other when agent i is against the policy (t ′i ∈ T−
i ).

Since ui(ti) > 0 for ti ∈ T+
i and we can, without loss of generality, set �i(t ′� ti� s) = 0

for all t ′ and ti ∈ T+
i , we get that agent i with type t ′i ∈ T+

i has no incentive to deviate if
and only if, for all ti ∈ Ti,

Et−i�s
[
d
(
t ′i� t−i� s

)] ≥ Et−i�s
[
d(ti� t−i� s)

[
1 − ai(ti� t−i� s)

]]
� (1)

Since (1) is required to hold for all t′i ∈ T+
i , it must, in particular, hold for the infimum

over T+
i , which is equivalent to Definition 1 of BIC.

Similarly, since ui(ti) < 0 for ti ∈ T−
i and we can, without loss of generality, set

�i(t
′� ti� s) = 1 for all t ′ and ti ∈ T−

i , a type t ′i ∈ T−
i , has no incentive to deviate if and only

if, for all ti ∈ Ti,

Et−i�s
[
d
(
t ′i� t−i� s

)] ≤ Et−i�s
[
d(ti� t−i� s)

[
1 − ai(ti� t−i� s)

] + ai(ti� t−i� s)
]
� (2)

Since (2) is required to hold for all t ′i ∈ T−
i , it must, in particular, hold for the supremum

over T−
i , which is equivalent to Definition 1 of BIC.

3. Voting with evidence

In this section, we show that a voting-with-evidence mechanism is optimal, find optimal
weights in a setting with two agents, and discuss comparative statics.
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ti

wi ui(ti) = ti

ω+
i

ω−
i

ω−
i − ci ω+

i + ci

T+
iT−

i

Figure 2. Example illustrating how weights are determined with utility ui(ti)= ti.

3.1 Optimal mechanism

To formally define a voting-with-evidence mechanism, we define, given a collection of
weights {ω+

i �ω
−
i }i∈I satisfying ω−

i ≤ω+
i , the weight function wi : Ti →R by

wi(ti) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ti + ci if ti ∈ T−
i and ti < ω−

i − ci�

ω−
i if ti ∈ T−

i and ti ≥ω−
i − ci�

ω+
i if ti ∈ T+

i and ti ≤ω+
i + ci�

ti − ci if ti ∈ T+
i and ti > ω+

i + ci�

For an illustration, see Figure 2. Given the weight functions wi, we say that a mechanism
is a voting-with-evidence mechanism if

d(t)=
⎧⎨
⎩1 if

∑
wi(ti) > 0�

0 if
∑

wi(ti) < 0�

and an agent i is verified if and only if he is decisive. An agent i is decisive at a profile of
reports t if his preferred outcome is implemented and if the decision were to change if
his report was replaced by his relevant cutoff (ω+

i + ci if he is in favor and ω−
i − ci if he

prefers status quo).
A voting-with-evidence mechanism can be interpreted as a cardinal voting rule,

where agents have the option to make specific claims to gain additional influence. To
see this, consider the following indirect mechanism. Each agent casts a vote either in
favor of or against the new policy. In addition, agents can make claims about their in-
formation. If agent i does not make such a claim, his vote is weighted by the baseline
weights ω+

i if he votes in favor of the new policy and by −ω−
i if he votes against. If agent

i supports the new policy and makes a claim ti, his weight is increased to ti − ci. Sim-
ilarly, if he opposes the new policy, his weight is increased to −ti + ci. The new policy
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is implemented whenever the sum of weighted votes in favor is larger than the sum of
the weighted votes against the new policy. An agent’s claim is checked whenever he is
decisive. This indirect mechanism indeed implements the same outcome as a voting-
with-evidence mechanism. Any agents with weak or no information supporting their
desired alternative prefer merely to cast a vote, whereas agents with sufficiently strong
information make claims to gain additional influence over the outcome of the princi-
pal’s decision. Note that the cutoffs already determine the default voting rule that is
used if all agents cast votes.

A voting-with-evidence mechanism is particularly simple to describe when all
agents have type-independent preferences, i.e., for each i, ui(ti) > 0 or ui(ti) < 0 for all
ti. For instance, consider the case of deciding on the provision of a public good, where
the cost of provision of the public good is borne by the principal (this case is spelled
out in detail in Example 1). Therefore, when agent i is always in favor of implementing
the project, agent i is assigned a default type of ω+

i + ci, and the principal presumes i

has the default type unless i reports differently. The principal reduces the reported (or
presumed) type by the verification cost to obtain i’s net type, and implements the policy
whenever the sum of net types is positive. If an agent changes the outcome because he
reports a type different from the default type, he will be verified.

Remark 1 (Ex post incentive compatibility of voting-with-evidence mechanisms). We
now show that a voting-with-evidence mechanism is incentive compatible. We do so by
showing that for every type, realization truth-telling is a best response. Let t ∈ T be a
profile of types, consider an agent i with type ti, and assume that agent i is in favor of
the new policy, i.e., ti ∈ T+

i . If d(ti� t−i) = 1, then agent i gets his preferred alternative
and there is no beneficial deviation. Suppose instead that d(ti� t−i) = 0; then agent i

can only change the decision by reporting some t ′i > ti and t ′i > ω+
i + ci. However, if

d(t ′i� t−i)= 1, then agent i is decisive and will be verified. Agent i’s true type ti is revealed
and the penalty is the retention of the status quo. Thus, agent i cannot gain by deviating
to t ′i . A symmetric argument holds if agent i is against the new policy, i.e., ti ∈ T−

i . These
arguments imply that truth-telling is an optimal response to truth-telling for every type
realization and, therefore, independent of the beliefs the agents hold. We conclude that
a voting-with-evidence mechanism is ex post incentive compatible.

We are now ready to state our main result.

Theorem 1. A voting-with-evidence mechanism maximizes the expected utility of the
principal.

Appendix A.2 contains the proof of Theorem 1. We first prove it for finite type spaces
and then extend the proof to infinite type spaces through an approximation argument.
Before finding optimal weights for a voting-with-evidence mechanism in a two-agent
example, we explain intuitively why these mechanisms are optimal.

A voting-with-evidence mechanism differs in three respects from the first-best
mechanism. We argue that these inefficiencies have to be present in an optimal mecha-
nism and that any additional inefficiencies make the principal worse off. First, the prin-
cipal verifies all decisive agents and incurs the corresponding costs, which he would
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not need to do if the information were public. Clearly, sometimes verifying agents is
necessary to satisfy the incentive constraints for the given decision rule. Moreover, in a
voting-with-evidence mechanism, the verification rules are chosen such that the incen-
tive constraints are, in fact, binding: if the principal were to reduce the audit probability
for some report, types in the bunching region would have a strict incentive to send this
report. Thus, the principal cannot implement the given decision rule with lower verifi-
cation costs.

The second inefficiency is introduced by replacing types with net types. Specifically,
any report ti ∈ T+

i and above ω+
i + ci is replaced by the net type ti − ci. Similarly, types

ti ∈ T−
i and below ω−

i − ci are replaced by the net type ti + ci. Suppose we replace types
of agent i by net types. Then, for a given profile of types, by replacing agent i’s type with
his net type, the decision either remains the same or it changes. First, if the decision
remains the same, it does not matter whether the type or net type is used. Alternatively,
if the decision changes, then agent i must be decisive with type ti, but not with the net
type. Therefore, the principal has to verify the agent if he uses the type ti to decide on
the policy so as to induce truthful reporting and incurs the cost of verification. Hence,
the actual contribution of agent i to the principal’s utility is his net type, ti − ci, and not
ti. Thus, the principal is made better off by using i’s net type ti − ci when determining
his decision on the policy, anticipating that he will have to verify the agent whenever he
is decisive.

The third inefficiency arises from the fact that all types below the cutoff ω+
i + ci of

an agent in favor of the policy are bunched together and receive the same weight: the
baseline weight ω+

i . Similarly, all types above the cutoff ω−
i − ci and against the policy

are bunched together into the baseline weight ω−
i . Suppose instead that in the optimal

mechanism there was a type t ′i ∈ T+
i that uniquely had the lowest probability of getting

his preferred decision: E[d(t ′i� t−i)] < E[d(ti� t−i)] for all ti. Increasing the probability
with which this type gets his most preferred alternative does not affect the principal’s
expected utility directly (because this type is realized with probability 0). However, our
characterization of incentive compatibility implies that changing this probability affects
the audit probability for all other types ti ∈ T+

i :

Et−i

[
a(ti� t−i)

] ≥ Et−i

[
d(ti� t−i)

] −Et−i

[
d
(
t ′i� t−i

)]
�

Therefore, changing the allocation on a null set allows the principal to save verification
costs with strictly positive probability. This contradicts the idea that the original mech-
anism could be optimal and implies that any optimal mechanism has bunching “at the
bottom.”6

6More specifically, assume there is an agent i who is always in favor of the new policy and his type space
is Ti = [0�1], and suppose Et−i [d(0� t−i)] < Et−i [d(ti� t−i)], so 0 is the only worst-off type. In particular, every
report except 0 is sometimes be verified. Consider changing the decision rule so that, for any type ti ∈
[0� ε] and any t−i, the probability of implementing the new policy is d̃(ti� t−i) = E[d(z� t−i)|z ≤ ε], and the
expected decision is unchanged for all other types of i and all other agents. It then follows from Lemma 1
that for any type above ε, the verification probability can be reduced by δ = Et−i [d̃(0� t−i) − d(0� t−i)] > 0
and no type of agent i below ε is ever be verified. For ε sufficiently small, the saving in verification costs is
on the order of δ(1 − ε) and, therefore, it outweighs the inefficiency induced to the decision rule, which is
on the order of δε. Hence, it could not have been optimal to have a unique worst-off type.
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Remark 2. We comment briefly on the role of the assumption t−i < t+i for all t−i ∈ T−
i

and t+i ∈ T+
i . Without this assumption, we get a similar result to Theorem 1 except for

the conclusion ω+
i ≥ ω−

i . We then have to check whether agents have an incentive to
misreport their ordinal preference in this mechanism. As long as ω+

i ≥ ω−
i , all incentive

constraints are satisfied even if the assumption t−i < t+i is violated. Only if preferences
are strongly misaligned, so that an agent being in favor makes the principal less eager
to implement the new policy, we have to augment the mechanism by either (i) verifying
agents even if they report in the bunching region or (ii) adjusting the weights so that
ω+

i ≥ω−
i holds.

Remark 3. As noted before, any voting-with-evidence mechanism satisfies the strong
notion of ex post incentive compatibility (see Remark 1). This implies that truthful re-
porting is an equilibrium irrespective of the prior beliefs or the information structure.
This robustness of the voting-with-evidence mechanism is a desirable property that
seems particularly useful regarding practical implementations.

Because the optimal mechanism is ex post incentive compatible and we allowed for
any Bayesian incentive compatible mechanism, we conclude that the principal cannot
save verification costs by implementing the mechanism only in Bayesian equilibrium.
In the working paper version (Erlanson and Kleiner 2020), we explain this observation
by showing that for any Bayesian incentive compatible mechanism in our model, there
exists an equivalent ex post incentive compatible mechanism with the same expected
verification costs. We see in Section 4.2 that this conclusion depends partly on the de-
tails of our model and we explore extensions in which this equivalence breaks down.

3.2 Optimal weights and comparative statics for two agents

We begin by characterizing the optimal weights in an utilitarian setting with two agents
and then discuss comparative statics.7

Proposition 1. Suppose I = 2, T+
i = {ti ∈ Ti|ti ≥ 0}, and T−

i = {ti ∈ Ti|ti < 0}. Let ω+
i and

ω−
i be implicitly defined by

E[ti|ti ≥ 0] = E
[
max

{
ω+

i � ti − ci
}|ti ≥ 0

]
�

E[ti|ti < 0] = E
[
min

{
ω−

i � ti + ci
}|ti < 0

]
�

Then voting-with-evidence using weights ω+
i and ω−

i is optimal.

To gain some intuition for the result in Proposition 1, suppose ω+
1 > −ω−

2 and con-
sider slightly changing ω+

1 . This has an effect only if t2 + c2 = −ω+
1 , so we condition

throughout on this event. If ω+
1 is slightly increased, then for any t1 > 0, the project is

implemented and no one is verified. Alternatively, if ω+
1 is slightly decreased, there are

7With more than two agents, the weight of agent i not only affects the likelihood that i is decisive, but
also has nontrivial effects on the probability that other agents are decisive. It is, therefore, more difficult to
find closed-form solutions for the optimal weights ω+

i and ω−
i .
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two cases: if t1 −c1 + t2 +c2 ≥ 0, the project is implemented and agent 1 is verified; other-
wise the project is not implemented and agent 2 is verified. We obtain that ω+

1 satisfies
the first-order condition if∫ ∞

0
t1 + t2 dF1(t1)=

∫ ∞

0
(t1 + t2 − c1)1t1−c1+t2+c2≥0(t1)− c21t1−c1+t2+c2<0(t2)dF1(t1)�

Using t2 + c2 = −ω+
1 , this can be rewritten as

∫ ∞

0
t1 dF1(t1)=

∫ ∞

0
(t1 − c1)1t1−c1≥ω+

1
(t1)+ω+

1 1t1−c1<ω+
1
(t2)dF1(t1)�

which yields the first condition in Proposition 1. An analogous argument heuristically
explains the second condition.

Given the characterization of the optimal weights in Proposition 1, we can study
how a change in the cost parameter ci affects the optimal weights. Suppose that the
cost of verifying agent i increases. Then the optimal weight ω+

i increases to allow for
E[ti|ti ≥ 0] to equal E[max{ω+

i � ti − ci}|ti ≥ 0]. Analogously, the increase in ci implies that
ω−

i decreases. We conclude that as the cost of verifying an agent increases, the bunching
region increases and the agent is verified less often. Another possible comparative static
result concerns a second-order stochastic dominance change. Suppose the expected
value of agent i’s type ti, conditional on him being in favor, increases. Then Proposition 1
implies that his optimal weight ω+

i increases as well.

4. Imperfect verification and robustness

In this section, we discuss the robustness of our results from various angles. In the first
part, we relax the assumption of perfect verification. In the second part, we discuss
briefly type-dependent costs of verification, interdependent preferences, a continuous
decision on the level of the public good, and limited commitment.

4.1 Imperfect verification

Thus far, we have assumed that the verification technology works perfectly, that is,
whenever the principal audits an agent, he learns the true type with probability 1. We
now explore the extent to which the above results are robust to imperfect verification.
We study a reduced form model and assume that in the event of an audit of agent i,
the verification technology reveals the true type of agent i only with probability p, and
with probability 1 − p, the technology fails, in which case the output of the technology
equals the report by the agent. Consequently, if the verification output differs from the
reported type, the principal knows that the agent lied. However, if the output of the ver-
ification technology coincides with the reported type, the principal knows only that the
agent was truthful or that the verification technology failed, but not which of these two
cases applies. Moreover, we assume that multiple verifications of the same agent reveal
no additional information.
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To find the optimal mechanism, we first characterize Bayesian incentive compati-
bility in this new setting with imperfect verification. Similar to the case of perfect veri-
fication, the key incentive constraints are those for the worst-off types. The additional
uncertainty of whether the verification technology managed to detect a lie implies that
the worst-off type must get a higher expected probability of getting the preferred alter-
native.

Lemma 2. A mechanism (d�a) is Bayesian incentive compatible if and only if, for all i ∈ I
and all ti ∈ Ti,

inf
t ′i∈T+

i

Et−i�s
[
d
(
t ′i� t−i� s

)] ≥ Et−i�s
[
d(ti� t−i� s)

[
1 −p · ai(ti� t−i� s)

]]
�

sup
t ′i∈T−

i

Et−i�s
[
d
(
t ′i� t−i� s

)] ≤ Et−i�s
[
d(ti� t−i� s)

[
1 −p · ai(ti� t−i� s)

] +p · ai(ti� t−i� s)
]
�

The proof is analogous to the proof of Lemma 1.
The imperfectness of the verification technology implies that it is harder to satisfy

the incentive constraints. Moreover, there is an upper bound on how much influence
an agent can have in expectation. Since ai(t� s) ≤ 1 by feasibility and using Lemma 2, we
get that any Bayesian incentive compatible mechanism satisfies

∀ti ∈ T+
i : Et−i�s

[
d(ti� t−i� s)

] ≤ 1
1 −p

inf
t ′i∈T+

i

Et−i�s
[
d
(
t ′i� t−i� s

)]
� (3)

∀ti ∈ T−
i : Et−i�s

[
d(ti� t−i� s)

] ≥ 1
1 −p

[
sup
t ′i∈T−

i

Et−i�s
[
d
(
t ′i� t−i� s

)] −p
]
� (4)

This adds an additional constraint to the relaxed problem that essentially restricts the
maximal influence an agent can have on the decision rule in any incentive compatible
mechanism. The higher is the probability of failure 1 −p of the verification technology,
the tighter is the bound and the less is the influence an agent can have.

Theorem 2. With imperfect verification as described above, an optimal mechanism sets
d(t) = 1 if and only if

∑
i wi(ti) > 0, where

wi(ti)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν−
i if ti ∈ T−

i and ti ≤ ν−
i − ci

p
�

ti + ci
p

if ti ∈ T−
i and ν−

i < ti + ci
p

<ω−
i �

ω−
i if ti ∈ T−

i and ti ≥ω−
i − ci

p
�

ω+
i if ti ∈ T+

i and ti ≤ω+
i + ci

p
�

ti − ci
p

if ti ∈ T+
i and ν+

i > ti − ci
p

>ω+
i �

ν+
i if ti ∈ T+

i and ti ≥ ν+
i + ci

p

for some constants {ω+
i �ω

−
i � ν

+
i � ν

−
i } satisfying ω−

i ≤ω+
i .
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ti

wi ui(ti) = ti

ν−
i

ν+
i

ω−
i

ω+
i

T+
iT−

i

Figure 3. Example illustrating weights for imperfect verification with utility ui(ti) = ti.

Compared to the optimal mechanism in the benchmark model with perfect verifica-
tion, the optimal mechanism with imperfect verification can feature additional bunch-
ing regions at the extremes (see Figure 3). The reason is that any incentive compati-
ble mechanism must restrict the maximal weight of an agent compared to the worst-off
types. If a worst-off type could misreport his type and thereby increase the probability
of getting his preferred outcome by too much, this misreport would be a profitable devi-
ation even if this agent was always verified, simply because the verification technology
sometimes fails to detect the lie. Therefore, any incentive compatible mechanism must
cap the maximal weight an agent could get, inducing bunching for the extreme types.8

In contrast to the optimal mechanism with perfect verification, it is not enough to
verify only decisive agents. Clearly, one should verify only an agent who gets his pre-
ferred outcome, but to induce truth-telling as a Bayes Nash equilibrium, one some-
times needs to verify agents who are not decisive. Suppose only decisive agents were
verified. Clearly, agents with worst-off types would have an incentive to overstate their
types because this could never hurt them (they are only verified if they are decisive, in
which case the penalty is the outcome they would have obtained under truth-telling),
and benefits them whenever the verification technology fails to detect their lie. Thus,
agents sometimes need to be verified even when they are not decisive; by doing this
sufficiently often, we can ensure that the mechanism is BIC. There are several ex post
auditing rules that can make the optimal mechanism BIC, and we have not specified ex-
actly which agents are going to be verified for a given realization of reports. We establish
the existence of a feasible auditing rule in Lemma 8. This reasoning also implies that the
optimal mechanism is not ex post incentive compatible if the verification technology is
imperfect.

8This is reminiscent of the optimal mechanism in Mylovanov and Zapechelnyuk (2017), who study the
optimal allocation of a prize when the winner is subject to a limited penalty if he makes a false claim. In
their model, the limit on the penalty similarly requires that agents with the highest possible type are merely
short-listed and do not win the prize with certainty.
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Remark 4. The additional bunching regions are the main qualitative difference of the
optimal decision rule compared to the model with perfect verification. However, in
many settings this difference does not even arise: if an optimal decision rule d (as de-
scribed in Theorem 2) satisfies, for each i,

(1 −p) sup
ti∈T+

i

Et−id(ti� t−i) < inf
ti∈T+

i

Et−id(ti� t−i)�

(1 −p) inf
ti∈T−

i

Et−id(ti� t−i) > sup
ti∈T−

i

Et−id(ti� t−i)�

then ν+
i = ∞ and ν−

i = −∞ (see the proof of Lemma 7). Therefore, the weight function
looks qualitatively similar to that in the case of perfect verification. For example, if p> 1

2 ,
then the above conditions are always satisfied for a symmetric mechanism (d is sym-
metric around 0) in a symmetric environment (fi(ti) = fi(−ti) and T+

i = −T−
i ), because

infti∈T+
i
Et−id(ti� t−i) ≥ 1

2 and supti∈T−
i
Et−id(ti� t−i)≤ 1

2 .

4.2 Robustness

In the remainder of the text we are going to keep the assumption of perfect verification
and change some of our other assumptions to inquire which features of our analysis are
robust.

Type-dependent cost function In our benchmark model we assume that the cost of ver-
ifying an agent depends only on the agent’s identity and not on his true type. Alterna-
tively, one could argue that it is more expensive to audit an agent who claims to have
a large type and provides extensive documentation substantiating his claim. Similarly,
one could argue that it is easier, and therefore cheaper, to verify an agent who has a low
type. Here, we explain how our conclusions are altered if we allow for the audit cost to
depend on the true type. Let ci(ti) denote the audit cost for verifying agent i if his true
type is ti.

We observe first that the revelation principle still applies, and we can restrict at-
tention to Bayesian incentive compatible direct mechanisms. Also, this change affects
only the principal’s utility and we can, therefore, use the characterization of Bayesian
incentive compatibility as before. On the equilibrium path, the principal will verify only
agents who are truthful, so the cost of verification is ci(ti). To simplify the discussion, we
assume that the net type ti − ci(ti) is increasing in ti.9 Using the same arguments as in
our benchmark model, we can conclude that the optimal mechanism uses a weighting
rule as in a voting-with-evidence mechanism, except that the weight of a report outside
of the bunching region is now ti −ci(ti) instead of ti −ci (respectively, ti +ci(ti)). The part
of the weighting function outside the bunching region is, therefore, no longer a straight
line with a slope of 1, but a potentially nonlinear increasing function instead. Other than
that, the optimal mechanism is like a voting-with-evidence mechanism: the project is
implemented if the sum of the weighted reports is positive, and an agent is verified if
and only if he is decisive.

9If the net type ti − ci(ti) is not increasing, similar arguments can be applied after the types have been
reordered.
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Choosing the level of the public good In our benchmark model, we assume the princi-
pal takes a binary action by deciding whether to implement a public project. We relax
this assumption here and analyze a principal who decides on the quantity d ∈ [0�1] of a
public good and assume that the principal pays a cost of C(d) for providing the public
good at level d. Assume that the cost function C : [0�1] → R is continuously differen-
tiable, increasing, and convex, and satisfies C ′(0) = 0 and limd→1 C(d) = +∞. All agents
have preferences of the form u(ti� d)= ti · d and ti ∈ [0�1], i.e., agents always prefer more
of the public good to less. The objective function of the principal is

Et

[∑
i

[
d(t)ti − ai(t)ci

] −C
(
d(t)

)]
(5)

since he incurs the additional costs C(d) of providing the public good.
We begin the discussion with the simplest setting of having only one agent. It fol-

lows again from Lemma 1 that any incentive compatible mechanism satisfies inft ′ d(t ′)≥
d(t)(1−a(t)) and since audits are costly, it is optimal to choose the verification rule such
that this holds as an equality. Plugging this into the objective function, we get that the

principal maximizes Et[d(t)t − (1 − inft′ d(t ′)
d(t) )c −C(d(t))].10

The optimal decision rule d must, therefore, satisfy, for almost every t such that
d(t) > inft ′ d(t ′), the first-order condition

t − c
inf
t ′
d
(
t ′
)

d2(t)
−C ′(d(t)) = 0�

Therefore, as before there is a bunching region, and outside the bunching region we
have downward distortions, i.e., too little public good is provided and this distortion is
increasing in the verification cost. Note that in contrast to the previous analysis, where
the quantity was either 0 or 1, optimal audits are now stochastic (as they satisfy a(t) = 1−
inft′ d(t ′)

d(t) ). Intuition suggests that these conclusions for one agent carry over to the case
with multiple agents if we impose ex post incentive compatibility instead of Bayesian
incentive compatibility.

Let us now look briefly at the case with several agents and Bayesian incentive con-
straints. The characterization of Bayesian incentive compatibility in Lemma 1 continues
to hold in this setting. Although incentive constraints remain tractable, solving the prin-
cipal’s problem turns out to be less tractable. The principal’s optimization problem is to

10Observe that for an optimal decision rule, inft′ d(t ′) > 0. Suppose instead inft′ d(t ′) = 0. Given ε > 0,
let δ(ε) = Prob({t|d(t) ≤ ε}). If there is ε > 0 such that δ(ε) < 1, we can change the decision rule such
that inft′ d(t ′) = ε by changing only the decision for types in {t|d(t) < ε}. This change increases the cost of
public good provision by at most δ(ε)εC ′(ε), but decreases the cost of verifications by at least (1 − δ(ε))εc.
Therefore, for ε small enough, this increases the principal’s expected payoff. Alternatively, if δ(ε) = 1 for all
ε > 0, then d(t) = 0 for almost every t. Changing the decision rule to d(t) = ε increases the cost of public
good provision by at most εC ′(ε) and increases the expected welfare of the principal by εE[t]. Since C is
continuously differentiable and C ′(0) = 0, we can, therefore, choose ε small enough such that this change
increases the principal’s expected welfare. We conclude that in any optimal mechanism inft′ d(t ′) > 0.
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maximize (5) subject to

Et−i

[
d(ti� t−i)

] ≥ inf
t ′i
Et−i

[
d
(
t ′i� t−i

)] ≥ Et−i

[
d(ti� t−i)

(
1 − ai(ti� t−i)

)]
� (6)

Consider first how to construct the optimal audit rule for a given decision rule d. Again,
the optimal audit rule satisfies the second inequality in (6) as an equality. To achieve
this in the most cost efficient way, we set, for each i and ti, ai(ti� t−i) = 1 for those t−i

such that d(ti� t−i) is largest until the second inequality in (6) binds. Thus, the optimal
verification rule is deterministic. This is in contrast to the analysis above for the case of
one agent. It also implies that there is no simple way to compute the verification costs
necessary to implement a given decision rule and we cannot formulate the problem in
a simple way with the decision rule being the only choice variable. Because of this, a
complete analysis of the optimal decision rule in this case is beyond the scope of our
paper.

Interdependent preferences Independent private values allow for a simple characteri-
zation of incentive compatibility: a mechanism is Bayesian incentive compatible if and
only if it is Bayesian incentive compatible for the worst-off types. This observation does
not carry over to models with interdependent preferences. While a complete analysis of
this case is beyond the scope of this paper, we discuss below the incentives to misreport
in a voting-with-evidence mechanism and possible improvements of this mechanism
when preferences are interdependent. To fix ideas, for each i ∈ I , suppose Ti = [−1�1]
and agent i’s utility is given by ui(t) = ti + α

∑
j �=i tj if the policy is implemented and the

type profile is t, where α satisfies 0 < α < 1. For our discussion below, consider a fixed
voting-with-evidence mechanism.

If the level of interdependence, α, is high enough, then incentive constraints in the
voting-with-evidence mechanism are not binding. Recall that in our benchmark model,
reports are verified exactly to make worst-off types indifferent between lying and being
truthful. If preferences are sufficiently interdependent, an agent with a small positive
type might not want to deviate and send a large report even without verifications: his
utility is mainly determined by other agents’ types, and claiming a high type might lead
to implementation of the new policy even though all others have negative types. This
implies that one can reduce the verification probability of large reports without creating
any incentives to misreport. However, one cannot lower the verification probability all
the way to 0, as otherwise intermediate types have an incentive to send high reports.
Which incentive constraints are binding in the optimal mechanism therefore depends
on the details of preferences and type distributions. This implies that it is difficult to find
the optimal mechanism. But the arguments so far suggest that one way to improve upon
a voting-with-evidence mechanism might be to reduce the verification probabilities for
high reports, at least if α, the degree of preference interdependence, is sufficiently large.

For moderate degrees of interdependence, α, all types above a threshold will pre-
fer the new policy no matter what the types of all others are since they are only mod-
erately affected by others’ types. For these types, incentives are as in our benchmark
model since these types will send a report to maximize the probability that the new pol-
icy is implemented. Furthermore, for small enough α, this is even true for some types
in the bunching region of the voting-with-evidence mechanism. Since the worst-off
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types were used to determine the verification probabilities, we cannot reduce the veri-
fication probabilities in the voting-with-evidence mechanism at all for small degrees of
interdependence.

This suggests that there are only limited ways to improve upon voting-with-evidence
mechanisms if α is small. One particularly simple way to improve upon a voting-with-
evidence mechanism is to allow agents to abstain in this mechanism. Consider a setting
where Fi is symmetric around 0 for each i and adjust the given voting-with-evidence
mechanism by allowing for abstention and giving abstentions a weight of 0. Now an
agent with a positive type close enough to 0 strictly prefers to abstain instead of casting
a vote in favor, which would give weight ω+

i . This allows for more information being
transmitted to the principal without adding verification costs and this mechanism can,
therefore, increase the principal’s expected utility compared to a voting-with-evidence
mechanism.

Limited commitment Following the standard approach in mechanism design, we as-
sume the principal commits to a mechanism. There are several ways in which our opti-
mal mechanism uses commitment of the principal, and our results would change if the
principal could not commit. Most importantly, the principal commits to costly verifica-
tions although in equilibrium he never finds an agent lying. Second, as explained above,
the decision rule is not the first-best for the principal since he distorts the decision by
bunching agents and by using net types. This is similar to the use of commitment in
standard mechanism design, where principals often commit to ex post inefficient out-
comes. Third, in our model the principal commits to penalize an agent who is found
to be lying. Note, however, that it is not necessary to use this third component to com-
mit to unreasonable penalties. Suppose in a voting-with-evidence mechanism agent i
deviates and reports t ′i although his true type is ti. This is only relevant if agent i’s re-
port changes the outcome to the more preferred one for him, which implies that agent
i’s report is decisive. In this case, his report is audited and the penalty for agent i is to
do the opposite of what agent i prefers. This coincides with the decision if agent i was
truthful and reported ti in the first place because agent i is decisive. In this sense it is not
necessary to use commitment to carry out unreasonable penalties.

The fact that commitment matters is typical for models of costly verification, and
contrasts with some models of evidence that show that commitment is not necessary
(see, e.g., Ben-Porath et al. 2019). One reason for the difference is that, with costly veri-
fication, the principal anticipates the verification costs induced by a given decision rule
and deviates from the first-best rule to reduce these costs. This effect is not present in
models with evidence that have no verification costs.

Appendix

A.1 Revelation principle

In this section of the Appendix we show that it is without loss of generality to restrict
attention to the class of direct mechanisms as we define them in Section 2. Similar ver-
sions of the revelation principle are obtained in Townsend (1988) and Ben-Porath et al.
(2014). We proceed in two steps. The first step is a revelation principle argument where
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we establish that any indirect mechanism can be implemented via a direct mechanism.
In the second step we show that direct mechanisms can be expressed as a tuple (d�a� �),
where d specifies the decision, ai specifies if agent i is verified, and �i specifies what
happens if agent i is revealed to be lying.

Step 1: It is without loss of generality to restrict attention to direct mechanisms in
which truth-telling is a Bayes Nash equilibrium. Let (M1� � � � �MI� x̃� ỹ) be an indirect
mechanism and let M = ×i∈IMi, where each Mi denotes the message space for agent
i, x̃ : M × T × [0�1] → {0�1} is the decision function specifying whether the policy is
implemented, and ỹ : M × T × I × [0�1] → {0�1} is the verification function specifying
whether an agent is verified.11 Fix a Bayes Nash equilibrium σ of the game induced by
the indirect mechanism.12

In the corresponding direct mechanism, let Ti be the message space for agent i. De-
fine x : T ×T ×[0�1] → {0�1} as x(t ′� t� s) = x̃(σ(t ′)� t� s) and y : T ×T ×I ×[0�1] → {0�1}
as y(t ′� t� i� s) = ỹ(σ(t ′)� t� i� s). Since σ is a Bayes Nash equilibrium in the original game,
truth-telling is a Bayes Nash equilibrium in the game induced by the direct mechanism.
This implies that in both equilibria, the same decision is taken and the same agents are
verified.

Note that in any feasible direct mechanism, the decision whether to verify an agent
cannot depend on his true type; hence, y(t ′i� t−i� t

′
i� t−i� i� s) = y(t ′i� t−i� t� i� s). Also, if

agent i was not verified, the implementation decision cannot depend on his true type,
x(t� t� s)= x(t� t ′i� t−i� s).

Step 2: Any direct mechanism can be written as a tuple (d�a� �), where d : T ×[0�1] →
{0�1}, ai : T × [0�1] → {0�1}, and �i : T × Ti × [0�1] → {0�1}. Let

d(t� s)= x(t� t� s)�

ai(t� s) = y(t� t� i� s)�

�i
(
t ′i� t−i� ti� s

) = x
(
t ′i� t−i� ti� t−i� s

)
�

On the equilibrium path, (d�a� �) implements the same outcome as (x� y) by defini-
tion. Suppose instead agent i of type ti reports t ′i and all other agents report t−i truthfully.
Denoting t ′ = (t ′i� t−i), the decision taken in the mechanism (d�a� �) if the type profile is
t and the report profile is t ′ is

[
1 − ai

(
t ′� s

)]
d
(
t ′� s

) + ai
(
t ′� s

)
�i

(
t ′i� ti� t−i� s

)
= [

1 − y
(
t ′� t ′� i� s

)]
x
(
t ′� t ′� s

) + y
(
t ′� t ′� i� s

)
x
(
t ′� t� s

)
11To describe possibly stochastic mechanisms, we introduce a random variable s that is uniformly dis-

tributed on [0�1] and observed only by the principal. This random variable is one way to correlate the
verification and the decision on the policy.

12In the game induced by the indirect mechanism, whenever the principal verifies agent i, nature draws
a type t̃i ∈ Ti as the outcome of the verification. Perfect verification implies that t̃i equals the true type of
agent i with probability 1. The strategies mi ∈ Mi specify an action for each information set where agent i
takes an action, even if this information set is never reached with strictly positive probability. In particular,
they specify actions for information sets in which the outcome of the verification does not agree with the
true type.
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=
{
x
(
t ′� t� s

)
if y

(
t ′� t ′� i� s

) = 1�

x
(
t ′� t ′� s

)
if y

(
t ′� t ′� i� s

) = 0�

If y(t ′� t ′� i� s) = 1, the decision is x(t ′� t� s) under both formulations. Instead, if
y(t ′� t ′� i� s) = 0, then y(t ′� t� i� s) = 0 (since the decision to verify agent i cannot depend
on his true type), and, hence, the decision on the policy must coincide with the case
when agent i is verified and reports t ′i , x(t

′� t ′� s) = x(t ′� t� s) We conclude that the de-
cision is the same in both formulations of the mechanism if one agent deviates. Since
truth-telling is an equilibrium in the mechanism (x� y), it is, therefore, an equilibrium in
the mechanism (d�a� �), which consequently implements the same decision and verifi-
cation rules.

A.2 Proof of Theorem 1

In this section of the Appendix we show that a voting-with-evidence mechanism maxi-
mizes the expected utility of the principal. The first step in the proof of Theorem 1 is to
construct a relaxed problem for the principal where the optimization is only over deci-
sion rules, compared to jointly maximizing decision and verification rules in the original
problem. The solution to the relaxed problem always yields weakly higher value than the
solution to the original optimization problem (Lemma 3). In the second step, we show
that the solution to the relaxed problem is a voting-with-evidence mechanism: first we
establish this for finite type spaces (Lemma 4) and then extend the result to infinite type
spaces (Lemma 5). To finish the proof we construct verification rules such that the so-
lution to the relaxed problem is feasible for the original problem and achieves the same
objective value. This proves Theorem 1.

We show that the problem below is a relaxed version of the principal’s maximization
problem as defined in (P):

max
0≤d≤1

Et

[∑
i

d(t)
[
ti − c̃i(ti)

]

+ ci

(
1T+

i
(ti) inf

t ′i∈T+
i

Et−i

[
d
(
t ′i� t−i

)] − 1T−
i
(ti) sup

t ′i∈T−
i

Et−i

[
d
(
t ′i� t−i

)])]
� (R)

where 1T+
i
(ti) denotes the indicator function for T+

i , 1T−
i
(ti) denotes the indicator func-

tion for T−
i , and c̃i(ti) = ci if ti ∈ T+

i and c̃i(ti) = −ci if ti ∈ T−
i .

For each mechanism (d�a), let VP(d�a) denote value of the objective in problem (P),
and for each decision rule d, let VR(d) denote the objective value in problem (R).

Lemma 3. For any Bayesian incentive compatible mechanism (d�a), VP(d�a)≤ VR(d).

Proof. We have

VP(d�a) = Et

[∑
i

d(t)
[
ti − c̃i(ti)

] + ci1T+
i
(ti)

[
d(t)− ai(t)

] − ci1T−
i
(ti)

[
d(t)+ ai(t)

]]
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≤ Et

[∑
i

d(t)
[
ti − c̃i(ti)

]

+ ci1T+
i
(ti)

[
d(t)

(
1 − ai(t)

)] − ci1T−
i
(ti)

[
d(t)

(
1 − ai(t)

) + ai(t)
]]

(7)

≤ Et

[∑
i

d(t)
[
ti − c̃i(ti)

]

+ ci1T+
i
(ti) inf

t ′i∈T+
i

Et−i

[
d
(
t ′i� t−i

)] − ci1T−
i
(ti) sup

t ′i∈T−
i

Et−i

[
d
(
t ′i� t−i

)]]
(8)

= VR(d)�

The first inequality holds because −ai(t) ≤ −d(t)ai(t) and d(t)ai(t) ≥ 0. The second
inequality follows from the fact that (d�a) is BIC.

The significance of the relaxed problem lies in the fact that for any optimal solution
d to problem (R), we can construct verification rules a such that (d�a) is feasible and
VP(d�a) = VR(d). This implies that d is part of an optimal solution to problem (P).

We now describe an optimal solution to the relaxed problem for finite type spaces.

Lemma 4. Suppose that the type space T is finite. Problem (R) is solved by a voting-with-
evidence mechanism.

Proof. Let d∗ denote an optimal solution to (R), let ϕ+
i ≡ inft ′i∈T+

i
Et−i [d∗(t ′i� t−i)] and

ϕ−
i ≡ supt ′i∈T−

i
Et−i [d∗(t ′i� t−i)], and observe that ϕ−

i ≤ ϕ+
i .

Consider the auxiliary maximization problem

max
0≤d≤1

Et

[∑
i

d(t)
[
ti − c̃i(ti)

]]

such that for all i ∈ I�

Et−i [d(t)] ≥ ϕ+
i for all ti ∈ T+

i �

Et−i [d(t)] ≤ ϕ−
i for all ti ∈ T−

i �

(Aux)

Clearly, d∗ also solves the auxiliary problem. The Karush–Kuhn–Tucker theorem (Arrow
et al. 1961, Luenberger 1969) implies that there exist Lagrange multipliers λ∗

i (ti) such
that λ∗

i (ti)≥ 0 for ti ∈ T+
i and λ∗

i (ti) ≤ 0 for ti ∈ T−
i , and such that d∗ maximizes

L
(
d�λ∗) = Et

[∑
i

d(t)
(
ti − c̃i(ti)

)] +
∑
i

∑
ti∈Ti

(
λ∗
i (ti)

(
Et−i

[
d(ti� t−i)

] −ϕi(ti)
))

=
∑
t∈T

d(t)
∑
i

(
ti − c̃i(ti)+ λ∗

i (ti)

fi(ti)

)
f (t)+ constant�
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where

ϕi(ti) :=
{
ϕ+
i if ti ∈ T+

i �

ϕ−
i if ti ∈ T−

i �

Setting h∗
i (ti) := ti − ci(ti) + λ∗

i (ti)

fi(ti)
and ignoring the constant in the Lagrangian, we

observe that d∗ maximizes the function

g
(
d�h∗) =

∑
t∈T

∑
i

d(t)f (t)h∗
i (ti)�

Let

α+
i = inf

ti∈T+
i

{
ti|Et−i

[
d∗(ti� t−i)

]
>ϕ+

i

} − ci�

α−
i = sup

ti∈T−
i

{
ti|Et−i

[
d∗(ti� t−i)

]
<ϕ−

i

} + ci�

and define

h̄i(ti) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
μi

(
A+

i

) ∑
ti∈A+

i

fi(ti)h
∗
i (ti) if ti ∈ T+

i and ti ≤ α+
i + ci�

1
μi

(
A−

i

) ∑
ti∈A−

i

fi(ti)h
∗
i (ti) if ti ∈ T−

i and ti ≥ α−
i − ci�

ti − c̃i(ti) otherwise�

where A+
i = {ti ∈ T+

i |ti < α+
i + ci}, A−

i = {ti ∈ T−
i |ti > α−

i − ci}, and μi(A) denotes the
measure induced by Fi. Let Ac

i = Ti \ (A+
i ∪A−

i ) and Ai =A+
i ∪A−

i .

Claim 1. The solution d∗ also maximizes g(d� h̄) = ∑
t∈T

∑
i d(t)f (t)h̄i(ti).

Step 1: λ∗(ti) = 0 for ti ∈ Ac
i . Complementary slackness implies λ∗

i (α
+
i + ci) = 0.

Moreover, for every ti ∈ T+
i such that ti > α+

i +ci, we get ti−ci+ λ∗
i (ti)

fi(ti)
≥ α+

i and, hence, for

every optimal solution to the Lagrangian d, that Et−i [d(ti� t−i)] ≥ Et−i [d(α+
i + ci� t−i)] >

ϕ+
i . This implies that for ti ∈ T+

i ∩Ac
i , λ∗

i (ti)= 0 by complementary slackness. Analogous
arguments for ti ∈ T−

i ∩Ac
i apply. Thus, λ∗(ti)= 0 for ti ∈ Ac

i .
Step 2: g(d∗�h∗) = g(d∗� h̄). First observe that h∗

i (ti) = h̄i(ti) for ti ∈ Ac
i , ϕ+

i =
Et−i [d∗(ti� t−i)] for ti ∈A+

i , and ϕ−
i = Et−i [d∗(ti� t−i)] for ti ∈A−

i . This implies

g
(
d∗�h∗) =

∑
i

[ ∑
ti∈Ai

h∗
i (ti)fi(ti)Et−i

[
d∗(t)

] +
∑
ti∈Ac

i

h∗
i (ti)fi(ti)Et−i

[
d∗(t)

]]

=
∑
i

[ ∑
ti∈A+

i

h∗
i (ti)fi(ti)ϕ

+
i +

∑
ti∈A−

i

h∗
i (ti)fi(ti)ϕ

−
i +

∑
ti∈Ac

i

h̄i(ti)fi(ti)Et−i

[
d∗(t)

]]

=
∑
i

[ ∑
ti∈A+

i

h̄i(ti)fi(ti)ϕ
+
i +

∑
ti∈A−

i

h̄i(ti)fi(ti)ϕ
−
i +

∑
ti∈Ac

i

h̄i(ti)fi(ti)Et−i

[
d∗(t)

]]
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=
∑
i

[ ∑
ti∈Ai

h̄i(ti)fi(ti)Et−i

[
d∗(t)

] +
∑
ti∈Ac

i

h̄i(ti)fi(ti)Et−i

[
d∗(t)

]]

= g
(
d∗� h̄

)
�

Step 3: g(d∗� h̄) = g(d∗�h∗)= max0≤d≤1 g(d�h
∗) ≥ max0≤d≤1 g(d� h̄). The first equality

follows from Step 2 and the second holds because d∗ maximizes g(d�h∗) by construc-
tion.

Let hi : Ti → R be any real-valued function and for each such function hi, define
Hi(ti) := hi(ti)fi(ti) and denote Hi ≡ (Hi(ti))ti∈Ti . Fix an agent i ∈ I and define a function
 : R|Ti| → R as (Hi) := max0≤d≤1

∑
t∈T d(t)[f−i(t−i)Hi(ti) + ∑

j∈I−i
f (t)h∗

j (tj)]. The
function  is convex, since it is a maximum over linear functions. It is also symmet-
ric, since permuting the vector Hi does not change the value of . Thus,  is Schur-
convex. By construction, H∗

i (defined as H∗
i (ti) = h∗

i (ti)fi(ti)) majorizes H̄i (defined as
H̄i(ti) = h̄i(ti)fi(ti)). Therefore, we obtain that


(
H∗

i

) ≥(H̄i)�

We have now shown that if we replace h∗
i for agent i with its average h̄i, we have that

d∗ remains the maximizer of max0≤d≤1 g(d�h
∗
I−i

hi). By repeating this argument agent by
agent we can conclude that

max
0≤d≤1

g
(
d�h∗) = max

0≤d≤1

∑
t∈T

∑
i∈I

d(t)f−i(t−i)H
∗
i (ti)

≥ max
0≤d≤1

∑
t∈T

∑
i∈I

d(t)f−i(t−i)H̄i(ti) = max
0≤d≤1

g(d� h̄)�

This proves the Claim 1.
Hence, every solution to the Lagrangian can be described as

d(t) =
⎧⎨
⎩1 if

∑
wi(ti) > 0�

0 if
∑

wi(ti) < 0�

where

wi(ti)=

⎧⎪⎪⎨
⎪⎪⎩
ω+

i if ti ∈ T+
i and ti ≤ α+

i + ci�

ω−
i if ti ∈ T−

i and ti ≥ α−
i − ci�

ti − ci(ti) otherwise

(9)

for constants {ω+
i �ω

−
i }i∈I . Since d∗ maximizes the Lagrangian by assumption, we con-

clude that it takes this form.
Note that ω+

i ≥ supti∈A+
i
{ti − ci} since λ∗

i (ti) ≥ 0 for ti ∈A+
i . Also, ω+

i ≤ α+
i , since oth-

erwise we would get, for ti ∈A+
i , Et−i [d∗(ti� t−i)] ≥ Et−i [d∗(α+

i − ci� t−i)] >ϕ+
i , contradict-

ing the definition of A+
i . Analogous arguments imply infti∈A−

i
{ti + ci} ≤ ω− ≤ α−

i . This

implies that we can replace α+
i (α−

i ) with ω+
i (ω−

i ) in the definition of the weight function
wi in (9) above without changing the outcome of the mechanism in any way.
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As the next step in the proof, we show that voting-with-evidence mechanisms are
also optimal for an infinite type space.

Lemma 5. Suppose that T is an infinite type space. Problem (R) is solved by a voting-
with-evidence mechanism.

Proof. Let F+
i and F−

i denote the conditional distributions induced by Fi on T+
i and

T−
i , respectively. We first construct a discrete approximation of the type space. For i ∈ I ,

n ≥ 1, li = 1� � � � �2n+1, let

Si(n� li) :=

⎧⎪⎪⎨
⎪⎪⎩

{
ti ∈ T+

i

∣∣∣ li − 1
2n

≤ F+
i (ti) <

li
2n

}
for li ≤ 2n�{

ti ∈ T−
i

∣∣∣ li − 2n − 1
2n

≤ F−
i (ti) <

li − 2n

2n

}
for li > 2n�

which form partitions of T+
i and T−

i , and denote by Fn
i the set consisting of all possible

unions of the Si(n� li). Let l = (l1� � � � � ln) and S(n� l) = ∏
i∈I Si(n� li), which defines a

partition of T , and denote by Fn the induced σ-algebra.
Let (Rn) denote the relaxed problem with the additional restriction that d is measur-

able with respect to Fn. Then the constraint set has a nonempty interior and an optimal
solution to (Rn) exists. Define t̃i(ti) := 1

μi(Si(n�li))

∫
Si(n�li)

s dFi for ti ∈ Si(n� li), where μi

denotes the measure induced by Fi. The arguments for finite type spaces imply that the
following rule is an optimal solution to (Rn) for some ω+�n

i �ω−�n
i :

rni (ti)=

⎧⎪⎪⎨
⎪⎪⎩
ω

+�n
i − ci if ti ∈ T+

i and t̃i(ti)≤ω
+�n
i �

ω−�n
i + ci if ti ∈ T−

i and t̃i(ti)≥ω−�n
i �

t̃i(ti)− ci(ti) otherwise�

dn(t) =
⎧⎨
⎩1 if

∑
rni (ti) > 0�

0 if
∑

rni (ti) < 0�

Let ω+
i := limn→∞ ω+n

i and ω−
i := limn→∞ ω−�n

i (by potentially choosing a convergent
subsequence). Define

ri(ti) =

⎧⎪⎪⎨
⎪⎪⎩
ω+

i − ci if ti ∈ T+
i and t̃i(ti) ≤ω+�n

i �

ω−
i + ci if ti ∈ T−

i and t̃i(ti) ≥ω−�n
i �

ti − c̃i(ti) otherwise�

d(t) =
⎧⎨
⎩1 if

∑
ri(ti) > 0�

0 if
∑

ri(ti) < 0�

Then, for all i and ti, Et−i[dn(ti� t−i)] = Prob[∑j �=i r
n
j (tj) ≥ −rni (ti)] converges point-

wise almost everywhere to Et−i [d(ti� t−i)]. This implies that the marginals converge in
L1-norm and, hence, the objective value of dn converges to the objective value of d. This
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implies that d is an optimal solution to (R), since if there was a solution that achieves a
strictly higher objective value, there would exist Fn-measurable solutions that achieve a
strictly higher objective value for all n large enough. Therefore, a voting-with-evidence
mechanism solves problem (R).

Now we have all the parts required to establish our main result, Theorem 1, that
voting-with-evidence mechanisms are optimal.

Proof of Theorem 1. Denote by d∗ the solution to problem (R). We first construct a
verification rule a∗ such that (d∗� a∗) is Bayesian incentive compatible and then argue
that VP(d∗� a∗)= VR(d

∗). Given that VP(d�a) ≤ VR(d) holds for any incentive compatible
mechanism, this implies that (d∗� a∗) solves (P).

Let a∗ be such that agent i is verified whenever he is decisive. Then a∗
i (t) = a∗

i (t)d
∗(t)

for all ti ∈ T+
i (if d∗(t) = 0, then type ti ∈ T+

i is not decisive) and d∗(t) = d∗(t)[1 − a∗
i (t)]

for all ti ∈ T−
i (if a∗

i (t) = 1, then d∗(t) = 0). Hence, inequality (7) holds as an equality for
(d∗� a∗).

Note that in mechanism (d∗� a∗), all incentive constraints are binding and, therefore,
inequality (8) holds as an equality as well. We therefore conclude VP(d

∗� a∗) = VR(d
∗).

Proof of Proposition 1. Without loss of generality, suppose ω+
1 ≤ −ω−

2 and consider
changing ω−

2 (the other cases are analogous). This matters only if agent 2 has a negative

type and agent 1 has a positive type. We consider two cases: (a) a change to ω−′
2 such

that ω+
1 ≤ −ω−′

2 ; (b) a change such that ω+
1 > −ω−′

2 .

Case (a). Using weight ω−′
2 such that −ω+

1 ≥ ω−′
2 > ω−

2 instead of ω−
2 matters only

if agent 1’s type satisfies ω−
2 ≤ −t1 + c1 ≤ ω−′

2 . Conditional on such a type, the expected

utility of the principal from using weight ω−
2 is 0. Alternatively, using weight ω−′

2 gives
conditional expected utility of∫ 0

−∞
(t1 + t2 − c1)1t1−c1+t2+c2≥0 − c21t1−c1+t2+c2<0 dF2�

The definition of ω−
2 implies

∫ 0

−∞
t2 dF2 =

∫ 0

−∞
min

{
ω−

2 � t2 + c2
}
dF2

≤
∫ 0

−∞
min{−t1 + c1� t2 + c2}dF2

=
∫ 0

−∞
(−t1 + c1)1t1−c1+t2+c2≥0 + (t2 + c2)1t1−c1+t2+c2<0 dF2�

Subtracting
∫ 0
−∞ t2 dF2 from both sides and multiplying by −1, this implies

0 ≥
∫ 0

−∞
(t1 + t2 − c1)1t1−c1+t2+c2≥0 − c21t1−c1+t2+c2<0 dF2
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and, hence, the principal is better off using weight ω−
2 . Similar arguments also show that

the principal is worse off using a cutoff ω−′
2 <ω−

2 .
Case (b). We can think of this case in two steps. First, a change such that ω̂−

2 = −ω+
1 .

As shown in Case (a), this reduces the principal’s welfare. Second, a further change to
ω−′

2 , which changes only the decision if both agents cast a vote. The effect of this second
change is nonpositive if and only if

0 ≥
∫ ω+

1 +c1

0

∫ 0

−ω−
1 −c2

t1 + t2 dF2 dF1

+ c1
[
1 − F1

(
ω+

1 + c1
)][

F2(0)− F2
(−ω−

1 − c2
)]

− c2
[
F1

(
ω+

1 + c1
) − F1(0)

]
F2

(−ω−
1 − c2

)
�

This is equivalent to

0 ≥ {
E

[
t1|0 ≤ t1 ≤ω+

1 + c1
] +E

[
t2|0 ≥ t2 ≥ −ω+

1 − c2
]

×}[
F1

(
ω+

1 + c1
) − F1(0)

][
F2(0)− F2

(−ω+
1 − c2

)]
+ c1

[
1 − F1

(
ω+

1 + c1
)][

F2(0)− F2
(−ω−

1 − c2
)]

− c2
[
F1

(
ω+

1 + c1
) − F1(0)

]
F2

(−ω−
1 − c2

)
or to

0 ≥ E
[
t1|0 ≤ t1 ≤ω+

1 + c1
] +E

[
t2|0 ≥ t2 ≥ −ω+

1 − c2
]

+ c1
1 − F1(0)

F1
(
ω+

1 + c1
) − F1(0)

− c1 − c2
F2(0)

F2(0)− F2
(−ω+

1 − c2
) + c2� (10)

However, the definition of ω+
1 implies∫ ∞

0
t1 dF1 =

∫ ∞

ω+
1 +c1

t1 − c1dF1 + [
F

(
ω+

1 + c1
) − F(0)

]
ω+

1

⇔ ω+
1 = E

[
t1|0 ≤ t1 ≤ω+

1 + c1
] − c1 + c1

1 − F1(0)
F1

(
ω+

1 + c1
) − F1(0)

� (11)

Similarly, the definition of ω−
2 and the fact that ω−

2 ≤ −ω+
1 imply

E[t2|t2 < 0] = E
[
min

{
ω−

2 − c2� t2
} + c2|t2 < 0

]
≤ E

[
min

{−ω+
1 − c2� t2

} + c2|t2 < 0
]
�

Rearranging this inequality yields

E
[
t2| −ω+

1 − c2 ≤ t2 < 0
] − c2

F2(0)
F2(0)− F2

(
ω+

1 − c2
) ≤ −ω+

1 − c2� (12)

Plugging (11) and (12) into (10), we see that (10) holds. We conclude that the principal is
better off using weight ω−

2 .
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A.3 Proof of Theorem 2

Consider the relaxed problem

max
0≤d≤1

Et

[∑
i

d(t)

[
ti − c̃i(ti)

p

]

+ ci
p

(
1T+

i
(ti) inf

t ′i∈T+
i

Et−i

[
d
(
t ′i� t−i

)]−1T−
i
(ti) sup

t ′i∈T−
i

Et−i

[
d
(
t ′i� t−i

)])]

subject to (3) and (4)�

(R̃)

For any mechanism (d�a), let VP̃(d�a) denote the expected utility of the principal given
mechanism (d�a) and let VR̃(d) denote the value achieved by the decision rule d in the
relaxed problem.

Lemma 6. For any mechanism (d�a) that is Bayesian incentive compatible in the imper-
fect verification setting, VP̃(d�a) ≤ VR̃(d).

Proof. Note that Lemma 2 implies that

∀ti ∈ T+
i : Et−i�s

[
ai(ti� t−i� s)d(ti� t−i� s)

] ≥ 1
p

[
Et−i�s

[
d(ti� t−i)

] − inf
ti∈T+

i

Et−i�s
[
d
(
t ′i� t−i� s

)]]
�

∀ti ∈ T−
i : Et−i�s

[
ai(ti� t−i� s)

[
1 − d(ti� t−i� s)

]]
≥ 1

p

[
sup
ti∈T+

i

Et−i�s
[
d
(
t ′i� t−i� s

)] −Et−i�s
[
d(ti� t−i)

]]
�

Hence,

VP̃(d�a) = Et

[∑
i

d(t)ti − ai(t)ci

]

≤ Et

[∑
i

d(t)ti − 1T+
i
(ti)d(t)ai(t)ci − 1T−

i
(ti)

[
1 − d(t)

]
ai(t)ci

]
(13)

≤
∑
i

Eti

[
Et−i

[
d(t)

]
ti − 1T+

i
(ti)

1
p

[
Et−i�s

[
d(ti� t−i)

] − inf
ti∈T+

i

Et−i�s
[
d
(
t ′i� t−i� s

)]]
ci

− 1T−
i
(ti)

1
p

[
sup
ti∈T+

i

Et−i�s
[
d
(
t ′i� t−i� s

)] −Et−i�s
[
d(ti� t−i)

]]
ci

]
(14)

= VR̃(d)�

Lemma 7. Suppose T is finite. The decision rule stated in Theorem 2 solves problem (R̃).

Proof. Let d∗ denote an optimal solution to the relaxed problem (R̃) above, and define
ϕ+
i ≡ inft ′i∈T+

i
Et−i [d∗(t ′i� t−i)] and ϕ−

i ≡ supt ′i∈T−
i
Et−i [d∗(t ′i� t−i)]. Then d∗ also solves the
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problem

max
0≤d≤1

Et

[∑
i

d(t)

[
ti − c̃i(ti)

p

]]

such that for all i ∈ I�

ϕ+
i ≤ Et−id(t) ≤ ϕ+

i

1 −p
for all ti ∈ T+

i �

ϕ−
i −p

1 −p
≤ Et−id(t)≤ ϕ−

i for all ti ∈ T−
i �

(Aux)

The Karush–Kuhn–Tucker theorem implies that there exist Lagrange multipliers λi(ti)

and μi(ti) such that d∗ maximizes the Lagrangian:

L(d�λ�μ)= Et

[∑
i

d(t)

(
ti − c̃i(ti)

p

)]

+
∑
i

∑
ti∈T+

i

(
λi(ti)

(
Et−i

[
d(ti� t−i)

] −ϕ+
i

) +μi(ti)

(
ϕ+
i

1 −p
−Et−i

[
d(ti� t−i)

]))

+
∑
i

∑
ti∈T−

i

(
λi(ti)

(
Et−i

[
d(ti� t−i)

] −ϕ−
i

) +μi(ti)

(
ϕ−
i −p

1 −p
−Et−i

[
d(ti� t−i)

]))
�

Define hi(ti) := ti − c̃i(ti)
p + λi(ti)+μi(ti)

fi(ti)
and let

α+
i = inf

ti∈T+
i

{
ti|Et−i

[
d∗(ti� t−i)

]
>ϕ+

i

}
� α−

i = sup
ti∈T−

i

{
ti|Et−i

[
d∗(ti� t−i)

]
<ϕ−

i

}
�

β+
i = sup

ti∈T+
i

{
ti

∣∣∣Et−i

[
d∗(ti� t−i)

]
<

ϕ+
i

1 −p

}
� β−

i = inf
ti∈T−

i

{
ti

∣∣∣Et−i

[
d∗(ti� t−i)

]
>

ϕ−
i −p

1 −p

}
�

Define A+
i = {ti ∈ T+

i |ti < α+
i }, A−

i = {ti ∈ T−
i |ti > α−

i }, B+
i = {ti ∈ T+

i |ti > β+
i }, B−

i =
{ti ∈ T−

i |ti < β−
i }, and

h̄i(ti) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
μi

(
A+

i

) ∑
ti∈A+

i

fi(ti)hi(ti) if ti ∈ A+
i �

1
μi

(
B+
i

) ∑
ti∈B+

i

fi(ti)hi(ti) if ti ∈ B+
i �

1
μi

(
A−

i

) ∑
ti∈A−

i

fi(ti)hi(ti) if ti ∈ A−
i �

1
μi

(
B−
i

) ∑
ti∈B−

i

fi(ti)hi(ti) if ti ∈ B−
i �

ti − c̃i(ti) otherwise�
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The same arguments as in the proof of Lemma 4 imply that d∗ maximizes∑
i

∑
t

f (t)d(t)h̄i(ti)�

Lemma 8. Suppose T is infinite. The decision rule stated in Theorem 2 solves problem (R̃).

The proof is analogous to the proof of Lemma 5 and, hence, is omitted.

Proof of Theorem 2. Denote by d∗ the solution to problem (R̃). For each i, define
qi : Ti → [0�1] as the solution to

Et−i

[
d∗(ti� t−i)

[
1 −p · qi(ti)

]] = inf
t ′i∈T+

i

Et−i

[
d∗(t ′i� t−i

)]
for ti ∈ T+

i �

Et−i

[
d∗(ti� t−i)

[
1 −p · qi(ti)

] = sup
t ′i∈T−

i

Et−i

[
d∗(t ′i� t−i

)] −p · qi(ti)
]

for ti ∈ T−
i �

We now show that a solution qi exists. For ti ∈ T+
i , setting qi(ti)= 0 yields

Et−i

[
d∗(ti� t−i)

[
1 −pqi(ti)

]] = Et−i

[
d∗(ti� t−i)

] ≥ inf
t ′i∈T+

i

Et−i

[
d∗(t ′i� t−i

)]

and setting qi(ti) = 1 yields

Et−i

[
d∗(ti� t−i)

[
1 −pqi(ti)

]] = Et−i

[
d∗(ti� t−i)[1 −p]] ≤ inf

t ′i∈T+
i

Et−i

[
d∗(t ′i� t−i

)]
�

where the inequality follows from (3). The intermediate-value theorem hence implies
the existence of a solution qi. Similar arguments apply for ti ∈ T−

i .
Define

a∗
i (t) :=

⎧⎪⎪⎨
⎪⎪⎩
qi(ti) if ti ∈ T+

i and d∗(t) = 1�

qi(ti) if ti ∈ T−
i and d∗(t) = 0�

0 else.

For each i and for all ti ∈ T+
i ,

inf
t ′i∈T+

i

Et−i�s
[
d∗(t ′i� t−i� s

)] = Et−i�s
[
d∗(ti� t−i� s)

[
1 −p · a∗

i (ti� t−i� s)
]]
�

and for all ti ∈ T−
i ,

sup
t ′i∈T−

i

Et−i�s
[
d∗(t ′i� t−i� s

)] = Et−i�s
[
d∗(ti� t−i� s)

[
1 −p · a∗

i (ti� t−i� s)
] +p · a∗

i (ti� t−i� s)
]
�

Hence, (d∗� a∗) is Bayesian incentive compatible by Lemma 2 and inequality (14) holds
as an equality. By construction, ti ∈ T+

i implies d(t)a∗
i (t) = a∗

i (t) and ti ∈ T−
i implies

[1 − d(t)]a∗
i (t) = a∗

i (t). Therefore, inequality (13) also holds as an equality and we con-
clude that VP̃(d

∗� a∗)= VR̃(d
∗). Hence, (d∗� a∗) is optimal.
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