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Pricing Bermudan options using regression: optimal

rates of convergence for lower estimates

Denis Belomestny1, ∗

April 21, 2009

Abstract

The problem of pricing Bermudan options using Monte Carlo and
a nonparametric regression is considered. We derive optimal non-
asymptotic bounds for a lower biased estimate based on the subop-
timal stopping rule constructed using some estimates of continuation
values. These estimates may be of different nature, they may be local
or global, with the only requirement being that the deviations of these
estimates from the true continuation values can be uniformly bounded
in probability.

Keywords: Bermudan options; Regression; Boundary condition.

1 Introduction

An American option grants the holder the right to select the time at which
to exercise the option, and in this differs from a European option which may
be exercised only at a fixed date. A general class of American option pricing
problems can be formulated through an R

d Markov process {X(t), 0 ≤ t ≤
T} defined on a filtered probability space (Ω,F, (Ft)0≤t≤T ,P). It is assumed
that X(t) is adapted to (Ft)0≤t≤T in the sense that each Xt is Ft measurable.
Recall that each Ft is a σ-algebra of subsets of Ω such that Fs ⊆ Ft ⊆ F

for s ≤ t. We interpret Ft as all relevant financial information available up
to time t. We restrict attention to options admitting a finite set of exercise
opportunities 0 = t0 < t1 < t2 < . . . < tL = T , sometimes called Bermudan
options. If exercised at time tl, l = 1, . . . , L, the option pays fl(X(tl)), for
some known functions f0, f1, . . . , fL mapping R

d into [0,∞). Let Tn denote
the set of stopping times taking values in {n, n + 1, . . . , L}. A standard
result in the theory of contingent claims states that the equilibrium price

1Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117

Berlin, Germany. belomest@wias-berlin.de.
2JEL Subject Classification: G14; C15.
∗supported in part by the SFB 649 ‘Economic Risk’.

1



Vn(x) of the American option at time tn in state x given that the option was
not exercised prior to tn is its value under an optimal exercise policy:

Vn(x) = sup
τ∈Tn

E[fτ (X(tτ ))|X(tn) = x), x ∈ R
d.

Pricing an American option thus reduces to solving an optimal stopping
problem. Solving this optimal stopping problem and pricing an American
option are straightforward in low dimensions. However, many problems
arising in practice (see e.g. Glasserman (2004)) have high dimensions, and
these applications have motivated the development of Monte Carlo meth-
ods for pricing American option. Pricing American style derivatives with
Monte Carlo is a challenging task because the determination of optimal ex-
ercise strategies requires a backwards dynamic programming algorithm that
appears to be incompatible with the forward nature of Monte Carlo sim-
ulation. Much research was focused on the development of fast methods
to compute approximations to the optimal exercise policy. Notable exam-
ples include the functional optimization approach in Andersen (2000), mesh
method of Broadie and Glasserman (1997), the regression-based approaches
of Carriere (1996), Longstaff and Schwartz (2001), Tsitsiklis and Van Roy
(1999) and Egloff (2005). A common feature of all above mentioned algo-
rithms is that they deliver estimates Ĉ0(x), . . . , ĈL−1(x) for the so called
continuation values:

Ck(x) := E[Vk+1(X(tk+1))|X(tk) = x], k = 0, . . . , L − 1.(1.1)

An estimate for V0, the price of the option at time t0 can then be defined as

Ṽ0(x) := max{f0(x), Ĉ0(x)}, x ∈ R
d.

This estimate basically inherits all properties of Ĉ0(x). In particular, it is
usually impossible to determine the sign of the bias of Ṽ0 since the bias of
Ĉ0 may change its sign. One way to get a lower bound (low biased estimate)
for V0 is to construct a (generally suboptimal) stopping rule

τ̂ = min{0 ≤ k ≤ L : Ĉk(X(tk)) ≤ fk(X(tk))}

with ĈL ≡ 0 by definition. Simulating a new independent set of trajectories
and averaging the pay-offs stopped according to τ̂ on these trajectories gives
us a lower bound V̂0 for V0. As was observed by practitioners, the so con-
structed estimate V̂0 has rather stable behavior with respect to the estimates
of continuation values Ĉ0(x), . . . , ĈL−1(x), that is even rather poor estimates
of continuation values may lead to a good estimate V̂0. The aim of this paper
is to find a theoretical explanation of this observation and to investigate the
properties of V̂0. In particular, we derive optimal non-asymptotic bounds for
the bias V0 −E V̂0 assuming some uniform probabilistic bounds for Cr − Ĉr.
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It is shown that the bounds for V0−E V̂0 are usually much tighter than ones
for V0−E Ṽ0 implying a better quality of V̂0 as compared to the quality of Ṽ0

constructed using one and the same set of estimates for continuation values.
The issues of convergence for regression algorithms have been already

studied in several papers. Clément, Lamberton and Protter (2002) were first
who proved the convergence of the Longstaff-Schwartz algorithm. Glasser-
man and Yu (2005) have shown that the number of Monte Carlo paths has
to be in general exponential in the number of basis functions used for regres-
sion in order to ensure convergence. Recently, Egloff, Kohler and Todorovic
(2007) (see also Kohler (2008)) have derived the rates of convergence for
continuation values estimates obtained by the so called dynamic look-ahead
algorithm (see Egloff (2004)) that“interpolates”between Longstaff-Schwartz
and Tsitsiklis-Roy algorithms. They presented the convergence rates for Ṽ0

which coincide with the rates of Ĉ0 and are determined by the smoothness
properties of the true continuation values C0, . . . , CL−1. It turns out that the
convergence rates for V̂0 depend not only on the smoothness of continuation
values (as opposite to Ṽ0), but also on the behavior of the underlying pro-
cess near the exercise boundary. Interestingly enough, there are cases where
these rates become almost independent either of the smoothness properties
of {Ck} or of the dimension of X and the bias of V̂0 decreases exponentially
in the number of Monte Carlo paths used to construct {Ĉk}.

The paper is organized as follows. In Section 2.1 we introduce and dis-
cuss the so called boundary assumption which describes the behavior of the
underlying process X near the exercise boundary and heavily influences the
properties of V̂0. In Section 2.2 we derive non-asymptotic bounds for the
bias V0−E V̂0 and prove that these bounds are optimal in the minimax sense.
Finally, we illustrate our results by a numerical example.

2 Main results

2.1 Boundary assumption

For the considered Bermudan option let us introduce a continuation region
C and an exercise (stopping) region E :

C := {(i, x) : fi(x) < Ci(x)} ,(2.2)

E := {(i, x) : fi(x) ≥ Ci(x)} .

Furthermore, let us assume that there exist constants B0,k > 0, k = 0, . . . , L−
1 and α > 0 such that the inequality

(2.3) Ptk |t0(0 < |Ck(X(tk)) − fk(X(tk))| ≤ δ) ≤ B0,kδ
α, δ > 0,

holds for all k = 0, . . . , L − 1, where Ptk |t0 is the conditional distribution
of X(tk) given X(t0). Assumption (2.3) provides a useful characterization
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of the behavior of the continuation values {Ck} and payoffs {fk} near the
exercise boundary ∂E. Although this assumption seems quite natural to
look at, we make in this paper, to the best of our knowledge, a first attempt
to investigate its influence on the convergence rates of lower bounds based
on suboptimal stopping rules.

In the situation when all functions Ck − fk, k = 0, . . . , L− 1 are smooth
and have non-vanishing derivatives in the vicinity of the exercise boundary,
we have α = 1. Other values of α are possible as well. We illustrate this by
two simple examples.

Example 1 Fix some α > 0 and consider a two period (L = 1) Bermudan
power put option with the payoffs

f0(x) = f1(x) = (K1/α − x1/α)+, x ∈ R+, K > 0.(2.4)

Denote by ∆ the length of the exercise period, i.e. ∆ = t1−t0. If the process
X follows the Black-Scholes model with volatility σ and zero interest rate,
then one can show that

C0(x) := E[f1(X(t1))|X(t0) = x] = K1/αΦ(−d2)

− x1/αe∆(α−1−1)(σ2/2α)Φ(−d1)

with Φ being the cumulative distribution function of the standard normal
distribution,

d1 =
log(x/K) +

(
1
α − 1

2

)
σ2∆

σ
√

∆

and d2 = d1 − σ
√

∆/α. As can be easily seen, the function C0(x) − f0(x)
satisfies |C0(x) − f0(x)| ≍ x1/α for x → +0 and C0(x) > f0(x) for all x > 0
if α ≥ 1. Hence

P(0 < |C0(X(t0)) − f0(X(t0))| ≤ δ) . δα, δ → 0, α ≥ 1.

Taking different α in the definition of the payoffs (2.4), we get (2.3) satisfied
for α ranging from 1 to ∞.

In fact, even the extreme case “α = ∞” may take place as shown in the
next example.

Example 2 Let us consider again a two period Bermudan option such
that the corresponding continuation value C0(x) = E[f1(X(t1))|X(t0) = x]
is positive and monotone increasing function of x on any compact set in R.
Fix some x0 ∈ R and choose δ0 satisfying δ0 < C0(x0). Define the payoff
function f0(x) in the following way

f0(x) =

{
C0(x0) + δ0, x < x0,

C0(x0) − δ0, x ≥ x0.

4
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Figure 1: Illustration to Example 2.

So, f0(x) has a “digital” structure. Figure 1 shows the plots of C0 and f0 in
the case where X follows the Black-Scholes model and f1(x) = (x−K)+. It
is easy to see that

Pt0(0 < |C0(X(t0)) − f0(X(t0))| ≤ δ0) = 0.

On the other hand

C = {x ∈ R : C0(x) ≥ f0(x)} = {x ∈ R : x ≥ x0},
E = {x ∈ R : C0(x) < f0(x)} = {x ∈ R : x < x0}.

So, both continuation and exercise regions are not trivial in this case.
The last example is of particular interest because as will be shown in

the next sections the bias of V̂0 decreases in this case exponentially in the
number of Monte Carlo paths used to estimate the continuation values, a
lower bound V̂0 was constructed from.

2.2 Non-asymptotic bounds for V0 − E V̂0

Let Ĉk,M , k = 1, . . . , L−1, be some estimates of continuation values obtained
using M paths of the underlying process X starting from x0 at time t0. We
may think of (X(1)(t), . . . ,X(M)(t)) as being a vector process on the product
probability space with σ-algebra F⊗M and the product measure P⊗M

x0
defined

on F⊗M via

P⊗M
x0

(A1 × . . . × AM ) = Px0(A1) · . . . · Px0(AM ),

5



with Am ∈ F, m = 1, . . . ,M . Thus, each Ĉk,M , k = 0, . . . , L − 1, is
measurable with respect to F⊗M . The following proposition provides non-
asymptotic bounds for the bias V0 − E V̂0,M of a lower bound V̂0,M given

uniform probabilistic bounds for {Ĉk,M}.

Proposition 2.1. Suppose that there exist constants B1, B2 and a positive

sequence γM such that for any δ > δ0 > 0 it holds

P⊗M
x0

(
|Ĉk,M(x) − Ck(x)| ≥ δγ

−1/2
M

)
≤ B1 exp(−B2δ)(2.5)

for almost all x with respect to Ptk|t0 , the conditional distribution of X(tk)
given X(t0), k = 0, . . . , L − 1. Define

V0,M := E
[
fτ̂M

(X(tτ̂M
))|X(t0) = x0

]
(2.6)

with

τ̂M := min
{

0 ≤ k ≤ L : Ĉk,M(X(tk)) ≤ fk(X(tk))
}

.(2.7)

If the boundary condition (2.3) is fulfilled, then

0 ≤ V0 − EP⊗M
x0

[V0,M ] ≤ B

[
L−1∑

l=0

B0,l

]
γ
−(1+α)/2
M

with some constant B depending only on α, B1 and B2.

The above convergence rates are, in fact, optimal in the following sense.

Proposition 2.2. Fix a set of non-zero payoff functions f0, . . . , fL and let

Pα be a class of pricing measures such that the boundary condition (2.3) is

fulfilled with some α > 0. For any positive sequence γM satisfying

γ−1
M = o(1), γM = O(M), M → ∞,

there exist a subset Pα,γ of Pα and a constant B > 0 such that for any

M ≥ 1, any stopping rule τ̂M and any set of estimates {Ĉk,M} measurable

w.r.t. F⊗M , we have for some δ > 0 and k = 0, . . . , L − 1,

sup
P∈Pα,γ

P⊗M
(
|Ĉk,M (x) − Ck(x)| ≥ δγ

−1/2
M

)
> 0

for almost all x w.r.t. any P ∈ Pα,γ and

sup
P∈Pα,γ

{
sup
τ∈T0

E
Ft0
P [fτ (X(tτ ))] − EP⊗M [E

Ft0
P fτ̂M

(X(tτ̂M
))]

}
≥ Bγ

−(1+α)/2
M .
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Finally, we discuss the case when “α = ∞”, meaning that there exists
δ0 > 0 such that

Ptk |t0(0 < |Ck(X(tk)) − fk(X(tk))| ≤ δ0) = 0(2.8)

for k = 0, . . . , L − 1. This is very favorable situation for pricing. It turns
out that if the continuation values estimates {Ĉk,M} satisfy a kind of expo-

nential inequality and (2.8) holds, then the bias of V̂0,M converges to zero
exponentially fast in γM .

Proposition 2.3. Suppose that for any δ > 0 there exist constants B1, B2

possibly depending on δ and a sequence of positive numbers γM not depending

on δ such that

P⊗M
x0

(
|Ĉk,M(x) − Ck(x)| ≥ δ

)
≤ B1 exp(−B2γM )(2.9)

for almost all x with respect to Ptk |t0, k = 0, . . . , L − 1. Assume also that

there exist a constant Bf > 0 such that

(2.10) E

[
max

k=0,...,L
f2

k (X(tk))

]
≤ Bf , k = 0, . . . , L.

If the condition (2.8) is fulfilled with some δ0 > 0, then

0 ≤ V0 − EP⊗M
x0

[V0,M ] ≤ B3 exp(−B4γM )

with some constant B3 and B4 depending only on B1, B2 and Bf .

Discussion Let us make a few remarks on the results of this section. First,
Proposition 2.1 implies that the convergence rates of V̂0,M are always faster

than the convergence rates of {Ĉk,M} provided that α > 0. Indeed, while the

convergence rates of {Ĉk,M} are of order γ
−1/2
M , the bias of V̂0,M converges to

zero as fast as γ
−(1+α)/2
M . As to the variance of V̂0,M , it can be made arbitrary

small by averaging V̂0,M over a large number of sets, each consisting of M
trajectories, and by taking a large number of new Monte Carlo paths used
to average the payoffs stopped according to τ̂M .

Second, if the condition (2.8) holds true, then the bias of V̂0,M decreases
exponentially in γM , indicating that even very unprecise estimates of the
continuation values would lead to the estimate V̂0,M of acceptable quality.

Finally, let us stress that the results obtained in this section are quite
general and do not depend on the particular form of the estimates {Ĉk,M},
only the inequality (2.5) being crucial for the result to hold. This inequality
holds for various types of estimators. These may be global least squares
estimators or local polynomial estimators. In particular, it can be shown
that if all continuation values {Ck} belong to the Hölder class Σ(β,H, Rd)
and the conditional law of X satisfies some regularity assumptions, then
the local polynomial estimates of continuation values satisfy inequality (2.5)
with γM = M2β/(2β+d) log−1(M).
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3 Numerical example: Bermudan max call

This is a benchmark example studied in Broadie and Glasserman (1997) and
Glasserman (2004) among others. Specifically, the model with d identically
distributed assets is considered, where each underlying has dividend yield δ.
The risk-neutral dynamic of assets is given by

dXk(t)

Xk(t)
= (r − δ)dt + σdWk(t), k = 1, ..., d,

where Wk(t), k = 1, ..., d, are independent one-dimensional Brownian mo-
tions and r, δ, σ are constants. At any time t ∈ {t0, ..., tL} the holder of the
option may exercise it and receive the payoff

f(X(t)) = (max(X1(t), ...,Xd(t)) − K)+.

We take d = 2, r = 5%, δ = 10%, σ = 0.2 and ti = iT/L, i = 0, ..., L, with
T = 3, L = 9 as in Glasserman (2004, Chapter 8). First, we estimate all
continuation values via the dynamic programming algorithm using the so
called Nadaraya-Watson regression estimator

(3.11) Ĉr,M(x) =

∑M
m=1 K((x − X(m)(tr))/h)Y

(m)
r+1∑M

m=1 K((x − X(m)(tr))/h)

with Y
(m)
r+1 = max(fr+1(X

(m)(tr+1)), Ĉr+1,M (X(m)(tr+1))), r = 0, . . . , L − 1.

Here K is a kernel, h > 0 is a bandwidth and (X(m)(t1), . . . ,X
(m)(tL)),

m = 1, . . . ,M, is the set of paths of the process X, all starting from the
point x0 = (90, 90) at t0 = 0. As can be easily seen the estimator (3.11) is
a local polynomial estimator of degree 0. Upon estimating Ĉ1,M , we define
an estimate for the price of the option at time t0 = 0 as

Ṽ0 :=
1

M

M∑

m=1

Y
(m)
1 .

Next, using the so constructed estimates of continuation values we construct
a stopping policy τ̂ which is defined pathwise as

τ̂ (n) := min
{

1 ≤ k ≤ L : Ĉk,M(X̃(n)(tk)) ≤ fk(X̃
(n)(tk))

}
, n = 1, . . . , N,

where (X̃(n)(t1), . . . , X̃
(n)(tL)), n = 1, . . . , N, is a new independent set of

trajectories of the process X, all starting from x0 = (90, 90) at t0 = 0. The
stopping policy τ̂ yields a lower bound

V̂0 =
1

N

N∑

n=1

fτ̂ (n)(X̃(n)(tτ̂ (n))).

8
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Figure 2: Boxplots of the estimates V̂0 and Ṽ0 for different values of the
bandwidth h. The true option price is shown is a red base line.
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In Figure 2 we show the boxplots of Ṽ0 and V̂0 based on 100 sets of tra-
jectories each of the size M = 1000 for different values of the bandwidth h,
where the triangle kernel K(x) = (1 − ‖x‖2)+ is used to construct (3.11).
Also the true value V0 of the option (8.08 in this case), computed using a
two-dimensional binomial lattice, is shown as a red base line. Several obser-
vations can be made by an examination of Figure 2. First, while the bias of
V̂0 is always smaller then the bias of Ṽ0, the largest difference takes place for
large h. This can be explained by the fact that for large h more observations

Y
(m)
r+1 with X(m)(tr) lying far away from the given point x become involved

in the construction of Ĉr,M(x). This has a consequence of increasing the
bias of the estimate (3.11). The most interesting phenomenon is, however,
the behavior of V̂0 which turns out to be quite stable with respect to h. So
even in the case of rather poor estimates of continuation values (when h is
large) V̂0 still looks reasonable.

We stress that the aim of this example is not to show the strength of the
local polynomial estimation algorithms (for this we would take larger M and
higher order kernels) but rather to illustrate the main claim of this paper,
namely the claim about the efficiency of V̂0 as compared to the estimates
based on the direct use of continuation values estimates.

4 Conclusion

In this paper we have derived optimal rates of convergence for lower biased
estimates of the price of a Bermudan option based on suboptimal exercise
policies obtained from some estimates of the optimal continuation values.
We have shown that these rates are usually much faster than the convergence
rates of the corresponding continuation values estimates. This may explain
the efficiency of these lower bounds observed in practice. Moreover, it turns
out that there are some cases where the expected values of the lower bounds
based on suboptimal stopping rules achieve very fast convergence rates which
are exponential in the number of paths used to estimate the corresponding
continuation values. This suggests that the algorithms based on suboptimal
stopping rules (e.g. Longstaff-Schwartz algorithm) rather than on the direct
use of the continuation values estimates might be preferable.

5 Proofs

5.1 Proof of Proposition 2.1

Define

τj := min{j ≤ k < L : Ck(X(tk)) ≤ fk(X(tk))}, j = 0, . . . , L,

τ̂j,M := min{j ≤ k < L : Ĉk(X(tk)) ≤ fk(X(tk))}, j = 0, . . . , L

10



and

Vk,M(x) := E[fτ̂k,M
(X(tτ̂k,M

))|X(tk) = x], x ∈ R
d.

The so called Snell envelope process Vk is related to τk via

Vk(x) = E[fτk
(X(tτk

))|X(tk) = x], x ∈ R
d.

The following lemma provides a useful inequality which will be repeatedly
used in our analysis.

Lemma 5.1. For any k = 0, . . . , L − 1, it holds with probability one

(5.12) 0 ≤ Vk(X(tk)) − Vk,M(X(tk))

≤ EFtk

[
L−1∑

l=k

|fl(X(tl)) − Cl(X(tl))|

×
(
1{τ̂l,M >l, τl=l} + 1{τ̂l,M =l, τl>l}

)]
.

Proof. We shall use induction to prove (5.12). For k = L − 1 we have

VL−1(X(tL−1)) − VL−1,M (X(tL−1)) =

= EFtL−1

[
(fL−1(X(tL−1)) − fL(X(tL)))1{τL−1=L−1, τ̂L−1,M =L}

]

+ EFtL−1

[
(fL(X(tL)) − fL−1(X(tL−1)))1{τL−1=L, τ̂L−1,M =L−1}

]

= |fL−1(X(tL−1)) − CL−1(X(tL−1))|1{τ̂L−1,M 6=τL−1}

since events {τL−1 = L} and {τ̂L−1,M = L} are measurable w.r.t. FtL−1
.

Thus, (5.12) holds with k = L−1. Suppose that (5.12) holds with k = L′+1.
Let us prove it for k = L′. Consider a decomposition

fτL′ (X(tτL′ )) − fτ̂L′,M
(X(tτ̂L′ ,M

)) = S1 + S2 + S3

with

S1 :=
(
fτL′ (X(tτL′ )) − fτ̂L′,M

(X(tτ̂L′ ,M
))

)
1{τL′>L′, τ̂L′,M>L′}

S2 :=
(
fτL′ (X(tτL′ )) − fτ̂L′,M

(X(tτ̂L′ ,M
))

)
1{τL′>L′, τ̂L′,M=L′}

S3 :=
(
fτL′ (X(tτL′ )) − fτ̂L′,M

(X(tτ̂L′ ,M
))

)
1{τL′=L′, τ̂L′,M>L′}.

Since

EFt
L′ [S1] = EFt

L′

[(
VL′+1(X(tL′+1)) − VL′+1,M (X(tL′+1))

)]
1{τL′>L′, τ̂L′,M>L′},

EFt
L′ [S2] =

(
EFt

L′

[
fτL′+1

(X(tτL′+1
))

]
− fL′(X(tL′))

)
1{τL′>L′, τ̂L′,M=L′}

= (CL′(X(tL′)) − fL′(X(tL′)))1{τL′>L′, τ̂L′,M=L′}
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and

EFt
L′ [S3] =

(
fL′(X(tL′)) − EFt

L′

[
fτ̂L′+1,M

(X(tτ̂L′+1,M
))

])
1{τL′=L′, τ̂L′,M >L′}

= (fL′(X(tL′)) − CL′(X(tL′)))1{τL′=L′, τ̂L′,M>L′}

+ EFt
L′

[(
VL′+1(X(tL′+1)) − VL′+1,M(X(tL′+1))

)
1{τL′=L′, τ̂L′,M>L′}

]
,

we get with probability one

VL′(X(tL′)) − VL′,M (X(tL′) ≤ |fL′(X(tL′)) − CL′(X(tL′))|
×

(
1{τ̂L′,M>L′, τL′=L′} + 1{τ̂L′,M=L′, τL′>L′}

)

+ EFt
L′

[
VL′+1(X(tL′+1)) − VL′+1,M (X(tL′+1))

]
.

Our induction assumption implies now that

VL′(X(tL′)) − VL′,M (X(tL′)) ≤

EFt
L′

[
L−1∑

l=L′

|fl(Xl) − Cl(Xl)|
(
1{τ̂l,M >l, τl=l} + 1{τ̂l,M =l, τl>l}

)]

and hence (5.12) holds for k = L′.

Let us continue with the proof of Proposition 2.1. Consider the sets
El, Al,j ⊂ R

d, l = 0, . . . , L − 1, j = 1, 2, . . . , defined as

El :=
{
x ∈ R

d : Ĉl,M (x) ≤ fl(x), Cl(x) > fl(x)
}

∪
{
x ∈ R

d : Ĉl,M(x) > fl(x), Cl(x) ≤ fl(x)
}

,

Al,0 :=
{
x ∈ R

d : 0 < |Cl(x) − fl(x)| ≤ γ
−1/2
M

}
,

Al,j :=
{
x ∈ R

d : 2j−1γ
−1/2
M < |Cl(x) − fl(x)| ≤ 2jγ

−1/2
M

}
, j > 0.

We may write

V0(X(t0)) − V0,M (X(t0)) ≤ EFt0

[
L−1∑

l=0

|fl(X(tl)) − Cl(X(tl))|1{X(tl)∈El}

]

=

∞∑

j=0

EFt0

[
L−1∑

l=0

|fl(X(tl)) − Cl(X(tl))|1{X(tl)∈Al,j∩El}

]

≤ γ
−1/2
M

L−1∑

l=0

Ptl|t0

(
0 < |Cl(X(tl)) − fl(X(tl))| ≤ γ

−1/2
M

)

+

∞∑

j=1

EFt0

[
L−1∑

l=0

|fl(X(tl)) − Cl(X(tl))|1{X(tl)∈Al,j∩El}

]
.
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Using the fact that

|fl(X(tl)) − Cl(X(tl))| ≤ |Ĉl,M (X(tl) − Cl(X(tl))|, l = 0, . . . , L − 1,

on El, we get for any j ≥ 1 and l ≥ 0

EFt0 EP⊗M
x0

[
|fl(X(tl)) − Cl(X(tl))|1{X(tl)∈Al,j∩El}

]

≤ 2jγ
−1/2
M EFt0 EP⊗M

x0

[
1
{|Ĉl,M (X(tl)−Cl(X(tl))|≥2j−1γ

−1/2
M }

×1
{0<|fl(X(tl))−Cl(X(tl))|≤2jγ

−1/2
M }

]

≤ 2jγ
−1/2
M EFt0

[
P⊗M

x0
(|Ĉl,M (X(tl)) − Cl(X(tl))| ≥ 2j−1γ

−1/2
M )

×1
{0<|fl(X(tl))−Cl(X(tl))|≤2jγ

−1/2
M }

]

≤ B12
jγ

−1/2
M exp

(
−B22

j−1
)
Ptl|t0(0 < |fl(X(tl)) − Cl(X(tl))| ≤ 2jγ

−1/2
M )

≤ B1B0,l2
j(1+α)γ

−(1+α)/2
M exp

(
−B22

j−1
)
,

where Assumption 2.3 is used to get the last inequality. Finally, we get

V0(X(t0)) − EP⊗M
x0

[V0,M (X(t0))]

≤
[

L−1∑

l=0

B0,l

]
γ
−(1+α)/2
M + B′

[
L−1∑

l=0

B0,l

]
γ
−(1+α)/2
M

∑

j≥1

2j(1+α) exp(−B22
j−1)

≤ B

[
L−1∑

l=0

B0,l

]
γ
−(1+α)/2
M

with some constant B depending on B1, B2 and α.

5.2 Proof of Proposition 2.2

For the sake of simplicity we consider the case of a three period Bermu-
dan option with two possible exercise dates t1 and t2 (exercise at t0 is not
possible). We also assume that the payoff function f2 has a “digital” struc-
ture, i.e. it takes two values 0 and 1. The extension to a general case is
straightforward but somewhat cumbersome.

We have

(5.13) V0(X(t0)) − V̂0,M (X(t0)) =

= EFt0 [(f1(X(t1)) − f2(X(t2)))1(τ1 = 1, τ̂1,M = 2)]

+ EFt0 [(f2(X(t2)) − f1(X(t1)))1(τ1 = 2, τ̂1,M = 1)]

= EFt0

[
|f1(X(t1)) − C1(X(t1))|1{τ̂1,M 6=τ1}

]
.
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For an integer q ≥ 1 consider a regular grid on [0, 1]d defined as

Gq =

{(
2k1 + 1

2q
, . . . ,

2kd + 1

2q

)
: ki ∈ {0, . . . , q − 1}, i = 1, . . . , d

}
.

Let nq(x) ∈ Gq be the closest point to x ∈ R
d among points in Gq. Consider

the partition X′
1, . . . ,X

′
qd of [0, 1]d canonically defined using the grid Gq (x

and y belong to the same subset if and only if nq(x) = nq(y)). Fix an integer
m ≤ qd. For any i ∈ {1, . . . ,m}, define Xi = X′

i and X0 = R
d \ ⋃m

i=1 Xi, so
that X0, . . . ,Xm form a partition of R

d. Denote by Bq,j the ball with the
center in nq(Xj) and radius 1/2q.

Define a hypercube H = {Pσ̄ : σ̄ = (σ1, . . . , σm) ∈ {−1, 1}m} of probabil-
ity distributions Pσ̄ of the r.v. (X(t1), f2(X(t2))) valued in R

d×{0, 1} as fol-
lows. For any Pσ̄ ∈ H the marginal distribution of X(t1) (given X(t0) = x0)
does not depend on σ̄ and has a bounded density µ w.r.t. the Lebesgue mea-
sure on R

d such that Pµ(X0) = 0 and

Pµ(Xj) = Pµ(Bq,j) =

∫

Bq,j

µ(x) dx = ω, j = 1, . . . ,m

for some ω > 0. In order to ensure that the density µ remains bounded we
assume that qdω = O(1).

The distribution of f2(X(t2)) given X(t1) is determined by the proba-
bility Pσ̄(f2(X(t2)) = 1|X(t1) = x) which is equal to C1,σ̄(x). Define

C1,σ̄(x) = f1(x) + σjφ(x), x ∈ Xj, j = 1, . . . ,m,

and C1,σ̄(x) = f1(x) on X0, where φ(x) = γ
−1/2
M ϕ(q[x − nq(x)]), ϕ(x) =

Aϕθ(‖x‖) with some constant Aϕ > 0 and with θ : R+ → R+ being a non-
increasing infinitely differentiable function such that θ(x) ≡ 1 on [0, 1/2] and
θ(x) ≡ 0 on [1,∞). Without loss of generality we may assume that f1(x) is
strictly positive on [0, 1]d, i.e. there exist two real numbers 0 < f− < f+ < 1
such that f− ≤ f1(x) ≤ f+. Taking Aϕ small enough, we can then ensure

that 0 ≤ C1,σ̄(x) ≤ 1 on R
d. Obviously, it holds φ(x) = Aϕγ

−1/2
M for

x ∈ Bq,j. As to the boundary assumption (2.3), we have

Pµ(0 < |f1(X(t1)) − C1,σ̄(X(t1))| ≤ δ) =
m∑

j=1

Pµ(0 < |f1(X(t1)) − C1,σ̄(X(t1))| ≤ δ,X(t1) ∈ Bq,j)

=

m∑

j=1

∫

Bq,j

1{0<φ(x)≤δ}µ(x) dx = mω1
{Aϕγ

−1/2
M ≤δ}
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and (2.3) holds provided that mω = O(γ
−α/2
M ). Let τ̂M be a stopping time

measurable w.r.t. F⊗M , then the identity (5.13) leads to

E
Ft0
Pσ̄

[fτ (X(τ))] − EP⊗M
σ̄

[EFt0 fτ̂M
(X(τ̂M ))]

= EP⊗M
σ̄

E
Ft0
Pµ

[
|∆σ̄(X(t1))|1{τ̂1,M 6=τ1}

]
,

with ∆σ̄(X(t1)) = f1(X(t1)) − C1,σ̄(X(t1)). By conditioning on X(t1), we
get

EP⊗M
σ̄

E
Ft0
Pµ

[
|∆σ̄(X(t1))|1{τ̂1,M 6=τ1}

]

= ω

m∑

j=1

EP⊗M
σ̄

E
Ft0
Pµ

[
φ(X(t1))1{τ̂1,M 6=τ1}|X(t1) ∈ Bq,j

]

= Aϕmωγ
−1/2
M E

Ft0
Pµ

P⊗M
σ̄ (τ̂1,M 6= τ1).

Using now a well known Birgé’s or Huber’s lemma (see, e.g. Devroye, Györfi
and Lugosi, 1996, p. 243), we get

sup
σ̄∈{−1;+1}m

P⊗M
σ̄ (τ̂1,M 6= τ1) ≥

[
0.36 ∧

(
1 − MKH

log(|H|)

)]
,

where KH := supP,Q∈HK(P,Q) and K(P,Q) is a Kullback-Leibler distance
between two measures P and Q. Since for any two measures P and Q from
H with Q 6= P it holds

K(P,Q) ≤ sup
σ̄1,σ̄2∈{−1;+1}m

σ̄1 6=σ̄2

E
Ft0
Pµ

[
C1,σ̄2(X(t1)) log

{
C1,σ̄1(X(t1))

C1,σ̄2(X(t1))

}

+(1 − C1,σ̄2(X(t1))) log

{
1 − C1,σ̄1(X(t1))

1 − C1,σ̄2(X(t1))

}]

≤ (1 − f+ − Aϕ)−1(f− − Aϕ)−1 E
Ft0
Pµ

[
φ2(X(t1))1{X(t1)6∈X0}

]

for small enough Aϕ, and log(|H|) = m log(2), we get

sup
σ̄∈{−1;+1}m

{
E

Ft0
Pσ̄

[fτ,σ̄(X(τ))] − EP⊗M
σ̄

[EFt0 fτ̂M ,σ̄(X(τ̂M ))]
}
≥

Aϕmωγ
−1/2
M (1 − AMγ−1

M ω) & γ
−(1+α)/2
M ,

provided that mω > Bγ
−α/2
M for some B > 0 and AMω < γM , where A is

a positive constant depending on f−, f+ and Aϕ. Using similar arguments,
we derive

sup
σ̄∈{−1;+1}m

P⊗M
σ̄ (|C1,σ̄(x) − Ĉ1,M (x)| > δγ

−1/2
M ) > 0

for almost x w.r.t. Pµ, some δ > 0 and any estimator Ĉ1,M measurable
w.r.t. F⊗M .
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5.3 Proof of Proposition 2.3

Using the arguments similar to ones in the proof of Proposition 2.1, we get

(5.14) V0(X(t0)) − EP⊗M
x0

[V0,M (X(t0))] ≤

δ0

L−1∑

l=0

Ptl|t0(0 < |Cl(X(tl)) − fl(X(tl))| ≤ δ0)

+
L−1∑

l=0

EFt0 EP⊗M
x0

[|Cl(X(tl)) − fl(X(tl))|

×1{X(tl)∈El}1{|Cl(X(tl))−fl(X(tl))|>δ0}

]

with El defined as in the proof of Proposition 2.1. The first summand on
the right-hand side of (5.14) is equal to zero due to (2.8). Hence, Cauchy-
Schwarz and Minkowski inequalities imply

V0(X(t0)) − EP⊗M
x0

[V0,M (X(t0))] ≤
L−1∑

l=0

[
EFt0 |EFtl

[
fτl+1

(X(tτl+1
))

]
− fl(X(tl))|2

]1/2

×
[
EFt0 P⊗M

x0
(|Cl(X(tl)) − Ĉl,M(X(tl))| > δ0)

]1/2

≤ 2B
1/2
f

L−1∑

l=0

[
EFt0 P⊗M

x0
(|Cl(X(tl)) − Ĉl,M(X(tl))| > δ0)

]1/2
.

Now the application of (2.9) finishes the proof.
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