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A Joint Analysis of the KOSPI 200 Option and

ODAX Option Markets Dynamics ∗

Ji Cao †, Wolfgang K. Härdle ‡, Julius Mungo §

Abstract

As a function of strike and time to maturity the implied volatility
estimation is a challenging task in financial econometrics. Dynamic
Semiparametric Factor Models (DSFM) are a model class that allows
for the estimation of the implied volatility surface (IVS) in a dynamic
context, employing semiparametric factor functions and time-varying
loadings. Because financial asset volatilities move over time, across
assets and over markets, this paper analyses volatility interaction be-
tween German and Korean stock markets. As proxy for the volatility,
factor loadings series derived from a DSFM application on option prices
are employed. We examine volatility transmission between the markets
under the vector autoregressive (VAR) model framework. Our results
show that a shock in the volatility of one market may not translate
directly into greater uncertainty in another market and it is unlikely
that portfolio investors can benefit from diversification among these
markets due to cointegration.
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1 Introduction

As one of the most important parameters in financial markets, volatility has
attracted a lot of attention. In derivatives pricing and hedging, volatility
is a key issue and because volatility is unknown, one studies the implied
volatility (IV) which is derived from the Black-Scholes formula (BS). By
plugging the observed option price into the BS formula it is straightforward
to calculate the implied volatility. Implied volatility is seen as a mapping
from time t, moneyness κ (a measure of strike) and time to maturity τ ,
σ̂ : (t, κ, τ)→ σ̂t(κ, τ).

Calculating implied volatilities at different strikes and maturities yields an
implied volatility surface (IVS). One challenge in IVS modelling is that the
data have a degenerated design: due to market conventions, maturities only
have a small number of values such as one, two, three, six, nine and twelve
months to expiry on the date of issue. This fact leads to a string structure
of observations in IVS. As time passes these strings change their shape and
location randomly. Figure 1 displays implied volatility of the ODAX on 2
May and 2 June, 2003. The implied volatilities on these two days show
different patterns. On 2 May, the largest implied volatility is about 1, and
it is about 2 on 2 June. There are three different expiration times on 2 May
but eight on 2 June.

Dynamic semiparametric factor models are designed to capture these fea-
tures of the IVS with low-dimensional factor functions and time-varying
factor loadings. The IVS is approximated by unknown factor functions
moving in a finite dimensional function space. The finite dimensional fits
are obtained in the local neighbourhood of strikes and maturities, for which
implied volatilities are recorded on the specific day. Surface estimation and
dimension reduction is achieved in one single step. This approach can be
seen as a combination of functional principal component analysis, nonpara-
metric curve estimation and backfitting for additive models. The DSFM is
generally expressed as

Yt,j = m0(Xt,j) +
L∑
l=1

Zt,lml(Xt,j) + εt,j , (1)

where Yt,j is the log-implied volatility for option j on day t, t is an index of
day (t = 1, . . . , T ) and j is an index of options on day t (j = 1, . . . , J). Xt,j

is two-dimensional covariables, Xt,j = (κt,j , τt,j) with κt,j the moneyness (we

define moneyness κt,j
def= Kt,j

Ft,j
, where Kt,j is the strike and Ft,j is the future

price.) and τt,j time to maturity. ml is time-invariant factor function and
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Figure 1: Upper left: implied volatility of ODAX on 2 May, 2003. (money-
ness lower left axis, time to maturity lower right axis). Upper right: Data
design of ODAX on 2 May, 2003. Lower left: implied volatility of ODAX
on 2 June, 2003. Lower right: Data design of ODAX on 2 June, 2003.
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Zt,l is loading for factor ml. εt,j is an unknown error term with E(εt,j) = 0
and E(ε2t,j) < ∞. After estimating unknown factor function ml and corre-
sponding loading Zt,l, implied volatility can be calculated given a desired
point (κt,j , τt,j).

In a study related to the DSFM estimation, Park et al. (2009) have shown
that the covariance structure of the estimated loading series converges in
probability to the covariance structure of the unobservable loading series.
This indicates that the additional error incurred by using Ẑt instead of Zt
is negligible for large T . This asymptotic equivalence of the autocovariance
structures carries over to classical estimation and testing procedures within
the VAR model framework.

This paper applies the DSFM to estimate IVS of the Korean Stock Index
(KOSPI 200) options and the ODAX. The estimation result is discussed and
a joint analysis between two markets is studied. The paper is organised as
follows: Section 2 describes data preparation and implied volatility calcu-
lation. The DSFM model fit is discussed in Section 3. Section 4 presents
a joint analysis of the KOSPI option and the ODAX factor loading series
dynamics. Conclusion is presented in section 5.

2 Data and Implied volatility calculation

The data set contains tick statistics on KOSPI 200 option from the Korea
Exchange and the ODAX from Eurex over the period from January 2003 to
December 2003. The KOSPI 200 (Korea Composite Stock Price Index) is the
index of 200 major companies’ stocks traded on the Stock Market Division
of the Korea Exchange. It is one of the most actively traded indices in the
world. The Korea Exchange (KRX) is by transactional volume the largest
derivatives exchange in the world. Deutscher Aktien IndeX 30 (German
stock index) is a Blue Chip stock market index consisting of the 30 major
German companies traded on the Frankfurt Stock Exchange. Its option
ODAX is traded on Eurex (Germany and Switzerland) which is by far the
world’s largest international market organiser for the trading and settlement
of futures and options on shares and share indices, as well as of interest rate
derivatives. Both KOSPI 200 option data and ODAX data are recorded per
transaction, that is, each observation contains information on option price,
strike price, settlement time, maturity, etc.

One of the problems we face when calculating the implied volatility is the
intraday underlying price. In Fengler et al. (2007) the intraday underlying
price is used for IVS estimation. However, neither KOSPI data nor ODAX
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data in our case contains underlying price. In Fengler et al. (2007) the intra-
day future price within one-minute intervals is used to derive the underlying
price. While for ODAX data corresponding future prices can be found in
our case, we have not obtained any information of intraday futures price for
KOSPI 200.

Another approach to obtain the intraday underlying price is to use put-call
parity:

Ct = Pt + St −Dt −Ke−rτ , (2)

where Ct and Pt are prices of European call and put options on the same
underlying with the same strike price K and same maturity T . Dt is the
discounted value of dividend paid by underlying during the time to maturity
τ = T − t. r and St are the interest rate and underlying price, respectively.
Based on corresponding put and call option prices, the underlying price St
can be derived.

Unfortunately, there are only a few cases where pair of corresponding call
and put contracts can be found in our data. Thus, intraday implied volatility
cannot be calculated under these circumstances.

While it is difficult to find intraday underlying prices for both markets,
acquiring closing prices is relatively easy, therefore, instead of using intraday
prices, we use the closing prices in our analysis. Together with the last
traded contract for each series of options - options with the same type, same
maturity, same strike and traded on the same day, a closing implied volatility
is calculated. Last traded contracts are extracted from the whole data set
according to their settlement time. Many of these last traded contracts are
settled between 14:00 and 15:15 hrs on the Korea Exchange and between
17:00 and 19:00 hrs on the Eurex - both near to the close time of their
underlying markets. (On a normal trading day, trading of the KOSPI 200
option at the Korean Exchange ends at 15:15 hrs. On regular trading days,
ODAX trading ends at 17:30 hrs with a post trading phase ending at 21:00
hrs.) At the same time, it is, however, also possible that the last traded
contract is settled as early as 9:15 hrs - shortly after the market opens,
thus an implied volatility based on this contract may not reflect the state of
the market at close. Strictly speaking, using last traded contracts, together
with closing underlying prices does not necessarily lead to closing implied
volatility. To improve accuracy, some adjustments or smoothing techniques
should be used in further study.

To calculate implied volatility, the interest rate for the KOSPI 200 option
is the daily Korean treasury bill rate, for ODAX it is the daily EURIBOR
rate in the same period.
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After extracting the last traded contracts from the whole data set, our sam-
ple size reduces and we are left with only about 40 observations per day. A
linear interpolation is used in order to represent the data on a regular grid.
Options on the same day and with the same maturity are grouped together
and interpolated with respect to the moneyness grid κ ∈ [0.8, 1.2] with 1000
points. Furthermore, call option and put option are interpolated separately.

A new problem arises here: for both the KOSPI 200 option and the ODAX
markets, implied volatilities calculated from put options and call options are
different, even if they have the same strike, same maturity and same spot.
In Fengler et al. (2007) a correction algorithm is used to obtain an adjusted
underlying price, based on which, the put and call implied volatilities are the
same. This algorithm (3) is based on the future price formula and put-call
parity.

S̃t = e−rF (TF−t)Ft + ∆Dt,TH ,TF
, (3)

where S̃t is the adjusted underlying price, rF is the interest rate used in
deriving the underlying price from the future price, TF is the future’s matu-
rity time, Ft is the future price, TH isthe option’s maturity time, ∆Dt,TH ,TF

is the dividend difference calculated from put-call parity (2) and the future
price formula Ft = erF (TF−t)St − ∆Dt,TF

, ∆Dt,TF
is the dividend used for

calculating future price.

However, it is a different situation in our case. Firstly, our underlying price
is not obtained from the future price, but directly from the closing price
in the underlying markets. Secondly, as stated before, there are only a few
corresponding put and call options in our case, thus put-call parity cannot
be used. Consequently, we don’t apply algorithm (3) in our case. Instead,
after interpolating put and call implied volatilities separately, we take the
average of these two implied volatility series. Our algorithm of interpolation
and average taking is described in detail as follows:

1. For each day, options (implied volatilities) with the same maturity
are grouped together as IV C

t,j(κm) and IV P
t,j(κn). t is day index. j is

group index on this day - index for different maturity. C is call and
P is put. κm and κn are moneyness for calls and puts respectively,
m = 1, . . . ,M , n = 1, . . . , N .

2. For each group of these options IV C
t,j(κm) and IV P

t,j(κn),

(a) if both the number of calls
M∑
m=1

m ≥ 3 and the number of puts

N∑
n=1

n ≥ 3, call implied volatility and put implied volatility are
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linearly interpolated separately with respect to moneyness κ on
grid κ ∈ [0.8, 1.2] with 1000 points.

IV C
t,j(κl) =

κl − κm
κm+1 − κm

IV C
t,j(κm+1) +

κm+1 − κl
κm+1 − κm

IV C
t,j(κm), (4)

and

IV P
t,j(κl) =

κl − κn
κn+1 − κn

IV P
t,j(κn+1) +

κn+1 − κl
κn+1 − κn

IV P
t,j(κm), (5)

where κl is desired moneyness point, l ∈ [1, 1000], κl ∈ [0.8, 1.2].
κm and κm+1 are two closest observations to κl, with κm < κl <

κm+1. If max(κm) < κl or κl < min(κm), a constant extrapola-
tion is used. For κn and κn+1 is the same.
Then, an average of IV C

t,j(κl) and IV P
t,j(κl) is taken as the final

implied volatility,

IVt,j(κl) =
IV C

t,j(κl) + IV P
t,j(κl)

2
(6)

(b) if only the number of calls
M∑
m=1

m ≥ 3, while the number of puts

N∑
n=1

n < 3, call implied volatilities are interpolated with (4). Put

implied volatilities are dropped. Final implied volatilities are
these interpolated call implied volatilities,

IVt,j(κl) = IV C
t,j(κl) (7)

(c) similarly, if only the number of puts
N∑
n=1

n ≥ 3, but the number of

calls
M∑
m=1

m < 3, put implied volatilities are interpolated with (5).

Call implied volatilities are dropped. Final implied volatilities are
these interpolated put implied volatilities,

IVt,j(κl) = IV P
t,j(κl) (8)

(d) if both the number of calls
M∑
m=1

m < 3 and the number of puts

N∑
n=1

n < 3, final implied volatilities are the original observations,

IVt,j(κm) = IV C
t,j(κm)

IVt,j(κn) = IV P
t,j(κn).

(9)
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Figure 2: Implied volatility of last traded KOSPI 200 options with 102 days
to maturity on 1 September, 2003. Left panel: original data, before interpo-
lation. Call options are ”+”, put options are ”o”. Right panel: with linear
interpolation and averaging.

Figure 2 is an example of one group of KOSPI 200 option data on 1 Septem-
ber, 2003. These contracts have 102 days to maturity. The left panel shows
the original data - the last traded contracts taken from the entire data set.
The right panel is based on the left panel, with interpolating call and put
options separately and then averaging.

3 Model fit

The estimates m̂l (l = 0, . . . , L) and Ẑt,l (t = 1, . . . , T ; l = 1, . . . , L) are

defined as minimisers of the following least squares criterion (Ẑt,0
def= 1):

T∑
t=1

Ji∑
j=1

∫ {
Yt,j −

L∑
l=0

Ẑt,lm̂l(u)

}2

Kh(u−Xt,j)du. (10)

Here, Kh denotes a two-dimensional product kernel, Kh(u) = kh1(u1) ×
kh2(u2), h = (h1, h2), based on the one-dimensional kernel kh(v) def= h−1k(h−1v).

In (10) the minimisation runs over all the functions m̂l: R2 → R and all
values Ẑt,l ∈ R. In order to derive an estimator of the DSFM we proceed in
the following way. (For the technical details we refer to Borak et al. (2005),
Fengler et al. (2007) and Park et al. (2009).) For an l′ with 1 ≤ l′ ≤ L, for
δ > 0 and a function g, we replace in (10) m̂l′ by m̂l′ + δg and take the first
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derivative with respect to δ at the point δ=0. This yields

T∑
t=1

Jt∑
j=1

∫ {
Yt,j −

L∑
l=0

Ẑt,lm̂l(u)

}
Ẑt,l′Kh(u−Xt,j)du = 0. (11)

Since the equation holds for all functions g, it implies that for 1 ≤ l′ ≤ L

and for all u

T∑
t=1

Jt∑
j=1

{
Yt,j −

L∑
l=0

Ẑt,lm̂l(u)

}
Ẑt,l′Kh(u−Xt,j) = 0. (12)

By replacing Ẑt,l′ by Ẑt,l′+δ in (10) and again taking derivatives with respect
to δ, we get for 1 ≤ l′ ≤ L and 1 ≤ t′ ≤ T :

Jt′∑
j=1

∫ {
Yt′,j −

L∑
l=0

Ẑt′,lm̂l(u)

}
m̂l′(u)Kh(u−Xt′,j)du = 0. (13)

Using the following notation, for 1 ≤ t ≤ T

p̂t(u) =
1
Jt

Jt∑
j=1

Kh(u−Xt,j), (14)

q̂t(u) =
1
Jt

Jt∑
j=1

Kh(u−Xt,j)Yt,j , (15)

from (12) - (13) we get, for 1 ≤ l′ ≤ L and 1 ≤ t ≤ T :

T∑
t=1

JtẐt,l′ q̂t(u) =
T∑
t=1

Jt

L∑
l=0

Ẑt,l′Ẑt,lp̂t(u)m̂l(u) (16)

∫
q̂t(u)m̂l′(u)du =

L∑
l=0

Ẑt,l

∫
p̂t(u)m̂l′(u)m̂l(u)du. (17)

The algorithm exploits equations (16) and (17) iteratively:

1. For an appropriate initialisation of Ẑ(0)
t,l , t = 1, . . . , T , l = 1, . . . , L get

an initial estimate of m̂(0) = (m̂0, . . . , m̂L)>

2. Update Ẑ(1)
t,l , t = 1, . . . , T

3. Estimate m̂(1)

9



4. Go to step 2,

until minor changes occur during the cycle.

The choice of the model size L is based on computing the residual sum of
squares:

RV (L) =

∑
t

∑
j

{
Yt,j −

∑L
l=0 Ẑt,lm̂l(Xt,j)

}2

∑
t

∑
j

{
Yt,j − Ȳ

}2 , (18)

where Ȳ is the overall mean of the observation. We choose L such that the
proportion of variation explained by the model among the total variation
1−RV (L) is sufficiently high.

For the data-driven choice of bandwidths we take weighted AIC, as Fengler
et al. (2007) did. The two criteria are:

ΞAIC1 =
1
N

∑
t,j

{
Yt,j −

L∑
l=0

Ẑt,lm̂l(Xt,j)

}2

w(Xt,j) exp
{

2L
N
Kh(0)

∫
w(u)du

}
(19)

and

ΞAIC2 =
1
N

∑
t,j

{
Yt,j −

L∑
l=0

Ẑt,lm̂l(Xt,j)

}2

exp
{

2L
N
Kh(0)

∫
w(u)du∫

w(u)p(u)du

}
.

(20)
For our implementation, we consider as outliers contracts with maturity less
than 10 days, since their behaviour is irregular due to the expiry effect. We
also remove observations with implied volatility smaller than 0.04 or lager
than 0.8. The data set contains 829299 observations in the KOSPI 200 op-
tion data (about 3371 per day) and 1113845 observations in the ODAX data
(about 4546 per day). Log-implied volatilities are modeled on moneyness
and time to maturity (κt,j , τt,j). The grid covers moneyness κ ∈ [0.8, 1.2]
and time to maturity τ ∈ [0.02, 0.5] measured in years. L=3 factor functions
are employed for both markets and bandwidths (0.02, 0.04) for the KOSPI
200 option and (0.02, 0.05) for the ODAX have been chosen, according to
variance explained, ΞAIC1 and ΞAIC2 criterions, see Table 1. We have re-
calculated the model with the same bandwidths with 2, 3, 4 and 5 dynamic
factor functions, see Table 2. A choice of 3 factor functions is based on a bal-
ance between model economy and efficiency - capturing as many explained
variances as possible while keeping a small number of factors.

Figure 3 displays Model fits on 17 September, 2003 for both markets. The
IVS of the KOSPI 200 option is flatter than the ODAX on this day. Figure 4
shows factor functions m̂i, i = 1, 2, 3. m̂1 is positive in both markets. They

10



Bandwidths 1−RV (3) ΞAIC1 ΞAIC2

KOSPI 200 option (0.02, 0.04) 0.881 0.00106 0.00570
ODAX (0.02, 0.05) 0.921 0.00172 0.00612

Table 1: DSFM modelling result.

L 1−RV (L) ∆RV
2 KOSPI 200 Option 0.833

ODAX 0.886
3 KOSPI 200 Option 0.881 0.048

ODAX 0.921 0.035
4 KOSPI 200 Option* 0.900 0.019

ODAX 0.942 0.021
5 KOSPI 200 Option** 0.880 -0.020

ODAX 0.955 0.013

Table 2: Explained variance for the model size. *Bandwidth (0.02, 0.06).
**Bandwidth (0.02, 0.14).

are both relatively flat. Factor m̂1 can be interpreted as the time dependent
mean of the (log-)IVS, a shift effect. m̂2 for the ODAX tends to trend upward
in the moneyness axis, from negative to positive. The surface is close to 0
when moneyness is near 1. This trend is strong when time to maturity is
small while it becomes weak when time to maturity increases. For m̂3 of
the KOSPI 200 option, a downward trend exists in maturity direction when
moneyness is in the region of 0.8. The surface slopes down when time to
maturity increases. This trend becomes weak when moneyness increases.
m̂3 of the ODAX appears to smile in the maturity direction.

We interpret the effect of the first factor loadings such that Ẑ1 represents
the overall level shift of the IVS. We observe in Figure 5 that Ẑ1 of both
markets seem to have a common trend. Ẑ2 of the KOSPI 200 option has
stronger fluctuations than that of the ODAX.
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Figure 3: DSFM fit for KOSPI 200 option (left) with bandwidths (0.02,
0.04) and the ODAX (right) with bandwidths (0.02, 0.05) on 17 September,
2003.

4 Joint dynamics of KOSPI 200 option and ODAX

Let the k dimensional vector series Ẑt = (Ẑ1t, . . . , Ẑkt)>, t = 0, ..., T follow
a VAR(p) model:

Ẑt = υ +
p∑
j=1

ΦjẐt−j + εt, (21)

where υ = (υ1, . . . , υk)> is a k×1 vector of intercepts, Φj are k×k parameter
matrices and the error process εt = (ε1t, . . . , εkt)> is such that

E[εt] = 0 and E(εtε>t−k) =

{
0 for k 6= 0

Σ for k = 0

Σ is a time invariant positive definite variance-covariance matrix of the in-
novation series. In this setting we acknowledge cross dependencies between
the Ẑt series, i.e., each Ẑt depends on its “history” and the “history” of
the other series in the system. Therefore the VAR model posits a set of
relationships between past lagged values of all variables in the model and
the current value of each variable in the model. Descriptive statistics for
the factor loadings of our model are presented in Table 3. We denote the
dynamic system of factor loadings by

Ẑt = (Ẑkt,1, Ẑ
k
t,2, Ẑ

k
t,3, Ẑ

d
t,1, Ẑ

d
t,2, Ẑ

d
t,3)>,

where the superscripts k and d denote loadings of KOSPI and ODAX, re-
spectively. Unit root tests using the augmented Dickey-Fuller (ADF) and
the Elliott et al. (ERS) testing strategies are implemented to determine
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Figure 4: Estimated factor function m̂l for KOSPI 200 option (left) and for
ODAX (right) from 2 January, 2003 to 30 December, 2003.

Mean Median Min. Max. Std. Kurt. Skew.
KOSPI 200 option Ẑ1 -1.22 -1.28 -1.57 -0.88 0.18 1.59 0.06

Ẑ2 0.00 0.00 -0.5 0.62 0.09 19.16 1.29
Ẑ3 0.00 0.00 -0.19 0.21 0.08 2.45 -0.19

ODAX Ẑ1 -0.93 -0.98 -1.23 -0.56 0.18 1.94 0.49
Ẑ2 0.00 0.00 -0.12 0.17 0.06 2.66 0.18
Ẑ3 0.00 -0.01 -0.18 0.22 0.05 4.52 0.48

Table 3: Descriptive statistics for factor loadings Ẑ1, Ẑ2 and Ẑ3.
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Figure 5: Time series of factor loadings Ẑ1, Ẑ2 and Ẑ3 for KOSPI 200
option (blue) and ODAX (red) from 2 January, 2003 to 30 December, 2003.
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KOSPI 200 option ODAX
Ẑk1 Ẑk2 Ẑk3 Ẑd1 Ẑd2 Ẑd3

ADF-AIC -1.074 -15.129** -3.409* -0.880 -16.605** -6.686**
b̂ 5 0 2 4 0 2

ADF-HQ -1.039 -15.129** -3.409* -0.880 -16.605** -8.656**
b̂ 3 0 2 4 -0 1

ERS-AIC 23.914 0.225** 2.947* 55.112 0.740** 1.313**
b̂ 5 0 2 4 0 2

ERS-HQ 24.783 0.225** 2.947* 55.112 0.740** 0.952**
b̂ 3 0 2 4 0 1

Table 4: Unit root tests for factor loadings Ẑ1, Ẑ2 and Ẑ3. Tests include
constant. ADF-AIC and ERS-HQ refer to the ADF tests using AIC criteria
and ERS tests using HQ criteria to estimate the lag length b chosen for
the estimation regression of the autoregressive spectral density estimator.
Critical values for ADF test are -3.458(1%), -2.874(5%) and -2.573(10%).
Critical values for ERS test are 1.925(1%), 3.187(5%) and 4.359(10%). **
and * denote significance at the 1% and 5% level, respectively.

whether the individual series are trend stationary or difference stationary,
see Table 4. We apply standard information criteria as AIC, SC and HQ
to select the lag order p for our VAR. These criteria balance the trade-off
between model fit and the number of parameters to be estimated and allow
a fairly parsimonious model specification. We use p = 2 lags as suggested by
the AIC, since we want to model the dynamic relations between the factor
loading series by impulse response functions in a more flexible way.

Using the lag selection criteria and the parsimony principle, a VAR(2) model
Ẑt = (∆Ẑkt,1, Ẑ

k
t,2, Ẑ

k
t,3,∆Ẑ

d
t,1, Ẑ

d
t,2, Ẑ

d
t,3)>, where Ẑkt,1 and Ẑdt,1 enter as first

order differences, is chosen to analyse the system. The residual correlation
matrix Σ̂, given in (22), gives us some useful information about the con-
temporaneous correlation structure, i.e. if there is overlapping information
between variables. This information has implications for interpretation of
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Model p Q(24) LMF(3) LBJ ARCH(1)
VAR 2 0.74 0.25 0.00 0.00

Table 5: p-values for VAR(2) diagnostic tests. Q(24) denotes an adjusted
portmanteau test involving 24 autocorrelation matrices, LMF(3) is LM test
for autocorrelation of order 3. LBJ represents the multivariate Lomnicki-
Jaque-Bera test for nonnormality and ARCH(1) is the multivariate first-
order ARCH test.

the results of the impulse responses.

Σ̂ =

∆Ẑk1 Ẑk2 Ẑk3 ∆Ẑd1 Ẑd2 Ẑd3

1 −0.11
1

0.17
0.008

1

0.13
−0.04
0.06

1

0.02
0.005
0.07
0.04

1

−0.12
0.005
−0.04
0.01
0.09

1


(22)

We apply a number of standard diagnostic tests to check the adequacy of the
model, see Table 5. While the estimated residuals are free from autocorrela-
tion, normality and conditional homoscedasticity are rejected. Considering
that the VAR is a rough approximation of the dynamics of the system, a
more detailed analysis to accommodate the ARCH effects is beyond the
scope of this paper.

The dynamic relations between the factors are captured by the impulse
response functions. Figures 6 and 7 give the generalised impulse responses to
a positive shock in the loadings series of both markets. The results indicate
that there is a positive but small response between the overall changes in the
risk levels of the German and Korean markets. ∆Ẑk1 responds only slightly
positive for about 1-2 days after a shock in ∆Ẑd1 . On the other hand the
response of ∆Ẑd1 to a shock in ∆Ẑk1 is barely positive. We take caution
in interpreting the results since Ẑk1 and Ẑd1 enter the VAR model in first
differences. We therefore interpret that an increase in the DAX volatility
translates into a small amount of uncertainty in the Korean market. On the
other hand effects of shock from the KOSPI do not translate into effective
uncertainty in the DAX. Our results suggest that a shock from one market
is likely to work through the other market’s system and may not induce
greater impulse responses either way. This may also reflect the view of no-
arbitrage relation between the two markets. We have conducted Granger
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H0 Test result
∆Ẑd1 9 ∆Ẑk1 , Ẑ

k
2 , Ẑ

k
3 F (6, 900) = 1.70[0.12]

∆Ẑk1 9 ∆Ẑd1 , Ẑ
k
2 , Ẑ

k
3 F (6, 900) = 0.93[0.46]

∆Ẑk1 9 ∆Ẑd1 , Ẑ
d
2 , Ẑ

d
3 F (6, 900) = 1.15[0.32]

∆Ẑd1 9 ∆Ẑk1 , Ẑ
d
2 , Ẑ

d
3 F (6, 900) = 2.62[0.02]

∆Ẑd1 9 ∆Ẑk1 F (4, 446) = 4.74[0.02]
∆Ẑk1 9 ∆Ẑd1 F (4, 446) = 0.68[0.60]

Table 6: Granger causality tests for VAR(2). 9 denotes “does not Granger
cause”. p-values are given in brackets. Critical values are 3.32(1%),
2.37(5%) 1.94(10%) for F (4, 446) and 2.80(1%), 2.10(5%), 1.77(10%) for
F (6, 900).

causality tests to further investigate the relationship between these variables,
see Table 6. Granger non-causality of ∆Ẑd1 for ∆Ẑk1 , Ẑd2 , Ẑd3 and of ∆Ẑd1
for ∆Ẑk1 is rejected at 5% significance level. We observe that Granger non-
causality from ∆Ẑk1 to ∆Ẑd1 is not rejected. This indicates a unidirectional
effect from the ODAX to the KOSPI 200 option market.

Due to the appearance of a common trend, we next investigated the cointe-
gration relationship between Ẑk1 and Ẑd1 . The trace and maximum eigenvalue
tests of cointegration are applied to determine whether or not the KOSPI 200
option and the ODAX first loading series share a common stochastic trend.
The test results in Table 7 show that both tests fail to reject cointegration
between the factor loading series Ẑd1 and Ẑk1 .

The existence of cointegration means that there is a long-term relationship
between two variables and that they are influenced by the same stochastic
trend. Since Ẑ1 is the loading for m̂1, which is thought to be the time depen-
dent mean of the (log-)IVS, a long-term relationship between two markets’
first loadings could probably indicate a long-term relationship between two
markets’ implied volatility surfaces. From a theoretical point of view, this
result is not surprising. According to the no-arbitrage relation, for global
exchanges like KRX and Deutsche Börse/Eurex, there should be no arbi-
trage opportunity between them. Implied volatility as a state indicator for
a market situation, should also reflect this no-arbitrage relation in the long
term. Consequently, when global markets have large fluctuations, so do
KRX and Deutsche Börse/Eurex; implied volatilities of these two markets
will become large and vice versa.
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Figure 6: Generalized impulse responses of the KOSPI 200 option factor
loadings to the ODAX factor loadings obtained from a VAR(2). Dashed
lines indicate approximate 95% confidence intervals. D(Z1-k) and D(Z1-d)
denote the first differences of the first loadings, ∆Ẑk1 and ∆Ẑd1 respectively.

Trace test Maximum eigenvalue test
Rank Test statistic 5% critical value p-value Rank Test statistic 5% critical value p-value

1 2.60 9.16 0.66 1 2.60 9.16 0.66
0 21.48 20.26 0.03 0 18.88 15.89 0.02

Table 7: Two cointegration tests for the KOSPI 200 option Ẑk1 and the
ODAX Ẑd1 , constant included. Lag order is 1 in the VECM.
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Figure 7: Generalized impulse responses of the ODAX factor loadings to the
KOSPI 200 option factor loadings obtained from a VAR(2). Dashed lines
indicate approximate 95% confidence intervals. D(Z1-k) and D(Z1-d) denote
the first differences of the first loadings, ∆Ẑk1 and ∆Ẑd1 respectively.
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5 Conclusion

In this paper we analyse implied volatility as a function of the strike and time
to maturity using recent developments in dimension reduction techniques,
Dynamic Semiparametric Factor Models (DSFM), which allow for the esti-
mation of the implied volatility surface in a dynamic context. As proxy for
volatility, factor loading series derived from the DSFM application on op-
tion prices from the German and Korean markets are jointly analysed. We
examine volatility transmission between the markets within the framework
of a vector autoregression (VAR) approach.

An important choice for analysis in the VAR framework relates to the form
(level or first difference) of the variables involved. Unit root tests are applied
to check whether the VAR model is estimated in levels or in first differences.
The first loading series of the two markets contain unit root and follow a
common long term stochastic trend, i.e. are cointegrated. Estimation of an
vector error correction model (VECM) is theoretically beneficial (Engle and
Granger (1987)), but their performance is contested at short horizon, Naka
and Tufte (1997). We therefore estimated the VAR model using stationary
transformation (first difference) of the loading series that exhibit unit roots.

Interpretations of our results are based on the impulse response and Granger
causality analysis. Our results show that a shock in the volatility of one
market may not translate directly into greater uncertainty in another mar-
ket. Furthermore, as a result of cointegration, it is unlikely that portfolio
investors may benefit from diversification among these markets.
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Borak, S., Härdle, W., and Fengler, M. R. (2005). DSFM fitting of Implied
Volatility Surfaces. Proceedings 5th International Conference on Intelli-
gent, System Design and Applications, IEEE Computer Society Number
P2286, Library of Congress Number 2005930524.
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