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Abstract

Experts often disagree. A decision-maker may be averse to such expert

disagreement. Existing models of aversion to expert disagreement rest on

ambiguity-averse preferences adopting a unanimity principle: If all experts

consider one choice better than another, so should the decision-maker. Such

unanimity among experts, however, can be spurious, masking substantial dis-

agreement on the underlying reasons. We introduce a novel notion of disagree-

ment aversion to distinguish spurious from genuine unanimity and develop a

model that can capture disagreement aversion in our sense. The central ele-

ment of our model is the cautious aggregation of experts’ beliefs.
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Experts disagree. Such expert disagreement complicates decisions on topics
as diverse as climate change, macroeconomics, and the Covid-19 pandemic. The
different, potentially conflicting scientific opinions force a decision-maker to act
without precise knowledge of the likelihoods of the possible outcomes. In such a
situation, the decision-maker may conclude that there is scientific uncertainty and
that most likely none of the experts is completely right. Accordingly, she may be
averse to expert disagreement and prefer “safer” actions on which experts differ
less. This paper introduces a novel notion of aversion to expert disagreement and
illustrates its implications.

To fix ideas, consider the following simple example as summarized in Table 1.
The CEO of a firm needs to decide whether to implement a project or not. The
project’s net return depends on contingencies over which the CEO has no control:
The net return is +10 in the “good” state, 0 in the “neutral” state, and −10 in the
“bad” state (we assume that the CEO is risk-neutral, or that the numbers in Table
1 are utils). The CEO consults two experts for their views about the likelihood of
each state. Whereas the first expert is convinced that the neutral state will occur for
sure, the second expert assigns a null probability to this event and considers that the
good and bad states are equally likely.

Table 1 – Leading example of a CEO’s decision whether to implement a project.

Payoffs (in utils) Beliefs (probabilities)

No project Project Expert 1 Expert 2
State 1 (“bad”) 0 −10 0 0.5
State 2 (“neutral”) 0 0 1 0
State 3 (“good”) 0 10 0 0.5

Say both experts share the CEO’s objective to maximize expected return (or
utility). Then, both experts agree that implementing the project is as good as not
implementing it, since both options provide the same expected utility. However,
the experts provide very different reasons for this conclusion. A cautious CEO
may consider the possibility that the expected return of the project is worse than
what any expert foresees: Maybe expert 1 is right that implementing the project
cannot yield positive profits, and expert 2 is right that losses are a likely outcome.
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Intuitively, the CEO may infer from the underlying expert disagreement (despite
agreement on the expected utility) that there is no robust understanding of what the
project’s outcomes could be and consequently prefer the no-project option about
which experts (fully) agree.

There are several papers in the decision theory and applied literature on how to
make decisions when facing imprecise or conflicting information (Baillon, Caban-
tous and Wakker 2012; Berger et al. 2021; Crès, Gilboa and Vieille 2011; Gajdos
and Vergnaud 2013; Gajdos et al. 2008; Hill 2012; Mongin 1995, 1998; Nascimento
2012; Stanca 2021). All these papers keep as a fundamental assumption a unanim-
ity principle1: If according to all experts implementing the project is just as good
as doing nothing, the decision-maker should also be indifferent between the two
options. That experts hold diverging beliefs has no impact on the decision-maker’s
willingness to proceed with the project. A few papers have criticized the unanim-
ity principle for preference aggregation under uncertainty, with Gilboa, Samet and
Schmeidler (2004) and Mongin (2016) as prominent examples.2 Both argue against
the unanimity principle (or Pareto condition) when people hold different beliefs and
tastes. Gilboa, Samet and Schmeidler (2004) give the example of a duel: Both gen-
tlemen agree to fight because each one wants to win (conflicting tastes) and each
one thinks he will win (contradictory beliefs). Despite the unanimity among du-
elists, the authors argue that the duel should be prevented because “Society should
not necessarily endorse a unanimous choice when it is based on contradictory be-
liefs”, as these can spuriously reconcile conflicting tastes. Mongin (2016) argues
further that the unanimity of individuals’ opinions does not have to be reflected at
the social level whenever the unanimity was obtained despite disagreement on what
individuals use to form their opinions. Divergence in beliefs could then be a suffi-
cient reason to depart from the unanimity principle even if people share the same
objective. In our introductory example, there is no conflict on tastes, as all experts
agree that the objective is to maximize expected net return. There is spurious una-
nimity in the sense that experts disagree on the probability of relevant states, but

1Various terminology is used to refer to this unanimity principle. For example, Gajdos et al.
(2008) call it “dominance”, while it is named “unanimity” in Crès, Gilboa and Vieille (2011) and
Stanca (2021) refers to it as the “Pareto condition”.

2Other examples include Machina and Siniscalchi (2014) and Skiadas (2013).
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happen to agree on the preference ordering of the project and no-project options. In
line with Mongin (2016), we argue that the CEO does not have to adopt the experts’
unanimous conclusion. In other words, we highlight that spurious unanimity can
occur even when tastes are commonly shared, and apply Mongin’s general criticism
of the unanimity principle to such situations.

This paper makes three contributions. The first is to formalize a novel notion of
disagreement aversion that has traction even in the presence of spurious unanimity
resulting exclusively from diverging beliefs, as in our introductory example. In-
tuitively, disagreement aversion is a tendency to prefer choices on which experts
have reached a consensus. However, what is meant by “consensus” merits further
consideration. One possible interpretation of consensus on a choice option is that
all experts agree on the resulting expected utility. However, as explained above,
such utility-consensus may be “spurious” and obtained despite fundamental hetero-
geneity in expert beliefs. For this reason, we introduce a stronger notion of con-
sensus, distribution-consensus, which requires that all experts not only agree on the
expected utility but even hold a consensus on the distribution of outcomes. The dif-
ferent notions of aversion to experts disagreement defined in the literature, such as
“ambiguity aversion” (Ghirardato and Marinacci 2002) or “imprecision aversion”
(Gajdos et al. 2008), all rest on the unanimity principle and are thus intimately tied
to the concept of utility-consensus. The existing notions of disagreement aversion,
therefore, do not have bite if experts have diverging beliefs but happen to agree on
the expected utility of a choice option. Our novel notion of disagreement aversion,
in contrast, captures a decision-maker’s aversion to a lack of distribution-consensus.
Going back to the introductory example, both the “no-project” and the “project”
options are utility-consensual; therefore, under any model that fulfills the unanim-
ity principle, the decision-maker is necessarily indifferent between both options.
In contrast, only the “no-project” option is distribution-consensual. Accordingly,
as experts have no distribution-consensus on the project option, a decision-maker
averse to disagreement (in our sense) prefers to abstain from the project.

Our second contribution is to introduce a model that allows for disagreement
aversion. Like most previous contributions, we borrow from the ambiguity aversion
literature. However, since disagreement aversion requires abandoning the unanim-
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ity principle, we cannot rely on the most common ambiguity models. Indeed, those
“monotone models” assume a property of monotonicity (in terms of states) which
in our setting translates to the unanimity principle (in terms of experts). We instead
build upon the dual model of ambiguity aversion by Bommier (2017) and intro-
duce a “distribution-averaging model”. In such a model, for each choice option
separately, the decision-maker aggregates the distribution functions of outcomes
provided by the experts and uses that aggregated distribution function to evaluate
the choice option. Importantly, the aggregation is specific to the choice option,
leaving the possibility of a cautious aggregation that gives greater weight to more
pessimistic views. Formally, this aggregated distribution function is obtained by ag-
gregating pointwise the decumulative distribution functions provided by all experts
into a single decumulative function.3 Intuitive characteristics of the aggregator (or
“averager”) such as concavity ensure that the decision-rule is disagreement-averse
according to our novel notion. We contrast our distribution-averaging model with
the approach based on monotone ambiguity models. Both approaches rely on some
form of cautious aggregation where the degree of cautiousness is what drives aver-
sion to expert disagreement. The fundamental difference is that in our model the
aggregation occurs at the level of experts’ beliefs, while in monotone ambiguity
models the aggregation occurs at the level of expected utility values, yielding what
we call “expected-utility-averaging models”. Although structurally different, these
approaches can be compared in terms of ambiguity aversion. In particular, once
utility is normalized to take values in [0,1], like probabilities, we show that for a
given strictly concave averager and given risk preferences, our disagreement-averse
specification exhibits greater ambiguity aversion than the corresponding expected-
utility-averaging model. In that sense, our paper brings the notion of aversion to
expert disagreement one step further.

The third contribution is to highlight the implications of our novel notion of
disagreement aversion in concrete applications. We show that greater disagreement
aversion always results in more cautious choices, i.e. choices that reduce the dis-

3If F denotes the cumulative distribution function of a continuous random variable, 1−F is the
decumulative distribution function. We work with decumulative (rather than cumulative) distribution
functions to obtain the result that disagreement aversion is implied by a concave (rather than convex)
aggregator.
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persion of ex-post utility, such as higher climate mitigation or higher precautionary
savings. We compare our findings to those obtained with expected-utility-averaging
models. When experts’ beliefs can be unambiguously ranked from the most opti-
mistic to the least optimistic (in terms of first-order stochastic dominance), then
more ambiguity aversion also leads to more cautious choices in expected-utility-
averaging models. The result, however, does not extend to the case where experts’
beliefs cannot be ranked in terms of first-order stochastic dominance. We give two
examples – on climate mitigation and precautionary savings, respectively – where
an increase in ambiguity aversion in expected-utility-averaging models leads to less

cautious choices, namely lower mitigation and lower savings. The effects are thus
in direct opposition to what we obtain with distribution-averaging models for which
an increase in ambiguity (or disagreement) aversion leads to more cautious choices.

Our paper is related to several strands of the literature. There is a vast corpus
of works in mathematics and management on opinion pooling, in particular linear
opinion pools in which the decision-maker uses a weighted average of expert opin-
ions (DeGroot and Mortera 1991; Genest and Zidek 1986; Jose, Grushka-Cockayne
and Lichtendahl 2013; Larrick and Soll 2006; McConway 1981; Morris 1977; Stone
1961). In line with that literature, we aggregate beliefs of experts. The key differ-
ence is that the literature on opinion pooling does not assume any ordering on the
set of outcomes. With the notions of good and bad outcomes thus undefined, there
cannot be anything such as a cautious aggregation of beliefs as is key in our contri-
bution.

Our paper fits into the literature that discusses decision-making under impre-
cise information. In line with other papers (Basili and Chateauneuf 2020; Berger,
Emmerling and Tavoni 2016; Berger et al. 2021; Cerreia-Vioglio et al. 2020;
Crès, Gilboa and Vieille 2011; Gajdos and Vergnaud 2013; Hansen and Sargent
2001; Heal and Millner 2018; Millner, Dietz and Heal 2013), we borrow from
the decision-theoretic literature on ambiguity aversion to model disagreement aver-
sion.4 The key difference is that to capture aversion to the lack of distribution-
consensus, we depart from the standard unanimity principle and follow the dual
approach suggested by Bommier (2017).

4See Machina and Siniscalchi (2014) for an excellent review of the ambiguity aversion literature.
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Our paper is also connected to the general discussion in economics and so-
cial choice on how to extend the well-known preference aggregation result in
Harsanyi (1955) from risk to uncertainty (Alon and Gayer 2016; Brandl 2020;
Danan et al. 2016; Hylland and Zeckhauser 1979; Mongin 1995), and in particular
to the debate on how to weaken the Pareto condition (Gilboa, Samet and Schmei-
dler 2004; Gilboa, Samuelson and Schmeidler 2014; Mongin 2016). Gilboa, Samet
and Schmeidler (2004) consider heterogeneity in tastes and beliefs and suggest the
Pareto condition be restricted to choices that involve identical beliefs. In our paper,
like Stanca (2021), we exclusively focus on heterogeneity in beliefs. All experts
are assumed to adopt the risk preferences of the decision-maker, which leaves no
room for heterogeneity in tastes. We suggest the Pareto condition be relaxed while
keeping a weaker form of unanimity principle based on a property of monotonicity
with respect to first-order stochastic dominance. Namely, if all experts believe that
a choice α dominates a choice β in the sense of first-order stochastic dominance
when looking at the distribution of outcomes, then the decision-maker should prefer
α to β .

Finally, the distribution-averaging models we propose constitute a new way of
taking cautious decisions when robust scientific knowledge is lacking. As such
we contribute to the economic literature on the precautionary principle (Barrieu
and Sinclair-Desgagné 2006; Gollier and Treich 2003; Gollier, Jullien and Treich
2000). We offer a convenient and tractable framework where the degree of cau-
tiousness is reflected in a simple averaging function. The framework is flexible and
benefits from previous contributions as a number of parametric forms for the aver-
aging function can be directly imported from the literature on ambiguity aversion.

We proceed as follows. Section 1 defines the notion of disagreement aversion,
introduces distribution-averaging decision-rules, and clarifies the relation to com-
mon expected-utility-averaging models that rest on the unanimity principle. Section
2 compares disagreement aversion and ambiguity aversion in the context of concrete
applications and can be read independently. Section 3 concludes.
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1 Theoretical framework

1.1 Setting

We consider a decision-maker who has to take decisions in a setting of uncer-
tainty. Decisions will be driven by preferences over uncertain prospects. Experts
provide scientific knowledge. They share the same objective as the decision-maker
but provide conflicting views on the risks at play (i.e., beliefs are heterogeneous).
The decision-maker’s preferences will naturally depend on the beliefs of all experts,
which we call expertise. Our analysis bears on decision-rules which describe how
the expertise shapes the decision-maker’s preferences. In the following we provide
formal definitions of these concepts.

Prospects Let X = [X−,X+], a closed interval of R with X− < X+, be the space
of outcomes. Given a set of states of the world Ω, which contains at least three
different states, we define (simple) prospects as mappings from states of the world
to outcomes.5 Prospects are assumed to have finite images, and for any prospect α ,
we will denote by Kα the number of values taken by α , and by (α1, . . . ,αKα ) the
values taken by α in increasing ordering (i.e. α1 < .. . < αKα ). For any outcome
x, the sure prospect with outcome x is the prospect that equals x in all states of
the world. With a common abuse of notation, such a sure prospect will also be
denoted by x. To avoid confusion, Greek letters α , β will be used for possibly non-
sure prospects, while Latin letters such as x will be reserved for outcomes and the
corresponding sure prospects.

Expertise We consider N experts. Expert i ∈ {1, · · · ,N} holds belief Pi, a subjec-
tive probability measure on the set of the states of the world Ω. We call expertise the
list of experts’ beliefs P = (P1, . . . ,PN). Making again a slight abuse of notation,
the expertise (P, . . . ,P) where all experts share the same belief will also be denoted
P. Confusion will be avoided by using calligraphic symbols (like P) for expertise

5Prospects are therefore just acts à la Savage (1954). We nevertheless opted for a different
terminology to avoid the confusion with the notion of acts in the two-stage setting of Anscombe and
Aumann (1963) where outcomes are lotteries, i.e. probabilistic objects.
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where experts may disagree, and Roman symbols (like P or Pi) for expertise where
all experts agree. Given some belief Pi and an outcome x, we denote by DPi

α (x) the
probability that α yields an outcome larger or equal to x, i.e.

DPi
α (x) = Pi ({ω ∈Ω |α (ω)≥ x}) .

The mapping x→DPi
α (x) is thus the decumulative distribution function of the lottery

generated by the prospect α when holding belief Pi.

Decision-rule A decision-rule <: P 7→<P is a mapping that associates an exper-
tise P with a preference relation (i.e. a weak order) <P over the set of prospects.
We denote by �P and ∼P the strict order and indifference relation corresponding
to the weak order <P .

With our notation, the preference relation <Pi is, formally speaking, the prefer-
ence relation that the decision-maker uses when all experts have the same beliefs as
expert i.

Consensual prospects Central to our analysis is the notion of disagreement aver-
sion (see Section 1.2 below). A notion of disagreement aversion must ceteris
paribus rely on a notion of disagreement, or lack of consensus, which could be
formalized in different ways.

A first possibility to define consensus involves comparing how experts evaluate
prospects in terms of certainty-equivalents. We will say that a prospect α is utility-

consensual if the prospect’s appeal does not depend on the expert the decision-
maker might rely on, i.e. when there exists x ∈ X such that α ∼Pi x for all i. Note
that the formulation makes use of the indifference relations ∼Pi , which means that
the notion of utility-consensual actually depends on the decision-rule considered
and in particular on how the decision-maker ranks prospects when experts have
identical beliefs. Crucial for our analysis, a prospect may be utility-consensual
while experts still fundamentally disagree on the risk implied by such a prospect.
An illustration is given in our introductory example: No matter which expert the
decision-maker might rely on, the project is seen as good as doing nothing, but one
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expert thinks that the project is risky and the other not.
As stressed in the introduction, the decision-maker may want to treat cases of

complete expert agreement and cases of “spurious agreement” differently. This
leads us to introduce a second notion of consensus. We say that a prospect α is
distribution-consensual when experts agree on the distribution of outcomes it en-
tails (i.e. DPi

α = DPj
α for all experts i and j). The concept of disagreement aversion

introduced in Section 1.2 will directly rely on the notion of distribution-consensus.
In contrast to utility-consensus, distribution-consensus is defined independently of
the decision-rule. Note also that all sure prospects are both utility- and distribution-
consensual, reflecting that experts’ beliefs are irrelevant for the evaluation of sure
prospects.

Averagers The specifications we will introduce later on make use of “averager”
functionals. Averaging is often conflated with the arithmetic mean. In this paper
however, we understand averaging in a broad sense. Formally, an averager is just a
continuous, component-wise strictly increasing6 function I : [0,1]N → [0,1] fulfill-
ing I (q, . . . ,q) = q.

Linear averagers (or weighted means) take the form I (q1, . . . ,qN) = ∑N
i=1 λiqi,

with numbers (so-called “weights”) λ1, . . . ,λN ≥ 0 summing to 1. Linear averagers
take a prominent place in the literature on belief aggregation, as they correspond to
the ambiguity neutral case. The literature on ambiguity aversion, however, suggests
many non-linear averagers. For example, inspired by Klibanoff, Marinacci and
Mukerji (2005), one can consider smooth “KMM” averagers of the form:7

IS (q1, . . . ,qN) = ψ−1

(
N

∑
i=1

λiψ(qi)

)
(1)

for some increasing smooth function ψ : [0,1]→ [0,1] and some weights (λi)1≤i≤N .

6By “component-wise” order we mean that for any ~q = (q1, . . . ,qN) and ~q′ = (q′1, . . . ,q
′
N) in

[0,1]N , the statement~q≥~q′ is to be understood as q j ≥ q′j for all j ∈ {1, . . . ,N}. The strict inequality
~q >~q′ is used to mean that~q≥ ~q′ and~q 6= ~q′.

7More precisely, such averagers are used in the Second-Order EU model (see e.g., Nau 2006), the
most common specification of the model introduced by Klibanoff, Marinacci and Mukerji (2005).
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Alternatively, in the spirit of Gilboa and Schmeidler (1989), one can use averagers
of the max-min kind,

IM (q1, . . . ,qN) = min
(λi)1≤i≤N∈χ

N

∑
i=1

λiqi, (2)

where χ is a closed and convex set of weights. The KMM and max-min are just
two specific forms of averagers, but the literature on ambiguity aversion offers many
averagers, such as those related to the variational model of Maccheroni, Marinacci
and Rustichini (2006) or the model of Siniscalchi (2009).

Risk preferences Throughout the paper, we assume that distribution-consensual
prospects are evaluated through a rank-dependent expected utility (RDU) model.
RDU is a well-known generalization of the expected utility (EU) theory, introduced
by Quiggin (1982).

To gain intuition, recall EU, assuming a utility index u : X → [0,1]. Take a
prospect α which is distribution-consensual under the expertise P = (P1, . . . ,PN).
Denote pk = DP1

α (αk) for all 1 ≤ k ≤ Kα . Since α is distribution-consensual, one
also has pk = DPi

α (αk) for all 1 ≤ i ≤ N and the expected utility of α under any of
the experts’ beliefs is given by:

EU (α) =
Kα−1

∑
k=1

u(αk)(pk− pk+1)+u(αKα ) pKα . (3)

As emphasized by Castagnoli and LiCalzi (1996), we can present EU
in a different (but equivalent) way using a summation by part. Denoting
σk = u(αk)− u(αk−1) ≥ 0 for k ∈ {2, . . . ,Kα} and σ1 = u(α1), equation (3)
rewrites:

EU (α) =
Kα

∑
k=1

σk pk. (4)

In order to introduce disagreement aversion, it will prove more convenient to build
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on formulation (4) than on (3). Moreover, once focusing on (4), it is almost costless
to consider the extension to the RDU framework which is obtained by distorting
decumulative probabilities pk through some increasing function f . This leads to
the following definition:

Definition 1 (RDU on distribution-consensual prospects). A decision-rule < is

RDU on distribution-consensual prospects if there exist two increasing bijections

f : [0,1]→ [0,1] ,u : X → [0,1] such that for any expertise P , the weak order <P

restricted on distribution-consensual prospects is represented by:

UP (α) =
Kα

∑
k=1

σk f (pk) (5)

where σk = u(αk)−u(αk−1)≥ 0 for k∈{2, . . . ,Kα}, σ1 = u(α1) and pk =DP1
α (αk).

For the sake of conciseness, we will refer to UP(α) as an “expected util-
ity”, even though (5) uses transformed probabilities ( f (pk) instead of pk). It di-
rectly follows from (5) that for any sure prospect x and any expertise P , one has
UP (x) = u(x).8 Note also that we normalize the utility function by imposing that
Im(u) = Im( f ) = [0,1]. This implies that the representation is then unique, but of
course without loss of generality.9

We could of course have restricted our setting to EU risk preferences (one just
needs replace the function f by the identity function in all mathematical expres-
sions that follow). However, since it does not make the analysis, nor the axiomatic
construction, significantly more complex, we thought it interesting to keep the ad-
ditional flexibility of the RDU model which allows extra sensitivity to rare and ex-
treme events to be expressed. This may be valuable for modeling social preferences
in the context of uncertainty, especially when considering unlikely but dramatic
outcomes (e.g., a major nuclear catastrophe). It is actually interesting to see that
the conclusions we will derive regarding the impact of disagreement aversion hold

8When α is a sure prospect providing outcome x in all states, one has Kα = 1, α1 = x, and p1 = 1.
9This normalization will also be convenient for comparing expected-utility-averaging and

distribution-averaging decision-rules in Section 1.5 since having utility levels and transformed prob-
abilities covering the same interval [0,1] will make it possible to consider identical averager func-
tions, be it to aggregate utilities or to aggregate probabilities.
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even when we allow for some extra sensitivity to rare events featured in a RDU
framework.

1.2 Disagreement aversion

Disagreement aversion, which is a central concept in our paper, can be seen as a
“dislike” for prospects which are not distribution-consensual. It is formally defined
as follows:

Definition 2 (Disagreement aversion). A decision-rule < is disagreement-averse if

for every expertise P , every prospect α that is not distribution-consensual, and

every sure prospect x, the following implication holds:

(
x <Pi α, ∀i

)
⇒ x�P α.

Note that for decision-rules which are RDU on distribution-consensual
prospects, it directly follows from Definition 1 that for all distribution-consensual
prospects α , one has

(
x <Pi α, ∀i

)
⇒ x <P α . Disagreement aversion states that

this implication extends to all prospects: Intuitively, if all experts think that α (con-
sensual or not) is not better than x, disagreement among experts cannot make the
decision-maker strictly prefer α to x. In addition, disagreement aversion requires
that when α is not distribution-consensual, then the decision-maker strictly prefers
the sure prospect x.

In the most standard way, we can follow Yaari (1969)’s general approach —
initially introduced to compare risk aversion — to compare disagreement aversion.
Formally:

Definition 3 (Comparative disagreement aversion). A decision-rule <A exhibits

greater disagreement aversion than a decision-rule <B if for every expertise P ,

every prospect α and every distribution-consensual prospect β ,

α �P
A β ⇒ α �P

B β ; α <P
A β ⇒ α <P

B β

and

α ∼P
A β ⇒ α �P

B β if α is not distribution-consensual.
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Intuitively, what this definition says is that if according to the decision-rule <A

the prospect α looks preferable to the distribution-consensual β (despite potential
disagreement about the riskiness of α), it must also be the case when consider-
ing a decision-rule exhibiting lower disagreement aversion. Moreover, in case α
is not consensual, and seen just as good as β when using the more disagreement-
averse decision-rule, it must be seen as strictly better than β under the less dis-
agreement averse decision-rule. Note that if <A and <B are comparable in terms of
disagreement aversion, in the sense that one exhibits more disagreement aversion
than the other, they must necessarily agree on the ranking of distribution-consensual
prospects (see proof in Appendix A.3). This parallels the literature on risk aversion,
where agents are comparable in terms of risk aversion only if they agree on the
ranking of deterministic outcomes (see Kihlstrom and Mirman 1974).

Violation of the Pareto condition Disagreement aversion directly conflicts with
the Pareto (or unanimity) condition. The fundamental reason is that utility-
consensual prospects are not necessarily distribution-consensual. In order to for-
mally stress the tension between disagreement aversion and the Pareto condition,
we introduce the notion of Paretian decision-rule.

Definition 4 (Paretian decision-rule). A decision-rule < is Paretian if for every ex-

pertise P = (P1, . . . ,PN) and all prospects α,β :

(
β <Pi α,∀i

)
⇒ β <P α .

The following result immediately follows.

Lemma 1. There is no decision-rule which is Paretian, RDU on distribution-

consensual prospects, and exhibits disagreement aversion.

Proof. Suppose that the decision-rule is RDU on distribution-consensual prospects.
One can construct an expertise P = (P1, . . . ,PN), a non distribution-consensual
prospect α and a sure prospect x such that x∼Pi α, ∀i, e.g. using the beginnings of
the proofs of Proposition 1 (in Appendix A.1) and Proposition OA.1 (in online Ap-
pendix OA.1). If the decision rule is Paretian we then have x ∼P α , contradicting
x�P α , and thus disagreement aversion.
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Lemma 1 may naturally lead to questioning whether the most appealing prop-
erty is disagreement aversion or the Pareto condition. If the decision-maker could
be sure that one expert is right, then the Pareto condition would seem natural. How-
ever, if the decision-maker interprets the divergence in experts’ beliefs as reflecting
some fundamental imprecision in knowledge (meaning that most likely none of the
experts is right), then disagreement aversion seems a natural way to model cau-
tious decision-making. Our introductory example can help the reader make up their
own mind about these respective properties. Indeed, (strict) preference for the no-
project option would be required under disagreement aversion, and ruled out under
the Pareto condition.

Lemma 1 makes it clear that in order to model disagreement aversion, we need
to relax the Pareto condition. An indirect consequence is that we cannot build upon
the major ambiguity models discussed in the literature (e.g., in Machina and Sinis-
calchi 2014 and Strzalecki 2013), as they rely on a monotonicity axiom which in
our setting translates to the Pareto condition. An exception in the ambiguity aver-
sion literature is Bommier (2017), who explicitly relaxes the monotonicity axiom.
We will borrow from this paper to suggest a class of decision-rules exhibiting dis-
agreement aversion.

1.3 Distribution-averaging decision-rules

The following definition introduces the class of distribution-averaging deci-

sion rules for which disagreement may matter, possibly to exhibit disagreement-
aversion, disagreement-loving or some ambiguous patterns of disagreement sensi-
tivity. Below the definition, we explain how such a specification may be derived
from a formal set of axioms.

Definition 5 (Distribution-averaging decision-rule). A decision-rule < is

distribution-averaging with representation (u, f , I) if there exist two increasing bi-

jections u : X → [0,1], f : [0,1]→ [0,1] , and an averager I : [0,1]N → [0,1] such
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that for any expertise P , the weak order <P is represented by:

UP (α) =
Kα

∑
k=1

σkI
(

f
(

p1
k
)
, . . . , f

(
pN

k
))

(6)

where σk = u(αk)−u(αk−1)≥ 0 for k∈{2, . . . ,Kα}, σ1 = u(α1) and pi
k =DPi

α (αk).

We will refer to u as the utility index and to f as the probability transformation

function.

Remark 1. Because the range of u is normalized to [0,1], the representation is
unique, in the sense that a decision-rule admits only one (u, f , I) representation.
A distribution-averaging decision rule is necessarily RDU on consensual prospect,
with representation as in equation (5).

Remark 2. Defining Ĩ :
(

p1, . . . , pN) 7→ Ĩ
(

p1, . . . , pN)= f−1 (I
(

f
(

p1) , . . . , f
(

pN))),
equation (6) simply rewrites:

UP (α) =
Kα

∑
k=1

σk f
(

Ĩ
(

p1
k , . . . , pN

k
))

. (7)

Thus, as shown in Figure 1, a distribution-averaging decision-rule can be seen as
one where the values of the decumulative distribution functions provided by each
expert are “averaged” through the function Ĩ in order to provide some equivalent
decumulative distribution function (i.e. some equivalent belief). The prospect is
then evaluated with the RDU specification using this equivalent decumulative dis-
tribution function. It is worth noting that the way some belief Pi ends up giving a
decumulative distribution function depends on the prospect that is evaluated (math-
ematically, pi

k depends on both Pi and α). Thus, aggregating decumulative distribu-
tion functions associated with a given prospect is not equivalent to a mere aggrega-
tion of beliefs, which would be made independently of whether states provide high
or low pay-offs.10

10This is a fundamental difference with the linear opinion pooling where the decision-maker av-
erages linearly expert beliefs to form their own belief, independently of the prospect to be evaluated.
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Figure 1 – Aggregation of experts’ beliefs in the introductory example.

Axiomatization An axiomatization of distribution-averaging decision-rules is
provided in online Appendix OA.2. The main axioms are:

• Monotonicity with respect to first-order stochastic dominance (M-FSD). This
axiom is weaker than the monotonicity axiom assumed in models based on
the unanimity principle (or Pareto condition), which rules out disagreement
aversion. Our M-FSD axiom only requires that a decision-rule prefers a
prospect α to a prospect β (α < β ) if α dominates β with respect to first-
order stochastic dominance, i.e. DPi

α ≥ DPi
β ,∀i, while the Pareto condition

requires that it be the case as soon as UPi (α)≥UPi (β ) ,∀i.

• RDU on distribution-consensual prospects. Equivalently, this axiom can be
replaced by comonotonic mixture independence (see Chateauneuf 1999).

• The comonotonic sure-thing principle. This specifies that a common outcome
of two prospects at some state of the world can be changed without impacting
the comparison between those prospects, as long as the change does not affect
the rankings of each prospect’s outcomes.

• A usual continuity axiom.
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• An axiom of “level independence”, which restricts the type of disagree-
ment aversion that the decision-rule can exhibit; namely, we require that for
prospects with only two possible outcomes, the way the disagreement be-
tween experts is resolved does not depend on the outcomes but only on the
probabilities. This axiom is introduced to obtain a simple representation. One
could however relax it, to obtain a broader class of distribution-averaging
decision-rules.11

1.4 Characterization of disagreement aversion

We first state what is required to have a decision-rule that exhibits disagreement
aversion.

Proposition 1. A distribution-averaging decision-rule with representation (u, f , I)

exhibits disagreement aversion if and only if the averager I is such that for any

matrix (qi
k)1≤k≤K,1≤i≤N ∈ [0,1]N×K such that k ≥ l ⇒ qi

k ≤ qi
l , and any vector

(σ1, . . . ,σK) ∈ [0,1]K such that ∑K
k=1 σk ≤ 1, one has:

K

∑
k=1

σkI
(
q1

k , . . . ,q
N
k
)
≤ max

1≤i≤N

K

∑
k=1

σkqi
k

where the inequality is strict whenever one has qi
k 6= q j

k and σk > 0 for some i, j,k.

Proof. See Appendix A.1.
To our knowledge, there is no available name for the property stated in the above

proposition. One can, however, provide simpler conditions on I that are sufficient
(but not necessary) to obtain disagreement aversion.

Proposition 2. Each of the conditions below is sufficient to imply disagreement

aversion:

• Condition 1: There exist numbers (λi)1≤i≤N (also called weights), which

are non-negative and sum to 1 such that I (p1, . . . , pN) ≤ ∑N
i=1 λi pi for all

(p1, . . . , pN) ∈ [0,1]N , with a strict inequality when pi 6= p j for some i and j.

11One would then obtain a representation akin to the one given in Bommier (2017), Theorem 2.
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• Condition 2: The function (p1, . . . , pN)→ I (p1, . . . , pN) is strictly concave

except on the diagonal.12

Proof. See Appendix A.2.
Condition 1 is convenient, as it makes it possible to borrow from the literature

on ambiguity aversion where such an inequality (considered then for averagers that
average utilities rather than probabilities) is the one that usually defines ambiguity
aversion (e.g., Cerreia-Vioglio et al. 2011).

The last result of this section is about comparative disagreement aversion.

Proposition 3. Consider two distribution-averaging decision-rules <A and <B with

representation (uA, fA, IA) and (uB, fB, IB). Then <A exhibits greater disagreement

aversion than <B if and only if uA = uB, fA = fB and IA (~p) < IB (~p) for every

non-constant vector ~p = (p1, . . . , pN) ∈ [0,1]N .

Proof. See Appendix A.3.
The degree of disagreement aversion is thus fully determined by the averager,

with “smaller” averagers yielding more disagreement-averse decision-rules. This
shows similarity with results from the ambiguity aversion literature, where ambigu-
ity aversion is driven by how “pessimistic” the averagers (which aggregate utilities
in that literature) are. This is convenient, as we can readily import knowledge from
the ambiguity literature to determine what it means to increase disagreement aver-
sion. For example, if we consider smooth KMM averagers as in equation (1), we
readily know that increasing disagreement aversion is equivalent to increasing the
concavity of the function ψ . Similarly, if we consider max-min averagers defined
as in equation (2), we know that increasing disagreement aversion involves using a
larger set of weights χ .

1.5 Relation with Paretian decision-rules

In order to explain how our work relates to previous contributions, we introduce
a class of decision-rules that rest on the unanimity principle.

12By strictly concave except on the diagonal, we mean that the strict concavity inequality holds
for any pair of vectors of which at least one is not constant.
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Definition 6 (Expected-utility-averaging decision-rule). A decision-rule < is

expected-utility-averaging with representation (u, f , I) if there exist two increas-

ing bijections u : X → [0,1], f : [0,1]→ [0,1] , and an averager I : [0,1]N → [0,1]
such that for any expertise P , the weak order <P is represented by:

UP (α) = I

(
Kα

∑
k=1

σk f
(

p1
k
)
, . . . ,

Kα

∑
k=1

σk f
(

pN
k
)
)

(8)

where σk = u(αk)−u(αk−1)≥ 0 for k∈{2, . . . ,Kα}, σ1 = u(α1) and pi
k =DPi

α (αk).

The qualification of expected-utility-averaging comes from the fact that (8) can
be rewritten as UP (α) = I

(
UP1 (α) , . . . ,UPN (α)

)
where UPi (α) = ∑Kα

k=1 σk f
(

pi
k

)

is the RDU utility obtained when holding belief Pi. It directly follows from the
monotonicity of the averager I that such decision-rules are Paretian in the sense
of Definition 4. This class of expected-utility-averaging models embeds all major
models listed in Machina and Siniscalchi (2014). The representation (8) is actually
very similar to that of Cerreia-Vioglio et al. (2011), a very general specification that
encompasses most ambiguity models.13 In those ambiguity models, the averager I

is what characterizes ambiguity aversion.
Comparing equation (6) and equation (8), we see that distribution-averaging

and expected-utility-averaging decision-rules only differ by the stage where the av-
erager is applied. In the former case, I aggregates the distributions and expected
utility is computed afterwards. In the latter, one starts by computing expected util-
ity levels, which are then aggregated through the averager I. Aggregating distribu-
tions first (as with distribution-averaging decision-rules) makes it possible to exhibit
aversion for divergences in probabilities reported by experts and thus to exhibit dis-
agreement aversion. On the other hand, computing expected utilities first (as with
expected-utility-averaging decision-rules) may lead to losing track of some diver-
gence in expert opinions and thus prevents the expression of disagreement aversion.

When the averager I is linear, both approaches are equivalent, and the decision-
rule is both distribution-averaging and expected-utility-averaging. The reciprocal is

13Compared to the Monotonic, Bernoullian and Archimedean (MBA) model of Cerreia-Vioglio
et al. (2011), our expected-utility-averaging model evaluates risk using RDU instead of EU. In so
doing, we drop the Bernoullian assumption in MBA and consider an even broader class of models.
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also true:

Proposition 4. A decision-rule is both distribution-averaging and expected-utility-

averaging if and only if it admits a (distribution-averaging or expected-utility-

averaging) representation (u, f , I) with a linear averager I.

This result, whose proof is given in Appendix A.4, shows that being simultane-
ously distribution-averaging and expected-utility-averaging requires having a linear
averager I. This amounts to linear pooling and is usually considered as characteriz-
ing ambiguity neutrality. The distribution-averaging and expected-utility-averaging
approaches differ as soon as non-linear averagers are assumed. Interestingly, they
can be compared in terms of ambiguity aversion, a fundamental concept in the am-
biguity literature. In our setting, comparative ambiguity aversion can be defined as
follows:

Definition 7 (Comparative ambiguity aversion). A decision-rule <A exhibits greater
ambiguity aversion than a decision-rule <B if for every expertise P , every prospect

α and every distribution-consensual prospect β ,

α �P
A β ⇒ α �P

B β ; α <P
A β ⇒ α <P

B β

and

α ∼P
A β ⇒ α �P

B β if α is not utility-consensual.

This definition is very similar to Definition 3 about disagreement aversion but
relies on a different notion of consensus. While Definition 3 refers to the aversion
for the lack of distribution consensus, Definition 7 refers to the aversion for a lack
of utility consensus.14

Remark 3. Ghirardato and Marinacci (2002) define comparative ambiguity aversion
in a weak sense (such that any rule is more ambiguity averse than itself). By adding
a third condition (about utility-consensual prospects), our definition of compara-
tive ambiguity aversion is strong, and characterized by strict (rather than non-strict)

14The first part of Definition 7 still refers to the notion of distribution-consensus, so that the
decisions rules <A and <B necessarily agree on the ranking of distribution-consensual prospects.
The notion of utility-consensus used in the second part of the definition which, in principle, could
depend on the decision rule that is considered, is then the same for <A and <B.
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inequalities. We add the third condition to make the parallel with comparative dis-
agreement aversion (Definition 3).

We first state a result (already well-known for expected-utility-averaging mod-
els – see Ghirardato, Maccheroni and Marinacci 2004) showing that for both
distribution-averaging decision-rules and expected-utility-averaging decision-rules,
the level of ambiguity aversion is dictated by the averager I. Formally:

Proposition 5. Consider two decision-rules <A and <B, which are either both

distribution-averaging or both expected-utility-averaging with representations

(uA, fA, IA) and (uB, fB, IB). Then <A exhibits greater ambiguity aversion than <B

if and only if uA = uB, fA = fB and IA (~p) < IB (~p) for every non-constant vector

~p = (p1, . . . , pN).

Proof. See Appendix A.3.
Proposition 5 shows how two decision-rules of the same kind can be compared

in terms of ambiguity aversion.
The following result highlights that it is also possible to compare distribution-

averaging decision-rules with expected-utility-averaging decision-rules. Namely,
under a concavity condition on the averager I, which is usually assumed in applica-
tions, we show that a distribution-averaging decision-rule exhibits greater ambigu-
ity aversion and greater disagreement aversion than the expected-utility-averaging
decision-rule, which uses the same utility index, the same probability transforma-
tion function and the same averager. More precisely, the result is valid only when
we exclude the special case of prospects whose outcomes are all extremal (i.e.
αk ∈ {X−,X+} ,∀k), because both rules coincide on these prospects. For the pur-
pose of the proposition, we thus say that a decision-rule exhibits greater disagree-
ment aversion (resp. ambiguity aversion) except on prospects with only extremal

outcomes if it fulfills a slightly weaker version of Definition 3 (resp. Definition 7)
where α is replaced by any prospect with at least one non-extremal outcome (i.e.
0 < σk < 1 for some k).

Proposition 6. Consider a distribution-averaging decision-rule <DA with represen-

tation (u, f , I) and the expected-utility-averaging decision rule <UA with represen-

tation (u, f , I) for the same functions u, f , and I. If I is strictly concave except on the
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diagonal then <DA exhibits greater ambiguity aversion and greater disagreement

aversion than <UA except on prospects with only extremal outcomes.

Proof. See Appendix A.5.

linear pooling 

expected-utility-
averaging

distribution-
averaging

greater ambiguity aversion

greater disagreement aversion

Figure 2 – The relation between decision-rules when I is strictly concave.

Combining several of the above results, Figure 2 provides a global picture on
how distribution-averaging and expected-utility-averaging decision-rules relate to
each other. Starting from the linear pooling case where the decision-maker’s utility
is a linear average of experts’ utilities, the distribution-averaging and expected-
utility-averaging frameworks offer two different ways to introduce ambiguity aver-
sion. The expected-utility-averaging framework does so while preserving the una-
nimity principle. This prevents however the expression of disagreement aversion.
The distribution-averaging framework allows for further ambiguity aversion, by ag-
gregating probabilities first, and then computing expected utilities. This is what
produces disagreement aversion.

Our motivation for formalizing the notion of disagreement aversion and sug-
gesting the distribution-averaging model is not purely theoretical but also rooted
in the challenge of expert disagreement in concrete applications. Accounting for
disagreement aversion may indeed justify more precautionary decisions when ex-
perts disagree and provide insights on how scientific expertise should be used for
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decision-making. We develop these aspects in the following section.

2 Applications

We consider a decision-maker whose ex-post utility u(a,ω) depends on an ac-
tion a ∈ [a,a] and a contingency ω ∈ [ω,ω] over which she has no control. We
assume that the function (a,ω) 7→ u(a,ω) is increasing in ω , which is without loss
of generality when contingencies can be ranked from “adverse” to “favorable” in-
dependently of the decision-maker’s action. Ex-ante, when the decision-maker has
to decide about a, the value of the contingency ω is uncertain. There are N experts
who provide potentially diverging views about the distribution of ω . To make the
link with the theory section, we assume that the distributions provided by the ex-
perts have finite support, with ω ∈ {ω1, . . . ,ωK} where (ωk)1≤k≤K is an increasing
sequence of real numbers (k < l⇒ ωk < ωl). Each expert i ∈ {1, . . . ,N} provides
a probability vector (π i

k)1≤k≤K , where π i
k is the probability of ω = ωk according to

expert i. We assume that there is some disagreement among experts (π i
k 6= π j

k for
some i, j, k).

2.1 A general result on the impact of disagreement aversion

We assume here that decision-makers use distribution-averaging decision-rules
as introduced in Definition 5, with the only difference that we no longer require the
utility to be normalized to values in [0,1]. Since our aim is to discuss the impact of
disagreement aversion, we will consider two decision-makers, A and B, who only
differ by their averagers IA and IB. Formally speaking, the decision-maker τ = A,B

has the following program:

max
a∈[a,a]

K

∑
k=1

σkIτ
(

f
(

p1
k
)
, . . . , f

(
pN

k
))

, (9)

where pi
k = ∑K

l=k π i
l , σk = u(a,ωk)− u(a,ωk−1) for k > 1 and σ1 = u(a,ω1). The

function f is an increasing bijection over [0,1] and the averager Iτ is a continu-
ous and componentwise strictly increasing function Iτ : [0,1]N → [0,1] fulfilling
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Iτ (q, . . . ,q) = q. We assume that the decision-maker’s problem always has an inte-
rior solution denoted a∗τ ∈ (a,a).

Proposition 7. Assume that (a,ω) 7→ u(a,ω) is twice continuously differentiable

and strictly concave in a, and that distribution-averaging decision-maker A exhibits

greater disagreement aversion than B, i.e. IA(p1, . . . , pN) < IB(p1, . . . , pN) for all

non-constant vectors (p1, . . . , pN) ∈ [0,1]N . Then:

• If ∂ 2u(a,ω)
∂a ∂ω > 0 for all a ∈ [a,a] and ω ∈ [ω,ω], then a∗A < a∗B.

• If ∂ 2u(a,ω)
∂a ∂ω < 0 for all a ∈ [a,a] and ω ∈ [ω,ω], then a∗A > a∗B.

Proof. See Appendix A.6.
This proposition shows that when the cross-derivative of the function u has a

constant sign, an increase of disagreement aversion has an unambiguous impact
on the optimal action. The reason is as follows. If the cross-derivative is posi-
tive, an increase of a widens the distance between any two possible ex-post utility
levels. This makes the disagreement between experts (i.e. the difference in their
distribution functions) more significant, which, in turn, implies that an increase in
disagreement aversion leads to a decrease in the optimal action a. Vice versa for a
negative cross-derivative. It is worth noting that to obtain this result we did not have
to assume a particular functional form for the averager. It thus holds for KMM types
or max-min averagers, as with other averagers that can be found in the ambiguity
aversion literature.

Below, we illustrate the general result in Proposition 7 with two examples, cli-
mate policy and precautionary savings.

2.1.1 A climate mitigation example

As highlighted by the literature (e.g., Meinshausen et al. 2009), experts in cli-
mate physics substantially disagree on climate sensitivity, i.e. by how much global
average temperatures increase as a result of increased greenhouse gas levels. Cli-
mate sensitivity is a key parameter for determining the optimal level of greenhouse
gas abatement. Should disagreement among experts lead to choosing a higher or
lower emission abatement target?

25

Electronic copy available at: https://ssrn.com/abstract=3964182



In order to give insights on this question we consider a two-period model. In
period 1, the decision-maker is endowed with wealth w1 of which an amount C(a),
increasing and convex in a, can be taken to finance an abatement level a ∈ [0,a],
leaving w1−C(a) for consumption. In period 2, consumption equals wealth w2

minus climate-related damages. These damages depend on the abatement level a

chosen in period 1 and climate sensitivity θ ∈ [θ ,θ ], which is ex-ante uncertain. We
denote by (a,θ) 7→ D(a,θ) the damage function and assume that ∂D

∂a < 0, ∂D
∂θ > 0,

∂ 2D
∂a2 > 0 and ∂ 2D

∂a ∂θ < 0; the last inequality means that abatement is more efficient in
reducing damages when climate sensitivity is high. The ex-post utility is given by:

u(a,θ) = v(w1−C(a))+βv(w2−D(a,θ))

where v is the (increasing and concave) instantaneous utility function and β > 0 the
time discount factor. One can easily check that:

∂u(a,θ)
∂θ

< 0 ;
∂ 2u(a,θ)

∂a2 < 0 ;
∂ 2u(a,θ)

∂a ∂θ
> 0.

To conform with the setting of Proposition 7, we set ω = −θ , so that utility in-
creases with ω . It then directly follows from Proposition 7 that if the solution is
interior, an increase of disagreement aversion leads to a strict increase of emission
abatement. The interpretation is simple: Both in terms of ex-post wealth and ex-
post utility, the marginal benefit of emission abatement is higher in bad states of
nature than in good states of nature. Thus abatement is able to reduce the distance
between ex-post utilities, which implies that greater disagreement aversion leads to
an increase of optimal abatement.

2.1.2 A precautionary savings example

We now consider a standard precautionary savings problem in a two-period set-
ting. The decision-maker receives income y in period 1 and has uncertain income
ω ∈ [ω,ω] in period 2. The decision-maker chooses the amount a ∈ [0,a] saved in
period 1. We assume a deterministic rate of interest, r, so that saving a in period 1
yields (1+ r)a in period 2. Choosing an amount of saving a and receiving income
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ω in period 2 provides an (ex-post) intertemporal utility:

u(a,ω) = v(y−a)+βv(ω +(1+ r)a)

where v is the (increasing and strictly concave) instantaneous utility function and
β > 0 the time discount factor. One has:

∂u(a,ω)

∂ω
> 0 ;

∂ 2u(a,θ)
∂a2 < 0 ;

∂ 2u(a,ω)

∂a ∂ω
< 0.

Thus a direct application of Proposition 7 shows that if the solution is interior, an
increase in disagreement aversion leads to a strict increase of precautionary savings.
While the marginal benefit of precautionary savings is similar across states of nature
in terms of ex-post wealth, it is higher in bad states of nature than in good states of
nature in terms of ex-post utility. Thus precautionary savings reduce the distance
between ex-post utilities, which implies that an increase of disagreement aversion
leads to higher precautionary savings.

2.2 Expected-utility-averaging versus distribution-averaging

This section highlights how our model differs from common models of ambi-
guity aversion in applications. As explained in Section 1.5, distribution-averaging
decision-rules and common models of ambiguity aversion differ as the former sug-
gests aggregating probabilities first, and then computing expected utilities, while
the latter suggests computing expected utilities first, and then aggregating utilities.
We will show in this section, that both procedures may yield qualitatively similar
results in some cases, but very different, possibly contrary results, in others.

2.2.1 The impact of ambiguity aversion under expected-utility-averaging

We consider here two decision-makers, A and B who use expected-utility-
averaging decision-rules but only differ by the averagers IA and IB they are using.
With the setting described at the beginning of Section 2, the decision-maker τ =A,B

has the following program:
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max
a∈[a,a]

Iτ

(
K

∑
k=1

σk f
(

p1
k
)
, . . . ,

K

∑
k=1

σk f
(

pN
k
)
)
, (10)

where the σk and the pi
k are defined as in Section 2.1. We assume that the decision-

maker’s program always admits an interior solution a∗τ ∈ (a,a).
We know from Proposition 5 that decision-maker A exhibits greater ambiguity

aversion than decision-maker B if IA(u1, . . . ,uN) < IB(u1, . . . ,uN) for non-constant
vectors of utility levels (u1, . . . ,uN). This is however generally insufficient to derive
general conclusions about the impact on the optimal action. As noticed by Gollier
(2011), Millner, Dietz and Heal (2013), Berger, Emmerling and Tavoni (2016),
Berger (2014) or Peter (2019), some results can nevertheless be provided under
specific assumptions regarding the averagers IA and IB and how experts’ beliefs
compare. In particular:

Proposition 8. Assume that:

• IA and IB have the smooth “KMM” form (1) with twice continuously differen-

tiable, increasing and concave functions ψA and ψB.

• ψA is more concave than ψB (so that expected-utility-averaging decision-

maker A is more ambiguity-averse than B). 15

• p1
k =∑K

l=k π1
l ≤ . . .≤ pN

k =∑K
l=k πN

l for all k (meaning that the experts’ beliefs

can be ordered in terms of first-order stochastic dominance).

• The function (a,ω) 7→ u(a,ω) is twice continuously differentiable, strictly

concave in a and such that ∂ 2u(a,ω)
∂a ∂ω > 0 (resp. ∂ 2u(a,ω)

∂a ∂ω < 0) for all a ∈ [a,a]

and ω ∈ [ω,ω].

Then a∗A < a∗B (resp. a∗A > a∗B).

Proof. See Appendix A.7.
The result stated in Proposition 8 looks qualitatively similar to the one stated

in Proposition 7 regarding disagreement-averse decision-rules. The interpretation
15By “more concave”, we mean that there exists an increasing and strictly concave function

h : R→ R such that ψA = h(ψB).
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is also qualitatively similar, with the difference that we now consider the disper-
sion of ex-ante (expected) utilities and not the dispersion of ex-post utilities. If the
cross-derivative of the function u is positive and experts are ordered in the sense
of first-order stochastic dominance, an increase in a widens the distance between
the expected utility levels provided by any two experts. Thus, the higher the ac-
tion a the more significant the lack of unanimity between experts, which implies
that an increase of ambiguity aversion leads to a decrease of the optimal a. This
result requires however an important additional assumption relative to Proposition
7. Indeed Proposition 8 assumes that experts’ beliefs are comparable in terms of
first-order stochastic dominance. This means that experts can unambiguously be
ranked in terms of optimism (or pessimism), ruling out cases where some experts
look more optimistic than others on some aspects but less optimistic on other as-
pects. For example, it rules out the case discussed in our introductory example
where expert 2 looks more optimistic than expert 1 as she predicts that the project
may generate positive returns but also looks more pessimistic than expert 1 as she
foresees cases where the project would generate negative returns. In such a case,
Proposition 8 has no bite.

The following section provides an example where expected-utility-averaging
and distribution-averaging decision-rules lead to opposite conclusions.

2.2.2 When utility-averaging and distribution-averaging models differ

Let us consider again the two examples described in Sections 2.1.1 and 2.1.2,
while specifying further the utility functions and expert beliefs.

For the climate mitigation example, assume that the instantaneous utility func-
tion v and the probability transformation function f are the identity function and the
discount factor is β = 1 . Consider the case where w1 = 2, C(a) = 1.5a2, w2 = 3.5,
D(a,θ) = 0.5(1+ θ − a)2, and a ∈ [0,0.9]. Assume that θ can only take one of
the following three values θ1 = 1.5, θ2 = 1 or θ3 = 0 (i.e., ω1 = −1.5, ω2 = −1
and ω3 = 0). With all these assumptions, the conditions assumed in the climate
mitigation example described in Section 2.1.1 are satisfied.

For the precautionary savings example, assume that the instantaneous utility
function is quadratic, with v(c) = c− 1

8c2, the discount factor is β = 1, and the

29

Electronic copy available at: https://ssrn.com/abstract=3964182



probability transformation function f is the identity function. Consider the case
where the first-period income is y = 2, while the second-period income can only
take one of the following three values ω1 = 0, ω2 = 1 or ω3 = 3. Assume that
the rate of interest is r = 0 and a ∈ [0,0.9]. With all these assumptions, the condi-
tions assumed in the precautionary savings example described in Section 2.1.2 are
satisfied.

In both examples, assume that there are only two experts. According to
expert 1, the likelihood of the three values ω1, ω2 and ω3 are given by the
probability vector (π1

1 ,π
1
2 ,π

1
3 ) = (0,1,0). Expert 2 disagrees and holds belief

(π2
1 ,π

2
2 ,π

2
3 ) = (0.6,0,0.4). Finally, consider the averager:

(x1,x2) ∈ R 7→ I(x1,x2) =−
1
λ

log
(

1
2

e−λx1 +
1
2

e−λx2

)
(11)

with λ ≥ 0.16 This averager is defined over R2 and will be used either to aggre-
gate probabilities (for distribution-averaging decision-rules) or to aggregate utility
values (for expected-utility-averaging decision-rules). In all cases, increasing λ in-
volves increasing ambiguity aversion. This also generates an increase in disagree-
ment aversion when using distribution-averaging decision-rules.

Denote by a∗DA,λ the optimal action (i.e., optimal abatement in the climate ex-
ample, and optimal saving in the second example) when using the distribution-
averaging decision-rule with averager (11) and by a∗UA,λ the optimal action when
using an expected-utility-averaging decision-rule with that same averager. It can
easily be verified that the solutions a∗DA,λ and a∗UA,λ are interior for any λ .

Proposition 9. In both examples, the optimal action a∗DA,λ is increasing with λ (i.e.

with disagreement aversion) and the optimal action a∗UA,λ is decreasing with λ (i.e.

with ambiguity aversion).

Proof. See Appendix A.8.
The above result, which would actually extend to all averagers of the KMM

kind, indicates that we have here examples where disagreement aversion leads to

16The limit case when λ → 0, provides I(x1,x2) =
1
2 x1 +

1
2 x2, corresponding to a linear opinion

pooling with symmetric weights.
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greater abatement or larger precautionary savings while ambiguity aversion in the
expected-utility-averaging models is found to have the opposite result.

Figure 3 shows how a∗DA,λ and a∗UA,λ vary with λ in each example. We also
report the optimal actions a∗1 and a∗2 that would be chosen if relying exclusively on
the beliefs of expert 1 or on those of expert 2.
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Figure 3 – Optimal abatement (left figure) and optimal saving (right figure) for
the distribution-averaging decision-rule (a∗DA,λ ) and the expected-utility-averaging
decision-rule (a∗UA,λ ), as well as optimal abatement (left figure) and optimal saving
(right figure) with expert 1’s beliefs and expert 2’s beliefs (in dashed lines).

To gain intuition, let us focus on the climate mitigation example, the precaution-
ary savings case being fully similar. Expert 2 predicts a lower marginal impact of
abatement than expert 1 in terms of expected utility. This explains why a∗2 is lower
than a∗1. Besides, expert 2 predicts a lower expected utility than expert 1. Indeed,
expert 2 predicts more risky damages, which generates a lower expected utility.
Thus an increase in abatement widens the distance between the expected utility
levels computed with the two expert beliefs. This finally implies that, with the
expected-utility-averaging decision-rules, an increase of ambiguity aversion leads
to a decrease of the optimal abatement level.

Remark that as a consequence of the Pareto condition, the expected-utility-
averaging decision-rules provide an optimal action a∗UA,λ that always remains in
between a∗2 and a∗1. By contrast, distribution-averaging decision-rules can entail
abatement or saving levels a∗DA,λ that are larger than both a∗1 and a∗2. This actually
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occurs when disagreement aversion is strong enough. Naturally, one may wonder
whether it can be rational to abate or save more than what both experts suggest. If
the decision-maker could be sure that one expert is right, without knowing neces-
sarily which one, such a decision would hardly be tenable, as choosing action a∗1
would yield a higher utility for sure. However, is there any reason to think that
at least one expert is right? A decision-maker who observes that experts disagree
may conclude that there is some uncertainty in scientific knowledge and that most
likely neither of the experts is completely right. The underlying principle of the
distribution-averaging decision-rule is that the decision-maker uses the diversity of
expert opinions to infer “the range of possibilities”, and then decides to form her
own belief using an aggregation procedure which is deliberately cautious in order
to reflect disagreement aversion.

3 Conclusion

Decision-makers rely on scientific expertise. It is only natural, and even a sign
of healthy science, that experts disagree. But how should decision-makers deal
with expert disagreement? Most prominent is the ambiguity neutral approach: The
decision-maker forms a (weighted) average of expert views. While consistent and
well-understood, the neutral approach has been criticized for implying that a situa-
tion of scientific consensus and a situation of wide expert disagreement around the
same average belief are treated the same.

In this paper, we have developed a model of cautious aggregation of beliefs, ex-
hibiting a novel notion of disagreement aversion. In line with existing contributions
that deviate from the neutral approach, we borrow from the literature on ambiguity
aversion. But instead of suggesting a pessimistic aggregation of utility values, as is
standard in the literature, our model rests on the pessimistic aggregation of expert
beliefs. We demonstrate that our model is more sensitive to disagreement than com-
mon models: It allows aversion to “spurious unanimity”, situations in which experts
agree on the action to be taken but offer different reasons for their assessment.

Our framework, which can be viewed as reflecting a form of the precautionary
principle, can readily be applied to concrete policy issues. We have shown that
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the framework produces intuitive results in the sense that stronger disagreement
aversion induces more cautious decisions. This is an interesting feature, which
contrasts with what is found with Paretian models, according to which an increase
in ambiguity aversion may lead to take less cautious choices. Our work moreover
has relevance for the long-standing discussion about the appropriate institutional in-
terplay of scientific expertise and policy-makers, in particular the interplay of risk
assessment and risk management (National Research Council 2009). Our contribu-
tion strengthens the view that the realms of expertise and decision should be kept
separate. According to our approach, the fact that experts reach a consensus about
which action to take does not imply that this action should necessarily be chosen.
In practice, this means that decisions should not be fully delegated to expert com-
mittees. Instead, each expert should submit her scientific assessment. Observing
why experts’ assessments differ is valuable for a cautious decision-maker, even if
the experts agree on the decision.
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A Appendix

A.1 Proof of Proposition 1

For any expertise P , notice that to any prospect α , we can associate
a unique vector (σ1, . . . ,σKα ) (defined as in Definition 5) and a unique ma-
trix

(
qi

k

)
i,k of transformed probabilities (qi

k = f
(

pi
k

)
,∀i,k) as in the Proposi-

tion’s statement. Reciprocally, to any such pair (σk)k,
(
qi

k

)
i,k, we can con-

struct a corresponding prospect α , even if it means choosing a suitable ex-
pertise P = (P1, . . . ,PN). Consider either a prospect α or its corresponding
pair (σk)k,

(
qi

k

)
i,k. As the decision-rule is RDU on distribution-consensual

prospects, if α is distribution-consensual we have UPi (α) = UP (α) ,∀i. Thus

∑Kα
k=1 σkI

(
q1

k , . . . ,q
N
k

)
= UP (α) = maxiUPi (α) = max1≤i≤N ∑Kα

k=1 σkqi
k. Now,

notice that α is non distribution-consensual if and only if there are indices
i, j,k. such that qi

k 6= q j
k and σk > 0. Take any such (σk)k,

(
qi

k

)
i,k and

consider the outcome x such that u(x) = maxiUPi (α), so that x <Pi α, ∀i.
Then, if the decision-rule is disagreement-averse, we have x �P α , i.e.
maxi ∑Kα

k=1 σkqi
k > ∑Kα

k=1 σkI
(
q1

k , . . . ,q
N
k

)
. Reciprocally, take any non-distribution-

consensual prospect α and consider any outcome x such that x <Pi α, ∀i. If
the Proposition’s condition holds, we have UP (α) < maxiUPi (α) ≤ u(x), i.e.
x�P α . The decision-rule is therefore disagreement averse.

A.2 Proof of Proposition 2

For the first condition:

I
(
q1

k , . . . ,q
N
k
)
≤

N

∑
i=1

λiqi
k⇒

K

∑
k=1

σkI
(
q1

k , . . . ,q
N
k
)
≤

N

∑
i=1

λi

K

∑
k=1

σkqi
k ≤ max

1≤i≤N

K

∑
k=1

σkqi
k.

For the second condition: Set σK+1 = 1− ∑K
k=1 σk and qi

K+1 = 0 for all
1≤ i≤ N. Then, using successively that I is concave and increasing:

K+1

∑
k=1

σkI
(
q1

k , . . . ,q
N
k
)
≤ I

(
K+1

∑
k=1

σkq1
k , . . . ,

K+1

∑
k=1

σkqN
k

)
≤ max

1≤i≤N

K

∑
k=1

σkqi
k.
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In both cases the first inequality is strict when one has qi
k 6= q j

k and σk > 0 for
some indices i, j,k.

A.3 Proof of Propositions 3 and 5

We first prove Proposition 3 and then explain how the proof can be adapted to
prove Proposition 5.

Proof of Proposition 3.
⇒Assume that <A exhibits greater disagreement aversion than <B. Then, using

the reciprocal of the first implication and the second implication in Definition 3, for
any expertise P , and any pair (α,β ) of distribution-consensual prospects, one has
α <P

A β ⇐⇒ α <P
B β . Thus, <A and <B share the same RDU representation on

distribution-consensual prospects, and we shall denote u and f their common utility
index and probability transformation.

Now, take any expertise P and any non-constant vector ~p = (p1, . . . , pN).
Let ~q = ( f (p1) , . . . , f (pN)). Define x = u−1 (IA (~q)). Denote by

(
~X ,~p

)

the prospect α with only extremal outcomes (i.e. αk ∈ {X−,X+} ,∀k)
and such that DPi

α (X+) = pi,∀i. By comparative disagreement aversion,(
~X ,~p

)
∼P

A x ⇒
(
~X ,~p

)
�P

B x. By definition,
(
~X ,~p

)
∼P

A x if and only if

UA

((
~X ,~p

))
= u(x) = IA (~q), which holds by assumption. Thus,

(
~X ,~p

)
�P

B x,
i.e. IA (~p)< IB (~p).
⇐ Take any non distribution-consensual prospect α , distribution-consensual

prospect β , and expertise P such that α ∼P
A β . Defining

(
pi

k

)
the probabilities

associated to α , notice that ~pk =
(

p1
k , . . . , pN

k

)
is non-constant for some k so that

IA (~pk)< IB (~pk) for those k. For the remaining k where ~pk =(pk, . . . , pk) is constant,
IA (~pk) = IB (~pk) = pk. As <A and <B share the representation functions f and u

and by Definition 5 or 6, this implies UP
B (β ) =UP

A (β ) =UP
A (α)<UP

B (α), i.e.
α �P

B β .
Proof of Proposition 5. The⇒ direction can be proven just as above. For⇐,

i.e. to prove the comparative ambiguity aversion, one needs to cover the three cases
of Definition 7. To prove the last case, where α ∼A β is non-utility-consensual, one
just needs to adjust the⇐ part of the above proof, by taking a non-utility consensual
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(instead of non-distribution consensual) α . To prove the other cases, it suffices to
use that IA ≤ IB in the representations UA and UB.

A.4 Link between the Pareto condition and linear pooling

We give here only the sketch of the proof of Proposition 4, which states that a
decision-rule is both expected-utility-averaging and distribution-averaging if and
only if it is a linear pooling. Indeed, we prove rigorously a stronger result in
online Appendix OA.1: That a distribution-averaging decision-rule is Paretian if
and only if it is a linear pooling. That a linear pooling is all at the same time
distribution-averaging, expected-utility-averaging, and hence Paretian, can be seen
from the Definitions. Now, if a decision-rule is both expected-utility-averaging and
distribution-averaging, it allows two representations, which are equal up to an in-
creasing bijection. Considering distribution-consensual prospects, and then looking
successively at prospects with only one outcome, with only extremal outcomes, and
with two outcomes (one of which we vary), it can be shown that the bijection is in-
deed the identity function, and that the two representations share the same functions
u and f . Considering non-distribution-consensual prospects with only extremal out-
comes, it follows that the two representations also share the averager I. Considering
prospects such that σk =

1
Kα

, ∀k, we thus obtain the functional equation for I:

Kα

∑
k=1

1
Kα

I
(

f
(

p1
k
)
, . . . , f

(
pN

k
))

= I

(
Kα

∑
k=1

1
Kα

f
(

p1
k
)
, . . . ,

Kα

∑
k=1

1
Kα

f
(

pN
k
)
)
,

which holds on all
(

pi
k

)
such that pi

1 ≥ . . .≥ pi
Kα
, ∀i. Without the latter restriction

on the domain, this would exactly be Jensen’s functional equation, whose solution
is known to be affine (e.g., Aczél 1966). To handle the domain restriction, one can
notice that the solution applies locally to any neighborhood in the interior of the
domain, and use the connectedness of the domain to show that the affine function
is the same on all these neighborhoods. Given that I (0, . . . ,0) = 0, the averager I is
here linear.
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A.5 Proof of Proposition 6

Take any expertise P , prospect α with at least one non-extremal out-
come, and distribution-consensual prospect β . As <DA and <UA share the
functions u and f , they coincide on distribution-consensual prospects, and
we can denote UP (β ) := UP

UA (β ) = UP
DA (β ). Also, if α is distribution-

consensual, α ∼P
DA β ⇒ α ∼P

UA β . For the remainder of the proof, we con-
sider the case where α is non distribution-consensual, so that

(
p1

k , . . . , pN
k

)

is non-constant for some k such that σk 6= 0. Set σKα+1 = 1 − ∑Kα
k=1 σk

and pi
Kα+1 = 0 for all 1 ≤ i ≤ N. The strict concavity inequality yields:

∑Kα+1
k=1 σkI

(
f
(

p1
k

)
, . . . , f

(
pN

k

))
< I
(

∑Kα+1
k=1 σk f

(
p1

k

)
, . . . ,∑Kα+1

k=1 σk f
(

pN
k

))
. That

is UP
DA (α)<UP

UA (α). Thus, α <P
DA β⇒UP

UA (α)>UP
DA (α)≥UP (β )⇒α �P

UA β .
To conclude, notice that we have covered all cases needed to prove that <DA ex-
hibits greater ambiguity aversion and greater disagreement aversion than <UA.

A.6 Proof of Proposition 7

Set Uτ(a) = ∑K
k=1 σkIτ

(
f
(

p1
k

)
, . . . , f

(
pN

k

))
. The first-order condition of (9) is:

U ′τ(a) =
K

∑
k=2

(∂1u(a,ωk)−∂1u(a,ωk−1)) Iτ
(

f
(

p1
k
)
, . . . , f

(
pN

k
))

+∂1u(a,ω1) = 0,

(12)
given that we have Iτ

(
f
(

p1
1
)
, . . . , f

(
pN

1
))

= Iτ (1, . . . ,1) = 1. Since
decision-maker A is more disagreement-averse than B, we have
IA
(

f
(

p1
k

)
, . . . , f

(
pN

k

))
≤ IB

(
f
(

p1
k

)
, . . . , f

(
pN

k

))
for all k with strict inequal-

ity for some k since the group of experts disagrees. If ∂1u(a,ω) strictly increases
with ω , we have U ′A(a) < U ′B(a). The function u(a,ω) being strictly concave in a

one has U ′′A < 0 and U ′′B < 0. Thus, it must be the case that a∗A < a∗B . If ∂1u(a,ω)

strictly decreases with ω , we have U ′A(a)>U ′B(a) and a∗A > a∗B.

A.7 Proof of Proposition 8

Consider the smooth “KMM” form (1) with functions ψτ . Set
Vτ(a)=∑N

i=1 λiψτ
(
∑K

k=1 σk f
(

pi
k

))
. Solving (10) is equivalent to maximizing Vτ(a)

42

Electronic copy available at: https://ssrn.com/abstract=3964182



which gives the first-order condition:

V ′τ(a)=
N

∑
i=1

λiψ ′τ

(
K

∑
k=1

σk f
(

pi
k
)
)
·
(

K

∑
k=2

(∂1u(a,ωk)−∂1u(a,ωk−1)) f
(

pi
k
)
+∂1u(a,ω1)

)
= 0,

(13)
which rewrites:

N

∑
i=1

λiψ ′τ
(
∑K

k=1 σk f
(

pi
k

))

∑N
l=1 λlψ ′τ

(
∑K

k=1 σk f
(

pl
k

))
︸ ︷︷ ︸

λ̃i(ψτ ,a)

·
(

K

∑
k=2

(∂1u(a,ωk)−∂1u(a,ωk−1)) f
(

pi
k
)
+∂1u(a,ω1)

)

︸ ︷︷ ︸
ρi(a)

= 0.

(14)
Since the experts are ordered in the sense of first-order stochastic dominance and
∂2u(a,ω) > 0, we have ∑K

k=1 σk f
(

p1
k

)
≤ ∑K

k=1 σk f
(

p2
k

)
≤ . . . ≤ ∑K

k=1 σk f
(

pN
k

)
,

with at least one strict inequality given that the group of experts disagrees. In (14),
we can view λ̃i(ψτ ,a) as a distribution function where i would be the random vari-
able. By hypothesis, we have ψA = h ◦ψB where h is an increasing and (strictly)
concave function. The likelihood ratio of λ̃i(ψA,a) and λ̃i(ψB,a) then writes:

λ̃i(ψA,a)
λ̃i(ψB,a)

= h′
(

ψB

(
K

∑
k=1

σk f
(

pi
k
)
))
· ∑

N
l=1 λlψ ′B

(
∑K

k=1 σk f
(

pl
k

))

∑N
l=1 λlψ ′A

(
∑K

k=1 σk f
(

pl
k

)) . (15)

Since we have ∑K
k=1 σk f

(
pi

k

)
increasing with i with at least one strict inequality,

ψ ′B > 0, ψ ′A > 0 and h′′ < 0, the likelihood ratio (15) is decreasing with i with at
least one strict inequality. Thus, the distribution λ̃i(ψB,a) strictly dominates the
distribution λ̃i(ψA,a) in the sense of monotone likelihood ratio, which implies
that the former strictly first-order stochastically dominates the latter. If ∂1u(a,ω)

strictly increases (decreases) with ω , we have ρ1(a) ≤ ρ2(a) ≤ . . . ≤ ρN(a)

(ρ1(a) ≥ ρ2(a) ≥ . . . ≥ ρN(a)) with at least one strict inequality, since the experts
are ordered in the sense of first-order stochastic dominance and the group of experts
disagrees. As a consequence, since λ̃i(ψB,a) strictly first-order stochastically dom-
inates λ̃i(ψA,a), we get, for a given a, ∑N

i=1 λ̃i(ψA,a)ρi(a) < ∑N
i=1 λ̃i(ψB,a)ρi(a)

(∑N
i=1 λ̃i(ψA,a)ρi(a) > ∑N

i=1 λ̃i(ψB,a)ρi(a)). Thus, with a = a∗B, we have

∑N
i=1 λ̃i(ψA,a∗B)ρi(a∗B) < 0 (∑N

i=1 λ̃i(ψA,a∗B)ρi(a∗B) > 0), and V ′A(a
∗
B) < 0

43

Electronic copy available at: https://ssrn.com/abstract=3964182



(V ′A(a
∗
B) > 0). We know that V ′′A < 0, since u(a,ω) is strictly concave in a

and ψA concave. Thus, we can conclude that a∗A < a∗B (a∗A > a∗B).

A.8 Proof of Proposition 9

A direct application of Proposition 7 shows that the optimal action a∗DA,λ is
increasing with λ . On the other hand, we cannot apply Proposition 8 since ex-
perts are not ordered in terms of first-order stochastic dominance. Following a
reasoning similar to the proof of Proposition 8, we show that the optimal action
a∗UA,λ is decreasing with λ . We show this result for the precautionary savings
example. The reasoning is the same for the climate mitigation example. With a
expected-utility-averaging decision-rule and a smooth “KMM” form, the optimal
saving level satisfies (14) with K = 3 states of nature, ω1 = 0, ω2 = 1, ω3 = 3,
N = 2 experts, p1

1 = 1, p1
2 = 1, p1

3 = 0, p2
1 = 1, p2

2 = 0.4, p2
3 = 0.4, a ∈ [0,0.9]

and u(a,ω) = 2− a− 1
8(2− a)2 +ω + a− 1

8(ω + a)2. In contrast with the proof
of Proposition 8, we have ∑K

k=1 σk f
(

p1
k

)
= 2− a− 1

8(2− a)2 + 1+ a− 1
8(1+ a)2

strictly larger than ∑K
k=1 σk f

(
p2

k

)
= 2−a− 1

8(2−a)2 + 12
10 +a− 6

80a2− 4
80(3+a)2

since ∑K
k=1 σk f

(
p1

k

)
−∑K

k=1 σk f
(

p2
k

)
= 1

8 +
1

20a > 0 for a ≥ 0. Considering ψA

more concave than ψB, this implies that the likelihood ratio of λ̃i(ψA,a) and
λ̃i(ψB,a) is strictly increasing with i, and the distribution λ̃i(ψB,a) is strictly first-
order stochastically dominated by the distribution λ̃i(ψA,a). Moreover, we have
∂1,2u(a,ω) =−1

4 < 0 and ρ1(a) =−1
2a+ 1

4 > ρ2(a) =−1
2a+ 1

5 . Thus, for a given
a, ∑N

i=1 λ̃i(ψA,a)ρi(a)< ∑N
i=1 λ̃i(ψB,a)ρi(a). This implies V ′A(a

∗
B)< 0 and a∗A < a∗B.

Finally, this shows that with a KMM kind of averager of the form (11), the optimal
saving level a∗UA,λ is decreasing with the ambiguity aversion parameter λ .
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Disagreement Aversion

22/369 A. Jo, A. Miftakhova

How Constant is Constant Elasticity of Substitution? Endogenous Substitution be-

tween Clean and Dirty Energy

22/368 N. Boogen, M. Filippini, A. L. Martinez-Cruz

Value of co-benefits from energy saving ventilation systems–Contingent valuations

on Swiss home owners

22/367 D. Bounie, A. Dubus, P. Waelbroeck

Market for Information and Selling Mechanisms

22/366 N. Kumar, N. Kumar Raut, S. Srinivasan

Herd behavior in the choice of motorcycles: Evidence from Nepal

21/365 E. Komarov

Capital Flows and Endogenous Growth

21/364 L. Bretschger, A. Jo

Complementarity between labor and energy: A firm-level analysis

21/363 J. A. Bingler, C. Colesanti Senni, P. Monnin

Climate Transition Risk Metrics: Understanding Convergence and Divergence across

Firms and Providers

21/362 S. Rausch, H. Yonezawa

Green Technology Policies versus Carbon Pricing: An Intergenerational Perspective

21/361 F. Landis, G. Fredriksson, S. Rausch

Between- and Within-Country Distributional Impacts from Harmonizing Carbon

Prices in the EU

21/360 O. Kalsbach, S. Rausch

Pricing Carbon in a Multi-Sector Economy with Social Discounting

21/359 S. Houde, T. Wekhof

The Narrative of the Energy Efficiency Gap
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