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Abstract. At the time of writing, the Riemann Hypothesis (RH) is one of the

major unsolved problems in pure mathematics. In this note, a parameterized

family of non-cooperative games is constructed with the property that, if RH

holds true, then any game in this family admits a unique Nash equilibrium.

Keywords. Riemann hypothesis · Nash equilibrium

JEL-code. C72

*) For useful conversations, I thank David Levine and Aner Sela.

**) University of Zurich, Schönberggasse 1, 8001 Zürich, Switzerland.



1. Introduction

The Riemann Hypothesis (RH) is a famous open problem in the field of analytic

number theory. The purpose of this note is to report on a curious game-theoretic

implication of RH. Specifically, a parameterized family of games may be con-

structed with the property that if RH holds true, then each game in this family

admits a unique Nash equilibrium.

There does not seem to exist prior academic work that connects RH to the

theory of games. Nobel Laureate John Nash, whose contributions in the early 50s

became the basis of modern game theory (Nash, 1950, 1951), and who had also

solved Hilbert’s 19th problem on partial differential equations, is understood to

have worked on RH.1 However, the bibliography of Milnor (1998) does not list any

manuscript written by Nash with an obvious relationship to number theory.

The mathematical literature has come up with a large variety of conditions

that are either necessary, suffi cient, or equivalent to RH. In particular, Gröchenig

(2020) related RH to the total positivity of a particular Fourier transform, and

the observation made below draws heavily from his contribution.2 However, the

present analysis also crucially exploits novel game-theoretic arguments developed

in fuller generality, in particular, by Ewerhart (2015, 2021).3

The sequel is structured as follows. Section 2 provides the necessary back-

ground on the Riemann zeta function and RH. A novel probability density func-

tion is introduced in Section 3. Section 4 presents the main result. Section 5

offers some discussion. Section 6 concludes. An Appendix contains supplementary

proofs.

1According to a popular but unauthorized biography (Nasar, 1998), as well as to a Hollywood
movie based upon it, Nash’s presentation on the topic at Columbia University in 1959 became
incomprehensible because of his beginning mental illness (see also Sabbagh, 2003).

2See also Katkova’s (2007) related piece on totally positive sequences and work cited therein.
Karlin’s (1968) monograph is still the best introduction to the theory of total positivity.

3These methods have their origin in early work on two-person zero-sum games on the square
(Karlin, 1957, 1959). Mattozzi and Levine (2021) usefully illustrated the validity of these general
principles in all-pay contests with analytic payoffs and nonlinear costs. None of these earlier
works dealt with the uniqueness of equilibrium in all-pay contests, however.
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2. Background on the Riemann zeta function and the RH

The Riemann zeta function is an important special function in the field of number

theory (Titchmarch, 1986; Davenport, 2013). For complex arguments s ∈ C with
real part strictly exceeding one, it may be defined as the infinite sum

ζ(s) =
∑∞

n=1

1

ns
(Re s > 1). (1)

This function admits a meromorphic extension4 to the complex plane C, being

analytic except of a simple pole at s = 1. Moreover, with Γ(s) =
∫∞
0
xs−1e−xdx

denoting the gamma function,

ξ(s) =
1

2
s(s− 1)π−s/2Γ(

s

2
)ζ(s) (2)

is an entire function (i.e., it is analytic on C) that is real-valued for real arguments

and satisfies the functional equation

ξ(s) = ξ(1− s). (3)

The Riemann zeta function vanishes at all even negative integers, i.e., at s =

−2,−4, . . ., and those zeros of ζ are called the trivial zeros. The Riemann hypoth-

esis (RH), formulated by Riemann (1859), claims that all the non-trivial zeros of ζ

lie on the critical line { 1
2

+ it
∣∣ t ∈ R}. If true, the conjecture would admit powerful

conclusions about the distribution of prime numbers.

Proving the RH is one of the seven problems for which the Clay Mathematics

Institute awards a prize of one million dollars (Bombieri, 2000). Numerous inter-

esting but ultimately partial results are available. For example, it is known that

“more than 40 percent”of the nontrivial zeros of ζ lie on the critical line (Conrey,

1989). Moreover, starting with Turing (1953), substantial effort has been invested

into attempts to reject RH using computational means. It has been shown, in par-

ticular, that the first 1013 non-trivial zeros lie exactly on the critical line (Gourdon,

4A meromorphic function is a complex-valued function in a complex variable that is analytic
in all but possibly a discrete subset of its open domain, where all those singularities must be
poles, i.e., vanish through multiplication with a suitably chosen polynomial.
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2004).5 However, as argued by Sarnak (2004, pp. 6-7), this need not mean that

RH is “likely true.”Finally, annoucements of alleged solutions to the problem are

quite common (see, e.g., Schembri, 2018). At the time of writing, however, RH

remains an open mathematical problem.

3. A probability density function

Consider the integral

f(t) =
ξ(1
2
)

2π

∫ +∞

−∞

cos(tx)dx

ξ(1
2

+ x)
(−∞ < t <∞). (4)

Clearly, this functional form does not belong to the class of functions commonly

employed in economics and statistical analysis (Johnson et al., 1995). Notwith-

standing, provided that RH holds true, f is in fact a very well-behaved density

function. This is suggested also by the numerically obtained graph of f , which is

outlined in Figure 1.6

Figure 1. A density function.

5For details on the methods employed to ensure that all complex zeros of ζ up to a given
height lie exactly on the critical line, see Edwards (1974, Ch. 8).

6All computations have been conducted using Wolfram’s Mathematica 12.0.0 Kernel for Mi-
crosoft Windows (64-bit).
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Lemma 1. The integral (4) defines an analytic function f on R that is symmetric

with respect to the origin. If RH holds true, then f is a proper Pólya frequency

function, positive, logconcave, and exponentially diminishing with
∫ +∞
−∞ f(t)dt = 1.

Proof.7 See the Appendix. �

The property of f being a proper Pólya frequency function means that, in addition

to f being integrable over R, it is the case that, for any n ≥ 1, and for any real

parameters a1 > a2 > · · · > an and b1 > b2 > · · · > bn, the matrix

Mf

(
a1 a2 · · · an
b1 b2 · · · bn

)
=


f(a1 − b1) f(a1 − b2) · · · f(a1 − bn)
f(a2 − b1) f(a2 − b2) · · · f(a2 − bn)

...
...

. . .
...

f(an − b1) f(an − b2) · · · f(an − bn)

 (5)

has a positive determinant. As may be guessed, any normal density function is

an example of a proper Pólya frequency function, and there are numerous other

examples (Karlin, 1957, 1959; Ewerhart, 2021). What matters below, however, is

that f might have this property.

4. Main result

Two players, player 1 and player 2, choose a nonnegative investment x1 ≥ 0 and

x2 ≥ 0, respectively. Each player has to pay the chosen investment. There is a prize

of common valueW > 0.8 Player 1 wins the prize with probability p1 = F (x1−x2),
where F (t) =

∫ t
−∞ f(τ)dτ is the cumulative distributions function associated with

f . Player 2 wins with probability p2 = 1− p1. Thus, payoffs are given by

Π1(x1, x2) = F (x1 − x2)W − x1, (6)

Π2(x1, x2) = F (x2 − x1)W − x2. (7)

7It follows from the proof that f has finite moments that all may be expressed in terms
of the values of ξ and its derivatives at s = 1

2 . E.g., the mean is zero, and the variance is
ξ( 12 )ξ

′′( 12 )−2ξ
′( 12 )

2

ξ( 12 )
3 . However, such observations are not needed in the sequel.

8The assumption of a common valuation is not crucial for the main observation and solely
made to simplify the exposition.
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This defines a non-cooperative game G(W ) for any W > 0.

As discussed in Ewerhart (2021), the Nash equilibrium of G(W ) is trivially in

pure strategies as long as W ≤ 1/f(0), because in that case, players’payoff func-

tions are strictly declining in their own strategy. Otherwise, i.e., if W > 1/f(0),

lack of quasiconcavity of the payoff function with respect to the own strategy

makes it natural to consider randomized strategies, where the mixed extension is

defined as usual by considering probability distributions on the Borel subsets of

a suitably chosen compact interval (see, e.g., Dasgupta and Maskin, 1986). By

Becker and Damianov (2006), G(W ) indeed admits a symmetric mixed-strategy

Nash equilibrium strategy µ∗1.

The following result provides a simple condition for equilibrium uniqueness.

Lemma 2. Suppose that f is both analytic and a proper Pólya frequency function.

Then, G(W ) admits precisely one Nash equilibrium, for any W > 0.

Proof. See Ewerhart (2021, Thm. 1).9 �

Combining Lemmas 1 and 2 yields the main result of the present paper.

Theorem 1. If RH holds true, then G(W ) admits precisely one mixed-strategy

Nash equilibrium, for any W > 0.

Proof. Immediate from Lemmas 1 and 2 above. �

5. Discussion

It should be noted that it is not at all diffi cult to come up with a non-cooperative

game that has precisely one Nash equilibrium if RH holds true. For example,

the Prisoner’s Dilemma admits a unique Nash equilibrium if RH holds true.10

9For the reader’s convenience, a self-contained proof of Lemma 2 may be found in the Ap-
pendix.
10I am grateful to John Levy for providing this example.
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As the conclusion is true, the implication holds regardless of the validity of the

assumption. By the rules of Boolean logic.

The situation is different here. It is not known, and might never become known,

if the conclusion of Theorem1 (equilibrium uniqueness in the two-player contest) is

true or false. Thus, the conclusion is an open conjecture.11 What Theorem 1 shows,

therefore, is that one open conjecture (RH) implies another open conjecture. In

particular, if the conclusion of equilibrium uniqueness could be shown to be wrong

(which, as we know, is not feasible in the case of the Prisoner’s dilemma), then

the hypothesis would be proven wrong.12

Figure 2. The games G1 and G2.

It would nice, and certainly more satisfying, to find a game-theoretic conjecture

that is logically equivalent to RH. In the abstract, this is actually not a big problem.

E.g., one may even easily write down games for which the existence of a unique

Nash equilibrium is equivalent to RH. To see this, consider the game G1 depicted

in Figure 2, where

θ =


+1 if RH holds true

−1 if RH does not hold true.
(8)

If RH holds true, then G1 admits (T,L) as the unique Nash equilibrium. If, how-

ever, RH does not hold true, then there are two Nash equilibria in pure strategies,

11Both RH and equilibrium uniqueness in the two-player contest may be characterized as being
undecidable in the practical sense. Undecidability in the logical sense is a possibility here as well
(i.e., RH and/or equilibrium uniqueness might be true but not provable), but this possibility is
not crucial for the present discussion.
12A similar type of reasoning is used in the literature on the P versus NP problem in compu-

tational complexity theory (Cook, 1971), which it is a millennium problem like RH.
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viz (T,R) and (B,L). Similarly, G2 admits (T,L) as a unique pure-strategy Nash

equilibrium if RH holds, and otherwise no pure-strategy Nash equilibrium.

In such examples, however, RH is used directly in the description of the payoff

functions. That is, even if the strategy chosen by player 2 is correctly anticipated

in G1 or G2, a human player 1 could not tell if T yields a higher payoff than B. In

contrast, RH has no role in the definition of payoff differences in G(W ) between

any two pure strategies, i.e., such payoff differences could, at least in principle,

be approximated up to arbitrary accuracy without assuming RH. Indeed, if the

opponent’s pure strategy is correctly anticipated in G(W ), then any such payoff

difference may be represented as

Π1(x
′
1, x2)− Π1(x

′′
1, x2) = −x′1 + x′′1 +W

∫ x′1−x2

x′′1−x2
f(τ)dτ , (9)

where the integral of the continuous function f over the compact interval converges

regardness of whether RH holds true or not. In fact, given that best responses in

the mixed extension of G(W ) have finite support, this argument extends to the

relevant class of randomized strategies. For this reason, the two-player contest

might be a more appealing example than G1 or G2, even though Theorem 1 does

not capture a logical equivalence.

6. Concluding remarks

In a collected volume jointly edited by late John Nash and Michail Rassias, Connes

(2016) offered a selective survey on RH. That paper actually used some game-

theoretic terminology in the context of the Riemann-Roch theorem in tropical

geometry and so-called chip-firing games on graphs. Notably, however, chip-firing

games are one-player “solitaire”problems, which marks a difference to the theory

outlined in the present paper.13

13The following characterization follows Baker and Norine (2007). Let (V,E) be a graph, with
set of vertices V and set of edges E. Initially, each vertex v ∈ V carries an integer number of
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In a widely noticed contribution, Montgomery (1973) documents the observa-

tion that the distribution of distances between neighboring zeros of the Riemann

zeta function on the critical line numerically matches the “repulsive”distribution

of eigenvalues of certain randommatrices known as the Gaussian Unitary Ensemble

(GUE). Odlyzko (1987) added substantial numerical evidence to this observation.

Rudnick and Sarnak (1994, 1996) formally established this correspondence in re-

markable generality. While RH is not needed for their main result, adding RH

as an assumption allows to strengthen their conclusions. More recently, Carmona

et al. (2020) recovered the GUE distribution from limits of open-loop and closed-

loop equilibria in certain N -player stochastic games as N → ∞. However, as the
authors remarked, the GUE naturally arises in numerous applied environments in-

cluding, e.g., the spacing and arrival statistics of buses on a route in Cuernavaca,

Mexico. Indeed, in contrast to the present inquiry, the identification of additional

equilibria in their model would not invalidate RH.

Finally, in line with the celebrated Langlands program (Langlands, 1970), the

RH has been extended to L-functions associated with automorphic forms on the

general linear group GLm (Sarnak, 2004). Conjecturally, this subsumes important

historical predecessors such as Dedekind zeta functions, Artin L-functions, and

Hasse-Weil zeta functions. In principle, the steps of the analysis above may be done

analogously with these L-functions replacing ζ, which might allow a generalization

of Theorem 1. However, additional assumptions may be needed, such as that the

L-function does not vanish at s = 1
2
.14 A more comprehensive investigation of such

chips. A vertex v which has a negative number of chips assigned to it is said to be “in debt.”
A move consists of a vertex v either borrowing (giving) one chip from (to) each of its neighbors.
By a sequence of moves, the player strives to reach a configuration in which no vertex is in debt.
A “winning strategy” is a sequence of moves that achieves such a configuration. Any initial
assignment may be characterized as either admitting a winning strategy or not. If a winning
strategy exists, one may also characterize winning strategies of minimal length.
14In the case of the Riemann zeta function, ξ( 12 ) > 0 follows from the well-known product

representation of Dirichlet’s eta function,
∞∑
n=1

(−1)n−1
ns = (1 − 21−s)ζ(s), where the sum on the

left-hand side converges for Re(s) > 0. Unfortunately, it seems hard to find a generalization of
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questions is, however, beyond the scope of the present note.

Appendix. Technical proofs

Proof of Lemma 1. By the classical theory of the Riemann zeta function, ξ > 0

holds on the real line, with asymptotics ln ξ(s) ∼ 1
2
s ln s for s→∞ (Titchmarch,

1986, pp. 29-30). Therefore, as noted by Gröchenig (2020, p. 4), the Fourier

transform of x 7→ 1/ξ(x+ 1
2
) exists, i.e., the integral

f̃(t) =
1

2π

∫ +∞

−∞

exp(itx)dx

ξ(1
2

+ x)
(−∞ < t <∞) (10)

is well-defined. Now, using Euler’s formula

exp(itx) = cos(tx) + i sin(tx), (11)

and the functional equation (3), one observes that

f̃(t) =
1

2π

∫ +∞

−∞

cos(tx)

ξ(1
2

+ x)
dx+

i

2π

∫ +∞

−∞

sin(tx)

ξ(1
2

+ x)
dx︸ ︷︷ ︸

=0

(12)

=
1

2π

∫ +∞

−∞

cos(tx)

ξ(1
2

+ x)
dx. (13)

Thus, the integral in (4) is indeed well-defined. It is shown next that f is analytic.

Take some ε > 0. For z ∈ C such that |Im(z)| < ε, we have∣∣∣∣exp(izx)

ξ(1
2

+ x)

∣∣∣∣ ≤ exp(ε |x|)
ξ(1
2

+ x)
(14)

Moreover, from the beforementioned asymptotics of ξ on the real line,

exp(ε |x|)
ξ(1
2

+ x)
= O

(
exp

(
|x|
(
ε− lnx

2

)))
. (15)

Focusing on the case |x| ≥ exp(2ε), one observes that the left-hand side of (15) is

asymptotically diminishing at an exponential rate as |x| → ∞, i.e.,
exp(ε |x|)
ξ(1
2

+ x)
= O (exp (−ε |x|)) . (16)

this argument to more general L-functions. Cf., e.g., the discussion in Stark and Zagier (1980).

9



Thus, by Paley and Wiener (1934, Thm. I), f̃ is analytic on R.15 Suppose that

RH holds true. Then, as noted by Gröchenig (2020, Thm. 4), the equivalence

between entire functions of the Pólya-Laguerre type and totally positive functions

(Schoenberg, 1947, 1951) implies that the Fourier transform f̃ is a Pólya fre-

quency function. We have to strengthen this result somewhat. By Edwards (1974,

Sec. 2.8), the “shifted”ξ-function admits the Hadamard product representation

ξ(s+ 1
2
) = ξ(1

2
)
∏

ρ

(
1− s

ρ− 1
2

)
es/(ρ−

1
2
), (17)

where the product runs over the non-trivial zeros of the zeta function. Moreover,

the infinite sum ∑
ρ

1∣∣ρ− 1
2

∣∣ (18)

diverges. Hence, using Schoenberg and Whitney (1953, Thm. 1), f̃ is even a

proper Polya frequency function. In particular, f̃ is globally positive by definition,

and logconcave by Schoenberg (1951, Lemma 1). Next, it is claimed that f̃ is

diminishing at an exponential rate. One notes that

f̃(0) =

∫ +∞

−∞

dx

ξ(1
2

+ x)
>

∫ +∞

−∞

cos(x)dx

ξ(1
2

+ x)
= f̃(1). (19)

Therefore, ln f̃(0) > ln f̃(1), so that the logconcavity of f̃ implies that f̃ is indeed

tending to zero at an exponential rate. It remains to be shown that
∫ +∞
−∞ f(t)dt = 1.

As f̃ is positive and exponentially diminishing, it is absolutely integrable. Hence,

from the Fourier inversion theorem (cf. Rudin, 1974, Thm. 9.11),∫ +∞

−∞
f̃(t)dt =

1

ξ(1
2
)
. (20)

Thus, f = ξ(1
2
)f̃ is indeed a probability density function. This completes the proof

of the lemma. �
15Alternatively, the analytic nature of f̃ on the strip |Im(z)| < ε may be deduced directly from

(16) using the conditions put forward by Mattner (2001).
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Proof of Lemma 2.16 FixW > 0. As pointed out in the body of the paper, there

is at least one (even symmetric) mixed-strategy Nash equilibrium µ∗ = (µ∗1, µ
∗
2)

in G(W ). As F is analytic on the real line, so are expected payoffs against µ∗1,

considered as a function of x2 (Ewerhart, 2015). Moreover, expected payoffs are

positive for x2 = 0, and negative for x2 suffi ciently large, hence not constant.

Therefore, exploiting the general properties of analytic functions, there is a finite

set S of pure strategies such that any pure best response is contained in S. Clearly,

µ∗2 is a mixed best response to µ
∗
1. Hence, the support of µ

∗
2 is finite and contained

in S. Suppose there exists another equilibrium µ∗∗ = (µ∗∗1 , µ
∗∗
2 ) in G(W ). By

subsidizing each player with the effort of the opponent, the game G(W ) can be

shown to be strategically equivalent to a two-person constant-sum game, which

implies interchangeability. Therefore, µ∗2 is a best response also to µ
∗∗
1 . Consider

the set of pure strategies S ′ = {y1 > y2 > . . . > yK} in the support of either µ∗1 or
µ∗∗1 .

17 It is claimed now that the system

M


q1
...
qK
−Π/W

 =
1

W


1
...
1

yK−1
yK

 ∈ RK+1, (21)

16Offered is merely a brief summary of the main arguments establishing Lemma 2. For addi-
tional details, the reader is referred to the original work by Ewerhart (2021, Thm. 1 and Lemma
B.7).
17One can show that yK = 0.
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with the square matrix M ∈ R(K+1)×(K+1) defined by

M =



f(y1 − y1)︸ ︷︷ ︸
=f(0)

· · · f(y1 − yK−1) f(y1 − yK) 0

...
. . .

...
...

...
f(yK−1 − y1) · · · f(yK−1 − yK−1)︸ ︷︷ ︸

=f(0)

f(yK−1 − yK) 0

F (yK−1 − y1) · · · F (yK−1 − yK−1)︸ ︷︷ ︸
=1/2

F (yK−1 − yK) 1

F (yK − y1) · · · F (yK − yK−1) F (yK − yK)︸ ︷︷ ︸
=1/2

1


, (22)

admits at most one solution. Indeed, subtracting the last row from the second-to-

last row leads to

detM =

∣∣∣∣∣∣∣∣∣
f(y1 − y1) · · · f(y1 − yK)

...
. . .

...
f(yK−1 − y1) · · · f(yK−1 − yK)

F (yK−1 − y1)− F (yK − y1) · · · F (yK−1 − yK)− 1
2

∣∣∣∣∣∣∣∣∣ . (23)

Next, developing the determinant along the last row yields

detM =
∑K

k=1{(−1)k+K(F (yK−1 − yk)− F (yK − yk)) (24)

×

∣∣∣∣∣∣∣
f(y1 − y1) · · · f(y1 − yk−1) f(y1 − yk+1) · · · f(y1 − yK)

...
...

...
...

f(yK−1 − y1) · · · f(yK−1 − yk−1) f(yK−1 − yk+1) · · · f(yK−1 − yK)

∣∣∣∣∣∣∣}.
Using

F (yK−1 − yk)− F (yK − yk) =

∫ yK−1

yK

f(t− yk)dt (k ∈ {1, . . . , K}), (25)

this becomes

detM =

∫ yK−1

yK

∣∣∣∣∣∣∣∣∣
f(y1 − y1) · · · f(y1 − yK)

...
. . .

...
f(yK−1 − y1) · · · f(yK−1 − yK)
f(t− y1) · · · f(t− yK)

∣∣∣∣∣∣∣∣∣ dt. (26)

As f is a proper Pólya frequency function, the determinant in (26) is seen to be

positive for any t ∈ (yK , yK−1). Hence, detM > 0. In particular, M is invertible,

as claimed. It follows that there is at most one equilibrium. �
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