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Population forecasts are crucial for many social, political and economic decisions. Official

population projections rely in general on deterministic models which use different scenarios

for future vital rates to indicate uncertainty. However, this technique shows substantial

weak points such as assuming absolute correlations between the demographic components.

In this paper, we argue that a stochastic projection alternative, with no a priori assumptions

provides point forecasts and probabilistic prediction intervals for demographic parameters in

addition. Age-sex specific population forecast for Germany is derived through a stochastic

population renewal process using forecasts of mortality, fertility and migration. Time series

models with demographic restrictions are used to describe immigration, emigration and time

varying indices of mortality and fertility rates. These models are then used in the simulation

of future vital rates to obtain age-specific population forecast using the cohort-component

method. The consequence for the German pension system is discussed. To maintain the

actual average pension level the premium rate of the present system rises at least by 50% as

the old-age ratio nearly doubles by 2040.
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1 Introduction

Population forecasts are crucial for many social, political and economic decisions, such as the

financing of pension and health systems, labour market development or education planning.

Conventional population projections rely on deterministic models which mainly use three

different scenarios for future vital rates to indicate uncertainty. The demographic factors

(such as population size and its age structure) in each scenario are obtained by an extrapo-

lation of the actual values using the assumed scenario parameters which are pre-specified by

the demographers. The forecast interval of the demographic factors is then defined by the

combination of the scenarios. However, this technique faces substantial difficulties. Firstly,

in the deterministic models one cannot assign any access probability to the various sce-

narios, so that the resulting population size occurs with the same probability in its whole

interval. Secondly, the deterministic models assume a perfect but unrealistic correlation

between the demographic components which in consequence leads to wide forecast intervals.

Furthermore, the forecasted ranges for age group size, population size and age ratios are not

probabilistically consistent with one another.

In the recent past, demographers and statisticians developed alternative methods which al-

lowed for stochastic population forecasts, aimed at calculating confidence intervals for every

demographic factor of interest and assigning access probabilities for diverse scenarios. Alho

and Spencer (1985), Pflaumer (1988) and Lee and Tuljapurkar (1994) provided a stochastic

population projection for the USA, Keilman (2002) showed a probabilistic population fore-

cast by the case of Norway.

A detailed discussion of the deterministic and stochastic methods and a comparison of both

methods can be found by Lee (1998) and Babel (2007). A detailed summarization of sta-

tistical methods applied on forecasting demographic variables can be found by Girosi and

King (2008).

The stochastic approach was firstly applied on German data by Lutz and Scherbov (1998),

their method combines assumptions of experts on the demographic parameters with an

estimation of the probability distribution using a simulation method. They estimate the

Total Fertility Rate (TFR), net migration and life expectancy by a normal distribution. Lipps

and Betz (2005) provide a separate stochastic forecast for former East and West Germany
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using time series models. They apply the Lee-Carter model for mortality, model the TFR by a

Random-Walk process and choose a standard autoregressive process to describe the migration

level. Babel (2007) compares deterministic and stochastic models for population forecasting

applied on East and West German data. In his work, he applies an analogue model to Lipps

and Betz (2005) for fertility rates, forecast mortality via panel data procedures and applies

a modified Lee-Carter approach on migration.

Our work join these recent developments and perform a stochastic population forecast for

up-to-date German data. We apply the classical Lee-Carter method to forecast mortality

and modify it for fertility projection. Net migration is modelled as a difference of the

immigration and emigration process, we estimate the distribution of migrants age by a

nonparametric technique. The forecasts of vital rates are combined in the population renewal

process using the cohort-component method to estimate the population size and its structure.

Furthermore, probabilistic confidence intervals and the distribution of forecasts are generated

by scenario simulation. We compare our forecast with the deterministic population forecast

of the Federal Statistical Office. To show the consequence of the shrinking and ageing

population for the German pension system, on one hand the minimal premium rate, required

to maintain the actual pension level is estimated with its prediction intervals. On the other

hand, the future pension level with its confidence intervals is estimated in case the actual

premium rate will be fixed.

The paper is structure as follows. In Section 2 we present the modelling of the age-specific

mortality where we use the known method developed by Lee and Carter (1992). Section 3

concentrates on the modelling of fertility using a similar method as was used for mortality

applied to the age-specific fertility rates. In Section 4 the statistical model for migration is

presented. The kernel density estimator is used to estimate the age density of immigrants and

emigrants, the level of in-moving and out-moving population is modelled by the appropriate

time series processes. In Section 5 we describe the population renewal process using the

cohort-component method and present the results of the population size, age structure and

the age ratios. In Section 6 the consequence for the German pay-as-you-go pension system

is discussed. Section 7 concludes the paper. The computations in this paper were made in

Matlab 7.0.0 and R version 2.8.1.
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2 Mortality

Due to the medical progress and the improvement of living conditions life expectancy in

Germany increased substantially during the second half of the 20th century. Female life

expectancy at birth rose from 70.9 years in 1956 to 82.3 years in 2006, male life expectancy

at birth increased from 65.9 to 77.2 years in the same period. Beyond the changes in mortality

(and the related life expectancy) in the time period, mortality changes in various age groups

can also be observed. To be able to forecast mortality one needs to separate the variations

in time and over age. In order to do that we use the model published by Lee and Carter

(1992), which is described in the Subsection 2.2. The next subsection presents the available

mortality data for Germany.

2.1 The Historical Mortality Data for Germany

For the analysis of mortality the annual age-specific periodic central death rates are used,

defined as the number of deaths per 1000 living individuals, per one calender year. The

annual age-specific death rates for the entire German population are available since German

unification for years 1991 to 2006. For the period from 1956 to 1990 data for the Federal

states in former West Germany and those in former East Germany are available only as

separate data. All death rates series are issued by the Human Mortality Database (HMD;

www.mortality.org) which offers interpolated annual rates (from the life tables published

every 2 years by the Federal Statistical Office) for both genders, categorised in one-year age

groups as {< 1, 1, 2, . . . , 108, 109,≥ 110 = ω}. Due to the small number of individuals of old

age missing and inconsistent values (> 1) occur pretty often in the age groups older than

90. To remove them we use the linear interpolation approach assuming the mortality rate in

the age group 110+ equals 1 and replacing all rates between the first missing or inconsistent

value and the oldest age group by linear interpolation. For our data, modification of the

life table in this way only negligibly alters the projected population over the sample period.

The age groups older than 90 built in 2007 less than 1 % of the total population.

Figure 1 shows the logarithmic male and female death rates versus age groups for former

West (circles) and East Germany (triangles). Comparing the rates in 1990 and 2006 one can
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Figure 1: Logarithmic death rates versus age group(0-110) for males (upper figures) and

females (bottom figures) in 1990 and 2006 for former West Germany (circles) and East

Germany (triangles).

observe that the mortality behaviour in East Germany adapted the mortality circumstances

seen in West Germany. We take this convergence as a given and hereafter use the West

German data only in the model. The projected death rates are assumed to be identical for

the East German population. For further comparison of mortality behaviour in West and

East Germany see Lipps and Betz (2005).

2.2 Lee-Carter Model for Mortality Data

Mortality varies in time and over age groups. Figure 2 shows a surface of logarithmic death

rates versus age groups and calender year for males and females. Strongly declining infant

mortality in the last 50 years for both genders can be regarded as well a shift in death rates

in all age groups. There is a significant “accident bump” in male mortality between the ages
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of 18 and 22, a phenomenon also observed by Dinkel and Luy (1999) and Diekmann et al.

(2000).

Figure 2: Logarithmic death rates for males (left figure) and females (right figure) versus

age (0-110+) and calendar year (1956-2006).

To model and forecast the variation of mortality over age and time we use the well-known

model proposed by Lee and Carter (1992). Let mx,t be the (p × Tm)-matrix of central

death rates for age groups x = {< 1, 1, . . . , 109,≥ 110 = ω}, p = ω + 1, in years t =

{1956, . . . , 2006}, Tm = 2006 − 1956 + 1 = 51. To separate the time dependent part from

the age-specific components, we fit the data matrix by the following model:

log(mx,t) = ax + bxkt + εx,t (1)

with age specific parameters ax and bx and a time varying index kt. The error term εx,t with

assumed E(εx,t) = 0 and Var(εx,t) = σ2
ε , reflects irregular age-time variations which arise

mainly from particular (historical) circumstances. The exponential curve exp(ax) describes

the general shape of mortality whereas the parameter bx tells us how fast the rates decline

in response to changes in kt, which follows from the first derivative

(
d

dt
log(mx,t) = bx

dk

dt

)
.

As the model (1) is overparametrized one must set restrictions on the parameters to find

an unique solution. We assume bx to sum to unity over age groups and kt to sum to zero
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over time. This simply implies for âx =
1

Tm

2006∑
t=1956

log(mx,t). To derive the factors kt and bx

the singular value decomposition (SVD) method can be applied on the matrix M(p× T ) of

logarithmic death rates after the averages over time have been subtracted. The matrix M

can be decomposed as follows:

M = [log(mx,t) − âx] = Γ Λ ∆> , (2)

where Γ(p× r) and ∆(Tm× r) represents column orthonormal matrices with r = rank(M) =

Tm for our data set. Λ = diag(λ
1/2
1 , . . . , λ

1/2
r ) is a diagonal matrix with non-zero eigenvalues

λi , i = 1, . . . , r of the matrices M>M and MM>, see Härdle and Simar (2007) for further

explanation. The (Tm × 1) vector kt is the first column vector of matrix ∆, consisting of

eigenvectors of matrices M>M and MM>, multiplied with the largest eigenvalue λ1. The

first (p × 1) vector of Γ after standardisation corresponds to the vector of the age-specific

parameter bx.

Figure 3 plots the estimated indices km
t and kf

t for males and females, respectively (the

forecasts are displayed as well). As shown, k declines roughly linearly in the plotted time

period for both genders. For a deeper discussion of the reasons and for this decline and a

correlation with macroeconomic factors, see Hanewald (2009).

Having developed and fitted the Lee-Carter model, we are now able to perform the forecast

of mortality rates. First an appropriate time series model has to be found for kt applying

the Box-Jenkins analysis, see Hamilton (1994). The time series kt is not stationary so we

check whether the process of first differences k̃t = ∆kt is a stationary process. In order to

do that, the Augmented Dickey-Fuller test (ADF) with an included constant is applied, see

Hamilton (1994):

∆k̃t = α + ρk̃t−1 +

p−1∑
i=1

γi∆k̃t−i + εt . (3)

The test statistics are for males Am = −5.96 and for females Af = −4.76 with 5% critical

value -1.95. We reject the null hypothesis of the unit root H0 : ρ = 0 and hence k̃t for males

and females can be assumed as a stationary process. This result can be verified by using the

KPSS test:

k̃t = c + µt + k
t∑

i=1

ξi + ε. (4)
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Figure 3: Time-varying index kt from 1956 – 2006 and the forecasts to 2056 with 95%-

confidence intervals for males (blue) and female (red).

For both genders, we accept the null hypothesis of stationarity, the test statistics for the

constant c are Km = 0.38 and Kf = 0.26 with a 5% critical value 0.46. The KPSS test

statistics for trend µ are following: Km = 0.09 and Kf = 0.08 with the 5% critical value

0.15.

The sample Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF)

of the integrated series k̃t are close to zero, see Appendix 8, which denotes a white noise

process of the differenced series. For that reason an Autoregressive Integrated Moving Av-

erage (ARIMA) process of order (0,1,0) is chosen as suitable to model both indices km and

kf . In the next step we provide a simple t-test whether a constant term δ should be added

to the model. The absolute values of the test statistics (6.13 and 5.07) are larger than the

95%-quantile of the t-distribution with Tm − 2 = 49 degrees of freedom (t0.95;49 = 1.68) so

that we reject the null hypothesis H0 : δ = 0 for both genders.

Therefore, the fitted model for the time-varying indices is a random walk with drift:

kt = δ + kt−1 + ut , (5)
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with ut being the white noise and δ denoting the drift parameter. The estimated model over

the time period is:

km
t = −1.83 + km

t−1 + um
t with σ̂um = 3.11 for males,

kf
t = −2.14 + kf

t−1 + uf
t with σ̂uf = 3.26 for females.

(6)

The constant terms -1.83 and -2.14 represent the average annual change in km and kf , re-

spectively. σ̂u denotes the standard deviation of the white noise process ut.

The forecast for k in the year l + Tm follows a straight line:

kTm(l) = cT + l · δ l = 1, 2, . . . , (7)

with the constant cT depending on the starting point T and the trend term in the ARIMA

process δ. We choose the last observed point of the mortality index to be the starting point cT

for the forecast. The estimated indices km and kf to 2056 with their 95%-confidence intervals

are shown in Figure 3. After computing the future values for k we can now generate forecasts

of the central death rates. For purposes of clarity life expectancy at birth to 2056 for both

genders has been estimated, see Figure 4. Life expectancy shows an increasing trend, it

grows in mean to 83.2 years for men and 89.1 years for women in 2056 compared to 77.2

and 82.3 years in 2006, respectively. As expected the forecasted values for females lie with

a high probability above the forecasted male values.

3 Fertility

Fertility in Germany passed through a dynamic development in the last century. Concerning

Total Fertility Rate (TFR), which represents the average number of children that a woman

is expected to bear during her child-bearing years, Figure 8 shows that its maximum lies in

1964 with 2.5 children per woman and drops to its minimum of 1.3 children in 1985. Two

structural breaks can be observed in TFR progression: the baby boom period of very high

fertility from 1954 to 1966 followed by the strong baby bust starting in 1968 as the pill took

effect.
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Figure 4: Life expectancy from 1956 – 2006 for males(blue) and female(red) and the forecasts

to 2056 with 95%-confidence intervals generated with 5000 simulations.

3.1 The Historical Fertility Data for Germany

To measure fertility we use the annual age-specific fertility rates (ASFRs) defined as the

number of births from mothers at the age x per 1000 women at the same age, per one calender

year. The sum of the ASFRs over age x related to one women gives the TFR described above.

As for the mortality data, the annual ASFRs for the entire German population are available

for years 1991 to 2006. Only separate data for former West and former East Germany are

available for the calender years from 1950. All fertility rates were obtained from the Federal

Statistical Office which provides fertility rates for mothers from the age of 15 to the age of

49. As the data are calculated from the actual numbers of births and the population size

the data sets do not contain any missing data.

Figure 5 shows the fertility rates versus age for former West (blue line) and East Germany

(red line). Comparing the rates in 1990 and 2007 one can observe the fertility behaviour

of East German women adapted in these 15 years the fertility behaviour of West German

women: the women in East Germany have their children at an older age and the number

of children declines. We assume this adaptation to continue in the future as well and use
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Figure 5: Age-specific fertility rates versus mothers age (15-44) in 1990 (left figure) and 2007

(right figure) for former West Germany (blue) and East Germany (red).

hereafter in the model the West German data only. The forecasted fertility rates are assumed

to be identical for both parts of the German population.

3.2 Lee-Carter Model for Fertility Data

As shown in Figure 6 the fertility rates change in time and over the mothers age. A large peak

of the baby boom children could be seen in the late 50s and and 60s as well the maximum

of children born shifting to an older age of the mother since 1990.

To describe the variation in fertility over mothers age and time, we apply the Lee-Carter

model discussed in Subsection 2.2 to the (q × Tf ) matrix of ASFR fx,t for mothers of age

x = {15, 16, . . . , 49}; q = 49 − 15 + 1 = 35 in calender years t = {1950, 1951, . . . , 2007};
Tf = 2007 − 1950 + 1 = 58. The Lee-Carter model for fertility is:

fx,t = ax + bxft + εx,t (8)

with identical assumptions as in Subsection 2.2. For fertility rates, one does not use logarith-
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Figure 6: Fertility rates versus mothers age (15-49) from 1950-2007 for former West Germany.

mic rates in the model, as the fertility rates achieve large values between 0.2 (for mothers at

age 47 or more) and 178 (for mothers at bearing age). The derivation of the age-specific pa-

rameter bx and fertility index ft is provided by the SVD of the (q×Tf ) matrix N = fx,t− âx,

after estimating âx as the mean value of ASFR over the time period Tf , see Subsection 2.2.

Summing both sides of the equation (8), one gets: TFRt = A + ft + Et, where A =
49∑

x=15

âx

and Et =
2007∑

t=1950

εx,t. Thus, the fertility index ft can be interpreted as a deviation of the TFR

in period t from its long term average A.

To provide time series analysis it will be convenient to work with the fitted value of the

TFR: Ft = A + ft, where ft fluctuates around zero. To ensure a demographically plausible

forecast of fertility, Lee (1993) suggests incorporating pre-specified lower and upper bounds

on the TFR directly into the modelling process. Denoting L and U as the lower and upper

12



bounds, respectively, let us define a transformed fertility process g as follows:

gt = log

(
Ft − L

U − Ft

)
. (9)

After the series g was modelled and forecasted one obtains the forecast for Ft by inverse

transformation from g:

Ft =
U · exp(gt) + L

1 + exp(gt)
. (10)

It is obvious that as g goes to infinity, F goes to the upper bound U ; as g goes to negative

infinity, F goes to the lower bound L. Due to this characteristic of the logistic transform,

the forecast and its confidence interval falls within these limits.

For the German data, the bounds were set on TFR to lie between 0 and 5. Furthermore, we

do not assume any structural breaks for the fertility process in the future, for the analysis

we consider the fertility rates only after the pill took effect, i.e. from 1976 to 2007. Realising

the Box-Jenkins analysis for the transformed index g (see Figure 7), we first test whether

gt is a stationary process providing the ADF test including a drift term, see (3). The test

statistic equals -2.81 with a 10% critical value -2.60, so that we reject the null hypothesis

of unit root. We can validate our result by the KPSS test for stationarity, see (4), which

has the test statistics 0.16 for trend µ and 0.13 for the constant c. Both values are close to

zero so that we cannot reject the null hypothesis of stationarity. Analyzing the sample ACF

and PACF functions of series gt and rejecting the t-test for zero intercept δ (see Appendix

8) a simple Autoregressive Moving Average model (ARMA) of order (1,1) was chosen as the

appropriate model. The general formula of an ARMA(1,1) process is:

gt = δ + φ gt−1 + θ ut−1 + ut , (11)

with intercept δ, AR-parameter φ, MA-parameter θ and innovations ut following the white

noise process: ut ∼ (0, σ2
u). The fitted model for g is then:

gt = −0.96 + 0.51 gt−1 + 0.33 ut−1 + ut , (12)

with ut ∼ (0, σ̂2
u = 9.22 · 10−4). The forecast of an ARMA process decays geometrically at

the rate of the AR-parameter toward the unconditional mean µ̂ =
δ

1 − φ
. The point forecast

for g with its 95% confidence interval is shown in Figure 7.
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Figure 7: Transformed fertility index from 1976 – 2007 and the forecast to 2058 with the

95%-confidence interval.

Using equation (10), the forecast of gt can be easily converted into the forecast for Ft or

ft = Ft −A, respectively. Figure 8 shows the TFR with the forecast and its 95%-confidence

interval.

4 Migration

The third demographic variable involving the structure and size of the population is popu-

lation migration. The number and age of immigrating and emigrating people is influenced

on the one hand by many political, economic, demographic and ecological factors in migra-

tion countries. On the other hand, the number of immigrants is affected by the migration

policy and the development of the labour market in Germany as a destination country for

migration.

14



1960 1980 2000 2020 2040 2060

1.
0

1.
5

2.
0

2.
5

3.
0

Total Fertility Rate

Year

T
F

R
(t

)

Figure 8: Total Fertility Rates from 1950 – 2007 and the forecast to 2057 concerning data

from 1976 only (dotted red line) with the 95%-confidence interval.

4.1 Historical Migration Data for Germany

After the World War II and foremost after the construction of the Berlin Wall 1961 until its

fall in 1989, migration from and into the former German Democratic Republic was strongly

regulated. Indeed, official statistics do not show the realistic, larger numbers of emigrants

from East Germany to West Europe or to the USA. For this reason, we consider migration

data before 1990 from the former West Germany only. Since the German unification in

1990 until 2007, we use the migration information for whole of Germany. The numbers of

migrants are available for age groups {< 1, 1, . . . , 89, 90+}. The data was provided by the

German Federal Statistical Office.

The total number of immigrants, emigrants and their difference are shown in Figures 9 for

males and in Figure 10 for females. Both immigration processes are defined by strong past

fluctuations. One can observe two big peaks in the immigration processes in 1990 and 1992

corresponding to the large number of Russian and Rumanian Germans which immigrated into

Germany after the Iron Curtain fell in Eastern Europe. More than 7 million people came to

Germany between 1989 and 1993 as an effect of the open borders in Eastern Europe. In 1993
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Figure 9: Level of net migration (solid line), immigration (dashed line) and emigration

(dotdashed line) for males from 1980 – 2007.
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Figure 10: Level of net migration (solid line), immigration (dashed line) and emigration

(dotdashed line) for females from 1980 – 2007.

German policy reacted with stricter asylum laws which rapidly brought down the number

of immigrants. After 1998 the level of immigrants stabilised at around 500 thousands for

16



males and 350 thousands for females becoming a downward trend since 2001. In our model,

we assume the validity of the asylum laws from 1993 in the future and herewith consider the

consistent immigration process only from 1994 to 2007.

In contrast, the emigration process behaves more constantly for both genders. There is an

increase in emigrating males after 1990 so that net migration decreased to closed to zero in

1998 and 2006. The development of emigrating females fluctuates around its mean value of

230 thousands people with a small bump of more than 280 thousands in 1998. The behaviour

of the stable number people moving out of a country over a time period is called a “base

emigration”.

With the decreasing immigration level and a stable “base emigration” one observes a slight

decreasing trend in net migration since 2001.

4.2 Modelling of Migration Data

In our model of the migration process we treat the in-migration and the out-migration for

both genders separately and assume them to follow a stochastic process. Beside the levels of

the immigrating and emigrating population, we focus on the age structure of individuals mov-

ing. In contrast to the mortality and fertility process, there is no trend in the age structure of

the moving population in the observed time period. Figure 11 shows the estimated age den-

sity of immigrating people from 1994 until 2007, Figure 12 displays the estimated density for

emigrants between 1980 and 2007. The kernel density estimator f̂h(x) = 1
nh

n∑
i=1

K

(
x − xi

h

)
,

with bandwidth h, number of observations n and kernel function K, was used to derive the

density in each calender year of the time period. The Gaussian kernel function was chosen

as appropriate, the bandwidth selection followed the Silverman’s rule of thumb, see Härdle

and Werwatz (2004).

Neither in the in-moving nor in the out-moving population any significant change in the age

of the migrants can be found, as shown in Figures 11 and 12. The majority of immigrating

men are between 20 and 40 years old. The variance of age in immigrating women is smaller,

most of them are between 19 and 30 years old.
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Figure 11: Estimated density of age of male (left figure) and female (right figure) immigrants

in the time period 1994-2007.

Figure 12: Estimated density of age of male (left figure) and female (right figure) emigrants

in the time period 1980-2007.

The age of the emigrating population has a stable distribution over the time period, out-

moving men are mainly between 20 and 45 years, most of the out-moving women are between

20 and 30 years.

To forecast the migration process we first model the level of the immigrating and emigrating

people with a suitable time series model. After the estimation of model parameters we are

able to construct a forecast for the number of in-moving and out-moving people. In each

forecasted calender year the number of immigrating and emigrating people in the single age

18



group is estimated by the kernel density estimator of the migrants’ ages from 2007. The

number of net migrants is then calculated as the difference between the immigrants and

emigrants in each age group.

Series p-value

imt < 0.01

ift 0.04

em
t 0.57

ef
t < 0.01

Table 1: p-values for the ADF unit root test including an intercept and a drift term.

The first step of the analysis consists of a verification of the stationarity of the time series.

Table 4.2 shows the p-values of ADF unit root test, see (3). KPSS test statistics for constant τ

and trend µ with corresponding critical values are shown in Table 4.2. Hence, we can assume

that the immigrating process for both genders and the emigrating process for females are

stationary. In the case of emigrating men, the null hypothesis of unit root was not rejected

but the KPSS test accept the null hypothesis of stationarity. For that reason we can assume

stationarity for this process as well.

KPSS for τ KPSS for µ

Series KPSSstat KPSSCV(α) KPSSstat KPSSCV(α)

imt 0.200* 0.216 (1%) 0.396* 0.347 (10%)

ift 0.206* 0.216 (1%) 0.417* 0.463 ( 5%)

em
t 0.116* 0.146 (5%) 0.287* 0.347 (10%)

ef
t 0.133* 0.146 (5%) 0.351* 0.463 ( 5%)

Table 2: KPSS test statistics (KPSSstat) for the constant τ and for the trend µ with

corresponding critical values on the significance level α (KPSSCV). The symbol ∗ denotes

the accepting of stationarity hypothesis in KPSS test.

Analysing the sample ACF and the PACF of the time series it and et and testing estimated

parameters against zero, see Appendix 8, the autoregressive process (AR) of order 1 was
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chosen as the appropriate time series model for the immigration and emigration processes

for both genders. The AR(1) process has a general form:

yt = δ + φyt−1 + εt ,

with intercept δ, parameter φ and innovations εt which follows a white noise process: εt ∼
(0, σ2

ε).

The fitted model for the process of immigrants number (in thousand), denoted with it is

then:
imt = 562.85 + 0.94 imt−1 + εm

t with σ̂um = 52.52 for males,

ift = 377.93 + 0.94 ift−1 + εf
t with σ̂uf = 31.18 for females.

Analogous, the fitted model for the process et of number of emigrants (in thousands) follows:

em
t = 359.76 + 0.86 em

t−1 + εm
t with σ̂um = 42.70 for males,

ef
t = 227.55 + 0.60 ef

t−1 + εf
t with σ̂uf = 26.07 for females.

Fitted models confirm the facts one could observe in Figures 9 and 10: the emigration level

is lower than the immigration one and the variance of the emigration process is substan-

tially smaller then the variance of the strong fluctuating immigration process, considered for

separated genders.

The forecast of the stationery AR(1) process decays geometrically with increasing forecast

horizon toward its unconditional mean µ =
δ

1 − φ
.

5 Population Projection

After estimating of models for the demographic processes of mortality, fertility and migration

it is possible to construct the stochastic population forecast. The projection is performed by a

cohort-component-method which creates a matrix of survival probabilities and fertility rates

(so-called Leslie matrix, named after Leslie (1945) who invented the matrix representation

in the population forecasting) and a vector of net migrants for each forecasted calender year,

see Diekmann et al. (2000).
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5.1 Cohort-Component-Method

The definition of variables for the matrix notation of the cohort-component-method is as

follows:

- NM
x,t or NF

x,t as the male or female population count, respectively, of the age group x in

year t,

- Fx,t as the age-specific fertility rate for mother of age x in year t which corresponds to

the ASFR related to one women,

- PM
x,t or P F

x,t as the probability for men or women, respectively, of the age x to reach

the next year t + 1, defined as: px,t =
(1 − qx,t) · (1 − qx+1,t+1

2
)

1 − qx,t

2

with the probability of

death: qx,t =
2mx,t

2 + mx,t

.

- NIM
x,t or NIF

x,t as the number of male or female net migrants, respectively, of the age x

in year t

- s = 0.4854 as the sex ratio at birth taken as 100 newborn girls to 106 newborn boys,

which corresponds to the historical average value for Germany.

Given the population in the calender year t one calculates the female population on the next

year t + 1 as follows:

NF
1,t+1

NF
2,t+1
...
...

NF
x,t+1
...
...

NF
k,t+1


=



0 . . . s · F15,t . . . s · F49,t 0 . . . 0

PF
1,t 0 . . . . . . . . . 0 . . . 0

0 PF
2,t

. . . 0 . . . 0 . . . 0

0 . . .
. . . 0 . . . 0 . . . 0

...
...

...
...

...
. . . . . . 0

0 0 . . . . . . . . . 0 PF
k−1,t 0


·



NF
1,t

NF
2,t
...
...

NF
x,t
...
...

NF
k,t


+



NIF
1,t

NIF
2,t

...

...

NIF
x,t
...
...

NIF
k,t


.
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The calculation of the future male population proceeds analogously; indeed there are no

fertility rates in the Leslie matrix and the male newborns are calculated as:

(1 − s)
49∑

x=15

·Fx,t · NF
x,t .

In our model, we assume that all births, deaths and migrations happen on one day at the

end of each year. As our interest lies in the forecast for a larger time span, this assumption

only alters the results negligibly. In addition, our cohort-component-model assumes that the

immigrating population adapts directly to the mortality and fertility conditions prevalent

in Germany. We are compelled to adhere to this assumption due to the lack of available

fertility and mortality data on foreign immigrants. As a starting population, we use the

population structure in Germany from the 01.01.2007 obtained from the Human Mortality

Database so that we are able to apply the estimated mortality rates for 2007 and combine

them with known fertility rates and migration level. From 2008 on, we use the forecasted

vital rates only for the estimation.

5.2 Results

In the following section the results of the population forecast till 2057 are presented. The

mean projection of the population size with its 95% confidence intervals is listed in Table 3.

The population size decays in mean from 83 m. in 2007 to 76 m. in 2055. The distribution

of the forecasted population size in years 2010, 2025, 2040 and 2055 is shown by histograms

in Figure 13. The forecasting interval grows up with the increasing forecasted time period.

So the 95% interval amounted to 1.5 m. in 2015 increases to almost 8 m. people in 2055.

The rapidly changing structure in the German population is reflected in Figure 14 by the

population pyramids in years 2010, 2025, 2040 and 2055. Population pyramids (with the red

field for female and blue field for male population) display the decreasing number of children

and increasing number of the elderly. For comparison, the population structure from 2007

is shown as the grey pyramid on the background.

In Figure 15, we compare our results with the deterministic forecast of the Federal Statistical

Office, see Stat.Bundesamt (2006b). The lower and upper bound of the middle scenario are
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Year 5%-Quantile Mean 95%-Quantile

2010 81.89 82.13 82.35

2015 81.21 82.00 82.75

2020 80.48 81.81 83.14

2025 79.50 81.44 83.32

2030 78.46 80.88 83.24

2035 77.35 80.20 82.96

2040 76.14 79.44 82.64

2045 74.87 78.52 81.99

2050 73.52 77.36 81.06

2055 71.93 76.02 79.86

Table 3: Projection and its 95% confidence intervals of the population size in selected years.

denoted with the red dash-dotted lines, the upper bound lies in the 95% confidence interval

of our forecast. As well, the extreme scenario with the largest population size (blue dash-

dotted line) falls into our confidence interval. The extreme scenario with smallest population

size and the lower bound of the middle scenario expect a smaller population size than our

model. The reason for that may lie in the assumptions of a low immigration level of 100 000

people per year in both scenarios. The range of the 2 extreme scenarios grows very fast in

the forecasted period and achieves its maximum of 12.5 m. (between 67 and 79.5 m.) citizen

in 2050. For the same forecasted period the range of the confidence interval in our model

amounts to 7.5 m. and indeed, one can assign the probability of 95% to this interval, as for

all estimated demographic factors.
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Figure 13: Histograms of the population size in forecasted years 2010, 2025, 2040 and 2055.

6 Consequence for the German Pay-as-you-go Pension

System

After the World War II, the German pension system was reorganized to a fully pay-as-you-go

financing. Since that time, the German society passed many changes including the German

unification in 1990 after which all citizens from the former German Democratic Republic

were included in the pension system of the old West German states.

The key factor for an efficient pay-as-you-go pension system is the old-age dependency ratio:

the ratio of the elderly population with entitlement to a state pension to the active population
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2010 2025

2040 2055

Figure 14: Population pyramids in forecasted years 2010, 2025, 2040 and 2055. The blue

line denotes male population, the red line female population, dashed lines correspond to the

95%-confidence intervals.

over 20. Figure 16 shows two estimated old-age dependency ratios with their 95% confidence

intervals. The black lines correspond to the ratio of elderly population from 65, the green

lines are corresponding to the ratio with an age limit of 67 years, since the age of retirement

in Germany will be increased to 67 years from 2012. In our model, both ratios increase
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Figure 15: Population size from 1990 – 2006 and its estimate until 2056 (solid line) with

95%-confidence intervals (dashed lines), compared to 4 scenarios of Federal Statistical Office

(red lines denotes the limits of middle scenario, blue lines denotes the maximal and minimal

population size by the combination of all scenarios).

rapidly in the next 50 years. The old-age ratio with the limit 65 years rises from 32% in

2007 into an interval between 54% and 69% in year 2057. The old-age ratio with the limit

of 67 years shows a similar development; it rises from 27% in 2007 to an interval between

46% and 60%. This means that with 95% probability at least one person in retirement age

falls on one person between 20 and 64 years or 66 years, respectively.

To keep the system functioning one of the financial sources – the social system premium

rate, the benefit level or the government subventions into the system – has to change. In

Figure 17, we show estimated minimal required premium rates in case the actual average

benefit level of 720 EUR per months and actual government subventions in the amount of
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Figure 16: Old-age dependency ratio with age limit 65 years (black) and with age limit of

67 years (green) with their 95% forecast intervals.

25% of total revenues of the pension system are maintained. The estimated premium rate

rises from 19.9% in 2007 to the maximal values between 26.0 and 30.1 % in 2040. The slight

decline of the premium rate until 2015 is caused by the increase of the age of retirement to

67 years.

Estimated average benefit level in percent of the average level in 2007 (720 EUR per month)

with its confidence interval is shown in Figure 18. The benefit level drops in mean by 28%

until 2040 if the actual premium rate of 19.9 % and actual government subventions keep

maintained. In our simulations we assumed that the actual circumstances of salary and

employment levels will be maintained. A deeper discussion of the impact of demographic

uncertainty on the public finances can be found by ?.
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Figure 17: Estimated required premium rate in the German Social System with 95% confi-

dence interval.
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Figure 18: Estimated averaged benefit level in percent (2007=100) with 95% confidence

interval.
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7 Conclusion

We have provided a population forecast for Germany using the actual data of age-specific

death rates, fertility rates and migration level. In our model of fertility and mortality, we have

combined the classical approach from Lee and Carter with a time series analysis of the time-

dependent factors of these two demographic variables. To model the migration, we have

combined the appropriate time series models for processes of gender specific immigration

and emigration with a nonparametric age density estimation. We have determined the

forecast of population size and its age structure indicated among others by the old-age

ratio. The consequence for the pay-as-you-go financed pension system is shown on predicted

future premium rate and averaged pension level. For our forecasted factors we can also

produce prediction intervals which take into account all sources of variation and estimate

the distribution of our forecast.
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Müller M. Sperlich St. Härdle, W. and A. Werwatz. Nonparametric and Semiparametric

Models. Springer Verlag, Heidelberg, 2004.

30
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8 Appendix
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Figure 19: Process of the first differences of the index kt for males (blue) and females (red

line).
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Figure 20: ACF (top) and PACF (bottom) for the differentiated processes k̃m
t (left) and k̃f

t

(right).
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Figure 21: ACF (top) and PACF (bottom) for gt.

Coeff. Estimate SE t-statistic P(> |t|)
φ 0.511 0.185 2.755 0.006 *

θ 0.326 0.161 2.023 0.043 *

δ -0.958 0.014 -68.066 < 0.001 *

Table 4: Estimated parameters for gt as an ARMA(1,1) model.

Coeff. Estimate SE t-statistic P(> |t|)
φm 0.940 0.077 12.194 < 0.001*

φf 0.938 0.080 11.739 < 0.001*

δm 562.848 130.115 4.326 < 0.001*

δf 377.927 74.972 5.041 < 0.001*

Table 5: Estimated parameters for imt and ift as an AR(1) model.
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Figure 22: ACF (top) and PACF (bottom) for immigration processes of males (left) and

females (right).
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Figure 23: ACF (top) and PACF (bottom) for emigration processes of males (left) and

females (right).
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Coeff. Estimate SE t-statistic P(> |t|)
φm 0.859 0.087 9.843 < 0.001*

φf 0.600 0.158 3.809 < 0.001*

δm 359.757 48.059 7.486 < 0.001*

δm 227.554 11.771 19.332 < 0.001*

Table 6: Estimated parameters for em
t and ef

t as an AR(1) model.
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