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Abstract

In this paper, we review the most common specifications of discrete-time stochas-
tic volatility (SV) models and illustrate the major principles of corresponding Markov
Chain Monte Carlo (MCMC) based statistical inference. We provide a hands-on ap-
proach which is easily implemented in empirical applications and financial practice and
can be straightforwardly extended in various directions. We illustrate empirical results
based on different SV specifications using returns on stock indices and foreign exchange
rates.
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1 Introduction

Stochastic volatility (SV) models are workhorses for the modelling and prediction of time-

varying volatility on financial markets and are essential tools in risk management, asset

pricing and asset allocation. In financial mathematics and financial economics, stochastic

volatility is typically modeled in a continuous-time setting which is advantageous for deriva-

tive pricing and portfolio optimization. Nevertheless, since data is typically only observable

at discrete points in time, in empirical applications, discrete-time formulations of SV models

are equally important.
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SV models can be economically motivated by the mixture-of-distribution hypothesis

(MDH) postulated by Clark (1973), whereby asset returns follow a mixture of normal

distributions with a mixing process depending on the (unobservable) information arrival

process. If the mixing process is positively autocorrelated, the resulting return process

reveals volatility clustering which is a well-known and typical feature of financial return

series. The MDH gives rise to the idea that asset return volatility follows its own stochastic

process which is updated by unobservable innovations. This is in contrast to an autoregres-

sive conditional heteroscedasticity (ARCH) model introduced by Engle (1982), where the

conditional variance given the available information set is a function of past observations.

Denote ht as the time-t conditional variance of asset return yt with conditional mean µt

and yt − µt = h
1/2
t zt, zt ∼ IID(0, 1), and let Ft denote the time-t information set. Then,

ARCH processes imply Var[ht|Ft−1] = 0, i.e., the variance is conditionally deterministic

given the (observable) history of the process. Conversely, SV models can be characterized

by the property Var[ht|Ft−1] 6= 0, i.e., there is an unpredictable component in ht.

A main difficulty of the SV framework compared to the widely used (Generalized) ARCH

model is that the likelihood of SV models is not directly available. This requires the use of

simulation techniques, like simulated maximum likelihood, method of simulated moments

or Markov chain Monte Carlo (MCMC) techniques. Because of the computational costs,

SV models are still less popular in financial practice. Nevertheless, increasing computer

power and the further development of efficient sampling techniques weaken this drawback

noticeably. Furthermore, recent literature on the estimation of realized volatility confirms

the idea of the MDH that log returns follow a normal - log normal mixture (see, e.g., An-

dersen, Bollerslev, Diebold & Labys (2003)) and thus strengthens the economic foundation

of the SV model. Finally, SV models provide a natural framework to accommodate spe-

cific properties of financial return processes such as fat-tailedness, leverage effects and the

occurrence of jumps.

The main objective of this study is to present the most important specifications of

discrete-time SV models, to illustrate the major principles of Markov Chain Monte Carlo

(MCMC) based statistical inference, and to show how to implement these techniques to

estimate SV models. In this context, we provide a hands-on approach which is easily

extended in various directions. Moreover, we will illustrate empirical results based on

different SV specifications using returns on stock indices and foreign exchange rates.

In Section 2, we will introduce the standard SV model. Section 3 presents several

extended SV models. MCMC based Bayesian inference is discussed in Section 4, whereas

empirical illustrations are given in Section 5.
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2 The Standard Stochastic Volatility Model

The standard stochastic volatility model as introduced by Taylor (1982) is given by

yt = exp(ht/2)ut, ut ∼ N(0, 1), (1a)

ht = µ + φ(ht−1 − µ) + ηt, ηt ∼ N(0, σ2
η), (1b)

where yt denotes the log return at time t, t = 1, . . . , T , and ht is the log volatility which

is assumed to follow a stationary AR(1) process with persistence parameter |φ| < 1. The

error terms ut and ηt are Gaussian white noise sequences. The unconditional distribution

of ht is given by

ht ∼ N
(
µh, σ2

h

)
, µh = µ, σ2

h =
σ2

η

1− φ2
, (2)

where µh and σ2
h denote the unconditional mean and variance of returns, respectively.

Under the assumption that E[y4
t ] < ∞, the first two even moments of yt are given by

E[y2
t ] = E[exp(ht)]E[u2

t ] = exp(µh + σ2
h/2), (3)

E[y4
t ] = E[exp(2ht)]E[u4

t ] = 3 exp(2µh + 2σ2
h). (4)

Consequently, the kurtosis is

K(yt)
def=

E[y4
t ]

E[y2
t ]2

= 3 exp(σ2
h) = 3 exp

(
σ2

η

1− φ2

)
(5)

with K(yt) > 3 as long as σ2
η > 0. Hence, the kurtosis generated by SV processes increases

with σ2
η and |φ| (given |φ| < 1).

The autocorrelation function (ACF) of y2
t is computed as

Corr(y2
t , y

2
t−τ ) =

exp(σ2
hφτ )− 1

3 exp(σ2
h)− 1

, τ = 1, 2, . . . , (6)

and thus decays exponentially in τ . Consequently, for φ ∈ (0, 1), squared returns are

positively autocorrelated.

The estimation of SV models is not straightforward since the likelihood cannot be com-

puted in closed form. Let θ denote the collection of all model parameters, e.g., θ = (µ, φ, σ2
η)

for the standard SV model. Then, the likelihood function is defined by

p(y|θ) def=
∫

h
p(y|h, θ)p(h|θ)dh, (7)

where y = (y1, . . . , yT ) and h = (h1, . . . , hT ) are the vectors of returns and latent volatility

states, respectively. The so-called full-information likelihood, corresponding to the con-

ditional probability density function (p.d.f.), p(y|h, θ), is specified by (1a), whereas the
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conditional p.d.f. of the volatility states, p(h|θ), is given by (1b). The likelihood function

(7) is an analytically intractable T -dimensional integral with respect to the unknown latent

volatilities. In the econometric literature, several estimation methods have been proposed,

including generalized method of moments (Melino & Turnbull 1990), quasi-maximum like-

lihood estimation (Harvey, Ruiz, & Shephard 1994), efficient method of moments (Gallant,

Hsie, & Tauchen 1997), simulated maximum likelihood (Danielsson 1994) and efficient im-

portance sampling (Liesenfeld & Richard 2003). Markov Chain Monte Carlo (MCMC)

techniques have been introduced by Jacquier, Polson, & Rossi (1994) and Kim, Shephard,

& Chib (1998). More details on MCMC-based inference will be given in Section 4.

3 Extended SV Models

3.1 Fat Tails and Jumps

Though the standard SV model is able to capture volatility clustering typically exhibited

by financial and economic time series, the model implied kurtosis is often far too small

to match the sample kurtosis observed in most financial return series. See, for example,

Liesenfeld & Jung (2000) and Chib, Nardari, & Shephard (2002). An obvious reason is that

a normal - log normal mixture as implied by the standard SV model is not flexible enough

to capture the fat-tailedness commonly observed in financial return distributions. A further

reason is that the basic SV model cannot account for potential jumps in the return process.

In this section, we discuss two SV specifications taking into account both pitfalls. The

first one is an extension of the standard SV model allowing the error term ut to be Student-t

distributed resulting in the so-called SVt model. In the second approach, a jump component

is introduced in the measurement equation in (1). This will lead to the so-called SVJ model.

3.1.1 The SVt Model

The SVt model is specified by

yt = exp(ht/2)ut, ut ∼ tv, (8a)

ht = µ + φ(ht−1 − µ) + ηt, ηt ∼ N(0, σ2
η), (8b)

where ut follows a standardized t-distribution with v > 2 degrees of freedom. The model

can be alternatively represented by a scale mixture of normal distributions. Let λt denote

an i.i.d. random variable following an inverse-gamma distribution. Then, the SVt model

can be rewritten as

yt = exp(ht/2)
√

λtut, ut ∼ N(0, 1), (9a)

ht = µ + φ(ht−1 − µ) + ηt, ηt ∼ N(0, σ2
η), (9b)

λt ∼ Inv-Gamma(v/2, v/2), v > 2, (9c)
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where λt itself is a latent variable. The representation of the SVt model in terms of a scale

mixture is particularly useful in an MCMC context since it converts a non-log-concave sam-

pling problem into a log-concave one. This allows for sampling algorithms which guarantee

convergence in finite time, see ,e.g., Frieze, Kannan & Polson (1994).

Allowing log returns to be Student-t distributed naturally changes the behavior of the

stochastic volatility process. In the standard SV model, large values of |yt| induce large

values of ht. In contrast, with an additional source of flexibility, λt, the SVt model can

caputure large values of |yt| without necessarily increasing ht. A tpyical consequence is

that SVt models imply a higher persistence in volatility dynamics than the standard SV

model.

Employing simulated maximum likelihood methods Liesenfeld & Jung (2000) provide

an estimate ν̂ = 6.31 for the USD/DM foreign exchange (FX) rate from 1980 to 1990, and

a value of 6.30 for the USD/JPY FX rate over 5 years from 1981 to 1985. Chib et al. (2002)

estimate the SVt model based on MCMC techniques and report an estimate ν̂ = 12.53 for

daily S&P 500 returns between July 1962 and August 1997.

3.1.2 The SV Model with Jump Components

The question of to which extent asset return processes are driven by continuous and/or jump

components is an ongoing topic in the current literature. Both (G)ARCH and standard

SV models rest on the assumption of a continuous price process and thus are not able

to accommodate jumps in returns. The latter is particularly important during periods of

news arrivals when the market gets under stress and becomes less liquid. However, the SV

framework allows for a natural inclusion of a jump component in the return process. This

yields the SVJ model given by

yt = ktqt + exp(ht/2)ut, ut ∼ N(0, 1), (10)

ht = µ + φ(ht−1 − µ) + ηt, ηt ∼ N(0, σ2
η), (11)

kt ∼ N(αk, βk), (12)

qt ∼ B(κ), (13)

where qt is a Bernoulli random variable taking on the value one whenever a jump occurs

with probability κ, and is zero otherwise. The jump size is represented by the time-varying

random variable kt which is assumed to follow a normal distribution with mean αk and

variance βk. Both qt and kt are latent variables. Then, the model is based on three latent

components, ht, qt, and kt.

As in the SVt model, the inclusion of a jump component influences the properties of

the stochastic volatility process. Large values of |yt| are now attributed rather to the the
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jump component than to the volatility process. As in the SVt model this typically induces

a higher persistence in the volatility process.

Eraker, Johannes, & Polson (2003) estimate the number of jumps in returns to be

approximately 1.5 per year for daily S&P 500 returns from 1980 to 1999, and 4.4 per year

for NASDAQ 100 index returns from 1985 to 1999. Chib et al. (2002) estimate 0.92 jumps

per year for daily S&P 500 returns covering a period from 1962 to 1997.

Similarly, jump components can be also included in the volatility process in order to

capture instantaneous movements in volatility. Bates (2000) and Duffie, Pan, & Singleton

(2000) provide evidence that both jumps in returns and volatilities are important to ap-

propriately capture the dynamics in financial return processes. For S&P 500 returns from

1980 to 1999, Eraker et al. (2003) estimate 1.4 volatility jumps per year.

3.2 The Relationship Between Volatility and Returns

Studying the relation between expected stock returns and expected variance is a fundamen-

tal topic in financial economics. Though a positive relationship between expected returns

and expected variances is consistent with the notion of rational risk-averse investors re-

quiring higher expected returns as a risk premium during volatile market periods, it is

not consistently supported by empirical research. Whereas French, Schwert, & Stambaugh

(1987) and Campbell & Hentschel (1992) find positive relationships between expected risk

premia and conditional volatility, several other studies find converse dependencies. In fact,

there is evidence that unexpected returns and innovations to the volatility process are neg-

atively correlated. This can be explained either by the volatility feedback theory by French

et al. (1987), or by the well-known leverage effect discussed by Black (1976).

In this section, we will discuss two types of SV models allowing the return and volatility

process to be correlated, namely the SV-in-Mean (SVM) model and the Asymmetric SV

(ASV) model. While the SVM model includes the volatility component directly in the

mean equation, the ASV model allows for mutual correlations between return and volatility

innovations.

3.2.1 The SV-in-Mean Model

The SV-in-Mean (SVM) model is given by

yt = d · ht + exp(ht/2)ut, ut ∼ N(0, 1), (14a)

ht = µ + φ(ht−1 − µ) + ηt, ηt ∼ N(0, σ2
η), (14b)
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where the parameter d captures the relationship between returns and both expected as well

as unexpected volatility components. This can be seen by rewriting (14a) as

yt = d · ht|t−1 + d
(
ht − ht|t−1

)
+ exp(ht/2)ut, (15)

where ht|t−1 denotes the expected volatility defined by the conditional variance at time t

given the information available at time t− 1. Accordingly, the term (ht − ht|t−1) gives the

innovation to the volatility process.

French et al. (1987) regress monthly excess returns of U.S. stock portfolios on both

expected and unexpected volatility components stemming from ARMA models based on

daily data. Excluding the unexpected volatility component results in a weakly positive

relationship between excess returns and volatility. In contrast, including both volatility

components does not only result in a significantly negative impact of the volatility innovation

but also reverses the sign of the ex ante relationship. Hence, the negative relationship

between unexpected returns and innovations to the volatility process seems to dominate

the weaker, presumably positive, relation between the expected components.

3.2.2 The Asymmetric SV Model

Empirical evidence for ’good’ and ’bad’ news having different effects on the future volatility

is typically referred to as the leverage or asymmetric effect. According to the leverage effect,

an unexpected drop in prices (’bad’ news) increases the expected volatility more than an

unexpected increase (’good’ news) of similar magnitude. According to Black (1976) this is

due to asymmetric effects of changes of the firm’s financial leverage ratio. In SV models,

leverage effects are captured by allowing the observation error ut and the future process

error ηt+1 to be correlated. Then, the ASV model is specified by

yt = exp(ht/2)ut, (16a)

ht = µ + φ(ht−1 − µ) + ηt, (16b)(
ut

ηt+1

)
∼ N

{(
0
0

)
,

(
1 ρση

ρση ση

)}
, (16c)

where ρ denotes the correlation between ut and ηt+1.

The ASV model has been extensively studied in the literature. Harvey & Shephard

(1996) estimate the model using quasi-maximum likelihood providing ρ̂ = −0.66 for daily

U.S. stock returns ranging from 1962 to 1987. Based on the same data, Sandmann &

Koopman (1998) and Jacquier, Polson, & Rossi (2004) estimate an ASV specification, where

the contemporaneous return and volatility are correlated. Using simulated MLE methods

and MCMC based Bayesian inference, the two studies provide estimates of ρ̂ = −0.38 and

ρ̂ = −0.48, respectively.
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3.3 The Long Memory SV Model

In the previous sections, we have considered a first order autoregressive process for the log

volatility ht. This induces that the autocorrelations of ht decay geometrically and volatility

is said to exhibit short memory. However, empirical autocorrelations for absolute and

squared returns typically decay more slowly and thus are not geometrically bounded. This

implies so-called long range dependence or long memory effects. See, for example, Bollerslev

& Mikkelsen (1996). One possibility to capture such effects is to allow for fractionally

integrated processes, which have been developed and extensively studied over the last 25

years, see, e.g., Granger & Joyeux (1980), and Beran (1994), among others. Long memory

SV models have been introduced by Breidt, Carto, & de Lima (1998), Harvey (1998), and

Arteche (2004). Then, the log volatility process follows an ARFIMA(p, d, q) process given

by

yt = exp(ht/2)ut, ut ∼ N(0, 1), (17)

φ(L)(1− L)d(ht − µ) = θ(L)ηt, ηt ∼ N(0, σ2
η), (18)

where d denotes the fractional differencing parameter and L denotes the lag operator with

φ(L) = 1−
p∑

i=1

φiL
i, θ(L) = 1 +

q∑
i=1

θiL
i, (19)

and the roots of the polynomials φ(·) and θ(·) lying strictly outside the unit circle. If

d ∈ (−0.5, 0.5), the volatility process reveals long memory and is weakly stationary. The

fractional differencing operator (1− L)d can be expressed in terms of the series expansion

(1− L)d =
∞∑

k=0

Γ(d + 1)
Γ(k + 1)Γ(d− k + 1)

(−1)kLk, (20)

with Γ(·) denoting the gamma function (see, e.g., Beran (1994)).

The autocorrelation of log h2
t is derived, e.g., by Baillie (1996), Breidt et al. (1998),

or Harvey (1998). It is asymptotically proportional to π2d−1, as long as d ∈ (−0.5, 0.5).

Similar asymptotic results are applicable to |yt| and y2
t .

Breidt et al. (1998) estimate the Fractionally Integrated SV (FISV) model by maximizing

the spectral quasi-likelihood and obtain estimates of d = 0.44 and φ = 0.93 for daily returns

of a value-weighted market portfolio of U.S. stocks between 1962 and 1989. Gallant et al.

(1997) use efficient method of moments techniques to provide estimates of d ranging between

0.48 and 0.55 for a series of daily returns from the S&P composite price index ranging from

1928 to 1987. Brockwell (2005) develops an MCMC sampling algorithm for the estimation

of the FISV model and provides d = 0.42 for daily ASD-USD FX rates between 1999 and

2004.
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4 MCMC-Based Bayesian Inference

In this section, we will give a brief review of MCMC-based Bayesian inference and will

illustrate its application to estimate the standard SV model. For an introduction to Bayesian

econometrics, see, for example, Koop (2006) and Greenberg (2008).

4.1 Bayes’ Theorem and the MCMC Algorithm

Let θ denote a vector of model parameters including all latent variables, and let y collect

the observed data. By considering θ to be a random vector, its inference is based on the

posterior distribution, p(θ|y), which can be represented by Bayes’ theorem

p(θ|y) ∝ p(y|θ)p(θ), (21)

where p(y|θ) denotes the likelihood function depending on the model parameters and the

data y. Correspondingly, p(θ) defines the prior distribution reflecting subjective prior beliefs

on the distribution of θ. Consequently, the posterior distribution p(θ|y) can be viewed

as a combination of objective and subjective information. If the prior is noninformative,

Bayesian inference for the parameter vector θ is equivalent to likelihood-based inference.

The principle of MCMC-based Bayesian inference is to simulate p(θ|y) based on a

Markov chain of random draws stemming from a family of candidate-generating densi-

ties from which it is easy to sample. Let x ∈ Rd denote a random variable (in the given

context it corresponds to θ) following a Markov chain with transition kernel p(x, y) cor-

responding to the conditional density of y given x. The invariant distribution is given by

π∗(y) =
∫

Rd p(x, y)π∗(x)dx. An important result in Markov chain theory is that if p(x, y)

satisfies the reversibility condition

f(x)p(x, y) = f(y)p(y, x), (22)

then, f(·) is the invariant density for the kernel p(·), i.e., f(·) = π∗(·).

An important MCMC technique is the Metropolis-Hastings (M-H) algorithm as devel-

oped by Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller (1953) and generalized by

Hastings (1970). The major idea is to build on (22) and finding a reversible kernel whose

invariant distribution equals the target distribution f(·). This is performed by starting

with an irreversible kernel (proposal density) q(y, x) for which f(x)q(x, y) > f(y)q(y, x),

i.e., loosely speaking, the process moves from x to y too often and from y to x too rarely.

This can be corrected by introducing a probability α(x, y) < 1 that the move is made. I.e.,

we choose α(x, y) such that

f(x)α(x, y)q(x, y) = f(y)α(y, x)q(y, x). (23)
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• For g = 1, . . . , G:
1. Generate Y from q(x(j), y) and U from U[0, 1].

2. If U ≤ α(x(j), Y ) = min
{

f(Y )q(Y,x(j))

f(x(j))q(x(j),Y )
, 1
}

Set x(j+1) = Y .
Else

Set x(j+1) = x(j).
3. Return {x(1), x(2), . . . , x(G)}.

Figure 1: The Metropolis-Hasings Sampling Algorithm

It is easily shown that this relationship is fulfilled for

α(x, y) =

{
min

{
f(y)q(y,x)
f(x)q(x,y) , 1

}
, if f(x)q(x, y) 6= 0,

0, otherwise.
(24)

This yields a transition kernel qMH(x, y) satisfying the reversibility condition and is defined

by

qMH(x, y) def= q(x, y)α(x, y), x 6= y. (25)

The resulting M-H sampling algorithm is summarized by figure 1.

A crucial issue is an appropriate choice of the family of candidate-generating densities.

Depending on the form and the complexity of the sampling problem, various techniques have

been proposed in the literature. The probably most straightforward technique is proposed

by Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller (1953) suggesting a random walk

chain, where q(x, y) = q0(y − x), and q0(·) is a multivariate density. Then, y is drawn from

y = x + z with z following q0. If q0 is symmetric around zero, we have q(x, y) = q(y, x)

and thus α(x, y) = f(y)/f/(x). A further simple choice of candidate-generating densities is

proposed by Hastings (1970) and is given by q(x, y) = q0(y), i.e., y is sampled independently

from x resulting in an independence chain. Then, α(x, y) = f(y)/f(x)·q(x)/q(y). A popular

and more efficient method is the acceptance-rejection (A-R) M-H sampling method which

is available whenever the target density is bounded by a density from which it is easy

to sample. If the target density is fully bounded, the M-H algorithm is straightforwardly

combined with an acceptance-rejection step. This principle will be illustrated in more detail

in the next section in order to sample the latent volatility states ht. A more sophisticated M-

H A-R algorithm which does not need a blanketing function but only a pseudo-dominating

density is proposed by Tierney (1994).

If the dimension of x is high, the M-H algorithm is facilitated by applying it to blocks

of parameters. For instance, if the target density can be expressed in terms of two blocks

of variables, i.e., f(x1, x2), the M-H algorithm allows to sample from each block xi given

the other block xj , j 6= i. Then, the probability for moving from x1 to the candidate value

10



Y1 given x2 is

α(x1, Y1|x2) =
f(Y1, x2)q1(Y1, x1|x2)
f(x1, x2)q1(x1, Y1|x2)

. (26)

If the kernel q1(x1, Y1|x2) is the conditional distribution f(x1|x2), then

α(x1, Y1|x2) =
f(Y1, x2)f(x1|x2)
f(x1, x2)f(Y1|x2)

= 1 (27)

since f(Y1|x2) = f(Y1, x2)/f(x2) and f(x1|x2) = f(x1, x2)/f(x2). If f(x1|x2) is available

for direct sampling, the resulting algorithm is referred to as the Gibbs sampler, see (Geman

& Geman 1984).

Applying the M-H (or Gibbs) algorithm to sub-blocks of the vector x is a common

proceeding in Bayesian statistics if the posterior distribution is of high dimension. This

is particularly true for SV models where θ also includes the unobservable volatility states.

In this context, the posterior distribution p(θ|y) is broken up into its complete conditional

distributions p(θi|θ−i, y), i = 1, . . . , N , where N is the number of conditional distributions,

θi denotes the i-th block of parameters and θ−i denotes all elements of θ excluding θi.

The theoretical justification for this proceeding is given by the theorem by Hammersley &

Clifford (71) which is proven by Besag (1974). The intuition behind this theorem is that

the knowledge of the complete set of conditional posterior distributions,

p(θ1|θ2, θ3, . . . , θk, y),

p(θ2|θ1, θ3, . . . , θk, y),
...

p(θk|θ1, θ2, . . . , θk−1, y),

up to a constant of proportionality, is equivalent to the knowledge of the posterior distri-

bution p(θ1, . . . , θk|y). This allows applying the M-H algorithm to sub-blocks of θ leading

to the Gibbs sampler if the individual conditional posterior distributions p(θi|θ−i, y) are

directly available for sampling. In practice, Gibbs and M-H algorithms are often combined

resulting in “hybrid” MCMC procedures as also illustrated in the next section.

The implementation of MCMC algorithms involves two steps. In the first step, M-H

algorithms generate a sequence of random variables, {θ(i)}G
i=1, converging to the posterior

distribution p(θ|y). The algorithm is applied until convergence is achieved. In practice, the

convergence of the Markov chain can be checked based on trace plots, autocorrelation plots

or convergence tests, such as Geweke’s Z-score test, Heidelberg-Welch’s stationarity test

and the half-width test, see, e.g., Cowles & Carlin (1996). In the second step, Monte Carlo

methods are employed to compute the posterior mean of the parameters. In particular, given
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the generated Markov chain, {θ(g)}G
g=1, the population mean E[f(θ)|y] =

∫
f(θ)p(θ|y)dθ can

be consistently estimated by the sample mean

1
G− g1

G∑
g=g1+1

f(θ(g)), (28)

where g1 is the number of burn-in periods which are discarded to reduce the influence of

initial values (θ(0)). The length of the burn-in period typically consists of 10%− 15% of all

MCMC iterations.

Consequently, the implementation of MCMC techniques requires both the convergence

of the Markov chain and the convergence of the sample average. If the Markov chain is

irreducible, aperiodic and positive recurrent, the Markov chain {Θ(g)}G
g=1 generated from

the MCMC algorithm converges to its invariant distribution, i.e.

θ(g) L→ θ for g →∞, (29)

where θ ∼ p(θ|y). For more details, see, e.g.,Tierney (1994) or Greenberg (2008).

The convergence of the sample average of a function m(·) of {Θ(g)}G
g=1 to its population

counterpart,

1
G

G∑
g=1

m(θ(g)) a.s.→ E[m(θ)|y] for G →∞ (30)

is ensured by the ergodicity of the Markov chain. As shown by Tierney (1994), the latter

property is sufficient to ensure also the convergence of the Markov chain to its invariant

distribution.

4.2 MCMC-Based Estimation of the Standard SV Model

In this section, we will illustrate the estimation of the standard SV model using the M-H

algorithm. For convenience, we restate model (1) as given by

yt = exp(ht/2)ut, ut ∼ N(0, 1), (31a)

ht = µ + φ(ht−1 − µ) + ηt, ηt ∼ N(0, σ2
η) (31b)

with θ = (µ, φ, σ2
η) and h = (h1, · · · , hT ). Applying Bayes’ theorem we have

p(θ, h|y) ∝ p(y|θ, h)p(h|θ)p(θ). (32)

Bayesian inference for the model parameters θ and the volatility states h is based on the

posterior distribution p(θ, h|y) which is proportional to the product of the likelihood function

p(y|θ, h) specified by (31a), the conditional distribution of the volatility states p(h|θ) given

by (31b), and the prior distribution p(θ).

12



• Initialize h(0), µ(0), φ(0) and σ2
η
(0).

• For g = 1, . . . , G:
1. For t = 1, . . . , T :

Sample h
(g)
t from p(ht|y, h

(g)
<t , h

(g−1)
>t , µ(g−1), φ(g−1), σ2

η
(g−1)).

2. Sample σ2
η
(g) from p(σ2

η|y, h(g), µ(g−1), φ(g−1)).
3. Sample φ(g) from p(φ|y, h(g), σ2

η
(g)

, µ(g−1)).
4. Sample µ(g) from p(µ|y, h(g), φ(g), σ2

η
(g)).

Figure 2: Single-move Gibbs sampler for the standard SV model

The model is completed by specifying the prior distributions for θ. We assume that the

model parameters are a priori independently distributed as follows:

p(µ) = N(αµ, β2
µ), (33a)

p(φ) = N(αφ, β2
φ)1(−1,+1)(φ), (33b)

p(σ2
η) = IG(ασ, βσ), (33c)

where IG(·, ·) denotes an inverse-gamma distribution and N(a, b)1(−1,+1)(x) defines a

normal distribution with mean a, variance b, which is truncated between −1 and 1. This

rules out near unit-root behavior of φ. The parameters α(·) and β(·), characterizing the

prior distributions, are called hyper-parameters, which are specified by the researcher.

Given the prior distributions, the conditional posteriors for the model parameters are

derived as

p(µ|y, h, φ, σ2
η) ∝ p(y|h, µ, φ, σ2

η)p(h|µ, φ, σ2
η)p(µ), (34a)

p(φ|y, h, σ2
η, µ) ∝ p(y|h, µ, φ, σ2

η)p(h|µ, φ, σ2
η)p(φ), (34b)

p(σ2
η|y, h, µ, φ) ∝ p(y|h, µ, φ, σ2

η)p(h|µ, φ, σ2
η)p(σ2

η). (34c)

Since the volatility states h subsume all information about (µ, φ, σ2
η), the full information

likelihood function p(y|h, µ, φ, σ2
η) is a constant with respect to the model parameters, and

thus can be omitted.

By successively conditioning we get

p(h|µ, φ, σ2
η) = p(h1|µ, φ, σ2

η)
T−1∏
t=1

p(ht+1|ht, µ, φ, σ2
η), (35)

where p(ht+1|ht, µ, φ, σ2
η) is specified according to (31b). Moreover, inserting p(σ2

η), p(φ),

p(µ), given by (33), and p(h|µ, φ, σ2
η), given by (35), into (34), the full conditional posteriors

can be reformulated, after eliminating constant terms, as (for details, see Appendix)

p(σ2
η|y, h, µ, φ) ∝ IG(α̂σ, β̂σ), (36)

p(φ|y, h, σ2
η, µ) ∝ N(α̂φ, β̂2

φ)1(−1,+1)(φ), (37)

p(µ|y, h, φ, σ2
η) ∝ N(α̂µ, β̂2

µ), (38)

13



where the hyper-parameters are estimated by

α̂σ = ασ +
T

2
, (39)

β̂σ = βσ +
1
2

{
T−1∑
t=1

(ht+1 − µ− φ(ht − µ))2 + (h1 − µ)2(1− φ2)

}
, (40)

α̂φ = β̂2
φ

{∑T−1
t=1 (ht+1 − µ)(ht − µ)

σ2
η

+
αφ

β2
φ

}
, (41)

β̂2
φ =

{∑T−1
t=1 (ht − µ)2 − (h1 − µ)2

σ2
η

+
1
β2

φ

}−1

, (42)

α̂µ = β̂2
µ

{
h1(1− φ2) + (1− φ)

∑T−1
t=1 (ht+1 − φht)

σ2
η

+
αµ

β2
µ

}
, (43)

β̂2
µ =

{
1− φ2 + (T − 1)(1− φ)2

σ2
η

+
1
β2

µ

}−1

. (44)

Since it is possible to directly sample from the conditional posteriors, we obtain a

straightforward (single-move) Gibbs sampler which breaks the joint posterior p(θ, h, y) into

T + 3 univariate conditional posteriors. The resulting Gibbs algorithm is summarized in

figure 2, where the subscripts of h
(·)
<t and h

(·)
>t denote the periods before and after t respec-

tively.

The most difficult part of the estimation of SV models is to effectively sample the latent

states ht from their full conditional posterior. In this context, an M-H A-R algorithm can

be applied. Below we briefly illustrate a sampling procedure which is also used by Kim

et al. (1998). In this context, Bayes’ theorem implies

p(ht|y, h−t, θ) ∝ p(yt|ht, θ)p(ht|h−t, θ), (45)

=
1√

2π exp(ht)
exp

{
− y2

t

2 exp(ht)

}
p(ht|h−t, θ), (46)

= f∗(yt, ht, θ)p(ht|h−t, θ), (47)

where, h−t denotes all elements of h = (h1, · · · , hT ) excluding ht. Exploiting the Markovian

structure of the SV model we can derive

p(ht|h−t, θ) = p(ht|ht−1, ht+1, θ) = pN (ht|αt, β
2), (48)

where, pN (x|a, b) denotes the normal density function with mean a and variance b, and

αt = µ +
φ{(ht−1 − µ) + (ht+1 − µ)}

(1 + φ2)
, β2 =

σ2
η

1 + φ2
. (49)

An acceptance-rejection step is implemented exploiting the fact that exp(−ht) is bounded

by a linear function in ht. By applying a Taylor expansion for exp(−ht) around αt we obtain

log f∗(yt, ht, θ) ≤ −1
2

log(2π)− 1
2
ht −

y2
t

2
[exp(−αt){1 + αt − ht exp(−αt)}] (50)

def= log g∗(yt, ht, θ). (51)
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• For t = 1, · · · , T :
1. Draw h∗t from pN (ht|α∗

t , β
2).

2. Draw U from U[0, 1].
3. If U ≤ f∗(yt, h

∗
t , θ)/g∗(yt, h

∗
t , θ)

set ht = h∗t .
Else

go to step 1.

Figure 3: A-R method to sample the volatility states ht

Since p(ht|h−t, θ) = pN (ht|αt, β
2), we have

p(ht|h−t, θ)f∗(yt, ht, θ) ≤ pN (ht|αt, β
2)g∗(yt, ht, θ). (52)

Then, the right-hand side of (52), after eliminating constant terms, can be represented by

pN (ht|αt, β
2)g∗(yt, ht, θ) = k · pN (ht|α∗

t , β
2), (53)

where k is a real valued constant, and pN (ht|α∗
t , β

2) denotes a normal density with mean

α∗
t = αt + β2

2 (y2
t exp{−αt} − 1) and variance β2.

Hence, since the target distribution, p(ht|h−t, θ)f∗(yt, ht, θ), is bounded by pN (ht|α∗
t , β

2)

up to a constant k, the acceptance-rejection method can be applied to sample ht from

p(ht|y, h−t, θ) with acceptance probability

P

{
U ≤ f∗∗(yt, ht, θ)p(ht|h−t, θ)

kpN (ht|α∗
t , β

2)

}
=

f∗∗(yt, ht, θ)
g∗∗(yt, ht, θ)

where U ∼ U[0, 1]. Figure 3 summarizes the A-R algorithm to sample the latent volatility

states ht.

5 Empirical Illustrations

5.1 The data

Below we will illustrate estimations of the standard SV model, the SVt model and the SVJ

model based on time series of the DAX index, the Dow Jones index and the GBP/USD FX

rate. All time series cover the period from 1 January, 1991 to 21 March, 2007. We use daily

continuously compounded returns yielding 4,231 observations. Table 1 reports the mean,

standard deviation, median, 10%- and 90%-quantiles, and the empirical skewness as well as

kurtosis of the three series. All series reveal negative skewness and overkurtosis which is a

common finding for financial returns.

5.2 Estimation of SV Models

The standard SV model is estimated by running the Gibbs and A-R M-H algorithm based on

25,000 MCMC iterations, where 5, 000 iterations are used as burn-in period. Table 2 displays
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Mean SD Median 0.1-q 0.9-q Skewness Kurtosis
DAX 3.7e-04 0.013 5.0e-4 -0.021 0.006 -0.295 7.455

Dow Jones 3.6e-04 0.009 3.0e-4 -0.009 0.008 -0.230 8.276
GBP/USD 3.6e-06 0.005 <1.0e-9 -0.006 0.009 -0.126 5.559

Table 1: Summary statistics for daily returns of the DAX index, the Dow Jones index, and
the GBP/USD exchange rate from 01/01/1991 to 21/03/2007.

the choice of the prior distributions and the hyper-parameters as well as the resulting prior

mean and standard deviation.

Table 3 shows the sample mean (MEAN), the sample standard deviation (SD), the time-

series standard errors (ts-SE), and the 95%-credibility interval (CI) based on G = 20, 000

MCMC replications. The time-series standard errors give an estimate of the variation that

is expected in computing the mean of the MC replications and is computed as SD/
√

n. As

a rule of thumb, Geweke (1992) suggests to choose G such that the time series standard

error is less than approximately 5% of the sample standard deviation.

Prior Distribution Hyper-Parameters Mean S.D.
p(µ) = N(αµ, β2

µ) αµ = 0 βµ = 100 0 10
p(φ) = N(αφ, β2

φ)I(−1,+1)(φ) αµ = 0 βµ = 100 0 1
p(σ2

η) = IG(ασ, βσ) ασ = 2.5 βσ = 0.025 0.167 0.024

Table 2: Prior distributions, hyper-parameters, and implied prior means as well as standard
deviations for the standard SV model.

Since the three time series reveal similar properties, we concentrate on the results for

DAX index returns. The volatility process is highly persistent as indicated by an estimate

of φ of 0.989. This near-to-unit-root behavior is a quite typical finding for financial return

series and is consistent with the commonly observed volatility clustering. The estimated

(smoothed) volatility states are computed by

ĥt =
1

G− g1

G∑
g=g1+1

exp(h(g)
t /2), (54)

where h
(g)
t denotes the realizations of the Markov chain stemming from the M-H A-R algo-

rithm illustrated in the previous section, and g1 is the burn-in period. The resulting plots

of the smoothed volatilities are shown in figure 4. It is nicely illustrated that the estimated

latent volatility closely mimics the movements of |yt| supporting the idea of using absolute

or squared returns as (noisy) proxies for ht.
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Parameter Mean SD ts-SE 95% CI
DAX

µ -8.942 0.192 1.5e-3 (-9.327,-8.565)
φ 0.989 0.002 2.0e-4 ( 0.983, 0.994)
ση 0.115 0.009 1.0e-3 ( 0.096, 0.137)

Dow Jones
µ -9.471 0.171 1.3e-3 (-9.810,-9.142)
φ 0.990 0.003 2.0e-4 ( 0.984, 0.995)
ση 0.087 0.010 1.1e-3 ( 0.069, 0.108)

GBP/USD
µ -10.238 0.649 4.3e-3 (-10.519,-9.997)
φ 0.993 0.002 2.0e-4 ( 0.988, 0.997)
ση 0.041 0.006 8.0e-4 ( 0.029, 0.054)

Table 3: Estimation results for the standard SV model.
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Figure 4: Top: Smoothed estimates of ht. Bottom: Absolute returns, |yt|.

Misspecification tests are implemented based on the standardized innovations,

yt exp(−ĥt/2) which should be i.i.d. Applying Ljung-Box tests and ARCH tests (Engle 1982)

shown in figure 5 yield p-values of 0.094 and 0.023, respectively. For the BDS independence

test we find a p-value of 0.011. The corresponding plot of the standardized innovations as

well as ACF plots of standardized innovations and squared standardized innovations are

given by graphs (a), (c) and (d), respectively, in figure 5. The standardized innovations

reveal a big outlier on 19/08/1991 where the DAX index dropped from 1653.33 to 1497.93.
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Such a behavior is not easily captured by a continuous distribution for ht and requires

accounting for jumps. Nevertheless, though it is evident that the model is obviously not

flexible enough to completely explain the volatility dynamics, the diagnostics indicate a

quite satisfying dynamic performance. This is particularly true when the parameter parsi-

mony of the model is taken into account.

It is not surprising that the model is unable to capture the distributional properties

of the returns. We observe that the standard SV model with a model implied kurtosis of

5.74 is not able to fully explain the over-kurtosis in the data. This is confirmed by the

Jarque-Bera normality test and the QQ plot revealing departures from normality mainly

stemming from extreme innovations.
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Figure 5: Time series plot, QQ plot and autocorrelogram of (squared) standardized inno-
vations.

Finally, the results of convergence diagnostics are reported in table 4. All parameters

pass both the Geweke’s z-scores test and the Heidelberg-Welch’s stationarity and half-width

tests indicating a proper convergence of the Markov chain to its invariant distribution.

Table 5 shows the estimation results based on the SVt and SVJ model. For the sake

of brevity and given that we have qualitatively similar findings for the other return series,

we focus only on DAX index returns. We obtain an estimate of the degrees of freedom

in the SVt model of about ν̂ = 12.44 indicating the presence of fat-tailedness in the data

and a clear misspecification of the standard (Gaussian) SV model. The estimates for the

SVJ model reveal a daily average jump size of about α̂k = 0.005% with estimated standard
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Parameter Z-score Test Stationarity and Half-Width Test
z-score p-value p-value Mean Half-width Ratio

µSV 0.199 0.843 0.645 -8.895 0.003 -0.001
φSV 0.032 0.972 0.897 0.928 0.001 0.001
σSV

u -0.413 0.686 0.979 0.329 0.003 0.009

Table 4: Convergence Diagnostics
Note: The half-width test is passed if the corresponding ratio is less than 0.01.

Parameter Mean SD ts-SE 95% CI
The SVt model:

µ -9.201 0.230 2.3e-3 (-9.663,-8.752)
φ 0.991 0.002 1.0e-4 ( 0.985, 0.995)
ση 0.117 0.012 1.1e-3 ( 0.095, 0.145)
ν 12.443 1.812 2.3e-1 ( 9.600,16.923)

The SVJ model:
µ -9.107 2.3e-01 1.8e-03 (-9.568,-8.663)
φ 0.991 2.7e-03 2.1e-04 ( 0.984, 0.995)
ση 0.124 1.3e-02 1.4e-03 ( 0.101, 0.153)
αk -0.005 2.9e-05 1.8e-07 (-0.005,-0.004)√
βk 0.029 6.5e-03 8.7e-04 ( 0.020, 0.045)
κ 0.010 3.9e-03 3.1e-04 ( 0.003, 0.019)

Table 5: Estimation results for the SVt and SVJ model based on DAX index returns.

deviation
√

β̂k = 0.029. Estimates of κ reveal an average probability of observing a jump

of about 1% on a daily basis. This implies that on average a jump in returns may occur on

average every 100 trading days.

Figure 6 depicts the QQ plots of the normalized innovations based on the standard

SV model (left), the SVt model (middle), and the SVJ model (right). It is shown that the

inclusion of Student-t errors improves the distributional properties of the model only slightly.

Actually, we observe that both the basic SV and the SVt model are not able to capture

extreme observations in the tails of the distribution. In contrast, the SVJ model turns out

to be more appropriate to accommodate outliers. This result indicates the importance of

allowing returns to be driven by a jump component.

6 Conclusions

In this paper we reviewed the basic SV model as well as its various extensions. The economic

implications behind such models are prominent for both researchers and practitioners. Fur-

thermore, we also illustrate the major principles of MCMC based statistical inference for
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Figure 6: QQ plots of normalized innovations based on the standard SV model (left), the
SVt model (middle), and the SVJ model (right).

SV-type models. Bayesian inference is based on the combination of subjective and objective

information. Hence, it provides a way to incoprorate our personal belief into statistically

models. Finally, our empirical study indicates that both the basic SV and the SVt model are

not able to capture extreme observations in the tails of the distribution, and it is important

to allow returns to be driven by a jump component.

Appendix

Derivation of the Conditional Posterior Distributions

Using Bayes’ theorem, the conditional posterior distribution of σ2
η is given by

p(σ2
η|y, h, µ, φ) ∝ p(y|h, µ, φ, σ2

η)p(h|µ, φ, σ2
η)p(σ2

η).

By assuming σ2
η to follow an inverse-gamma distribution and successively conditioning on

p(h|µ, φ, σ2
η), we obtain

p(σ2
η|y, h, µ, φ) ∝ p(h1|µ, φ, σ2

η)
T−1∏
t=1

p(ht+1|ht, µ, φ, σ2
η)IG(σ2

η|ασ, βσ),

where the density function p(ht+1|ht, µ, φ, σ2
η) is given by (1b).
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After eliminating all constant terms with respect to σ2
η, we obtain

p(σ2
η|y, h, µ, φ)

∝ exp

[
−(h1 − µ)2(1− φ2)

2σ2
η

−
∑T−1

t=1 {ht+1 − µ− φ(ht − µ)}2

2σ2
η

]

×
(

1
σ2

η

)T
2 (βσ)ασe−βσ/σ2

η

Γ(ασ)(σ2
η)ασ+1

∝ exp

[
−

βσ + 1
2(h0 − µ)2(1− φ2) + 1

2

∑T−1
t=1 {ht+1 − µ− φ(ht − µ)}2

σ2
η

]

×
(

1
σ2

η

)(ασ+T
2

)+1

.

It is easy to see that the posterior density p(σ2
η|y, h, µ, φ) is proportional to an inverse-gamma

density. Consequently, we have

p(σ2
η|y, h, µ, φ) ∝ IG(α̂σ, β̂σ),

where,

α̂σ = ασ +
T

2
,

β̂σ = βσ +
1
2
(h1 − µ)2(1− φ2) +

1
2

T−1∑
t=1

{ht+1 − µ− φ(ht − µ)}2.

Mimicking the proceeding for σ2
η we can derive the conditional posteriors for µ and φ in

a similar way. Then, we obtain

p(µ|y, h, φ, σ2
η) ∝ p(h|µ, φ, σ2

η)p(µ),

∝ p(h1|µ, φ, σ2
η)

T−1∏
t=1

p(ht+1|ht, µ, φ, σ2
η)N(αµ, βµ),

∝ exp

(
− 1

2

[
µ2

{
1− φ2 + (T − 1)(1− φ)2

σ2
η

+
1
β2

µ︸ ︷︷ ︸
A

}

− 2µ

{
h1(1− φ2) + (1− φ)

∑T−1
t=1 (ht+1 − φht)

σ2
η

+
αµ

β2
µ︸ ︷︷ ︸

B

}])
,

∝ N
(

B

A
,

1
A

)
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and

p(φ|y, h, σ2
η, µ) ∝ p(h|µ, φ, σ2

η)p(φ),

∝ p(h1|µ, φ, σ2
η)

T−1∏
t=1

p(ht+1|ht, µ, φ, σ2
η)N(αφ, β2

φ)∞(−1,+1)(φ),

∝ exp

(
− 1

2

[
φ2

{
−(h1 − µ)2 +

∑T−1
t=1 (ht − µ)2

σ2
η

+
1
β2

φ︸ ︷︷ ︸
C

}

− 2φ

{ ∑T−1
t=1 (ht+1 − µ)(ht − µ)

σ2
η

+
αφ

β2
φ︸ ︷︷ ︸

D

}])
∞(−1,+1)(φ),

∝ N
(

D

C
,

1
C

)
∞(−1,+1)(φ).
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