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Abstract

Motivated by the recurrent Neural Networks, this paper proposes
a recurrent Support Vector Regression (SVR) procedure to forecast
nonlinear ARMA model based simulated data and real data of finan-
cial returns. The forecasting ability of the recurrent SVR is compared
with three competing methods, MLE, recurrent MLP and feedforward
SVR. Theoretically, MLE and MLP only focus on fit in-sample, but
SVR considers both fit and forecast out-of-sample which endows SVR
with an excellent forecasting ability. This is confirmed by the evidence
from the simulated and real data based on two forecasting accuracy
evaluation metrics (NSME and sign). That is, for one-step-ahead fore-
casting, the recurrent SVR is consistently better than the MLE and
the recurrent MLP in forecasting both the magnitude and turning
points, and really improves the forecasting performance as opposed to
the usual feedforward SVR.
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1 Introduction

This paper considers financial returns forecasting in the framework of a uni-
variate Autoregressive Moving Average (ARMA) model by using the pro-
posed recurrent ε-SVR approach. For more than two decades, the linear
ARMA model estimated by Maximum Likelihood Estimation (MLE) has
been a popular approach for forecasting nonstationary time series. This im-
plies that the analyzed variables should satisfy the normal assumption and
have large sample. However, it has been widely accepted that the returns
of a variety of financial variables are not linearly predictable in general and
the phenomenon of volatility clustering in it leads to the violation of the
normal assumption, as a result of which, the linear ARMA model by MLE
usually tends to provide poor forecasting performance (Priestley (1988),Box,
Jenkins & Reinsel (1994), Niemira & Klein (1994) and Hamilton (1997)).
Thus, some nonlinear, nonparametric alternative approaches are proposed
and adopted to estimate the time series models, the prevailing representa-
tive among them is the Artificial Neural Network (ANN). Plentiful of studies
on ANN denote that ANN approach outperforms traditional MLE in fore-
casting financial time series and, particularly, the recurrent ANN with richer
dynamic structure could capture more characteristics of data in the general-
ization period than the feedforward one ((Kuan, 1995), (Wu, 1995), (Tian,
Juhola & Grönfors, 1997), (Lisi & Schiavo, 1999), (Ashok & Mitra, 2002),
(Gaudart, Giusiano & Huiart, 2004), (Kamruzzaman & Sarker, 2004)), but
some indicate mixed or opposite results ((Adya & Collopy, 1998); (Kanas,
2003)). While the ANN is theoretically better in estimating nonlinear finite
samples without invoking a probabilistic distribution, however, it has been
criticized to be vulnerable to the over-fitting problem which usually leads to
a local optimum and to the empirical risk minimization, same as the MLE
1, the latter of which results in good fit and poor forecast out-of-sample.
To avoid the theoretical pitfalls of the MLE and ANN in forecasting area,
fortunately, Vapnik (1995) ,Vapnik (1997) has successfully developed a novel
nonparametric function approximator, the Support Vector Machine (SVM),
which is computationally powerful in the sense that it allows for (1) finite
and infinite sample; (2) no prior distribution assumption; and (3) minimizing
the structural risk as opposed to empirical risk employed by MLE and ANN,
which endows SVM with an excellent generalization, or forecasting, ability
out-of-sample and is the biggest advantage of SVM among all alternatives
(We refer to next section for a detailed explanation).

1For MLE, maximizing the joint probability density function amounts to minimizing
the sum of residual squares, i.e., minimizing the empirical risk, which is precisely the OLS
approach.
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SVM was originally developed for classification problems (SVC) and then
extended to regression problems (SVR). Recently, SVM has been successfully
applied to financial variable classification and financial time series forecast-
ing, for example, see Trafalis & Ince (2000), Cao & Tay (2001), Gestel,
Suykens, Baestaens, Lambrechts, Lanckriet, Vandaele, Moor & Vandewalle
(2001), Yang, Chan & King (2002), Härdle, Moro & Schäfer (2005),Härdle,
Moro & Schäfer (2006), Espinoza, Suykens & Moor (2006) and Lee, Chiu,
Chou & Lu (2006), to name a few. As Haykin (1999) argued earlier, the
present studies on SVM mostly focus on the feedforward direction and the
previous application literatures of the SVR based time series forecasting only
consider the dynamic systems of nonlinear Autoregressive (AR) model. In a
context of networks, these systems do not have feedback loops from the out-
put layer to the input layers. It is well known that recurrent ANN, networks
with feedbacks, can characterize the behavior of time series variables with
richer dynamic structures and have more potential of reducing the memory
requirement significantly than the feedforward one ((Kuan, Hornik & White,
1994); (Kuan, 1995); (Kuan & Liu, 1995)). Suykens & Vandewalle (2000)
and Suykens, Gestel, Brabanter, Moor & Vandewalle (2002) extend the re-
current networks to support vector machine and proposed a new recurrent
least squares SVM (LS-SVM) procedure. Their studies reveal that recurrent
LS-SVM can forecast time series well, even on relatively small training data
sets.

Motivated by the recurrent ANN and LS-SVM, in this paper, we propose
a new ε-insensitive loss based Support Vector Regression (SVR) procedure
with the addition of a global feedback connection from the output layer to
the input space. In terms of the terminology of the recurrent LS-SVM, we
refer to the proposed procedure as a recurrent ε-SVR and to the standard
SVR as a feedforward SVR. The difference between the recurrent LS-SVM
and our recurrent ε-SVR is that they use different empirical loss function; the
former adopts the mean square error (MSE), the later uses the ε-insensitive
error which can lead to sparseness solutions (see Section 2 for details). As
empirical application, the proposed recurrent ε-SVR procedure is applied to
forecasting the ARMA model for the simulated data (linear ARMA series
and nonlinear Lorenz series) and the real data of financial returns (Canadian
Dollar against the U.S. dollar (CAD) exchange rates and New York Stock
ExchangeTM (NYSE) composite stock index). To examine the sensitivity of
the recurrent ε-SVR with respect to free parameters, we experiment with
three free parameters, ε , C and σ2 by using cross validation method. The
iterative epochs of recurrent ε-SVR procedure are also described in Section
2 and illustrated by simulation. The forecasting performance among the
recurrent SVR, MLE, recurrent ANN and the feedforward SVR is compared
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by using two forecasting evaluation metrics (NMSE and sign) in one-step-
ahead forecasting horizon.

This paper is organized as follows. Section 2 introduces the theory of
standard SVR and proposes the recurrent ε-SVR procedure. Section 3 spec-
ifies the empirical modeling and forecasting scheme. Section 4 compares the
forecasting performance of all candidates by using the simulated and real
data, in which the parameters selection and iterative process are illustrated
in detail. The conclusion is presented in Section 5.

2 Support Vector Regression (SVR)

2.1 Principle of standard ε-SVR

The Support Vector Machines for Regression (SVR) originates from Vapnik’s
statistical learning theory (Vapnik (1995) ,Vapnik (1997)), which has the
design of a feedforward network with an input layer, a single hidden layer of
nonlinear units and an output layer and formulates the regression problem
as a quadratic programming (QP) problem (Haykin, 1999). SVR estimates
a function by nonlinearly mapping the input space into a high dimensional
hidden space and then running the linear regression in the output space (see
Figure 1). Thus, the linear regression in the output space corresponds to
a nonlinear regression in the low dimensional input space. And the theory
denotes that if the dimensions of feature space (or hidden space) are high
enough, SVR may approximate any nonlinear mapping relations. As the
name implies, the design of the SVR hinges upon the extraction of a subset
of the training data that serves as support vectors which represent a stable
characteristic of the data.

Given a training data set {(xt, yt)}T
t=1 , where inputs vector xt ∈ Rp and

output scalar yt ∈ Rl . In classification problem, the variable y only takes
two values, −1 and 1; while in regression y can take any real values. Indeed,
the desired response y, known as a ‘teacher’, represents the optimum action
to be performed by the SVR. We aim at finding a sample regression function
f(x)(or denoted by ŷ ) as below to approximate the latent, unknown decision
function g(x) .

f(x) = w>φ(x) + b, (1)

where
φ(x) = [φ1(x), . . . , φl(x)]

>

w = [ω1, . . . , ωl]
> .
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Figure 1: Architecture of Support Vector Machines.

The φ(x) is known as the nonlinear transfer function which represents the
features of the input space and projects the inputs into the feature space. The
dimension of the feature space is l which is directly related to the capacity
of the SVR to approximate a smooth input-output mapping; the higher the
dimension of the feature space, the more accurate the approximation will be.
Parameter w denotes a set of linear weights connecting the feature space to
the output space, and b is the threshold.

To get the function f(x), the optimal w∗ and b∗ have to be estimated from
the data. Firstly, we define a linear ε-insensitive loss function Lε, originally
proposed by Vapnik (1995).

Lε(x, y, f(x)) =

{
|y − f(x)| − ε for |y − f(x)| ≥ ε

0 otherwise
(2)

This function indicates the fact that it does not penalize errors below
ε. The training points within the ε-tube have no loss and do not provide
any information for decision. Therefore, these points do not appear in the
decision function f(x). Only those data points located on or outside the
ε-tube will serve as the support vectors to finally used to construct the f(x).
The sparseness property of algorithm results only from the ε-insensitive loss
function and greatly simplifies the computation of SVR. Thus, SVR based on
it is also called ε-SVR, which is different from the other loss functions such
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as (mean) squared errors (MSE). The nonnegative slack variables, ξ and ξ′

(below or above the ε-tube, or denoted together by ξ(′); see Figure 2) are
employed to describe this kind of ε-insensitive loss, that is, the loss of error
on training points out of the ε-tube.

Figure 2: Principle od Structural Risk Minimization of ε-SVR.

The derivation of SVR follows the principle of structural risk minimization
that is rooted in VC dimension theory. Structural risk is the upper boundary
of empirical loss, denoted by ε-insensitive loss function, plus the confidence
interval (or called margin), which is constructed in equation 3. The primal
constrained optimization problem of ε-SVR is obtained below:

min
w∈Rl,ξ(′)∈R2T ,b∈R

C (w, b, ξt, ξ
′
t) =

1

2
‖w‖2 + C

T∑
t=1

(ξt + ξ′t) (3)

s.t. w>φ(xt) + b− yt ≤ ε+ ξt, t = 1, 2, . . . , T (4)

yt − w>φ(xt) − b ≤ ε+ ξ′t, t = 1, 2, . . . , T (5)

ξt ≥ 0, ξ′t ≥ 0, t = 1, 2, . . . , T. (6)

The formulation of the cost function C(w, b, ξt, ξ
′
t) in equation (3) is in

perfect accord with the principle of structural risk minimization, which is
illustrated in Figure 2(in which the dark circles are data points extracted as
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support vectors). In equation 3, the first term indicates the Euclidean norm
of the weight vector w (‖w‖2 = w>w ) and measures the function flatness;
the minimization of it is related to the maximization of the margin of sepa-
ration (2/ ‖w‖ ), i.e., maximizing the generalization ability. The second term
represents the empirical risk loss determined by the ε-insensitive loss func-
tion and is similar to the sum of residual squares in the objective function of
MLE and ANN. Finally, SVR obtains the tradeoff between the two terms; as
a result, it not only fits the historical data well but forecasts the future data
excellent. As shown in Figure 2, both regression lines 1 and 2 can classify
the data points correctly and then minimize the empirical loss; however, the
margin of generalization of the two lines are different in which the regres-
sion line 1 has the largest margin. It is the special design of minimizing the
structural risk that endows SVR with the excellent forecasting ability among
all candidates. Evgeniou, Poggio, Pontil & Verri (2002) also denoted that
minimization of an empirical error only is both ill-posed and not necessar-
ily leading to models with good predictive capabilities, thus, one needs to
minimize a structural risk. In addition, the convex quadratic programming
and linear restrictions in above primal problem ensure that SVR can always
obtain the global unique optimal solution, which is different from the usual
networks that easily get trapped in local minima. The penalty parameter
C > 0 controls the penalizing extent on the sample which lie out of ε-tube.
Both ε and C must be selected by the user.

The corresponding dual problem of the ε-SVR can be derived from the
primal problem by using the Karush-Kuhn-Tucker conditions as follows.

min
α

(′)
t ∈R2T

1

2

T∑
s=1

T∑
t=1

(α′s−αs)(α
′
t−αt)K(xs ·xt)+ε

T∑
t=1

(α′t+αt)−
T∑

t=1

(α′t−αt) (7)

s.t.
∑T

t=1(αt − α′t) = 0 (8)

0 ≤ αt, α
′
t ≤ C, s, t = 1, 2, . . . , T. (9)

where, αt and α′t (or α
(′)
t ) are the Lagrange multipliers. The dual problem

can be solved more easily than the primal problem ((Scholkopf & Smola,
2001), (Deng & Tian, 2004)). Making use of any solution, αt and α′t, the
optimal solutions of primal problem can be calculated, in which, w∗ is unique
and expressed as follows:

w∗ =
T∑

t=1

(α′t − αt)φ(xt) (10)
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However, b∗ is not unique and formulated in terms of different cases. If
i ∈ {t|αt ∈ (0, C)},

b∗ = yi −
T∑

t=1

(α′t − αt)K(xt · xi) + ε (11)

if j ∈ {t|α′t ∈ (0, C)} ,

b∗ = yj −
T∑

t=1

(α′t − αt)K(xt · xj) − ε (12)

The cases of both i, j ∈
{
t|α(′)

t = 0
}

and i, j ∈
{
t|α(′)

t = C
}

rarely occur

in reality.
Thus, the regression decision function f(x) will be computed by using of

w∗ and b∗ in the following forms:

f(x) = w∗Tφ(x) + b∗ (13)

=
T∑

t=1

(α′t − αt)φ
T (xt)φ(x) + b′

=
T∑

t=1

(α′t − αt)K(xt, x) + b∗

where K(xt, x) = φT (xt)φ(x) is the inner-product kernel function. In
fact, the SVR theory considers only the form of K(xt, x) in the feature space
without specifying φ(x) explicitly and without computing all corresponding
inner products. Therefore, the kernel function greatly reduces the computa-
tional complexity of high dimensional hidden space and becomes the crucial
part of SVR. The function which satisfies Mercer theorem can be chosen as
the SVR kernel. In this paper the chosen kernel is widely used Gaussian
kernel, or called radial based function (RBF) kernel which offers a way to
measure proximity between two data points and is expressed as below.

K(xt, x) = exp

(
−‖x− xt‖2

2σ2

)
(14)

where σ2 is the kernel width which implicitly controls the complexity of
the feature space and the solution (the higher the σ2 is, the lower is the
complexity). For the Gaussian kernel, the explicit expression of nonlinear
transformation function φ(x) is unknown, and the corresponding feature di-
mension l is infinite.
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Figure 3: Signal-flow graphs of feedforward and recurrent SVR.

2.2 Algorithm of Recurrent ε-SVR

As Haykin (1999) said, the SVR described in Subsection 2.1 usually appears
in the design of a simple feedforward network in which an input layer of
source nodes projects onto an output layer of computation node, but not vice
versa, see Figure 3(a). This process is known as feedforward SVR. If the
in-sample fitting errors are white noise, or do not display autocorrelation,
the feedforward SVR is efficient in the sense that they can be utilized to
estimate AR(p) model directly. Let Ot and Ht represent the single-output
and l hidden unit activations. Symbolically, we have

Ot = ψ
(
w>Ht + b

)
;Ht = φ(xt) (15)

where xt = {xt,i}p
i=1 = {yt−i}p

i=1 . Note that ψ and φ are vector-valued
functions and represent the identity function and the transfer function to
produce Gaussian kernel, respectively.

If it is not the case, the information reflected behind the errors should be
utilized to improve the estimating power of the model, thus, ARMA model,
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i.e., introducing the error terms (MA part) into the AR model, becomes
reasonable. To estimate the ARMA model, a feedback process of ε-SVR with
unobservable MA part as inputs, not addressed before our application, 2 has
to be described - which distinguishes itself from feedforward SVR in that it
has at least one feedback loop (see Figure 3(b)). In this paper, we abuse
terminology and refer to this process as “recurrent ε-SVR”. The feedback
loops involve the use of particular branches composed of one-delay operator,
z−1 , which result in nonlinear dynamical behavior and have a profound
impact on the learning capability of SVR. Thus, the recurrent ε-SVR will
capture more dynamic characteristics of yt than does feedforward SVR.

Let Rt denotes one-delayed internal feedbacks. Then, the recurrent ε-SVR
can be represented in the following generic form

Ot = ψ
(
w>Ht + b

)
;Ht = φ (xt, Rt) (16)

where xt = {yt−i}p
i=1. Rt is chosen to be Ot−1; that is, the recurrent

process has output feedbacks rather than hidden unit activations feedbacks.
Thus, Rt can be expressed as

Rt = τ (xt−1, Rt−1;w, b) (17)

with τ also a vector-valued function.
If Rt = 0 , the process simply reduces to a feedforward SVR, in which

the finite lagged responses are used as inputs to capture dynamics. This
approach suffers the drawback that the correct lag length needed is typically
unknown and somewhat difficult to determine. On the one hand, the finite
lagged dependent variables may not be enough to capture certain temporal
structures, especially, that depend on a long history of targets. On the other
hand, storing all the past information in memory is practically implausible.
The case is similar to building a linear AR model with finite p lags. This
deficiency could be circumvented by our device of recurrent SVR. The feed-
back variable Rt will serve as a memory device to store past information
compactly. That is,

Rt = τ (xt−1, τ(xt−2, Rt−2;w, b);w, b) = . . . = υ (xt−1, xt−2, . . . , x1;w, b)
(18)

Thus, the output of recurrent SVR can be write in the following feedforward
form

Ot = ψ
(
w>φ(xt, Rt) + b

)
(19)

2Suykens & Vandewalle (2000) proposed the algorithm of recurrent least squares
SVM.The difference between the two recurrent SVM algorithm is their sparseness so-
lutions.
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= κ (xt, Rt(w, b);w, b)

= f(xt, xt−1, xt−2, . . . , x1;w, b)

As Rt depends on the entire history of inputs, introducing recurrent variable
Rt with the contraction mapping requirement of τ to a feedforward SVR is
similar to adding invertible moving average term to an AR model. Therefore,
a recurrent SVR may be interpreted as a parsimonious model which incorpo-
rates all the past inputs without storing all of them in memory. That is, in
our device, Rt can be set just one-delayed error term ut−1, ut = z−1 [yt −Ot],
so as to avoid the difficulty to determine the lag length of recurrent input.
Very small number of lag p in xt is also appropriate for this recurrent SVR,
for instance, p = 2 in our application. Thus, the specification of recurrent
SVR based nonlinear ARMA model used in this study is just simple ARMA
(2, 1) model. It is the richer dynamic structure and specification convenience
that make the recurrent SVR attractive in dynamic applications.

Now, according to equations (3)-(6), we can rewrite the primal problem
of recurrent ε-SVR for nonlinear ARMA (2,1) model as follows:

min
w,b,ξ(′)

C
(
w, b, ξ

(′)
t

)
=

1

2
‖w‖2 + C

T∑
t=1

(ξt + ξ′t) (20)

s.t. w>φ(yt−1, yt−2, ut−1) + b− yt ≤ ε+ ξt, (21)

yt − w>φ(yt−1, yt−2, ut−1) − b ≤ ε+ ξ′t, (22)

ξt ≥ 0, ξ′t ≥ 0, t = 1, 2, . . . , T. (23)

Also, the convex quadratic programming and linear restrictions ensure
that the recurrent ε- SVR can always obtain the global unique optimal solu-
tion w∗. By using the Karush-Kuhn-Tucker conditions, we can construct its
dual problem, obtain the corresponding solution, αt and α′t, and compute w∗

and b∗. Because the inner-product kernel is Gaussian kernel, the regression
decision function f(x) of recurrent ε-SVR is formulated as

f(x) = f(ys−1, ys−2, us−1) = w∗Tφ(ys−1, ys−2, us−1) + b∗

=
T∑

t=1

(α′t − αt) exp(−
1

2σ2
‖(ys−1, ys−2, us−1) − (yt−1, yt−2, ut−1)‖2 + b∗) (24)

where s is any time point within or out of the training period. And the
MA part, us−1, can be skipped and only the AR part is used for forecasting
during the test period. The real constant coefficient σ2 is also chosen by
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the users. Using the estimated decision function 24, we can achieve the best
generalization capability in forecasting y on new inputs.

The difficulty to estimate the recurrent ε-SVR is that the error term is
unobservable. To overcome it, we employ the model residuals as estimates
of the errors in an iterative way, which is similar to the way that linear
ARMA model is iteratively estimated by MLE ((Box, Jenkins & Reinsel,
1994),(Hamilton, 1997)). Likewise, we initially set the error term to be its
expectation, 0. In the following, the empirical procedure of the recurrent
ε-SVR executed during the training phase is described. As denoted above,
the empirical procedure is illustrated for the case of the nonlinear stochastic
ARMA (2, 1) model,yt = g(yt−1, yt−2, et−1) + et . The letter i indicates the
iterative epoch and t denotes the period.

Step1: Set i = 1 and star with all residuals at zero: e
(1)
t = 0.

Step2: Run a SVR procedure to get the decision function f (i) to the points

{xt, yt} with all inputs xt =
{
yt−1, yt−2, e

(i)
t−1

}
.

Step3: Compute the new residuals e
(i+1)
t = yt − f (i).

Step4: Terminate the computational process when the stopping criterion is sat-
isfied; otherwise, set i = i+ 1 and go back to Step 2.

Note that the first iterative epoch is in fact a feedforward SVR process
and results in a AR (2) model and that the following epochs provide results
of the ARMA (2,1) model, being estimated by the recurrent ε-SVR.

In general, the procedure cannot be shown to converge, and there are
no well-defined criteria for stopping its operation. Rather, some reasonable
criteria can be found, although with its own practical drawback, which may
be used to terminate the computational process.

To formulate such a criterion, it is logical to think in terms of the prop-
erties of the estimated residual series. After the enough long iterative steps,
the autocorrelation displayed behind the residuals during the first AR epoch
should disappear, and the information in the residual behavior has been used
out and the final residual series should be white noisy. Accordingly, we may
suggest a sensible convergence criterion for the recurrent ε-SVR procedure
as follows:

The recurrent ε-SVR procedure is considered to have converged when
the corresponding residuals become white noisy, or has no autocorrela-
tion.
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To quantify the measurement of white noise, we use the formal hypothe-
sis test, Ljung-Box-Pierce Q-test to investigate a departure from randomness
based on the ACF of the residuals. Under the null hypothesis of no auto-
correlation in residuals, the Q-test statistic is asymptotically Chi-Square dis-
tributed. Concretely, we just check the actual p values of Q-test of lag 1. It’s
reasonable to think there is no higher order autocorrelation if no one-order
autocorrelation in residuals. Only if the p values of Q-test for consecutive five
epochs are simultaneously higher than 0.1, the iterative computational pro-
cess is stopped. To overcome the drawback of this convergence criterion, we
use cross validation to avoid the possible over-fitting problem; see Subsection
4.1 for detailed information.

3 Empirical modeling and forecasting scheme

3.1 Empirical models and their specification

As denoted in Section 2.2, very few lag numbers of nonlinear ARMA model
are enough for recurrent ε-SVR and ANN approaches to capture the dynamic
characteristics of data sets. Therefore, the basic forecasting framework in
this study is the ARMA (2, 1) model. For the convenience of comparison, we
make use of the ARMA model with the same lag orders for its linear form.
The linear ARMA (2, 1) model estimated by MLE is described as below:

yt = µ+ φ1yt−1 + φ2yt−2 + et + θ1et−1 (25)

The empirical models for the recurrent ε-SVR and the recurrent ANN are
specified as the nonlinear ARMA (2, 1) process, expressed below:

yt = g(yt−1, yt−2, et−1) + et (26)

Then, the feedforward ε-SVR corresponds to the nonlinear AR (2) model,

yt = g(yt−1, yt−2) + et (27)

In this paper, the nonlinear function g(·) specified for recurrent ε-SVR is
radial basis function because only Gaussian kernel is chosen for SVR in this
studies. Of course, other functions such as polynomial, spline, hyperbolic
tangent kernel also satisfy Mercer’s conditions and can be adopted as the
nonlinear function of SVR. Before implement of the recurrent ε-SVR, their
free parameters, ε(or denoted epsilon), C and Gaussian kernel width σ2(or
sigma2) must be determined in advance through cross validation. The process
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of sensitivity analysis will be illustrated by using simulation in Subsection
4.1.

The benchmark recurrent ANN used in this study is the feedback mul-
tilayer perceptrons network, denoted recurrent MLP. We specify this kind
of recurrent back-propagation network with the following architecture: One
nonlinear hidden layer with four neurons, each using a tan-sigmoid differen-
tiable transfer function to generate the output, and one linear output layer
with one neuron. Thus, the nonlinear function g(·) specified for recurrent
MLP is tan-sigmoid function. As a training algorithm, the fast training
Levenberg-Marquardt algorithm is chosen. The value of the learning rate
parameter used in the training process is set to be 0.05. These specifications
and choices are standard in neural network literatures.

3.2 Forecasting scheme and evaluation metrics

In this paper, a recursive forecasting scheme is employed with an updating
sample window; the estimating and forecasting process is carried out recur-
sively by updating the sample with one observation each time, re-running
the recurrent ε-SVR procedure and recalculating the model parameters and
corresponding forecasts. The notations used in this study are as follows;
The total number of series yt is denoted as T and the number of observa-
tions used for the first in-sample estimation is T1 (or called training sample).
Then, T − T1observations are retained as a forecasting or test sample. Let
the actual series at period t + j and the j -step-ahead forecast of the series
made at period t be written as yt+j and ŷt+j, respectively. Then, we can
write

ŷt+j|t = E (yt+j|yt, yt−1, . . . , y1) (28)

so that the j-step-ahead forecast of the series made at time t is the expected
value of the series j periods in the future, given all information available
at time t. In equation 28, t = T1, . . . , T − j. Thus, the forecast horizon is
fixed at j steps ahead, and the starting point t is varied. Therefore, we can
estimate and forecast the recurrent ε-SVR based ARMA (2, 1) model for
n = T − j − T1 + 1 times.

In this paper, only one-step-ahead forecasts are used for out-of-sample
forecasting evaluation which indicates j = 1. We set n = 100 for linear
ARMA simulation and real data, n = 400 for nonlinear Lorenz simulated
series.

Two evaluation metrics are employed to compare the forecasting per-
formance among the recurrent ε-SVR and the three competing methods:
normalized mean square error (NMSE) and correct sign predictions (sign)
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((Pesaran & Timmerman, 1990); (Moosa, 2000)).
The NMSE measures the magnitude of the forecasting error and the sign

measures correctness in predicted directions, i.e., the turning point correct-
ness. Their formulas are

NMSE(%) = 100 × MSE

V ar(y)
= 100 ×

∑n
i=1 (yi − ŷt)

2 /n∑n
i=1 (yt − yt)

2 /(n− 1)
(29)

sign(%) =
100

n

n∑
i=1

αi, where αt =

{
1 (yi+1 − yi) (ŷi+1 − ŷi) > 0
0 otherwise

(30)

4 Forecasting application with simulated and

real data

4.1 Simulations

Data generating process

To evaluate the forecasting performance of recurrent ε-SVR approach, we
first conduct the following simulation. The target variable yt, t = 1, . . . , T is
randomly generated from two models:

1. a linear ARMA (2, 1) model:

yt − 0.9yt−1 + 0.3yt−2 = et − 0.7et−1 (31)

where the noise inputs, et, are generated from the standard normal
distribution and the simulated yt are discrete;

2. a nonlinear Lorenz feedback system:

dy/dt = 16(x− y)

dx/dt = −yz + 45.92y − x (32)

dz/dt = yx− 4z

where the step size is 0.01. The Student’s t noise is included in the simulated
continuous yt series (see Lorenz (1963) for more). We include both linear
and nonlinear simulation to see how the recurrent ε-SVR procedure performs
when a linear series is not really applicable. In the simulations, the sample
size T is 1000, and the number of replications is 200. The reported results
are the mean values of 200 independent replications.
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Parameters selection and iterative epochs of recurrent SVR

The use of cross-validation is appealing particularly when we have to design
a somewhat complex approach with good generalization as the goal. For
example, here, we may use cross-validation to determine the values of free
parameters with the best performance, and when it is best to stop training,
as described in the following. The first training data, that is, the former 900
observations for linear ARMA series (briefly denoted LARMA) and 600 for
nonlinear Lorenz series is exemplified. The training data is further randomly
partitioned into two disjoint subsets: estimating sample and validating sam-
ple (700 and 200 observations for LARMA; 500 and 100 for Lorenz).

As shown in Section 2, two free parameters ( ε and C) and kernel width σ2

have to be determined by us before running the recurrent ε-SVR procedure.
The motivation of using cross validation here is to validate the model on
a data set different from the one used for parameter estimation. In this
way we may use the training set to assess the performance of various values
of parameters, and thereby choose the best one. The sensitivity analysis of
recurrent ε-SVR (represented by the generalization error NMSE) with respect
to three parameters are illustrated in Figure 4.

Figure 4(a)-(c) describe the sensitivity analysis for one of 200 simulated
linear ARMA series. Parameter ε varies between the range

[0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0]

with C being fixed to be 0.1 and σ2 be 1. The values of ε before the point of
ε be 0.01 have no influence on the performance of our recurrent SVR, which
is considerably stable. Parameter C varies from very small value 0.0001 to
infinity with ε being fixed to be 0.01 and and be 1. Clearly, when C = 0.1,
NMSE of validation sample obtain the lowest value, 99%; after that, over-
fitting the training set occurs. Coefficient σ2 varies between values of 0.01
and 0.1 with C being fixed to be 0.1 and be 0.01. Both values of NMSE
attain the minima when σ2 = 1.0. Thus, the appropriate parameters of
recurrent SVR for linear ARMA series are: ε = 0.01, C = 0.1 and σ2 = 1.0.
Figure 4(d)-(f) describe the parameter selection process for nonlinear Lorenz
series. Similar to LARMA, the performance of recurrent SVR is very stable
and not influenced by any value of ε before the point ε = 0.3 And when
C = 50 and σ2 = 10, the values of NMSE for validation subsets all reach to
their minima, 0.046%. Therefore, the correct parameters chosen for Lorenz
series are ε = 0.1, C = 50 and σ2 = 10, respectively.

With good forecasting performance as the goal, it is very difficult to figure
out when it is best to stop training only in terms of fitting performance. It
is possible for the procedure to end up over-fitting the training data if the

16



0.0001 0.001 0.01 0.1 0.5 0.9 1.0
98

99

100

101

102

103

104

epsilon

N
M

S
E

(%
)

(a) epsilon

LARMA series

Estimating sample
Validating sample

0.0001 0.01 0.3 0.7 1.0 2.0 3.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

epsilon

N
M

S
E

(%
)

(d) epsilon

Lorenz series

Estimating sample
Validating sample

0.001 0.001 0.01 0.1 10 1000 inf
90

100

110

120

130

140

150

160

C

N
M

S
E

(%
)

(b) C value

LARMA series

Estimating sample
Validating sample

0.001 0.1 5.0 50 500 5000 inf
0

0.5

1

1.5

2

2.5

C

N
M

S
E

(%
)

(e) C value

Lorenz series

Estimating sample
Validating sample

0.001 0.1 0.4 0.8 1.0 5.0 10 1000

99

100

101

102

103

104

105

106

107

108

sigma2

N
M

S
E

(%
)

(c) sigma2

LARMA series

Estimating sample
Validating sample

0.001 0.1 0.6 1.0 5.0 100 1000
0

0.5

1

1.5

2

2.5

3

sigma2

N
M

S
E

(%
)

(f) sigma2

Lorenz series

Estimating sample
Validating sample

Figure 4: Sensitivity analysis of the recurrent ε-SVR for simulation data.
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Figure 5: Iterative epochs of recurrent ε-SVR for simulation data.

training session is not stopped at the right point. We can identify the onset
of over-fitting and the stopping point through the use of cross-validation.
Figure 5(a) and (b) describe the iterative epochs for one of 200 linear ARMA
and nonlinear Lorenz series, respectively. For the former series, the iterative
process of recurrent ε-SVR is stopped at the 82th epoch; while, for the latter
series, the iterative process is longer and stopped after 220 iterative steps,
maybe due to the nonlinearity and noise of the series. Now, we can say,
at about the 10 percent significant level, the final residuals obtained from
the recurrent SVR procedure have no autocorrelation. In addition, the p-
value curves of both estimating and validating samples exhibit the similar
pattern (increase for an increasing number of epochs) and point to the almost
same stopping point. That is to say, there is no over-fitting phenomenon for
the examples illustrated here, the recurrent ε-SVR model do as well on the
validating subset as it does on the estimating subset, on which its design is
based.

Comparing forecasting performance

There is still the possibility of over-fitting after training. Therefore, the
generalization performance of the competed models is further measured and
evaluated on the test set, which is different from the validation subset. For
the simulated data, the forecasting sample is the later 100 observations for
the LARMA series and later 400 for Lorenz series. Thus, the recurrent ε-SVR
and the benchmark models should be recursively trained and forecasted 100
and 400 times for respective series and obtain the corresponding one-step-
ahead forecasts for evaluation.

The average NMSE and the proportion of correct sign predictions of 200
replicable simulations for each method are reported in Table 1, in which, a
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series metrics MLE Recurrent Feedforward Recurrent
MLP SVR SVR

LARMA NMSE 101.23 101.05 100.97 100.96
sign 42.91 40.37 40.16 41.76

Lorenz NMSE 0.00624 0.00082 0.00092 0.00074
sign 98.77 96.41 98.99 99.48

Table 1: Measures of forecasting performance for simulation data.

smaller NMSE and a higher sign value indicate the better forecasting per-
formance. As seen in Table 1, the recurrent SVR almost outperform the
benchmarks in one-step-ahead forecasting, except for sign value in LARMA
series. The overall superiority of the recurrent SVR over the feedforward
one reveals that the proposed recurrent ε-SVR in this study really improves
the forecasting performance of the standard SVR. The fact that the recur-
rent SVR behaves better than the recurrent MLP but the feedforward SVR
does not (evidence from the sign value for LARMA and NMSE for Lorenz)
again confirms that the structural risk minimizing principle endows SVR
with stronger forecasting ability as opposed to ANN and the recurrent net-
works has higher ability to capture the dynamic feature of series than does
the feedforward one. In addition, the recurrent SVR has the similar forecast-
ing performance to MLE for LARMA series but much better than MLE for
Lorenz series (note that the values of NMSE are 0.0062 and 0.00074 for MLE
and recurrent SVR, the magnitude of which is totally different). Therefore,
the linear ARMA model is not suitable to the data with high nonlinearity.
The far lower values of NMSE for Lorenz series than those for LARMA may
be due to the continuous nature for the former and discrete the latter.

4.2 Real data analysis

In this subsection, we investigate the forecasting performance of all candi-
dates by using real data for two kinds of financial variables: CAD/USD
exchange rates (rates) and NYSE (NYSE) average index.

Data description

The first data set consists of the daily nominal bilateral exchange rates of the
Canadian Dollar (CAD) against the U.S. dollar for the period between Jan-
uary 6, 2004 and December 31, 2007. The data are obtained from a database
of Policy Analysis Computing and Information Facility in Commerce (PA-
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CIFIC) at the University of British Columbia. The second data set consists
of daily closing price of New York Stock Exchange TM(NYSE) composite
stock index for the period of January 9, 2004 to December 31, 2007. The
data are downloaded directly from the Market Information section of the
NYSE TMweb page.

It has been widely accepted that a variety of financial variables includ-
ing foreign exchange rates and stock prices are integrated of order one. To
avoid the issue of possible nonstationarity, this paper considers the financial
returns, yt, which are converted from corresponding levels (price or index),
It, by using continuous compounding transforms as

yt = 100 × (logIt+1 − logIt) (33)

Both data are transformed into daily returns via equation 33, providing
a series of returns for 1000 observations. Same as the LARMA simulation,
the recursive training is used with updating window data starting from the
former 900 observations through the former 999 observations and obtain the
100 one-day-ahead forecasts of returns.

Comparing forecasting performance

The implementation of parameter selection and iterative process of recurrent
ε-SVR for real data are same as the simulations and skipped here to save
space. Based on such kind of sensitivity analysis, the appropriate parameters
are ε = 0.005, C = 0.001 and σ2 = 1 for CAD returns and ε = 0.3, C = 0.01
and σ2 = 0.2 for NYSE returns.

series metrics MLE Recurrent Feedforward Recurrent
MLP SVR SVR

CAD NMSE 100.32 100.06 99.52 99.49
sign 62.63 62.63 58.59 63.64

NYSE NMSE 99.42 99.31 99.41 99.24
sign 67.68 61.62 68.69 70.71

Table 2: Measures of forecasting performance for real data.

By using this specification, the recurrent ε-SVR is adopted to estimate
and forecast the financial returns recursively and its forecasting performance,
with the candidates, based on two quantitative metrics (NMSE and sign) are
presented in Table 2. First, we compare the forecasting accuracy of the
feedforward and recurrent SVR. The results are the same as simulation and
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say again that the presence of the feedback loops in the standard SVR process
has a positive impact on its forecasting capability. Next, we compare the
forecasting performance between the recurrent SVR, MLE and the recurrent
MLP. Both metrics all reveal that recurrent SVR consistently outperform
the benchmarks in forecasting one-day-ahead financial returns.
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Figure 6: Actual and Forecasted Financial Returns.

We plot the actual and one-day-ahead forecasting returns by MLE, the
recurrent MLP and the recurrent ε-SVR. The 100 one-day-ahead forecasting
returns correspond to the out-of-sample period between August 7, 2007 and
December 31, 2007 for the CAD and between August 9, 2007 and December
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31, 2007 for the NYSE. As anticipated, the recurrent ε-SVR captures the
actual returns more accurately.

5 Conclusions

In this paper we propose a recurrent ε-SVR procedure for nonlinear ARMA
models which has a global feedback loop from the output layer to the input
space and examine the empirical forecasting performance of the proposed
procedure. Empirical applications are made for forecasting the simulated
data and the real data of the Canadian Dollar (CAD) against U.S. Dollar
daily exchange rates and the New York Stock Exchange TM(NYSE) composite
stock index. The forecasting ability of the recurrent ε-SVR is also compared
with those of MLE, the recurrent ANN (MLP) and the feedforward SVR
with regard to two quantitative evaluation metrics.

The NMSE and sign evidence from both the simulated and real data
analysis obviously shows that the proposed recurrent ε-SVR improves the
forecasting performance of the standard feedforward one. And it also consis-
tently outperforms the MLE and the recurrent ANN in forecasting the return
magnitude and the turning points just with only a few exceptions. Empirical
analysis is in favor of the theoretical advantage of the recurrent SVR. The
sensitivity to free parameters of the recurrent ε-SVR results and its iterative
process are also examined in detail by using cross-validation method, which
can be implemented very easily. In conclusion, the proposed recurrent ε-
SVR can be used as another standard SVR construction procedure in other
applications.

References

Adya, M. and F. Collopy, 1998: How effective are neural networks at fore-
casting and prediction? a review and evaluation. Journal of Forecasting.,
17, 481–495.

Ashok, K. and A. Mitra, 2002: Forecasting daily foreign exchange rates
using genetically optimized neural networks. Journal of Forecasting., 21,
501–511.

Box, G., G. Jenkins, and G. Reinsel, 1994: Time Series Analysis: Forecasting
and Control. Englewood Cliffs, Prentice Hall, New Jersey.

Cao, L. and F. Tay, 2001: Financial forecasting using support vector ma-
chines. Computation and Application, 10, 184–192.

22



Deng, N. and Y. Tian, 2004: New Methods in Data Mining: Support Vector
Machine. Science Press, Beijing.

Espinoza, M., J. Suykens, and B. D. Moor, 2006: Ls-svm regression with
autocorrelated errors. in Proc. of the 14th IFAC Symposium on System
Identification (SYSID), 582-587.

Evgeniou, T., T. Poggio, M. Pontil, and A. Verri, 2002: Regularization and
statistical learning theory for data analysis. Computational Statistics &
Data Analysis, 38, 421–432.

Gaudart, J., B. Giusiano, and L. Huiart, 2004: Comparison of the perfor-
mance of multi-layer perceptron and linear regression for epidemiological
data. Computational Statistics & Data Analysis, 44, 547–570.

Gestel, T., J. Suykens, D. Baestaens, A. Lambrechts, G. Lanckriet, B. Van-
daele, B. D. Moor, and J. Vandewalle, 2001: Financial time series pre-
diction using least squares support vector machines within the evidence
framework. IEEE Transactions on Neural Networks, 12(4), 809–821. Spe-
cial Issue on Neural Networks in Financial Engineering.

Hamilton, J., 1997: Time Series Analysis. Princeton University Press.
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