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Abstract

Market option prices in last 20 years confirmed deviations from the Black and

Scholes (BS) models assumptions, especially on the BS implied volatility. Implied bi-

nomial trees (IBT) models capture the variations of the implied volatility known as

“volatility smile”. They provide a discrete approximation to the continuous risk neutral

process for the underlying assets. In this paper, we describe the numerical construction

of IBTs by Derman and Kani (DK) and an alternative method by Barle and Cakici

(BC). After the formation of IBT we can estimate the implied local volatility and the

state price density (SPD). We compare the SPD estimated by the IBT methods with

a conditional density computed from a simulated diffusion process. In addition, we

apply the IBT to EUREX option prices and compare the estimated SPDs. Both IBT

methods coincide well with the estimation from the simulated process, though the BC

method shows smaller deviations in case of high interest rate, particularly.
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Wolfgang Härdle and Alena Myšičková

For about 20 years now, discrepancies between market option prices and Black
and Scholes (BS) prices have widened. The observed market option price
showed that the BS implied volatility, computed from the market option price
by inverting the BS formula varies with strike price and time to expiration.
These variations are known as “the volatility smile (skew)” and volatility
term structure, respectively.

In order to capture the dependence on strike and time to maturity, various
smile-consistent models (based on an arbitrage-free approach), have been pro-
posed in the literature. One approach is to model the volatility as a stochas-
tic process, see Hull and White (1987) or Derman and Kani (1998); another
works with discontinuous jumps in the stock price, see Merton (1976). How-
ever, these extensions cause several practical difficulties such as the violation
of the risk-neutrality or no-arbitrage. In contrast, more recent publications
proposed by Rubinstein (1994), Derman and Kani (1994), Dupire (1994),
and Barle and Cakici (1998) have introduced a locally deterministic volatility
function that varies with market price and time. These models independently
construct a discrete approximation to the continuous risk neutral process for
the underlying assets in the form of binomial or trinomial trees. These de-
terministic volatility models have both practical and theoretical advantages:
they are easily realisable and preserve the no-arbitrage idea inherent in the
BS model.

The implied binomial tree (IBT) method constructs a numerical procedure
which is consistent with the smile effect and the term structure of the implied
volatility. The IBT algorithm is a data adaptive modification of the Cox,
Ross and Rubinstein (1979)(CRR) method where the stock evolves along a
risk neutral binomial tree with constant volatility.

The following three requirements should be minimally satisfied by an IBT:

� correct reproduction of the volatility smile

� node transition probabilities lying in [0, 1]-intervall only

� risk neutral branching process (forward price of the underlying asset
equals the conditional expected value of itself) at each step.
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The last two conditions also guarantee no-arbitrage; should the stock price
fall below or above its corresponding forward price, the transition probability
would exceed the [0, 1]-interval.

The basic aim of the IBT is the estimation of implied probability distribu-
tions, or state price densities (SPD), and local volatility surfaces. Further-
more, the IBT may evaluate the future stock price distributions according to
the BS implied volatility surfaces which are calculated from observed daily
market European option prices.

In this chapter, we describe the numerical construction of the IBT and com-
pare the predicted implied price distributions. In Section 10.1, a detailed
construction of the IBT algorithm for European options is presented. First,
we introduce the Derman and Kani (1994) (DK) algorithm and show its pos-
sible drawbacks. Afterwards, we follow an alternative IBT algorithm by Barle
and Cakici (1998) (BC), which modifies the DK method by a normalisation
of the central nodes according to the forward price in order to increase its
stability in the presence of high interest rates. In Section 10.2 we compare
the SPD estimations with simulated conditional density from a diffusion pro-
cess with a non-constant volatility. In the last section, we apply the IBT to
a real data set containing underlying asset price, strike price, time to matu-
rity, interest rate, and call/put option price from EUREX (Deutsche Börse
Database). We compare the SPD estimated by real market data with those
predicted by the IBT.

10.1 Construction of the IBT

In the early 1970s, Black and Scholes presented the Geometric Brownian
Motion (GBM) model, where the stock price St is a solution of the stochastic
differential equation (SDE):

dSt

St
= µdt+ σdWt , (10.1)

with a standard Wiener process Wt and the constant instantaneous drift
µ. The constant instantaneous volatility function σ measures the return
variability around its expectation µ. Using a risk neutral measure Q, see
Fengler (2005), the BS pricing formulae for european call and put options
are:

Ct = e−rτEQ{max(ST −K, 0)} (10.2)

Pt = e−rτEQ{max(K − ST , 0)} . (10.3)
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Under these relations the underlying at the expiration date follows a condi-
tional lognormal distribution with density:

q(ST |St, r, τ, σ) =
1

ST

√
2πσ2τ

exp

−
{

log
(

ST

St

)
− (r − σ2

2 )τ
}2

2σ2τ

 . (10.4)

In the upper equations T is the expiration date, St is the stock price at time
t, τ = T − t is time to maturity, K is the strike price and r is the riskless
interest rate.

Looking at a general SDE for an underlying asset price process:

dSt

St
= µ(St, t)dt+ σ(St, t, ·)dWt , (10.5)

we can differentiate the following three concepts of volatility, see Fengler
(2005):

Instantaneous volatility σ(St, t, ·)

� measures the instantaneous standard deviation of logSt

� depends on the current level of the asset price St, time t and possibly
on other state variables denoted with ‘·’.

Implied volatility σ̂t(K,T )

� the BS option price implied measure of volatility, the instantaneous
standard deviation of logSt

� the volatility parameter corresponds to the BS price and a particular
observed market option price

� depends on the strike K, the expiration date T and time t.

Local volatility σK,T (St, t)

� expected instantaneous volatility conditional on a particular level of the
asset price ST = K at t = T

� In a deterministic model we can write σK,T (St, t) = σ(K,T ).

The CRR binomial tree is constructed as a discrete approximation of a GBM
process with a constant instantaneous volatility σt(St, t) = σ. Analogously,
the IBT can be viewed as a discretization of an instantaneous volatility model:

dSt

St
= µtdt+ σ(St, t)dWt, (10.6)
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where σ(St, t) depends on both the underlying price and time. The purpose of
the IBT is to construct a discrete implementation of the extended BS model
based on the observed option prices yielding the variable volatility σ(St, t). In
addition, the IBT may reflect a non-constant drift µt. After the construction
of the IBT, we are able to estimate a local volatility from underlying stock
prices and transition probabilities.

In the IBT construction, only observable data (market option prices, under-
lying prices, interest rate) are used, it is therefore nonparametric in nature.
Several alternative studies based on the kernel method, A¨it-Sahalia and
Lo (1998), or nonparametric constrained least squares, Yatchew and Härdle
(2006), and curve-fitting methods, Jackwerth and Rubinstein (1996) have
been published in recent years.

10.1.1 The Derman and Kani Algorithm

In the DK IBT approach, stock prices, transition probabilities and Arrow-
Debreu prices (discounted risk neutral probabilities) are calculated iteratively
level by level, starting in the level zero.

-
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Figure 10.1. Construction of an implied binomial tree.

Figure 10.1 illustrates the construction of the first two nodes of an IBT. We
build the IBT on the time interval [0, T ] with j = 0, 1, 2, . . . , n equally spaced
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levels, 4t apart. We start at zero level with t = 0, here the stock price equals
the current price of the underlying: S0

0 = S. There are n+1 nodes at the nth
level of the tree, we indicate the stock price of the ith node at the nth level
by Si

n, and the forward price at level n + 1 of Si
n at level n by F i

n = er4tSi
n.

The conditional probability pn
i+1 = P(Sn+1 = Si+1

n+1|Sn = Si
n) is the transition

probability of making a transition from node (n, i) to node (n+ 1, i+ 1).

The forward price Fn,i is required to satisfy the risk neutral condition:

F i
n = pn

i+1S
i+1
n+1 + (1− pn

i+1)S
i
n+1 . (10.7)

Thus we obtain the transition probability from the following equation:

pn
i+1 =

F i
n − Si

n+1

Si+1
n+1 − Si

n+1
. (10.8)

The Arrow-Debreu price is the price of an option which pays 1 unit payoff
if the stock price St at time t attains the value Si

n, and 0 otherwise. The
Arrow-Debreu price in the state i at level n can be computed as the expected
discounted value of its payoff: λi

n = E[e−rt1(St = Si
n)|S0 = S0

0 ]. In general,
Arrow-Debreu prices can be obtained by the iterative formula, where λ0

0 = 1
as a definition.

λ0
n+1 = e−r4t

{
λ0

n(1− pn
1)
}

λi+1
n+1 = e−r4t

{
λi

np
n
i+1 + λi+1

n (1− pn
i+2)
}
, 0 ≤ i ≤ n− 1 (10.9)

λn+1
n+1 = e−r4t {λn

np
n
n+1}

To illustrate the calculation of the Arrow-Debreu prices, we provide an ex-
ample with a construction of a CRR binomial tree. Let us assume that the
current value of the underlying S = 100, time to maturity τ = T = 2 years,
4t = 1 year, constant volatility σ = 10%, and riskless interest rate r = 0.03.
The Arrow-Debreu price tree shown in the Figure 10.3 can be calculated from
the stock price tree in the Figure 10.2.

Using the CRR method, the stock price at the lower node at the first level
equals S0

1 = S0
0 · e−σ4t = 100 · e−0.1 = 90.52, and at the upper node S1

1 =
S0

0 · eσ4t = 110.47. The transition probability p0
1 = 0.61 is obtained by

the formula (10.8) with F 0
0 = S0

0e
0.03 = 103.05. Now, we calculate λi

1 for
i = 0, 1, according to the formula (10.9): λ0

1 = e−r4t · λ0
0 · (1 − p0

1) = 0.36
and λ1

1 = e−r4t · λ0
0 · p0

1 = 0.61. At the second level, we calculate the stock
prices according to the corresponding nodes at the first level, for example:
S0

2 = S0
1 · e−σ4t = 81.55, S1

2 = S0
0 = 100 and S2

2 = S1
1 · eσ4t = 122.04.
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Figure 10.2. CRR binomial tree for stock prices with T = 2
years, 4t = 1, σ = 0.1 and r = 0.03. XFGIBT01
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Figure 10.3. CRR binomial tree for Arrow-Debreu prices with
T = 2 years, 4t = 1, σ = 0.1 and r = 0.03. XFGIBT01

The corresponding Arrow-Debreu prices λi
2 for i = 0, 1, 2 are obtained by the

substitution in the formula 10.9:

λ0
2 = e−r4t · λ0

1 · (1− p1
1) = 0.13

λ1
2 = e−r4t · {λ0

1 · p1
1 + λ1

1 · (1− p1
2) = 0.44}

λ2
2 = e−r4t · λ1

1 · p1
2 = 0.37 .

In the BS model with the state price density (SPD) from 10.4, the option
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prices are given by:

C(K, τ) = e−rτ

∫ +∞

0
max(ST −K, 0) q(ST |St, r, τ)dST , (10.10)

P (K, τ) = e−rτ

∫ +∞

0
max(K − ST , 0) q(ST |St, r, τ)dST , (10.11)

where C(K, τ) and P (K, τ) denote call option price and put option price
respectively, andK is the strike price. In the IBT, option prices are calculated
in discrete time intervals τ = n4t using the Arrow-Debreu prices,

C(K,n4t) =
n∑

i=0

λi+1
n+1 max(Si+1

n+1 −K, 0) , (10.12)

P (K,n4t) =
n∑

i=0

λi+1
n+1 max(K − Si+1

n+1, 0) . (10.13)

Using the risk neutral condition (10.7) and the discrete option price calcula-
tion from (10.12) or (10.13), one obtains the iteration formulae to construct
the IBT.

Let us assume the strike price is equal to the known stock price: K = Si
n = S.

Then the contribution from the transition to the first in-the-money upper
node can be separated from the other contributions. Using the iterative
formulae for the Arrow-Debreu prices (10.9) in the equation (10.12):
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er4tC(S, n4t) = λ0
n(1− pn

1) max(S0
n+1 − S, 0) + λn

np
n
n+1 max(Sn+1

n+1 − S, 0)

+
n−1∑
j=0

{
λj

np
n
j+1 + λj+1

n (1− pn
j+2)

}
max(Sj+1

n+1 − S, 0)

=
{
λi

np
n
i+1 + λi+1

n (1− pn
i+2)
}

(Si+1
n+1 − S) + λn

np
n
n+1(S

n+1
n+1 − S)

+
n−1∑

j=i+1

{
λj

np
n
j+1 + λj+1

n

(
1− pn

j+2
)}

(Sj+1
n+1 − S)

= λi
np

n
i+1(S

i+1
n+1 − S)

+
n−1∑

j=i+1

λj
np

n
j+1(S

j+1
n+1 − S) + λn

np
n
n+1(S

n+1
n+1 − S)

+ λi+1
n (1− pn

i+2)(S
i+1
n+1 − S) +

n∑
j=i+2

λj
n(1− pn

j+1)(S
j
n+1 − S)

= λi
np

n
i+1(S

i+1
n+1 − S)

+
n∑

j=i+1

λj
n

{(
1− pn

j+1
)
(Sj

n+1 − S) + pn
j+1(S

j+1
n+1 − S)

}
.

Entering the risk neutral condition (10.7) in the last term, one obtains:

er4tC(S, n4t) = λi
np

n
i+1
(
Si+1

n+1 − S
)

+
n∑

j=i+1

λj
n

(
F j

n − S
)
. (10.14)

Now, the stock price for the upper node can be rewritten in terms of the
known Arrow-Debreu prices λi

n, the known stock prices Si
n and the known

forwards F i
n:

Si+1
n+1 =

Si
n+1
{
C
(
Si

n, n4t
)
er4t − ρu

}
− λi

nS
i
n

(
F i

n − Si
n+1
)

C (Si
n, n4t) er4t − ρu − λi

n

(
F i

n − Si
n+1

) , (10.15)

where ρu denotes the following summation term:

ρu =
n∑

j=i+1

λj
n(F

j
n − Si

n) . (10.16)

The transition from the nth to the (n + 1)th level of the tree is defined by
(2n + 3) parameters, i.e. (n + 2) stock prices of the nodes at the (n + 1)th
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level, and (n + 1) transition probabilities (when the IBT starts at the zero-
level). Suppose (2n+1) parameters corresponding to the nth level are known,
the stock prices Si

n+1 and transition probabilities pn
i+1 at all nodes above the

centre of the tree corresponding to the (n+1)th level can be found iteratively
using the equations (10.15) and (10.8) as follows:

We always start from the central nodes, if n is odd, define Si
n+1 = S0

0 = S,
for i = (n + 1)/2. If n is even, we start from the two central nodes just
below and above the centre of the level, Si

n+1 and Si+1
n+1 for i = n/2, and set

Si
n+1 = (Si

n)
2/Si+1

n+1 = S2/Si+1
n+1, which adjusts the logarithmic CRR centring

spacing between Si
n and Si+1

n+1 to be the same as that between Si
n and Si

n+1.
Substituting this relation into (10.15) one gets the formula for the upper of
the two central nodes for the odd levels:

Si+1
n+1 =

S
{
C (S, n4t) er4t + λi

nS − ρu

}
λi

nF
i
n − er4tC (S, n4t) + ρu

for i =
n

2
. (10.17)

Once we have the initial nodes’ stock prices, according to the relationships
among the different parameters, we can repeat the process to calculate those
at higher nodes (n+ 1, j), j = i+ 2, . . . n+ 1 one by one.

Similarly, we can calculate the parameters at lower nodes (n + 1, j), j =
i− 1, . . . , 1 at the (n + 1)th level by using the known put prices P (K,n4t)
for K = Si

n.

Si
n+1 =

Si+1
n+1

{
er4tP (Si

n, n4t)− ρl

}
− λi

nS
i
n(F

i
n − Si+1

n+1)

er4tP {Si
n, (n+ 1)4t} − ρl + λi

n(F
i
n − Si+1

n+1)
, (10.18)

where ρl denotes the sum over all nodes below the one with price Si
n:

ρl =
i−1∑
j=0

λj
n(S

i
n − F j

n) . (10.19)

Transition probabilities and Arrow-Debreu prices are obtained by (10.8) and
(10.9), respectively.

C(K, τ) and P (K, τ) in (10.15) and (10.18) are the interpolated values for
a call or put struck today at strike price K and time to maturity τ . In the
DK construction, they are obtained by the CRR binomial tree with constant
parameters σ = σimp(K, τ), calculated from the known market option prices.
In practice, calculating interpolated option prices by the CRR method is
computationally intensive.
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10.1.2 Compensation

The transition probability pn
i at any node should lie between 0 and 1, this

condition avoids the riskless arbitrage: if pn
i+1 > 1, the stock price Si+1

n+1 would
fall below the forward price F i

n, similarly, if pn
i+1 < 0, the strike price Si

n+1
would fall above the forward price F i

n. Therefore it is useful to limit the
estimated stock prices by the neighbouring forwards from the previous level:

F i
n < Si+1

n+1 < F i+1
n . (10.20)

If the stock price does not fulfil the above inequality condition, we rede-
fine it by assuming that the logaritmic difference between the stock prices
at this node and its adjacent is equal to the logaritmic difference between
the corresponding stock prices at the two nodes at the previous level, i.e.,
log(Si+1

n+1/S
i
n+1) = log(Si

n/S
i−1
n ). Sometimes, the obtained price still does not

satisfy inequality (10.20), then we substitute the stock price Si+1
n+1 by the

average of F i
n and F i+1

n .

As used in the construction of the IBT in (10.12) or (10.13), the implied
conditional distribution, the SPD q(ST |St, r, τ), could be estimated at discrete
time τ = n4 t by the product of the Arrow-Debreu prices λi

n+1 at the (n+1)th
level with the influence of the interest rate ern4 t. To fulfill the risk-neutrality
condition (10.7), the conditional expected value of the underlying log stock
price in the following (n+ 1)th level, given the stock price at the nth level is
defined as:

M = EQ{log(Sn+1)|Sn = Si
n} = pn

i+1 log(Si+1
n+1)+(1−pn

i+1) log(Si
n+1) . (10.21)

We can specify such a condition also for the conditional second moments of
log(Sn+1) at Sn = Si

n, which is the implied local volatility σ2(Si
n, n4t) during

the time period 4t:

σ2(Si
n,4t) = VarQ{log(Sn+1)|Sn = Si

n}
= pn

i+1{log(Si+1
n+1)−M}2 + (1− pn

i+1){log(Si
n+1)−M}2

= 2 log

(
Si+1

n+1

Si
n+1

)
{pn

i+1(1− pn
i+1)} . (10.22)

After the construction of an IBT, all stock prices, transition probabilities,
and Arrow-Debreu prices at any node in the tree are known. We are thus
able to calculate the local volatility σ(Si

n,m4t) at any level m.

In general, the instantaneous volatility function used in the diffusion model
(10.6) is different from the local volatility function derived in (10.22), only
in the BS model are they identical. Additional, the BS implied volatility
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σ̂(K, τ), which assumes the Black-Scholes model at least locally, differs from
the local volatility σ(s, τ), they describe different characteristics of the second
moment using different parameters.

If we choose 4t small enough, we obtain the estimated SPD at fixed time to
maturity, and the distribution of local volatility σ(S, τ).

10.1.3 Barle and Cakici Algorithm

Barle and Cakici (1998) (BC) suggest an improvement of the DK construc-
tion. The first major modification is the choice of the strike price in which
the option should be evaluated (as in 10.14). In the BC algorithm, the strike
price K is chosen to be equal to the forward price F i

n, and similarly to the
DK construction, using the discrete approximation (10.12) we get:

er4tC(F i
n, n4t) =

n∑
j=0

λj+1
n+1 max(Sj+1

n+1 − F i
n, 0)

=
{
λi

np
n
i+1 + λi+1

n (1− pn
i+2)
}

(Si+1
n+1 − F i

n) + λn
np

n
n+1(S
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Entering the risk neutral condition again (10.7) one obtains:

er4tC(F i
n, n4t) = λi

np
n
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(
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)
+
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. (10.23)

Identify the upper sum as:

%u =
n∑

j=i+1

λj
n

(
F j

n − F i
n

)
, (10.24)

and using the equation for the transition probability (10.8) we can write the
recursion relation for the stock price in the upper node as follows:

Si+1
n+1 =

Si
n+1
{
C
(
F i

n, n4t
)
er4t − %u

}
− λi

nF
i
n

(
F i

n − Si
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)

C (F i
n, n4t) er4t − %u − λi

n

(
F i

n − Si
n+1

) . (10.25)
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Analogous to the DK construction, we start from the central nodes of the
binomial tree, but in contrast with the DK construction the BC construction
takes the riskless interest rate into account. If (n + 1) is even, the price of
the central node Si

n+1 = S0
0e

r4t for i = (n + 1)/2. If (n + 1) is odd, the two
central nodes must satisfy Si

n+1 · Si+1
n+1 = (F i

n)
2. Adding this condition to the

equation (10.25) the lower central node can be calculated as:

Si
n+1 = F i

n

λi
nF

i
n − {er4tC(F i

n, n4t)− %u}
λi

nF
i
n + {er4tC(F i

n, n4t)− %u}
for i = 1 + n/2, (10.26)

the upper one is then: Si+1
n+1 = (F i

n)
2/Si

n+1.

After stock prices of the central nodes are obtained, we repeat the recursion
equation (10.25) to calculate the stock prices at higher nodes (n + 1, j), j =
i + 2, . . . , n + 1. The transition probabilities and Arrow-Debreu prices are
calculated through (10.8) and (10.9), respectively.

Similarly, an analogous recursion relation for the stock prices at lower nodes
can be found by using put option prices at strike F i

n:

Si
n+1 =

Si+1
n+1{P (F i

n, n4t)er4t − %l}λi
nF

i
n(S

i+1
n+1 − F i

n)

P (F i
n, n4t)er4t − %l − λi

n(S
i+1
n+1 − F i

n)
, (10.27)

where where %l denotes the lower sum:

%l =
i−1∑
j=0

λj
n(F

i
n − F j

n) .

Notice that BC use the Black-Scholes call and put option prices C(K, τ) and
P (K, τ), which makes the calculation faster than the interpolation technique
based on the CRR method.

The balancing inequality (10.20), to avoid negative transition probabilities,
and therewith the arbitrage is still used in the BC algorithm: they re-estimate
Si+1

n+1 by the average of F i
n and F i+1

n , though the choice of any point between
these forward prices is sufficient.

10.2 A Simulation and a Comparison of the
SPDs

The following detailed example illustrates the construction of the tree from
the smile, using the DK algorithm first, and the BC algorithm afterwards.
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Let us assume that the current value of the underlying stock S = 100, with
no dividend and the annually compounded riskless interest rate r = 3% per
year for all time expirations. For the implied volatility function, we use a
convex function:

σ̂ =
−0.2

{log(K/St)}2 + 1
+ 0.3 , (10.28)

taken from Fengler (2005). For simplicity, we do not model a term structure
of the implied volatility. The BS option prices needed for growing the tree
are calculated from this implied volatility function. We construct the IBTs
with time to maturity T = 1 year discretized in five time steps.

10.2.1 Simulation Using the DK Algorithm

Using the assumption on the BS implied volatility surface described above,
we obtain the one year stock price implied binomial tree (Figure 10.4), the
upward transition probability tree (Figure 10.5), and the Arrow-Debreu price
tree (Figure 10.6).
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Figure 10.4. Stock price tree calculated with the DK al-
gorithm with S0

0 = 100, r = 0.03 and T = 1 year.
XFGIBT01

All the IBTs correspond to time to maturity τ = 1 year, and 4t = 1/5 year.
Figure 10.4 shows the estimated stock prices starting at the zero level with
S0

0 = S = 100. The elements in the j-th column correspond to the (j − 1)th
level of the stock price tree. Figure 10.5 shows the transition probabilities, its
element (n, j) represents the transition probability from the node (n−1, j−1)
to the node (n, j). The third tree displayed in Figure 10.6 contains the Arrow-
Debreu prices. Its elements in the j-th column match the Arrow-Debreu
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Figure 10.5. Transition probability tree calculated with the
DK algorithm with S0

0 = 100, r = 0.03 and T = 1
year. XFGIBT01
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Figure 10.6. Arrow-Debreu price tree calculated with the
DK algorithm with S0

0 = 100, r = 0.03 and T = 1 year.
XFGIBT01

prices in the (j − 1) th level. Using the stock prices together with Arrow-
Debreu prices of the nodes at the final level, a discrete approximation of the
implied price distribution can be obtained. Notice that by the definition of
the Arrow-Debreu price, the risk neutral probability corresponding to each
node should be calculated as the product of the Arrow-Debreu price and the
factor erj4t in the level j.

Choosing the time steps small enough, we obtain more accurate estimation
of the implied price distribution and the local volatility surface σ(S, τ). We
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still use the same implied volatility function from (10.28), and assume S0
0 =

100 , r = 0.03 , T = 5 years.

SPD estimation arising from fitting the implied five-year tree with 40 levels is
shown in Figure 10.7. Local volatility surface computed from the implied tree
at different times to maturity and stock price levels is shown in Figure 10.8.
Obviously, the local volatility captures the volatility smile, which decreases
with the strike price and increases with the time to maturity.
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Figure 10.7. SPD estimation by the DK IBT computed with
S0

0 = 100, r = 0.03 and T = 5 years. XFGIBT02

10.2.2 Simulation Using the BC Algorithm

The BC algorithm can be applied in analogy to the DK technique. The
computing part is replaced by the BC algorithm, we are using the implied
volatility function from (10.28) as in the DK algorithm. Figures 10.9 - 10.11
show the one-year stock price tree with five steps, transition probability tree,
and Arrow-Debreu tree. Figure 10.12 presents the plot of the estimated
SPD by fitting a five year implied binomial tree with 40 levels using BC
algorithm. Figure 10.13 shows the characteristics of the local volatility surface
of the generated IBT, the local volatility follows the “volatility smile”, which
decreases with the stock price and increases with time.
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Figure 10.8. Implied local volatility surface estimated by
the DK IBT with S0

0 = 100, r = 0.03 and T = 5 years.
XFGIBT02 .
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Figure 10.9. Stock price tree calculated with the BC algorithm
with S0

0 = 100, r = 0.03 and T = 1 year. XFGIBT01

10.2.3 Comparison with the Monte-Carlo Simulation

We now compare the SPD estimation obtained by the two IBT methods
with the estimated density function of a simulated process St generated from
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Figure 10.10. Transition probability tree calculated with the
BC algorithm with S0

0 = 100, r = 0.03 and T = 1 year.
XFGIBT01
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Figure 10.11. Arrow-Debreu price tree calculated with the
BC algorithm with S0

0 = 100, r = 0.03 and T = 1 year.
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the diffusion process (10.6). To perform a discrete approximation of this
diffusion process, we use the Euler scheme with time step δ = 1/1000,
the constant drift µt = r = 0.03 and the volatility function σ(St, t) =[

−0.2

{log(K/St)}2 + 1
+ 0.3

]
.

Compared to Sections 10.2.2 and 10.2.2 where we started from the BS implied
volatility surface, here we construct the IBTs direct from the simulated option
price function. In the construction of the IBTs, we calculate the option prices
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Figure 10.12. SPD estimation by the BC IBT computed with
S0

0 = 100, r = 0.03 and T = 5 years. XFGIBT02

Figure 10.13. Implied local volatility surface estimated by the
BC IBT with S0

0 = 100, r = 0.03 and T = 5 years. XFGIBT02

corresponding to each node at the implied tree according to their theoretical
definitions (10.3) and (10.3) from the simulated asset prices St. We simulate
St for t = i/4 year, i = 1, . . . , 50 in the diffusion model (10.6) with the
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Monte-Carlo simulation method.
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Figure 10.14. SPD estimation from the DK IBT (blue dashed
line) and from the BC IBT (black dashed line) compared to
the estimation by Monte-Carlo simulation with its 95% con-
fidence band (red lines). Level = 50, T = 5 years, 4t = 0.1
year. XFGIBT03

From the estimated distribution shown in Figure 10.14, we observe small
deviations of the SPDs obtained from the two IBT methods from the esti-
mation obtained by the Monte-Carlo simulation. The SPD estimation by
the BC algorithm coincides substantially better with the estimation from the
simulated process than the estimation by the DK algorithm, which shows a
shifted mean of its SPD.

As above, we can also estimate the local volatility surface from the both im-
plied binomial trees. Compare Figure 10.15 with Figure 10.16 and notice that
some edge values cannot be obtained directly from the five-year IBT. How-
ever, both local volatility surface plots actually coincide with the volatility
smile characteristic, the implied local volatility of the out-the-money options
decreases with the increasing stock price, and increases with time.

10.3 Example – Analysis of EUREX Data

In the following example we use the IBTs to estimate the price distribution
of the real stock market data. We use underlying asset prices, strike prices,
time to maturity, interest rates, and call/put option prices from EUREX at 19
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Figure 10.15. Implied local volatility surface of the simulated
model, calculated from DK IBT. XFGIBTcdk

Figure 10.16. Implied local volatility surface of the simulated
model, calculated from BC IBT. XFGIBTcbc

March, 2007, taken from the database of German stock exchange. First, we
estimate the BS implied volatility surface from the data set with the technique
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Figure 10.17. BS implied volatility surface estimated from
real stock and option prices. XFGIBT05

of Fengler, Härdle and Villa (2003). Figure 10.17 shows the estimated implied
volatility surface, which reflects the characteristics that the implied volatility
decreases with the strike price and increases with time to maturity.

Now we construct the IBTs, where we calculate the interpolated option prices
with the CRR binomial tree method using the estimated implied volatility.
Fitting the function of option prices directly from the market option prices
causes difficulties since the function approaches a value of zero for very high
strike prices which would violate no-arbitrage conditions.

The estimated stock price distribution, obtained by the BC and the DK IBT
with 40 levels, for τ = 0.5 year, is shown in Figure 10.18. Obviously, the both
estimated SPDs are nearly identical. The SPDs do not show any deviations
from the log-normal characteristics according to their skewness and kurtosis.

From the simulations and real data example, we conclude that the implied
binomial tree is a simple smile-consistent method to assess the future stock
prices. Still, some limitations of the algorithms remain. With an increasing
interest rate or with a small time step, negative transition probabilities occur
more often. When the interest rate is high, the BC algorithm is a better
choice. The DK algorithm cannot handle with higher interest rates such
as r = 0.2, in this case the BC algorithm still can be used. In addition,
the negative probabilities appear more rarely in the BC algorithm than in
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Figure 10.18. SPD estimation by the BC IBT (black dashed
line) and by the DK IBT (blue solid line) from the EUREX
data, τ = 0.5 year, level = 25. XFGIBT05

the DK construction, even though most of them appear at the edge of the
trees. But, by modifying these values we are effectively losing the information
about the volatility behavior at the corresponding nodes. This deficiency is
a consequence of our condition that continuous diffusion process is modeled
as a discrete binomial process. Improving of this requirement leads to a
transition to multinomial or varinomial trees which have a drawback of more
complicated models with difficult realization.

Besides its basic function to price derivatives in consistency with market
prices, IBTs are also useful for hedging, calculating local volatility surfaces
or estimation of the future price distribution according to the historical data.
In the practical application, the reliability of the approach depends critically
on the quality of the dynamics estimation of the underlying process, such as
of the BS implied volatility surface obtained from the market option prices.
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Yatchew, A. and Härdle,W. (2006). Nonparametric state price density estimation using
constrained least squares and the bootstrap, Journal of Econometrics 133: 579–599.



 
 

SFB 649 Discussion Paper Series 2008 

 
For a complete list of Discussion Papers published by the SFB 649, 
please visit http://sfb649.wiwi.hu-berlin.de. 
 

001 "Testing Monotonicity of Pricing Kernels" by Yuri Golubev, Wolfgang 
Härdle and Roman Timonfeev, January 2008. 

002 "Adaptive pointwise estimation in time-inhomogeneous time-series 
 models" by Pavel Cizek, Wolfgang Härdle and Vladimir Spokoiny, 
 January 2008. 
003 "The Bayesian Additive Classification Tree Applied to Credit Risk 
 Modelling" by Junni L. Zhang and Wolfgang Härdle, January 2008. 
004 "Independent Component Analysis Via Copula Techniques" by Ray-Bing 
 Chen, Meihui Guo, Wolfgang Härdle and Shih-Feng  Huang, January 
 2008. 
005   "The Default Risk of Firms Examined with Smooth Support Vector 
 Machines" by Wolfgang Härdle, Yuh-Jye Lee, Dorothea Schäfer 
 and Yi-Ren Yeh, January 2008. 
006 "Value-at-Risk and Expected Shortfall when there is long range 
 dependence" by Wolfgang Härdle and Julius Mungo, Januray 2008. 
007  "A Consistent Nonparametric Test for Causality in Quantile" by 
 Kiho Jeong and Wolfgang Härdle, January 2008. 
008 "Do Legal Standards Affect Ethical Concerns of Consumers?" by Dirk 
 Engelmann and Dorothea Kübler, January 2008. 
009   "Recursive Portfolio Selection with Decision Trees" by Anton Andriyashin, 
 Wolfgang Härdle and Roman Timofeev, January 2008. 
010 "Do Public Banks have a Competitive Advantage?" by Astrid Matthey, 
 January 2008. 
011 "Don’t aim too high: the potential costs of high aspirations" by Astrid 
 Matthey and Nadja Dwenger, January 2008. 
012   "Visualizing exploratory factor analysis models" by Sigbert Klinke and 
 Cornelia Wagner, January 2008. 
013 "House Prices and Replacement Cost: A Micro-Level Analysis" by Rainer 
 Schulz and Axel Werwatz, January 2008. 
014 "Support Vector Regression Based GARCH Model with Application to 
 Forecasting Volatility of Financial Returns" by Shiyi Chen, Kiho Jeong and 
 Wolfgang Härdle, January 2008. 
015  "Structural Constant Conditional Correlation" by Enzo Weber, January 
 2008. 
016 "Estimating Investment Equations in Imperfect Capital Markets" by Silke 
 Hüttel, Oliver Mußhoff, Martin Odening and Nataliya Zinych, January 
 2008. 
017   "Adaptive Forecasting of the EURIBOR Swap Term Structure" by Oliver 
 Blaskowitz and Helmut Herwatz, January 2008. 
018 "Solving, Estimating and Selecting Nonlinear Dynamic Models without 
 the Curse of Dimensionality" by Viktor Winschel and Markus Krätzig, 
 February 2008. 
019 "The Accuracy of Long-term Real Estate Valuations" by Rainer Schulz, 
 Markus Staiber, Martin Wersing and Axel Werwatz, February 2008. 
020  "The Impact of International Outsourcing on Labour Market Dynamics in 
 Germany" by Ronald Bachmann and Sebastian Braun, February 2008. 
021  "Preferences for Collective versus Individualised Wage Setting" by Tito 
 Boeri and Michael C. Burda, February 2008. 

SFB 649, Spandauer Straße 1, D-10178 Berlin 
http://sfb649.wiwi.hu-berlin.de 

 
This research was supported by the Deutsche 

Forschungsgemeinschaft through the SFB 649 "Economic Risk". 



 

SFB 649, Spandauer Straße 1, D-10178 Berlin 
http://sfb649.wiwi.hu-berlin.de 

 
This research was supported by the Deutsche 

Forschungsgemeinschaft through the SFB 649 "Economic Risk". 

022 "Lumpy Labor Adjustment as a Propagation Mechanism of Business 
 Cycles" by Fang Yao, February 2008. 
023 "Family Management, Family Ownership and Downsizing: Evidence from 
 S&P 500 Firms" by Jörn Hendrich Block, February 2008. 
024 "Skill Specific Unemployment with Imperfect Substitution of Skills" by 
 Runli Xie, March 2008.  
025 "Price Adjustment to News with Uncertain Precision" by Nikolaus 
 Hautsch, Dieter Hess and Christoph Müller, March 2008.  
026  "Information and Beliefs in a Repeated Normal-form Game" by Dietmar 
 Fehr, Dorothea Kübler and David Danz, March 2008. 
027 "The Stochastic Fluctuation of the Quantile Regression Curve" by 
 Wolfgang Härdle and Song Song, March 2008. 
028  "Are stewardship and valuation usefulness compatible or alternative 
 objectives of financial accounting?" by Joachim Gassen, March 2008. 
029 "Genetic Codes of Mergers, Post Merger Technology Evolution and Why 
 Mergers Fail" by Alexander Cuntz, April 2008. 
030  "Using R, LaTeX and Wiki for an Arabic e-learning platform" by Taleb 
 Ahmad, Wolfgang Härdle, Sigbert Klinke and Shafeeqah Al Awadhi, April
 2008. 
031 "Beyond the business cycle – factors driving aggregate mortality rates" 
 by Katja Hanewald, April 2008. 
032 "Against All Odds? National Sentiment and Wagering on European 
 Football" by Sebastian Braun and Michael Kvasnicka, April 2008. 
033 "Are CEOs in Family Firms Paid Like Bureaucrats? Evidence from 
 Bayesian and Frequentist Analyses" by Jörn Hendrich Block, April 2008. 
034 "JBendge: An Object-Oriented System for Solving, Estimating and 
 Selecting Nonlinear Dynamic Models" by Viktor Winschel and Markus 
 Krätzig, April 2008. 
035 "Stock Picking via Nonsymmetrically Pruned Binary Decision Trees" by 
 Anton Andriyashin, May 2008. 
036 "Expected Inflation, Expected Stock Returns, and Money Illusion: What 
 can we learn from Survey Expectations?" by Maik Schmeling and 
 Andreas Schrimpf, May 2008. 
037 "The Impact of Individual Investment Behavior for Retirement Welfare: 
 Evidence from the United States and Germany" by Thomas Post, Helmut 
 Gründl, Joan T. Schmit and Anja Zimmer, May 2008. 
038 "Dynamic Semiparametric Factor Models in Risk Neutral Density 
 Estimation" by Enzo Giacomini, Wolfgang Härdle and Volker Krätschmer, 
 May 2008. 
039 "Can Education Save Europe From High Unemployment?" by Nicole 
 Walter and Runli Xie, June 2008. 
042 "Gruppenvergleiche bei hypothetischen Konstrukten – Die Prüfung der 
 Übereinstimmung von Messmodellen mit der Strukturgleichungs-
 methodik" by Dirk Temme and Lutz Hildebrandt, June 2008. 
043 "Modeling Dependencies in Finance using Copulae" by Wolfgang Härdle, 
 Ostap Okhrin and Yarema Okhrin, June 2008. 
044  "Numerics of Implied Binomial Trees" by Wolfgang Härdle and Alena 
 Mysickova, June 2008. 
 


	Frontpage 044.pdf
	SFB649DP2008-044_ges.pdf
	10.pdf
	10_Title
	10

	Endpage 044.pdf


