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Abstract

Dimension reduction techniques for functional data analysis model and approximate
smooth random functions by lower dimensional objects. In many applications the
focus of interest lies not only in dimension reduction but also in the dynamic be-
haviour of the lower dimensional objects. The most prominent dimension reduction
technique - functional principal components analysis - however, does not model time
dependences embedded in functional data. In this paper we use dynamic semipara-
metric factor models (DSFM) to reduce dimensionality and analyse the dynamic
structure of unknown random functions by means of inference based on their lower
dimensional representation. We apply DSFM to estimate the dynamic structure of
risk neutral densities implied by prices of option on the DAX stock index.

Key words: dynamic factor models, dimension reduction, risk neutral density
AMS classification: 62G08, 62M10, 62P05
JEL classification: C14, C32, G12

1 Introduction

Large datasets containing various samples of high dimensional observations
became common in diverse fields of science with advances in measurement and
computational techniques. In many applications the data come in curves, i.e.

∗ Corresponding author. Tel. + 49 30 2093 5721, Fax. + 49 30 2093 5649
Email address: giacomini@wiwi.hu-berlin.de (Enzo Giacomini).

Preprint submitted to Elsevier 19 May 2008



as observations of discretized values of smooth random functions, presenting
evident functional structure. In these cases it is natural to perform statistical
inference using functional data analysis techniques.

Consider a dataset {(Yjt, Xjt)}, j = 1, . . . , Jt, t = 1, . . . , T containing noisy
samples of a real valued smooth random function F ∈ L2(X ), X ⊆ Rd, d ∈ N
evaluated at unbalanced design points Xjt as

Yjt =Ft(Xjt) + εjt (1.1)

where εjt denotes unknown zero-mean error terms and {Ft} are i.i.d. realiza-
tions of F . Each sample St = {(Yjt, Xjt) : j = 1, . . . , Jt}, t = 1, . . . , T may
correspond to a different observation on e.g. a different individual, time period
or experimental condition.

Examples in biomedicine are measurements across individuals of growth curves
or of brain potentials obtained from EEG, see Kneip and Gasser (1992) and
Gasser and Kneip (1995). In econometrics data may originate from expen-
ditures on commodities across households, Kneip (1994), implied volatilities
observed on different trading days, Fengler, Härdle, and Mammen (2007) or
measurements on stock liquidity across time, Dähne, Härdle, and Hautsch
(2008). Ramsay and Silverman (2005) and Ferraty and Vieu (2006) provide
an extensive list of functional datasets encountered in various applications.

A large branch of functional data analysis concentrates on modelling and ap-
proximating the random function F by lower dimensional objects. Distribu-
tions on function spaces are highly complex objects and dimension reduction
techniques present a feasible and interpretable approach to investigate them.
Functional principal components analysis (FPCA), based on the Karhunen-
Loève expansion of F , is the most prominent and widely used dimension re-
duction technique, see Rao (1958), Rice and Silverman (1991) and Ramsay
and Dalzell (1991).

Asymptotic results on FPCA have been obtained by Dauxois, Pousse, and Ro-
main (1982) for directly observed functional data {Ft(Xjt)}. In cases where
functional data is not directly observable a preliminary smoothing is required
at each St and FPCA is performed on the smoothed {F̂t}, see Besse, Cardot,
and Ferraty (1997) and Benko, Kneip, and Härdle (2008) for recent develop-
ments. In practical applications the previous fits may suffer, however, from
design-sparseness at each St, Cont and da Fonseca (2002) and Fengler et al.
(2007).

In general lines, previous literature combines PCA and dimension reduction
with presmoothing for effective dimensional space at fixed time horizon. Var-
ious applications, however, involve modelling the dynamics of the unobserved
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random functions and call for dimension reduction techniques that smooth in
space and are parametric in time.

In this paper we simultaneously reduce dimensionality avoiding preliminary
smoothing and consider the time structure in the sequence {Ft}. We describe
Ft as a linear combination of L + 1 << T unknown smooth functions, called
basis functions, ml ∈ L2(X ), l = 0, . . . , L:

Ft(Xjt) =
L∑

l=0

Zltml(Xjt). (1.2)

Here Zt = (Z0t, . . . , ZLt)
> is an unobservable random vector taking values

on RL+1. Defining the tuple of functions m = (m0, . . . ,mL)>, the dynamic
semiparametric factor model (DSFM), Borak, Härdle, Mammen, and Park
(2008), reads as

Yjt =Z>t m(Xjt) + εjt. (1.3)

The basis functions are estimated nonparametrically avoiding specification is-
sues, i.e. the shape of ml is extracted from the data. As m and Zt are estimated
simultaneously, the smoothing is transfered directly to ml, l = 0, . . . , L and
design-sparseness becomes secondary. In addition, and essential for investigat-
ing dynamics, the random process {Zt} may be non-stationary.

The form (1.2) is justified when prior knowledge about the available dataset
leads to expect some common structure generating each Ft. Approximating it
by a lower dimensional linear combination of common factors is a natural way
to handle and describe the unobservable generating mechanism.

In many applications the index t reflects time evolution and the unobservable
{Zt} contains the dynamics of {Ft}. Borak et al. (2008) show that under (1.2)
the autocorrelation structures of estimated {Ẑt} and true {Zt} are asymp-
totically equivalent. This result implies that no loss is incurred by inferring
the dynamic structure from {Ẑt}, i.e. there is no payment for not knowing
the true {Zt}. This fact is essential for investigating cointegration with an-
other dynamical systems. An application using financial data is provided by
Brüggemann, Härdle, Mungo, and Trenkler (2008) where the cointegration
between estimates {Ẑt} and macroeconomic time series is analysed.

Note that in the very similar common regressors model from Kneip (1994) the
unobservable functions are also considered a linear combination of unspecified
common functions as in (1.2) and are estimated from the data. There are
however crucial differences between DSFM and common regressors model:
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Fig. 1. Samples St, t = 1, . . . , 22 of DAX call prices traded on January 2001 (left).
Corresponding unbalanced design {Xjt} (right)

(1) in DSFM {Zt} is a (non-stationary) random process with autocovariance
structure inferable from {Ẑt}

(2) DSFM is implementable in unbalanced designs
(3) DSFM avoids presmoothing by transferring the smoothing to the basis

functions

Hence, in contrast to the dimension reductions techniques FPCA and common
regressors, DSFM reduces dimensionality capturing the structural dynamics
embedded in the observations.

We apply DSFM on a financial dataset of option prices in order to investigate
the dynamics of risk assessments from investors acting in a market. Option
prices are a valuable source of information concerning risk assessments from
investors about future financial payoffs. The information is summarized in
the risk neutral densities q, the continuous counterpart from Arrow-Debreu
security prices, see Ait-Sahalia and Lo (1998). Under no arbitrage assumptions
the risk neutral densities - corresponding to a risk neutral measure Q - are
derived from prices of European call options.

An European call option on St with maturity date T > 0 and strike K > 0 is
a financial instrument that delivers at time T the random payoff (ST −K)+

where St is the price of the underlying asset at time 0 ≤ t ≤ T . Breeden
and Litzenberger (1978) show that under no arbitrage assumptions the risk
neutral density is obtained from the European call price function Ct through
the relation

qt,T (sT |st) = er(T−t)∂
2Ct(st, K, T − t)

∂K2

∣∣∣∣∣
K=sT

(1.4)

where r > 0 is interest rate, see Section (3) for details.

The knowledge about the risk neutral densities delivers (time dependent) risk
assessments from investors concerning future payoffs and is essential for appli-
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cations in financial economics, option pricing and risk management as, e.g. es-
timated risk neutral densities allow less liquid instruments or contracts traded
over-the-counter to be priced. From the economic point of view it is natural to
investigate the dynamics of the risk neutral densities and the dependence be-
tween risk assessments and macroeconomic and financial indicators. This calls
for a method that reduces dimensionality and allows for dynamic analysis of
the lower dimensionals. Both features are present in DSFM.

We estimate the risk neutral densities based on a dataset containing intraday
prices of calls on the German stock index (DAX) from 2001. Each observation
consists of a call price Yjt on a design point Xjt = (κjt, τjt)

> where j =
1, . . . , Jt denotes the transactions at day t = 1, . . . , T and κ = g(K) is the
moneyness, a monotone transformation of strikes K. Exchange regulations
impose prespecified values for tradable maturities τ = T−t and are responsible
for the observed degenerated design, see figure 1.

Following Ait-Sahalia and Lo (1998) and Fengler et al. (2007) the observations
are transformed into log-implied volatilities Ỹjt = logC−1

BS(Yjt), see Section (3)
for details. These are assumed as discretized noisy values of the log-implied
volatility surface evaluated at design points {Xjt}:

Ỹjt = logVt(Xjt) + εjt. (1.5)

where the smooth random function V ∈ L2(X ), X ⊂ R2
+, is called the implied

volatility surface and εjt is an error term. The realizations {Vt} are filtered out
from the transformed data with DSFM and the risk neutral densities estimated
using (1.4) with CBS(V̂t) as an estimator for Ct. The dynamics of the estimated
{q̂t,T} is analysed based on the autocorrelation structure of {Ẑt}.

In the sequel the DSFM estimation method and its asymptotic properties are
described (Section 2). In the application part (Section 3), risk neutral densities
are defined and estimated from observed prices of European call options on the
DAX index (ODAX dataset). Their dynamic structure is analysed by vector
autoregressive models.

2 Estimation Method

Consider a dataset {(Yjt, Xjt)}, j = 1, . . . , Jt, t = 1, . . . , T such that

Yjt =
L∑

l=0

Zltml(Xjt) + εjt (2.1)
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where εjt is an unknown error terms with E[εjt] = 0 and E[ε2
jt] < ∞ and

{εjt} are independent. Here Zt = (Z0t, . . . , ZLt)
> is an unobservable random

vector taking values on RL+1 with Z0t = 1 and ml ∈ L2(X ), l = 0, . . . , L are
unknown smooth functions, called basis functions, mapping X ⊆ Rd, d ∈ N
into real values.

Following Borak et al. (2008), the basis functions are estimated using a series
expansion. Defining K normed functions ψk : X → R,

∫
X ψ

2
k(x)dx = 1, k =

1, . . . , K and a (L + 1 × K) matrix of coefficients Γ = (γl,k), γl,k ∈ R, the
tuple of functions m = (m0, . . . ,mL)> is approximated by Γ>ψ where ψ =
(ψ1, . . . , ψK)>. For simplicity of notation we assume that Jt = J does not
depend on t. We define the least square estimators as

(Γ̂, Ẑ) = arg min
Γ∈G,Z∈Z

T∑
t=1

J∑
j=1

{
Yjt − Z>t Γψ(Xjt)

}2
(2.2)

where G = M(L+1, K), Z = {Z ∈M(T, L+1) : Z0t = 1} and M(a, b) is the
set of all (a× b) matrices. The basis functions m are estimated by m̂ = Γ̂ψ.

Theorem (2.1) gives the asymptotic behaviour of the least squares estimators
(Γ̂, Ẑ).

Theorem 2.1 Suppose that DSFM holds and that (Γ̂, Ẑ) is defined by (2.2).
Under assumptions (A1)-(A8), see Appendix A, it holds for K, J →∞:

1

T

∑
1≤t≤T

∣∣∣∣∣∣Ẑ>t Γ̂− Z>t Γ∗
∣∣∣∣∣∣2 =OP (ρ2 + δ2

K)

See Borak et al. (2008) for the proof. Note that the model (2.1) is only identi-
fiable up to linear transformations. Consider a (L+ 1×L+ 1) regular matrix
B = (bmn) with b1n = δ1n and bm1 = δm1 for m,n = 1, . . . , L + 1 where
δmn = 1(m = n). Define Z∗t = B>Zt, m

∗ = B−1m, then from (1.2)

Ft(X) =Z>t m(X)

=Z>t BB
−1m(X)

=Z∗t
>m∗(X)

for X ∈ X . On the other hand it is always possible to chose orthonormal basis
functions by setting m∗ = Hm where H is an orthogonal matrix.

Theorem (2.2) states that for any Ẑt there exists a random matrix B such that
the autocovariances of {Ẑt}, Z̃t = B>Ẑt are asymptotically equivalent to the
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autocovariances of the true unobservable {Zt}. This equivalence is transfered
to classical estimation and testing procedures in the context of e.g. vector
autoregressive models and in particular justifies inference based on {Ẑt} when
{Zt} is a VAR process. Define for Ht ∈ Z, t = 1, . . . , T : H = T−1 ∑T

t=1Ht,
Hc,t = Ht −H and Hn,t = (T−1 ∑T

s=1Hc,sH
>
c,s)

−1/2Hc,t.

Theorem 2.2 Suppose that DSFM holds and that (Γ̂, Ẑ) is defined by (2.2).
Under assumptions (A1)-(A11), see Appendix A, there exists a random matrix
B such that for h 6= 0, hd = max(1, 1− h), hu = max(T, T − h) and T →∞:

1

T

hu∑
t=hd

Z̃c,t

(
Z̃c,t+h − Z̃c,t

)>
− 1

T

hu∑
t=hd

Zc,t (Zc,t+h − Zc,t)
> =OP (T−1/2)

where Z̃t = B>Ẑt. Moreover

1

T

hu∑
t=hd

Z̃n,tZ̃
>
n,t+h −

1

T

hu∑
t=hd

Zn,tZ
>
n,t+h =OP (T−1/2)

See Borak et al. (2008) for the proof. Note that, in contrast to FPCA, DSFM
does not require stationarity, neither for {Zt} nor {εt}, but only weak assump-
tions on the average behaviour of Zt, like being a martingale difference, see
Appendix A.

3 Application

Consider a financial market with one risky asset and one riskless bond with
constant interest rate r > 0. Let the price of the asset traded on the market
be described by the real valued random process {St}, t = [0, T ], T <∞ on a
filtered probability space (Ω, {Ft},P) with Ft = σ(Su, u ≤ t) and F0 = {∅,Ω}.
Assume further no arbitrage in the financial market in the sense that there
exists a (risk neutral) probability measure Q equivalent to P under which the
discounted price process {e−rtSt} is a martingale.

A European call option at strike K > 0 is a financial instrument that pays
Ψ(ST ) = (ST −K)+ at time T . By the risk-neutral valuation principle w.r.t.
Q the price Ct of a European call option at time t is defined to be

Ct = e−r(T−t)EQ[Ψ(ST )|Ft]

7



Assuming that {St} is a Q-Markov process and denoting the P-density of Q
by π, the price can be rewritten as

Ct(St) = e−r(T−t)EQ [Ψ(ST )|St]

= e−r(T−t)E
[
Ψ(ST )Kt

π(St, ST )|St

]

where E denotes the expectation under P and Kt
π(St, ST )

def.
= E[π|St,ST ]

E[π|St]
. The

conditional risk neutral distribution of ST is defined as

QST |St=st([ST ≤ x])
def.
=

∫ x

−∞
Kt

π(st, ·) dPST |St=st (3.1)

where PST |St=st is the conditional distribution of ST under St = st. Special-
izing to the following two factor model we assume that the price process has
dynamics given by

dSt =Stµ(Yt)dt+ Stσ(Yt)dW
1
t

hereW 1 is a standard P-Brownian motion and Y denotes an external economic
factor process modelled by

dYt = g(Yt) + ρdW 1
t + ρdW 2

t

where ρ ∈ [−1, 1] is some correlation factor, ρ
def.
=

√
1− ρ2 and W 2 is a

standard P-Brownian motion independent of W 1 under P. Market models of
this type are popular in mathematical finance and economics, in particular if
Y follows and Ornstein-Uhlenbeck dynamic with mean reversion term g(y) =
κ(θ− y) for constants θ ≥ 0 and κ > 0. Moreover, {St} is a Q-Markov process
for any Q, see Hernández-Hernández and Schied (2007) and the conditional
risk neutral distribution QST |St=st has a density function denoted by qt,T (·|st).
Hence, the call prices C can be expressed as

Ct(st, K, T − t) = er(T−t)
∫

(sT −K)+qt,T (sT |st)dsT .

We assume that the observed prices in the financial market are built based
on the risk neutral valuation principle w.r.t. an unknown risk neutral measure
Q. Our interest lies in estimating the conditional risk neutral distribution
QST |St=st , or equivalently its density function qt,T (·|st), implied by Q through
(3.1).
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3.1 Estimation

Adapting Breeden and Litzenberger (1978), one can show that the density
function qt,T (·|st), called from now on the risk neutral density, is obtained as
the second derivative of the call price function Ct with respect to strike K

qt,T (sT |st) = erτ ∂
2Ct(st, K, τ)

∂K2

∣∣∣∣∣
K=sT

(3.2)

here τ = T − t is the time to maturity. The price function can be smoothed
out of observations from call prices and used in (3.2) to recover state price
densities implied on the data.

Following Ait-Sahalia and Lo (1998) smoothing is carried out in the space of
implied volatilities. In general the exact form of Ct is hard to determine and
based on historical data an estimate of Ct can be obtained by non-parametric
regression. In order to cope with the course of dimensionality, Ait-Sahalia
and Lo (1998) proposed a semiparametric approach using the Black-Scholes
formula evaluated with a non-parametric estimator for the implied volatility
in place of the true non-observable volatility.

The implied volatility surface is the function σt : R2
+ → R+ satisfying for all

(K, τ) ∈ R2
+

Ct(st, K, τ) =CBS{st, rt, K, τ, σt(K, τ)} (3.3)

where CBS(s, r,K, τ, σ) = sΦ(d1) − Ke−rτΦ(d2) is the Black-Scholes price
of Ψ with strike K and maturity τ . Here Φ(x) is the standard normal cdf,

d1(σ) =
{
log

(
s
K

)
+ (r + 1

2
σ2)τ

}
/(σ

√
τ) and d2(σ) = d1 − σ

√
τ . Note that

CBS(v) = CBS(s, r,K, τ, v) is a continuous increasing function of v, hence
σt(K, τ) = C−1

BS{Ct(st, K, τ)}.

0.6 0.8 1 1.2 0.2 0.4 0.6 0.8
0.1

0.2

0.3

0.4

0.5
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0

0.2

0.4
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0.8

Fig. 2. Call and put implied volatilities observed (left), data design (right), ODAX
on 20000502
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More generally, the implied volatility surface is considered a smooth random
function V ∈ L2(X ) on the space X ⊂ R2 of strikes K and maturities τ .
Combining (3.2) and (3.3) the functional random variable H ∈ L2(X ) called
the risk neutral (RN) surface is defined as

H= erτD2CBS(V) (3.4)

where Dm denotes the m-th derivative with respect to K. Clearly lower di-
mension objects describing V may be used to analyse H.

A functional dataset containing realizations of V is however not available, as in
an exchange only discretized values of Vt corrupted by noise are registered from
trades. More specifically, on each day t = 1, . . . , T there are Jt options traded,
each intra-day trade j = 1, . . . , Jt corresponds to an observed option price Yjt

at a pair of moneyness and maturitiesXjt = (κjt, τjt)
> where κ = erτK/S. The

observed implied volatilities at the respective design points are obtained by
σjt = C−1

BS(Yjt), see figure (2). For numerical tractability we perform a further
transformation into log-implied volatilities Ỹjt = log σjt and use DSFM to
model

Ỹjt = logVt(Xjt) + εjt

where logVt = Z>t m. The implied volatility surface at t is estimated by V̂t =
exp(Ẑ>t Γ̂ψ), recall (2.2). The RN surface is estimated using (3.4) by Ĥt =
H(V̂t) where

H(V) =ϕ(d2)

{
1

K
√
τV

+ 2d1
DV
V

+K
√
τd1d2

(DV)2

V
+K

√
τD2V

}
(3.5)

and d1 = d1(V) and d2 = d2(V). The dynamics of the unobservable sequence of
RN surfaces {Ht} implied in the observations {(Yjt, Xjt)} may be investigated
by analysing the lower dimensional {Ẑt}.

3.2 Results

Here implied volatility and RN surfaces are estimated with DSFM from in-
traday call prices on the DAX index, i.e. St represents the value of the DAX
index at time t. The time ranges from 20010101 to 20020101 (dates are written
as year, month, day) corresponding to 253 trading days.

Tensor B-splines, quadratic in τ and cubic in κ directions placed on 8 × 6
knots, are used for the series estimators of m. The dimension L of Zt is chosen
based on
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RV (L) =

∑T
t=1

∑Jt
j=1

{
Ỹjt − Ẑ>t m̂(Xjt)

}2

∑T
t=1

∑Jt
j=1(Ỹjt − Y )2

where Y = (
∑T

t=1

∑Jt
j=1 Ỹjt)/

∑T
t=1 Jt. The value 1−RV (L) may be interpreted

as the ratio of variation explained by the model to total variation. The or-
der of the splines and number of knots have negligible influence on RV (L),
as established by inumerous simulations in Borak et al. (2008). The implied
volatility and RN surfaces are estimated with DSFM as in (3.5) with L = 3.
Table 1 shows that the addition of the fourth or fifth basis function results in
negligible model fit improvement.

L 1 2 3 4 5

1−RV (L) 0.77 0.97 0.98 0.98 0.98

Table 1
Number of basis functions and explained variation

Figures 3 and 4 depict the estimated loading factors series {Ẑt} and basis
functions m̂l. From (3.5) we obtain a sequence of RN surfaces {Ĥt}, t =
1, . . . , 253, figure 5 shows Ĥt at t corresponding to day 20010710.

Jan01 Apr01 Jul01 Oct01 Jan02

0

0.5

1
z

Fig. 3. Estimated {Ẑlt}, l = 1, 2, 3 (top to bottom)

In a first step we investigate the covariance structure of {Ẑt} by means of
VAR analysis. Table 2 presents the parameters from the VAR(2) model fitted
on {Ẑt}. The order 2 is selected based on Akaike (AIC), Schwarz (SC) and
Hannan-Quinn (HQ) criteria, see table 3. Moreover the VAR(2) model satisfies
stationarity as the roots of the characteristic polynomial lie inside of the unit
circle.

A natural issue is to analyse the dependences between {Zt} and the shape of
the RN surfaces {Ĥt}. In order to investigate this relation we compute the
skewness γ and excess kurtosis η of q̂t,T (·|st) across t and maturities τ . Here
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Fig. 4. Estimated basis functions m̂l, l = 0, . . . , 3 clockwise
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Fig. 5. Estimated RN surface, Ĥt at t corresponding to day 20010710

VAR(2)

const Ẑ1,t−1 Ẑ1,t−2 Ẑ2,t−1 Ẑ2,t−2 Ẑ3,t−1 Ẑ3,t−2

Ẑ1t 0.01 1.09 -0.16 0.10 -0.36 0.32 -0.23

Ẑ2t 0.01 -0.27 0.26 0.31 0.12 -1.14 0.33

Ẑ3t 0.01 -0.08 0.62 -0.05 -0.04 0.41 0.35

Table 2
Estimated parameters for the VAR(2) model on {Ẑt}
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order AIC SC HQ

1 -11.03 -10.99 -11.01

2 -15.71 -15.54* -15.64

3 -15.77* -15.46 -15.64*

4 -15.76 -15.32 -15.58

5 -15.72 -15.16 -15.45

Table 3
Lag selection criteria for VAR models on {Ẑt}
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Fig. 6. Left: RN excess kurtosis {ηt}, τ = 18 (top), {Ẑ1t} (bottom) Right: RN
skewness {γt}, τ = 18 (top), {Ẑ2t} (bottom)

q̂t,T (·|st) = Ĥt(·, τ). Figure 6 displays skewness {γt} and excess kurtosis {ηt}
associated with q̂t,T for maturity τ = 18 days together with {Ẑ1t} and {Ẑ3t}
and motivates the investigation of their joint autocovariance structure.

The dynamic structure of the pairs {(Ẑ1t, ηt)} and {(Ẑ3t, γt)} for τ = 18 is
modelled by VAR(2) models. The choice of the VAR order is again based
on AIC, SC, and HQ selection criteria. Portmanteau and LM tests on VAR
residuals reject autocorrelations up to lag 12 and the roots of the characteristic
polynomial lie inside of the unit circle.

VAR(2)

const Ẑ1,t−1 Ẑ1,t−2 ηt−1 ηt−2

Ẑ1t 0.04 0.86 0.08 0.01 0.00

ηt -0.51 2.63 -1.75 0.67 0.19

Table 4
Estimated parameters for the VAR(2) model on {(Ẑ1t, ηt)}

Modelling the dynamics of risk neutral densities using DSFM allows to quan-
tify the mechanisms governing risk perceptions from agents acting in a mar-
ket. Insights are obtained in two directions, concerning the autocovariance

13



VAR(2)

const Ẑ3,t−1 Ẑ3,t−2 γt−1 γt−2

Ẑ3t 0.00 0.20 0.27 0.01 -0.02

γt 0.00 -1.69 0.68 0.81 0.24

Table 5
Estimated parameters for the VAR(2) model on {(Ẑ3t, γt)}

structure of {Ẑt}, i.e. the time behaviour of the RN surfaces and their cross-
correlation with the skewness and excess kurtosis from the estimated risk
neutral densities, i.e. the relation between the dynamics and shape of the
obtained RN surfaces. As seen in tables (4) and (5) the excess kurtosis and
skewness from q̂t,T at maturity τ = 18 are determined by the corresponding
lagged values of Ẑt.

Based on the presented methodology it is possible to investigate the dynamics
of the risk neutral skewness and excess kurtosis based on statistical infer-
ence on {Ẑt}. A natural further step is to perform econometric analysis to
investigate the cointegration between the lower dimensional time series and
macroeconomic and financial indicators. This could provide deeper insights
into the relation between risk assessments from investors acting in a market
and the flow of economic information at which they are exposed.
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A Assumptions

The results from Theorems (2.1) and (2.2), see Borak et al. (2008) rely on the
following assumptions:

(A1) The variables X11,...,XJT , ε11,...,εJT and Z1, . . . , ZT are independent. The
process Zt is allowed to be nonrandom.

(A2) For t = 1, ..., T the variables X1t,...,XJt are identically distributed, have
support [0, 1]d and a density ft that is bounded from below and above on
[0, 1]d, uniformly over t = 1, ..., T .
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(A3) We assume that E[εjt] = 0 for t = 1, ..., T and j = 1, ..., J and

sup
t=1,...,T,j=1,...,J

E exp[cε2
jt] <∞

for c > 0 small enough.
(A4) The functions ψk may depend on the increasing indices T and J and are

normed so that
∫
[0,1]d ψ

2
k(x) dx = 1 for k = 1, . . . , K. Furthermore it holds

that supx∈[0,1] ||ψ(x)|| = O(K1/2)
(A5) The components m0,...,mL can be approximated by ψ1, ..., ψK , i.e.

δK = sup
x∈[0,1]d

inf
Γ∈G

|m(x)− Γψ(x)| → 0

for l = 0, ..., L and K →∞. We denote by Γ∗ the matrix that fulfills

sup
x∈[0,1]d

|m(x)− Γψ(x)| ≤ 2δK

(A6) There exist constants 0 < CL < CU < ∞ such that all eigenvalues of the
random matrix T−1 ∑T

t=1 ZtZ
>
t lie in the interval [CL, CU ] with probability

tending to one.
(A7) The minimization (2.2) runs over all values of (Γ, z) with

sup
x∈[0,1]

max
1≤t≤T

||Z>t Γψ(x)|| ≤MT

where MT fulfills max1≤t≤T ‖Zt‖ ≤ MT/Cm (with probability tending to
one) for a constant Cm > supx∈[0,1] ‖m(x)‖.

(A8) It holds that ρ2 = (K + T )M2
T log(JTMT )/(JT ) → 0. The dimension L is

fixed.
(A9) Zt is a martingale difference with E[Zt|Z1, . . . , Zt1 ] = 0 and for some C > 0

E[||Zt||2|Z1, . . . , Zt1 ] < C (a.s). The matrix E[ZtZ
>
t ] has full rank. The

process Zt is independent of X11, ..., XTJ and ε11, ..., εTJ .
(A10) The functions m0, ...,mL are linearly independent. In particular, no function

is equal to 0.
(A11) It holds that (K1/2MT + T 1/4)(ρ+ δK) = O(1).
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Dähne, S., Härdle, W., and Hautsch, H. (2008), “Quantification of Liquid-
ity Costs: Forecasting the Ordebook,” Discussion Paper Series SFB 649,
Humboldt-Universität zu Berlin.

Dauxois, J., Pousse, A., and Romain, Y. (1982), “Asymptotic Theory for the
Principal Component Analysis of a Vector Random Function: Some Ap-
plications to Statisticsl Inference,” Journal of Multivariate Analysis, 12,
136–154.
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