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Abstract

Bayesian learning provides a core concept of information processing in financial
markets. Typically it is assumed that market participants perfectly know the qual-
ity of released news. However, in practice, news’ precision is rarely disclosed. There-
fore, we extend standard Bayesian learning allowing traders to infer news’ precision
from two different sources. If information is perceived to be imprecise, prices re-
act stronger. Moreover, interactions of the different precision signals affect price
responses nonlinearly. Empirical tests based on intra-day T-bond futures price
reactions to employment releases confirm the model’s predictions and reveal sta-
tistically and economically significant effects of news’ precision.
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1 Introduction

Rumours, analysts’ comments or official press releases – financial markets are subject to

a huge information flow which needs to be evaluated by market participants. However,

information is of different precision and may contain errors. In such a noisy environ-

ment, Bayesian learning models are frequently used to explain how prices in financial

markets react to news releases. Most importantly, these models suggest that prices re-

act more strongly to more precise information. However, in practice, the precision of

an individual piece of new information is rarely disclosed along with the information

itself. Consequently, traders face severe uncertainty on the reliability of news which in

turn affects their trading strategy.

This paper analyzes theoretically and empirically how market participants process in-

formation when its precision is uncertain. In particular, we extend standard Bayesian

learning models by taking into account that traders use different sources to infer the

precision of the released information. This explains non-linear price reactions to unan-

ticipated information. By confirming empirically that price reactions depend crucially

on traders’ perception of news’ precision, we provide new insights into price discovery

and market participants’ learning behavior in an uncertain environment.

Among macroeconomic announcements, employment figures have the most pronounced

impact on financial markets (see, e.g., Andersen, Bollerslev, Diebold, and Vega, 2003).

Given their importance for macroeconomic predictions and their distinct influence on

asset prices, it is crucial for market participants to assess whether a potentially high

surprise is reliable or whether it is rather driven by noise or sampling errors. Such an

assessment naturally determines to which extent portfolios have to be reallocated and

thus affects the ultimate price reaction. Another example of information shocks are

companies’ earnings announcements which often lead to sharp stock price adjustments.
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Although a company report contains lots of detail information about the earning power

of a company, market participants are left alone in making a judgement regarding its

reliability, i.e. its precision. Recent empirical evidence suggests that market participants

consider additional sources of information to assess news’ precision. For the employment

report, Hautsch and Hess (2007) show that revisions of the headline figure provide

information which can be exploited for such a purpose. Furthermore, for company

reports, Sloan (1996), Feltham and Pae (2000), and Richardson, Sloan, Soliman, and

Tuna (2005), among others, show that accruals provide information about the quality

of stated earnings.

Our paper shows how to incorporate such effects in a Bayesian learning framework.

Basic Bayesian learning models relying on normally distributed variables with known

parameters imply that prices react linearly in response to surprises. Moreover, the

strength of this price adjustment depends on the relative precision of the announced

data compared to the precision of prior beliefs. This standard model is quite restrictive,

since it assumes news’ precision to be known and additionally requires perfect knowl-

edge of all underlying distributions. Subramanyam (1996) relaxes these assumptions

by including parameter uncertainty about news’ precision. In this framework, traders

try to infer the precision of news from the magnitude of the surprise component in an

announcement. Due to this strict link between the expected precision and the signal

magnitude, large surprises result in relatively weak price reactions which may be even

smaller than for medium surprises. Consequently, surprisingly good news may be in-

terpreted as too good to be true, as recently analyzed by Mattsson, Voorneveld, and

Weibull (2007).1 This results in S-shaped price reactions to unexpected news, i.e. price

reactions are relatively strong for small surprises, while they are relatively weak for large

1In an early contribution, Milgrom (1981) has already studied this effect and provided conditions
for monotonicity of price reactions in the announced information. These monotonicity results based on
a monotone likelihood ratio criterion were recently generalized by Mattsson, Voorneveld, and Weibull
(2007) in a discrete choice model under uncertainty.
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surprises. A restrictive assumption in this setting is that market participants assess the

reliability of news solely based on the released figures’ magnitudes and ignore any other

potentially available information on precision. This is rather unrealistic in practice and

can induce severe misinterpretations of the announced figures. Indeed, large surprises

may as well be very precise and thus should generate strong price reactions.

A key assumption in this paper is that traders do not only evaluate the news itself

but employ further sources of information to assess news’ quality. For instance, before

deciding which trading strategy to choose after a news release, market participants

are assumed to gather general information on the news provider, the general economic

environment, the underlying data source or the reliability of recent news releases. This

assumption is empirically supported by Hautsch and Hess (2007). Their results pro-

vide evidence that traders can extract the release-specific precision of unanticipated

headline information in the employment report from additional detail information. In

particular, traders may derive such a precision estimate by inspecting revisions of previ-

ously announced data. Taking into account such effects, Hautsch and Hess (2007) show

that prices in the T-bond futures market indeed react more strongly to employment

information which is perceived to be more precise.

Connecting both types of precision signals, we develop a learning model which brings

together the approaches of Hautsch and Hess (2007) and Subramanyam (1996). In

this setting, traders use two different kinds of information as precision signals. Firstly,

so-called ‘external’ precision signals – such as the sample size of a survey or the reputa-

tion of an auditing company – directly influence the perception of information precision.

Secondly, the released information itself serves as an ‘internal’ precision signal. In ac-

cordance with Subramanyam (1996) this implies that the probability for news to be

imprecise increases with its magnitude (i.e. these news are believed to be too large to

be true).We show that such learning behavior implies non-linear, S-shaped price re-
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sponse functions, i.e. the price response coefficient becomes smaller for large absolute

surprises. Additionally, the model predicts stronger reactions to news which are per-

ceived to be more precise. In this case, the curvature of the price response function

becomes even more pronounced and strongly deviates from linearity for surprises of

high magnitude. We also show that our results hold in a framework where the precision

of the prior distribution itself is uncertain and are valid for a wide class of distributional

assumptions.

In an empirical analysis of the price reactions of CBOT T-bond futures to the release

of U.S. employment data we provide strong evidence in favor of Bayesian learning

under these two types of precision signals. From data revisions in employment releases,

we extract release-specific external precision measures, which do not depend on the

surprise itself. The estimated price response curves clearly reveal that prices (i) respond

non-linearly with an S-shaped pattern and, (ii) react significantly different depending

on the external precision signal. Also from an economic perspective, our results are

strongly significant. We show that ignoring the available precision signals leads to severe

estimation errors when determining the price impact of a news release. Altogether, our

empirical study provides strong evidence in favor of the claim of Bayesian learning that

the perceived quality of information plays an important role in determining its price

impact.

The remainder of this paper is organized as follows. The following section presents a

theoretical Bayesian learning framework which allows the precision of arriving news to

be unknown and allows for uncertainty in the prior distribution. Section 3 describes

the high-frequency return data and outlines the estimation procedure. The empirical

results are presented and discussed in Section 4. Finally, Section 5 concludes.
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2 A Bayesian Learning Model

2.1 Standard Bayesian Learning

Bayesian learning models provide a framework to analyze how new information is incor-

porated into expectations and prices, while both prior information as well as incoming

news contain uncertainty. Throughout our analysis we assume that all market partici-

pants have the same information just before the release of some public announcement.

Each participant is equipped with the same utility function and the same endowment

of assets including a risky asset. The price P of this risky asset is assumed to be propor-

tional to traders’ expectations of an economic variable X with proportionality factor

ν, i.e. P = ν · E[X]. The beliefs on X prior to the announcement are assumed to be

normally distributed with known parameters, i.e. X ∼ N(µF , 1/ρF ), where µF is the

mean of the prior information on X in the market, and ρF denotes their precision,

defined as the inverse of the variance. This prior information represents the market’s

forecasted probability distribution of the variable X given all available information in-

cluding for example all publicly released analysts’ forecasts. Empirical research on the

impact of scheduled announcements typically assumes that the distribution of prior

beliefs in the market may be approximated by the distribution of analysts’ forecasts.

Hence, it is implicitly assumed that analysts’ forecasts are unbiased for X and together

with their cross-sectional dispersion they provide a consistent estimate of market’s prior

information.2

Now an announcement is released providing a noisy estimate ofX. It is assumed that the

released figure includes an additive error, i.e. A = X+ε, where ε is a zero mean normally

distributed error term with variance V ar[ε] = 1/ρε and E[X · ε] = 0. Consequently,

2See e.g. Abarbanell, Lanen, and Verrecchia (1995), Mohammed and Yadav (2002), Andersen, Boller-
slev, Diebold, and Vega (2003) and Hautsch and Hess (2007).
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traders receive an unbiased estimate of the underlying variable X whose precision

is reflected by ρε. The additive error term structure implies that the unconditional

variance of the news release exceeds the variance of the market’s prior information.

Accordingly, the announcement A is distributed as A ∼ N(µF , 1/ρA). After observing

the public announcement, traders adjust their beliefs according to Bayes’ rule. Then,

traders’ posterior beliefs are normally distributed with

µP := E[X | A] = µF + (A− µF )
ρA

ρF
= µF + (A− µF )

ρε

ρF + ρε
(1)

and

ρP := V ar[X | A]−1 = ρF + ρε. (2)

Consequently, after traders observe the signal A, the market price of the risky asset

changes as

∆P = ν · (µP − µF ) = ν · S · π, (3)

where π denotes the so-called ‘price-response coefficient’

π :=
ρA

ρF
=

ρε

ρε + ρF
. (4)

Hence, the main model implication is that price changes are proportional to the surprise

S := A − µF , where the proportionality factor π depends on the relative precision of

announcements and the market’s forecast.

2.2 Surprises as an ‘Internal’ Signal on the Precision of Releases

Announcements such as employment figures are usually released without an associated

precision measure which contradicts the assumptions of the standard Bayesian learning

model. Subramanyam (1996) relaxes the latter framework by treating news’ precision to

be unknown and assuming that the announcement is conditionally normally distributed
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given the true precision, i.e. A|ρA ∼ N(µF , ρA). Formally, Bayesian updating of traders

works similar as in the basic framework yielding

µP = E[X | A] = µF + (A− µF )
E[ρA | A]

ρF
= µF + S · π(S), (5)

with E[ρA|A] representing traders’ conditional expectation of the signal precision given

its realization. Hence, it turns out that the price response coefficient, π(S), is no longer

constant but depends on the absolute surprise. Consequently, the latter serves as an

‘internal’ signal on news’ precision. As shown by Subramanyam (1996) and illustrated

in a more general framework in the next section, this generates a nonlinear relationship

between the magnitude of the surprise and the implied update of traders’ beliefs. In

particular, if traders observe high absolute values of unanticipated information, they

conclude that these stem from an announcement with low precision. This reduces their

adjustment of beliefs in absolute terms which (in the extreme case) may even generate

negative marginal contributions of surprises resulting in an S-shaped price response

curve. However, this direct link between the amount of unanticipated information and

the expected precision is relatively restrictive since it implies that large surprises are

always too large to be true. Even in an environment when the information precision is

high large surprises may occur occasionally. Then, we would expect to observe a strong

price reaction.

2.3 ‘External’ Signals on the Precision of Releases

Extending the previous setting we assume that traders do not only evaluate the released

information itself, but employ other data sources. For instance, for the U.S. employ-

ment report, Hautsch and Hess (2007) show that traders may infer on the precision of

announced employment figures by inspecting the time series of historical revisions of

the headline figure. Since revisions in announcements reflect (ex post) sampling errors,

a natural precision measure arises from their conditional variance.
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Suppose that market participants are able to observe such a so-called external signal

ρ̂A for the precision of the announcement ρA. Here, ‘external’ refers to the case when

the signal is not directly linked to the announced figure itself. For example, ρ̂A might

be information on the sample size of a survey, the reliability of data collection or a

precision estimate based on (past) revisions as in Hautsch and Hess (2007).

Let this additional precision signal follow a conditionally normal distribution given

the true precision ρA, i.e. ρ̂A | ρA ∼ N(ρA, σ
2
ρ̂A

). Moreover, we assume that the an-

nouncement A and the precision signal ρ̂A are conditionally independent given the true

precision ρA. Then, the precision signal and the news release are only linked indirectly

via the true precision. If σ2
ρ̂A

reaches zero, the signal reveals the true precision of the an-

nouncement. In this case, the surprise itself does no longer serve as an internal precision

signal and we are back in the standard Bayesian learning model. If σ2
ρ̂A

is different from

zero, both precision signals are taken into account by market participants. Analogously

to the updating equations given above, traders form their beliefs as3

µP = E [X | A, ρ̂A] = µF + (A− µF )
E [ρA | A, ρ̂A]

ρF
= µF + S · π(S, ρ̂A). (6)

As before, adjustments in traders’ beliefs depend symmetrically on the sign of news.

However, now the market incorporates additional information into its price formation.

This is reflected by the price response coefficient π(·) depending not only on S but

also on ρ̂A. As shown in Appendix A, the conditional expectation of the precision

E [ρA | A, ρ̂A] is computed by

E [ρA | A, ρ̂A] =

∫
SA
ρAf(A | ρA)f(ρ̂A | ρA)f(ρA)dρA∫

SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

, (7)

where f(·) denote the corresponding conditional and unconditional p.d.f.’s and the

support SA of f(ρA) is given by SA ∈ (ρF ,∞). Hence, it turns out that the expected

3For a formal derivation, see Appendix A.
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precision does not only depend on ρ̂A and A, but also on the unconditional prior

distribution of the precision, f(ρA).

In Proposition 1, we will show in accordance with Subramanyam (1996) that the amount

of unanticipated information influences the expected precision of the announcement

negatively. This result holds irrespective of the choice of the underlying prior distribu-

tion f(ρA):

Proposition 1 The price response coefficient π(S, ρ̂A) is strictly decreasing in

the absolute magnitude of the surprise |S| for any prior distribution f(ρA), i.e.

∂π(S, ρ̂A)/∂|S| < 0.

Proof: See Appendix A.

Hence, prices react relatively strongly to news with small surprises and relatively weakly

to news with a high surprise component. Consequently, there are two effects determining

the change in beliefs (µP −µF ) after an announcement is made: Firstly, given the price

response coefficient π(·), a high (low) surprise S = A − µF strengthens (weakens) the

price reaction linearly. Secondly, according to Proposition 1, it decreases (increases) the

expected signal precision and thus decreases (increases) π(·). As shown in Proposition

2, the latter effect induces price reactions which are S-shaped in absolute surprises:

Proposition 2 The marginal impact of the surprise S on investors’ updates of beliefs,

µP − µF , is given by ∂(µP − µF )/∂S = π(S, ρ̂A) − S2ρ−1
F V ar[ρA | A, ρ̂A].

Proof: See Appendix A.

Hence, investors update their expectations in the direction with the sign of the surprise

as long as π(S, ρ̂A) − S2ρ−1
F V ar[ρA | A, ρ̂A] > 0. However, if |S| becomes large, the
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relation may even reverse and the marginal effect of absolute surprises may as well

become negative, i.e. ∂(µP − µF )/∂S < 0. These effects are enforced if ρF is small

and V ar[ρA | A, ρ̂A] is large. Consequently, we obtain an S-shaped price reaction as

graphically illustrated in Figure 1. Note that in case of a degenerated prior distribution

f(ρA), we get a linear response as in the basic model. Hence the results of an S-

shaped relation between surprises and traders’ updates of expectations according to

Subramanyam (1996) still holds also in this extended framework.

However, the following proposition shows that traders’ conditional expectations of news’

precision depend positively on the external precision signal ρ̂A. Hence, traders positively

(negatively) update their conditional expectations if ρ̂A increases (decreases). Conse-

quently, ρ̂A affects the price response coefficient π(S, ρ̂A) in opposite direction than |S|.

Proposition 3 The price response coefficient π(S, ρ̂A) and the absolute signal response

|µF −µP | are strictly increasing in the observed value of the precision signal ρ̂A for any

prior distribution f(ρA), i.e. ∂π(S, ρ̂A)/∂ρ̂A > 0 and ∂|µp − µF |/∂ρ̂A > 0.

Proof: See Appendix A.

The proposition also states that a central implication of standard Bayesian learning

is maintained even if the true precision parameter of news is replaced by a noisy sig-

nal: Market prices react more strongly to news which is perceived to be more precise,

whereas news which appear to be imprecise induce rather moderate market reactions.

However, as shown in Figure 1, the existence of an ‘external’ precision measure ρ̂A

induces an additional effect which even amplifies the S-shape. A higher ρA leads to a

straightening of the price response curve for surprises near zero but to more pronounced

S-shaped price responses to large surprises.
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2.4 Accounting for Uncertainty into the Prior Distribution

So far we assumed that traders have normally distributed prior beliefs on the distribu-

tion of the variableX with perfectly known parameters. However, traders generate their

views for example by relying on analysts’ forecasts and thus face estimation errors. In

practice, traders might approximate the precision of prior information by the dispersion

of different analysts’ forecasts. However, the quality of such estimates is itself subject

to uncertainty. In order to capture uncertainty in the precision of prior information we

assume that the latter is random and follows a distribution f(ρF ). Then, X is assumed

to be conditionally normally distributed given ρF , i.e. X | ρF ∼ N(µF , 1/ρF ). This

results in a scale mixture distribution for the prior yielding

f(X) =

∫

SF

f(X | ρF )f(ρF )dρF (8)

with SF ∈ (0,∞). Nevertheless, as shown in Proposition 4, all previous results still

hold:

Proposition 4 If the prior distribution of traders follows a scale mixture of normal

distributions, Propositions 1, 2 and 3 still hold.

Proof: See Appendix A.

Obviously, this proposition states that our analysis is not restricted to the case of

normally distributed variables but holds for a wide class of distributions, including

e.g. also fat-tailed prior distributions.

2.5 Testable Implications of the Model

The learning model outlined above yields hypotheses on how traders’ expectations ad-

just to new information. Assuming that prices are proportional to traders expectations

11



of the observed market variable, the following testable hypotheses arise:

(1) The standard Bayesian learning model with perfectly known normal distributions

as presented in Section 2.1 implies a linear price response function,

∆P = ν · S · π.

Here, a higher magnitude of surprises implies higher absolute price reactions,

since the price response coefficient, π, is a constant and known parameter which

does not depend on the revealed unanticipated information, S. Then, the price

response coefficient is determined by the precision of the announcement and the

precision of the released data.

(2) As shown in Section 2.2, the model suggested by Subramanyam (1996) implies

∆P = ν · S · π(S).

Here, news precision is unknown and is inferred from the magnitude of surprises.

Since large surprises serve as a signal for a low precision of news, the price response

coefficient π(S) is decreasing in the absolute size of the surprise |S| implying an

S-shaped relationship between ∆P and S.

(3) Allowing for additional external precision signals ρ̂A as in Section 2.3, we get

∆P = ν · S · π(S, ρ̂A).

Then, the previous result of an S-shaped price response curve still holds but we

observe the additional effect of a positive relation between ∆P and ρ̂A. In this

case, both effects might work in opposite directions and the S-shape of the price

response curve is even amplified if news’ precision is high.

These implications will be empirically tested in the next sections.
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3 Data and Empirical Framework

3.1 Data

Note that we do not estimate the model outlined above in a structural way since this

would require additional structural assumptions in order to estimate E[ρA|A, ρ̂A]. We

rather test for the implications summarized above in reduced form by estimating the

shape of the price reaction curve in dependence of S and the perceived precision of news

|ρ̂A|. We use intraday returns of CBOT T-bond futures, corresponding to one of the

most liquid futures markets, to monthly releases of the U.S. employment report. The

latter is by far the most influential scheduled macroeconomic release and its impact

on financial markets is investigated in a wide range of studies.4 While the employment

report contains various detail information on the employment situation in the U.S.,

market participants focus in particular on two headline figures: the nonfarm payrolls

figure and the unemployment rate figure. The disclosure of this information offers a rare

opportunity to analyze Bayesian learning effects in price adjustment processes, since

both the amount of unanticipated information and a release-specific precision measure

can be obtained.

Hautsch and Hess (2007) document the importance of news’ precision in a framework

where traders are assumed to use external information to infer on the precision of

news. To facilitate a comparison with these results, we employ a similar data set based

on two minutes log returns of T-bond futures in 90-min windows around employment

announcements.5 However, our dataset covers an extended sample period of 15 years,

4Several empirical studies provide evidence that unanticipated information in the employment report
has a strong influence on bond market prices (e.g. Becker, Finnerty, and Kopecky (1996), Fleming and
Remolona (1999c), and Hautsch and Hess (2002)), but also on foreign exchange rates (e.g. Hardouvelis
(1988), Andersen, Bollerslev, Diebold, and Vega (2003)), as well as stock prices (e.g. Boyd, Hu, and
Jagannathan (2005)).

5Log returns are calculated on the basis of the last trading price observed during a 2-minute interval.
We use the same time window, i.e. 8:22-9:52 a.m. EST. Since trading starts at 8:20, the first return
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i.e. Jan. 4, 1991 to Dec. 2, 2005. These high frequency T-bond data are obtained from

the Chicago Board of Trade (via their Time & Sales records). During our sample period

we obtain 161 event windows in which no other major information event occurs besides

the release of the employment report.6 Thus information processing during these event

windows is only driven by employment figures. Like previous studies, we use so-called

consensus estimates, i.e., medians of analysts’ forecasts, to approximate the anticipated

part of information in the employment headline figures. These analysts’ forecasts are

obtained from Informa Global Markets (formerly S&P Money Market Services, MMS).

The announcement data are extracted from the original (i.e. unrevised) employment

releases of the Bureau of Labour Statistics (BLS). In accordance with other studies,

we concentrate on the headline information in the employment report, i.e., surprises

in the nonfarm payrolls figure, SNF , and the unemployment rate, SUN .7 Note that

nonfarm payrolls are revised in the subsequent month. We include this revision infor-

mation, RNF,m, into our analysis. In order to facilitate a direct comparison across the

information components, all surprise and revision variables are measured in percentage

changes.

In order to extract release-specific precision measures for the monthly employment re-

leases, we employ the procedure suggested by Hautsch and Hess (2007): Firstly, as a

precision measure for the prior information, the dispersion of analysts’ forecasts before

can be calculated for interval 8:22-8:24. In order to avoid that other announcements, being released at
10:00 a.m. EST., influence our results, only price observations up to 9:52 a.m. EST are used. Like most
previous studies, we focus on the front month contract, i.e. the most actively traded contract among
the nearby and second nearby contracts.

6We eliminate 15 days in which other reports where released during our 90-min window, in particular
releases of Leading Indicators, Personal Income, and Gross Domestic Product. Furthermore, we elim-
inate one inadvertently early employment release in November 1998 (Fleming and Remolona 1999b)
and another 3 releases which were presumably affected by the temporary shutdown of federal agencies
due to the budget dispute during the Clinton administration (see Hess, 2004). This leaves us with a
total of 161 observations.

7The unanticipated information contained in the releases of month m is then measured as the
difference between the announced figure A.,m and its median forecast µF,.,m. For instance, the surprise
in a non-farm payrolls figure,SNF,m, is determined as SNF,m = ANF,m − µF,NF,m.
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an announcement is used.8 In particular, the standard deviation of analysts’ forecasts,

ŝF,m, for a particular month m is interpreted as a measure of the cross-sectional dis-

persion of expectations and serves as a proxy for the precision of prior information,

i.e. ρ̂F,m = 1
/
ŝ2F,m . Secondly, in order to obtain a measure for the precision of the

announced information itself, a one-step-ahead prediction of the (conditional) vari-

ance of revisions is used. Using revisions in nonfarm payrolls is based on the idea

that a large revision of the previous month’s figure (as reported in the current re-

port) indicates that the precision of that figure obviously has been poor. Hautsch and

Hess (2007) illustrate that the magnitude of revisions, and thus the size of estima-

tion errors in announced figures, are autocorrelated. Hence, the size of revisions as a

proxy for news’ precision is predictable. Corresponding forecasts are obtained from an

ARMA-GARCH model fitted to the time series of revisions. Then, ρ̂ε,m is obtained by

ρ̂ε,m = V̂ ar[RNF,m|RNF,m−1, RNF,m−2, . . .]
−1.9

In order to reduce the impact of estimation noise in the quantification of news’ pre-

cision and to avoid the necessity to impose additional assumptions on the functional

relationship between the precision measure and the induced price reaction, we restrict

our analysis to a distinction between precise and imprecise news. These two states are

identified based on a proxy of the price response coefficient π̂m = ρ̂ε,m/(ρ̂ε,m + ρ̂F,m).

Then, we define news to be precise if π̂m is equal to or above its sample median and

imprecise otherwise. Estimating the relationship between price changes, the surprise S

and the derived precision dummy allows us to test for the implications of the generalized

Bayesian learning framework outlined above.

8This is in accordance with Abarbanell, Lanen, and Verrecchia (1995), Mohammed and Yadav
(2002), Andersen, Bollerslev, Diebold, and Vega (2003) and Hautsch and Hess (2007), among others.
However, note that the information set of all publicly available prior information may be even much
larger. Furthermore, as for example Ottaviani and Sorensen (2006) argue, forecasts may be announced
strategically depending on the forecaster’s loss function, e.g. as the median of a distribution.

9For more details, see Hautsch and Hess (2007).
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3.2 Specification of Price Response Curves

Using 2-minute log returns rt in the described 90-minute-windows around the em-

ployment release we estimate alternative ARMA-ARCH specifications augmented with

appropriate sets of explanatory variables xt, i.e.

rt = c+

p1∑

j=1

φ1,jrt−j +

q1∑

j=1

φ2,jεt−j + x′tβ + εt, εt ∼ N(0, ht), (9)

with

ht = ω +

p2∑

j=1

ψ1,jε
2
t−j + z′tθ. (10)

Here, t indexes the 2-minute intervals around the release of the employment report for

a given month m. In particular, t = 0 indicates the interval following immediately after

the announcement, i.e. 8:30 - 8:32 a.m. EST and t = 1 denotes the 8:32 - 8:34 interval.

For simplicity, the index m is suppressed.

The conditional variance equation (10) captures ARCH effects. In addition, zt (with

corresponding parameter vector θ) consists of regressors {t̄, sin(2 ·r ·π · t̄), cos(2 ·r ·π · t̄)}

with r = 1, . . . , R associated with a Fourier series approximation of order R defined

over the interval t̄ ∈ (0, 1) capturing the used 90-minutes window around the announce-

ment. The latter allow us to control for (deterministic) seasonal volatility patterns

around news releases. Preliminary studies show that such a specification captures most

variations in conditional variances during the analyzed 90-minute interval.10

To test for the different implications of the Bayesian learning model discussed above,

we use alternative specifications of the vector xt. In particular, to impose the standard

Bayesian learning model in accordance with Section 2.1, a dummy variable D8:30 indi-

cating the interval 8:30 - 8:32 and a linear term in the surprise D8:30 ·SNF are included

10Nevertheless, there might be heteroscedasticity components which are still ignored in our specifi-
cation. Therefore, we use robust standard errors according to Bollerslev and Wooldridge (1992).
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(among other variables) as regressors in xt:

x′t = [. . . , D8:30 , D8:30 · SNF , . . . ] ,

where SNF,m contains the unexpected component in the nonfarm payrolls figure for

month m. Obviously, this specification implies a linear price relationship between non-

farm payroll surprises and the implied return.

In order to capture the impact of an internal precision signal (in accordance with Section

2.2), we allow for non-linear price responses to news in nonfarm payrolls by including

power functions of this figure into the set of explanatory variables. To keep the model

tractable, we allow for this flexibility only in the interval 8:30-8:32, where typically

most of the price movements after announcements are realized. Correspondingly, we

model the impact of surprises in nonfarm payrolls based on the regressors

x′t =
[
. . . , D8:30 , D8:30 · SNF , D8:30 · S

2
NF , D8:30 · S

3
NF , . . .

]
.

To estimate the most general (unrestricted) model allowing for both internal and exter-

nal precision signals (in accordance with Section 2.3) we differentiate between precise

vs. imprecise announcements by interacting the corresponding regressors with a dummy

variable Dπlow which takes on the value one if the external precision signal is below its

sample median and zero otherwise:

x′t =
[
. . . , D8:30 ·D

πlow, D8:30 ·D
πhigh,

D8:30 · SNF ·Dπlow, D8:30 · SNF ·Dπhigh,

D8:30 · S
2
NF ·Dπlow, D8:30 · S

2
NF ·Dπhigh,

D8:30 · S
3
NF ·Dπlow, D8:30 · S

3
NF ·Dπhigh, . . .

]
,

where Dπhigh = 1−Dπlow. This approach is flexible enough to allow for a wide variety

of shapes of the price response function. Starting with the linear specification, the
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conventional constant price impact coefficient is obtained as a reference case. Increasing

the order of included polynomials, allows us to test whether more non-linear terms are

needed to describe the price response function appropriately. In addition, by interacting

these terms with the dummy variables indicating a low or high value of the external

precision signal, we can analyze whether the shapes of the price response functions differ

and thus can gain insights regarding the relative weight, market participants place on

internal and external precision signals.

In order to keep the model parsimonious and tractable we mainly concentrate in the

following on the price response induced by announcements in nonfarm payrolls which

is by far the most influential macroeconomic headline figure.

4 Empirical Results

Our empirical analysis proceeds in two steps. Firstly, we will analyze whether we find

significant evidence for S-shaped price response functions in accordance with Section

2.2. Secondly, we will investigate the impact of external precision signals on the strength

and the shape of the price response in line with Section 2.3.

4.1 Non-linearities in the Price Response due to Internal Precision

Signals

Table 1 reports estimation results based on five different specifications of equation (9).

The lag order of the autoregressive components is chosen according to the Bayes infor-

mation criterion (BIC) and reveals an AR(2)-ARCH(3) specification as the preferred

model. Besides the variables discussed in the previous section, the conditional mean

function includes additional variables consisting of surprises in the unemployment rate,

SUN , as well as revisions in the nonfarm payrolls figure, RNF . Moreover, we allow for
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potential information leakage effects in the interval 8:28-8:30 as well as lagged price

responses in the interval 8:32-8:34.

As a starting point, specification (A) provides estimation results for a basic model that

does not account for any release-specific precision of unanticipated information. The

results confirm several major findings of previous studies:11 Firstly, the large values of

the highly significant coefficients of D8:30 · SNF and D8:30 · SUN show that surprising

headline information has a strong and significant impact on intraday returns. The

directions of observed price reactions are consistent with standard theory, i.e., T-bond

futures prices rise in response to ’good’ news from the factor labor, i.e. a lower than

expected increase in nonfarm payrolls and a higher than expected unemployment rate.

Secondly, markets process unanticipated headline information very rapidly. As indicated

by the insignificant coefficient of D8:32 · SUN and the relatively small coefficient of

D8:32 ·SNF (as compared to D8:30 ·SNF ), the price reaction is completed within two to

four minutes.

Specifications (B) - (E) allow for non-linearities in price responses. Specifically, the vari-

ables capturing the immediate price impact of unanticipated information in the nonfarm

payrolls figure, D8:30 · SNF , are included as polynomial terms up to order three. Note

that the theoretical Bayesian learning model with uncertain news’ precision suggests

that price reactions are symmetric around zero. Nevertheless, the imposed polynomials

also allow for non-symmetric price responses. In particular, previous empirical studies

suggest asymmetric effects of ’good’ and ’bad’ news to information releases.12

Specification (B) shows estimation results for a quadratic specification of the price

11See, for example, Becker, Finnerty, and Kopecky (1996), Balduzzi, Elton, and Green (2001), Flem-
ing and Remolona (1999a, b, c), or Hautsch and Hess (2002) for bond markets and Almeida, Goodhart,
and Payne (1998) or Andersen, Bollerslev, Diebold, and Vega (2003) for foreign exchange markets.

12See, e.g. Conrad, Cornell, and Landsman (2002), Andersen, Bollerslev, Diebold, and Vega (2003)
and Hautsch and Hess (2007).

19



response, while specification (C) includes terms up to the third order. Corresponding

likelihood ratio (LR) tests clearly reject the linear specification (A) in favor of the non-

linear models. Hence, higher order terms provide additional explanatory power for price

responses to unanticipated information in the nonfarm payroll figure. On a 1%-level,

the more parsimonious specification (C) with terms up to the third order may not be

rejected versus (D) and (E). Overall, in line with the LR tests, the Bayesian information

criterion (BIC) suggests that specification (C) explains price responses best.

The results imply that the standard Bayesian learning model with a constant price re-

sponse to unanticipated information may be clearly rejected. As an illustration, Figure

2 shows the estimated price-response curve to releases of the nonfarm payroll figure un-

der specification (C). We find clear evidence for an S-shaped price response where price

reactions to ’large’ surprises are relatively weaker than reactions to ’small’ surprises.

This suggests that market participants evaluate the amount of unanticipated infor-

mation contained in an announcement as an internal signal on information precision

confirming the model by Subramanyam (1996).

4.2 External Precision Signals and the Strength of the Price Response

In order to investigate the impact of the external precision measure ρ̂A, we split up the

variable D8:30 · SNF (including higher order terms) into interactions with the dummy

variables Dπhigh and Dπlow accounting for high vs. low values of πm.

The estimation results based on alternative specifications of the immediate price re-

sponse function are given in Table 2. The results for specification (F) confirm the find-

ings in Hautsch and Hess (2007) that more precise information leads to significantly

stronger price adjustments. Note that this base case does not account for nonlinear

price adjustments but implies a linear price reaction as graphically illustrated in Figure
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3. A comparison of the goodness-of-fit of specification (A) and (F) based on the BIC

suggests that the inclusion of precision dummies leads to a significant improvement

of the model’s goodness-of-fit. This impression is confirmed on the basis of a LR test

which clearly rejects specification (A) in favor of (F).

In specifications (G)-(L) the precision dummies are interacted with different power

functions of SNF of order up to three. It turns out that higher orders than three are

not required and do not significantly improve the model fit. In order to gain sufficient

insights into the underlying nonlinear effects, we consider alternative specifications

based on different polynomial functions. Specification (H) includes third order terms

for low values of the external precision signal, i.e. for Dπlow = 1, and first order terms

for high values of the external precision signal (specification (I) vice versa). Model (J)

includes third order terms forDπlow = 1, and captures quadratic impacts forDπhigh = 1

(for model (K) vice versa). The most comprehensive model (L) includes third order

terms for both low and high values of the external precision signal. However, the LR

tests as well as the BIC values prefer specification (J). Figure 4 provides a graphical

illustration of the estimated price response curves for the best performing specification

(J) over the range of observed surprise values.

Finally, a comparison of the models underlying Sections 2.3 and 2.2 is obtained on the

basis of a LR test of specification (L) against (C). Here, specification (C) is clearly

rejected.13 Note that specifications (C) and (J) yield nearly the same BIC values which

indicates that precision effects do not significantly improve the model’s goodness-of-fit

over the whole 90 minutes period. However, this is due to the fact that price adjustments

are mainly only observed over 2-4 minutes after the announcement corresponding to

2-4% of the sample. In this sense, the BIC is not very informative on the statistical (and

particularly the economic) importance of precision effects. Therefore, we rather rely on

13Note that model (C) is not nested in (J) and thus a LR test is not applicable.
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the significance of estimates and the employed LR tests which reflect that short-term

price adjustments are significantly affected by precision effects.

Thus, we can summarize that both the internal and the external precision signal con-

tribute to the explanation of differences in the strength of the price reaction. This

suggests that traders try to infer the information precision from different sources, not

only by looking at the magnitude of the surprise as suggested by Subramanyam (1996),

but also by inspecting additional detail information related to the headline figures as

suggested by Hautsch and Hess (2007).

As shown in Figure 4, prices react in a quite non-linear way if the perceived precision is

low. We find strong evidence for an S-shaped price response curve as predicted by the

model by Subramanyam (1996). In particular, the price response coefficient is decreasing

in absolute surprises, in the positive as well as in the negative surprise range. For large

negative surprises we even obtain some evidence of a negative marginal price reaction.

Moreover, we find evidence that the S-shape of the price response curve is dampened if

the external precision signal is high. Then, the curvature of the price response function

significantly declines and we observe a nearly linear relationship between price changes

and surprises. I.e., if an announcement figure is perceived to be of high precision,

market participants react to large surprises with a similar relative strength as to small

surprises. In contrast, if the external precision measure indicates a low quality of the

announced information, investors react more moderately to larger surprises. Given the

nearly linear shape of the price response curve in a state of high information precision,

we might be tempted to argue that market participants completely ignore the internal

precision signal if the perceived precision is high.

However, the model derived in 2.3 suggests that the opposite is true. In fact, non-

linearities in the price response should be only more pronounced for a high value of the
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external precision signal (recall Figure 1 for an illustration). Within our sample period,

we do not have sufficiently large enough surprise values in order to observe a situation as

depicted by Figure 1 (a). Presumably we rather face a situation as illustrated by Figure

1 (b), where in a relatively narrow region around zero the curvature is dampened and the

price response curves becomes almost linear when the precision is high. Consequently,

we should be careful in interpreting the reduced non-linearities in the price-response

curve in periods of high precision.

Note that our results are robust regarding the imposed functional from of the price re-

sponse relationship. Instead of capturing potential nonlinearities based on power func-

tions we also estimated the model based on flexible Fourier forms defined over the

range of surprises. The fact that we get quantitatively the same results indicates the

robustness of our findings.14

As it can be seen from the following example, our results are also significant from an

economic perspective. Assume that market participants observe a median sized piece of

’good’ nonfarm payrolls news (i.e. a nonfarm payrolls figure which is 0.06% lower than

the median forecast) in connection with a ’low’ external precision. According to the best

performing specification (J) accounting for both the internal and external precision,

prices increase by about 0.31% in response to this release. If, instead, market partici-

pants ignore both precision signals (in accordance with the standard Bayesian learning

model in specification (A)), prices would only increase by about 0.22%. Hence, ignoring

both precision signals would lead to a severe underestimation of the price response by

about one third. In contrast, suppose that an extreme surprise of SNF = −0, 18% is

observed, corresponding to the 90% quantile for ’good news’, again in connection with

a ’low’ external precision signal. Since the internal signal suggests a very low precision,

14For sake of brevity the latter results are not included in the paper but are available upon request
from the authors.
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according to specification (J) prices react only slightly stronger, i.e. we would observe a

return of 0, 36%. However, ignoring both precision signals would strongly overestimate

price responses by 89% expecting a return of 0, 67%.

Overall, these results provide strong evidence in favor of the claim of Bayesian learning

that the perceived quality of information plays an important role in determining its price

impact. The results suggest that market participants actually use both – internal as well

as external signals – to determine the precision of released news. Ignoring the available

precision information on news precision may result in strong over- or underestimations

of the price reaction.

5 Conclusion

If agents in financial markets are confronted with new information they process the lat-

ter by adjusting their expectations on asset values. Bayesian learning provides a concept

of how to process this information consistently. Since the precision of information is

rarely available to market participants, we derive different settings of Bayesian learning

models which allow for uncertainty in the precision of news. Within these models, one

common principle remains true: Market participants’ perception of information quality

plays a major role for the strength of price adjustments. However, this perception of

precision may be based on different precision signals.

The theoretical models show that the amount of unanticipated information in an an-

nouncement may provide traders with an ‘internal’ signal on its precision, i.e. the price

response coefficient is decreasing in the magnitude of surprises. In addition, price re-

sponses to news may be influenced by ‘external’ signals on news precision such as the

reputation of an auditing company, the reliability of a newspaper or the data coverage

of an agency. If we observe a high value for such an external precision measure the price
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response to a given surprise is relatively stronger than in a situation of low perceived

precision.

To test these implications, we focus on the most influential macroeconomic report, i.e.,

the U.S. employment release. For its headline figures, this report does not contain any

release-specific precision measures. However, market participants may extract precision

measures of the released headline figures by analyzing related detail information. As

suggested by Hautsch and Hess (2007), revisions of previously announced figures in

connection with the cross-sectional standard deviations of analysts’ forecasts may be

used to derive such an external precision measure.

We investigate the price reaction of CBOT T-bond futures to these employment an-

nouncements using high-frequency data. The price response curves extracted from the

data illustrate a non-linear price impact of information depending on its surprise com-

ponent. As predicted by theory, our empirical results suggest that market participants

seem to interpret the magnitude of the surprise contained in a signal as an internal

indication of its precision. Consequently, if traders observe an announcement that de-

viates much from their expectations, they tend to conclude that this announcement is

less precise.

Using the precision measures proposed by Hautsch and Hess (2007) as an additional

external signal on the precision of the released data, we confirm the strong link between

the perceived precision of news and the price response. If the precision signal derived

from past revision data indicates a high relative precision level of news, market prices

react stronger to the unanticipated part of the data. If the external precision signal

indicates a poor quality of the released figures, market prices react only weakly.

Overall, our empirical analysis provides evidence in favor of Bayesian learning under

the presence of uncertain precision of news. The results show that the quality of news
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significantly determine their implied price impact. The results suggest that if exact

quality measures for a release are missing, traders try to infer news’ precision by drawing

on different sources. When observing a piece of news, they assess themselves how precise

it is. While doing that, market participants seem to include information on the reliability

of the source of the message.

To our knowledge, the present analysis is the first that describes the impact of these

two simultaneous – internal and external – precision signals in a unified framework.

Such Bayesian learning models accounting for uncertain news precision provide further

insights into price formation mechanisms and help to assess risky positions. For exam-

ple, to infer how the release of an unexpectedly high unemployment figure will affect

the value of a bond portfolio, traders and portfolio managers need to use an adequate

model for the price impact of employment data. We show that ignoring the available in-

formation on announcements’ precision may result in strong over- or underestimations

of the price impact of news.
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Appendix A

We first derive the posterior beliefs of traders after observing an announcement and a

proxy for the precision of the signal. Recall the assumption that the random variables

A and ρ̂A are conditionally independent given the precision ρA, i.e.

fA,ρ̂A|ρA
(A, ρ̂A | ρA) = fA|ρA

(A | ρA)fρ̂A|ρA
(ρ̂A | ρA). (11)

Then, the conditional expectation of X given A and ρ̂A is given by

µP = E [X | A, ρ̂A]

= E [E [X | A, ρ̂A, ρA] | A, ρ̂A]

= E [µF + (A− µF )ρA/ρF | A, ρ̂A]

= µF + E [(A− µF )ρA/ρF | A, ρ̂A]

= µF + (A− µF )E [ρA | A, ρ̂A] /ρF

≡ µF + S · π(S, ρ̂A).

The expected precision of the announcement is given as

E [ρA | A, ρ̂A] =

∫

SA

ρAf(ρA | A, ρ̂A)dρA

=

∫

SA

ρA
f(A, ρ̂A | ρA)f(ρA)

f(A, ρ̂A)
dρA

=

∫
SA
ρAf(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

f(A, ρ̂A)

=

∫
SA
ρAf(A | ρA)f(ρ̂A | ρA)f(ρA)dρA∫

SA
f(A, ρ̂A | ρA)f(ρA)dρA

=

∫
SA
ρAf(A | ρA)f(ρ̂A | ρA)f(ρA)dρA∫

SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

,

where the support of f(ρA) is given by SA ∈ (ρF ,∞).

Using these relations we now turn to the proofs of the particular theorems.
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Proof of Theorem 1: Note that ∂f(A | ρA)∂S2 =
(
−1

2ρA

)
f(A | ρA), since we

assumed that A is conditionally normally distributed given ρA. We need to show that

the partial derivative of the conditional expected precision with respect to the absolute

surprise is strictly negative.

∂E [ρA | A, ρ̂A]

∂S2
=

∂

∂S2

∫
SA
ρAf(A | ρA)f(ρ̂A | ρA)f(ρA)dρA∫

SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

=
( ∂

∂S2

∫
SA
ρAf(A | ρA)f(ρ̂A | ρA)f(ρA)dρA)

∫
SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

(
∫
SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA)2

−

∫
SA
ρAf(A | ρA)f(ρ̂A | ρA)f(ρA)dρA( ∂

∂S2

∫
SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA)

(
∫
SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA)2

=
−1

2

∫
SA
ρ2

Af(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

∫
SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

(
∫
SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA)2

−

∫
SA
ρAf(A | ρA)f(ρ̂A | ρA)f(ρA)dρA(−1

2)
∫
SA
ρAf(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

(
∫
SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA)2

= −

∫
SA
ρ2

Af(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

2
∫
SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

+
(
∫
SA
ρAf(A | ρA)f(ρ̂A | ρA)f(ρA)dρA)2

2(
∫
SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA)2

= −
1

2

[∫
SA
ρ2

Af(A | ρA)f(ρ̂A | ρA)f(ρA)dρA∫
SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

−

(∫
SA
ρAf(A | ρA)f(ρ̂A | ρA)f(ρA)dρA∫

SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

)2



= −
1

2

(
E[ρ2

A | A, ρ̂A] − (E[ρA | A, ρ̂A])2
)

= −
1

2
V ar[ρA | A, ρ̂A] < 0,

for any non-degenerate distribution of the precision ρA. Since |S| and S2 are positively

and monotonically related, the result can be applied for |S|. Then, it is straightforwardly

shown that ∂π(S, ρ̂A)/∂|S| < 0.

�
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Proof of Theorem 2: Note that ∂f(A | ρA)∂S = −ρASf(A | ρA), since we assumed

that A is conditionally normally distributed given ρA. Then,

∂E [ρA | A, ρ̂A]

∂S
= 2S ·

∂E [ρA | A, ρ̂A]

∂S2
.

Hence, using Theorem 1 we get

∂E [ρA | A, ρ̂A]

∂S
= −S · V ar[ρA | A, ρ̂A]

and thus

∂(µP − µF )

∂S
= π(S, ρ̂A) +

S

ρF

∂E[ρA|A, ρ̂A]

∂S
= π(S, ρ̂A) −

S2

ρF
V ar[ρA | A, ρ̂A].

�
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Proof of Theorem 3: Note that ∂f(ρ̂A | ρA)∂ρ̂A =

(
− ρ̂A−ρA

2σ2
ρ̂A

)
f(ρ̂A | ρA), since we

assumed a normal distribution for ρ̂A. We need to show that the partial derivative of the

conditional expected precision with respect to the precision signal is strictly positive,

∂E[ρA | A, ρ̂A]

∂ρ̂A

=

∫
SA
ρAf(A | ρA)∂f(ρ̂A|ρA)

∂ρ̂A
f(ρA)dρA

∫
SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

(∫
SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

)2

−

∫
SA
ρAf(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

∫
SA
f(A | ρA)∂f(ρ̂A|ρA)

∂ρ̂A
f(ρA)dρA

(∫
SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

)2

=

∫
SA
ρAf(A | ρA)

(
− ρ̂A−ρA

2σ2
ρ̂A

)
f(ρ̂A | ρA)f(ρA)dρA

∫
SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

(∫
SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

)2

−

∫
SA
ρAf(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

∫
SA
f(A | ρA)

(
− ρ̂A−ρA

2σ2
ρ̂A

)
f(ρ̂A | ρA)f(ρA)dρA

(∫
SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

)2

=
1

2σ2
ρ̂A

[∫
SA
ρ2

Af(A | ρA)f(ρ̂A | ρA)f(ρA)dρA∫
SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

−

(∫
SA
ρAf(A | ρA)f(ρ̂A | ρA)f(ρA)dρA∫

SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

)2



=
1

2σ2
ρ̂A

(
E[ρ2

A | A, ρ̂A] − (E[ρA | A, ρ̂A])2
)

=
1

2σ2
ρ̂A

V ar[ρA | A, ρ̂A] > 0,

for any non-degenerate distribution of the precision ρA. Then, it is straightforwardly

shown that ∂π(S, ρ̂A)/∂ρ̂A > 0 and ∂|µP − µF |/∂ρ̂A > 0.

�

30



Proof of Theorem 4: The posterior mean of X is written as

µP = E [X | A, ρ̂A]

= E [E [X | A, ρF , ρA, ρ̂A] | A, ρ̂A]

= E [(A− µF )ρA/ρF + µF | A, ρ̂A]

= µF + (A− µF ) · E [ρA/ρF | A, ρ̂A]

= µF + (A− µF ) ·

∫

SF

∫

SA

ρA/ρF f(A, ρ̂A | ρA, ρF )f(ρA, ρF )dρAdρF

= µF + (A− µF ) ·

∫

SF

1/ρF

∫

SA

ρAf(A, ρ̂A | ρA, ρF )f(ρA | ρF )dρA

︸ ︷︷ ︸
E[ρA|A,ρF ,ρ̂A]

f(ρF )dρF

≡ µF + (A− µF ) · π(S, ρ̂A).

Using the result established in Theoreom 1, we can show

∂π(S)/∂S2 =
∂

∂S2

∫

SF

1/ρF

∫

SA

ρAf(A, ρ̂A | ρA, ρF )f(ρA | ρF )dρAf(ρF )dρF

=

∫

SF

1/ρF

∂
∫
SA
ρAf(A, ρ̂A | ρA, ρF )f(ρA | ρF )dρA

∂S2
f(ρF )dρF

=

∫

SF

1/ρF
∂E [ρA | A, ρF , ρ̂A]

∂(S2)︸ ︷︷ ︸
<0

f(ρF )dρF < 0.

Here, the price response coefficient π(S, ρ̂A) is just a weighted average of the price

response coefficients in the case of a known variance of the prior information weighted

by the corresponding probability. Hence, the results established by Theorems 1 and 3

still hold analogously.�
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Appendix B
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(a) Large range of surprises
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(b) Small range of surprises

Figure 1: Price response curves resulting from the Bayesian learning model, x-axis: surprises
in the announcement S = (A−µA), i.e. deviations of the announced figure from its mean, y-axis: price
responses, i.e. changes in expectations µP −µF . The graphs show a numerical example of price response
curves given the model specification in section 2.3. Prior beliefs are normally distributed with µF = 0
and ρF = 1, while news’ precision ρA follows a truncated gamma distribution with scale parameter
λ = 1 and shape parameter r = 1. Additionally, an external estimate of news’ precision ρ̂A is observed
which is normally distributed as ρ̂A ∼ N(ρA, σρ̂A

). Price response curves are increasing in the observed
value of the precision proxy, the graphs correspond to external precision signals of ρ̂A = 0.5, 1, 1.5 while
we choose σρ̂A

= 0.25.
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Figure 2: Estimated price-response curve allowing for internal precision signals, x-axis:
surprises in the U.S. nonfarm payrolls figure SNF (in percentage points), y-axis: estimated price response
r̂t (log-returns ×1000). This figure provides an illustration of the price response curve to surprises in
announcements of nonfarm payrolls figures corresponding to specification (C) in table 1. The results
are based on a QML estimation of AR(2)-ARCH(3) models for 2-min log returns during the intraday
interval 8:22-9:52 a.m. EST at employment announcement days for which no other macroeconomic
report is released at the same time. The sample period is Jan. 1991 - Dec. 2005, resulting in 7245
observations (i.e. 161 days with no overlapping announcements × 45 2-min intervals). According to
the Bayes information criterion (BIC), the model that includes polynomial terms in nonfarm payrolls
surprises up to the third order provides the best specification. So as predicted by the theoretical model,
the resulting price response curves are non-linear since large surprises serve as a signal for low news’
precision. Therefore, high surprises in the announced figure lead to relatively weaker price reactions
than small surprises.
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Figure 3: Estimated linear price-response curves for high and low external precision sig-
nals, x-axis: surprises in the U.S. nonfarm payrolls figure SNF (in percentage points), y-axis: estimated
price response r̂t (log-returns ×1000). A graphical illustration of the price response curve to nonfarm
payrolls figures as described by specification (F) in table 2. The results are based on a QML estima-
tion of AR(2)-ARCH(3) models for 2-min log returns during the intraday interval 8:22-9:52 a.m. EST
at employment announcement days for which no other macroeconomic report is released at the same
time. The sample period is Jan. 1991 - Dec. 2005, resulting in 7245 observations (i.e. 161 days with no
overlapping announcements × 45 2-min intervals). The curve corresponding to high precision signals
has a significantly larger slope. A higher external precision signal leads to stronger price reactions given
the same amount of unexpected information in a news release.
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Figure 4: Estimated price-response curves allowing for internal and external precision
signals, x-axis: surprises in the U.S. nonfarm payrolls figure SNF (in percentage points), y-axis: es-
timated price response r̂t (log-returns ×1000). A graphical illustration of the price response curve to
nonfarm payrolls figures as described by specification (J) in table 2. The results are based on a QML
estimation of AR(2)-ARCH(3) models for 2-min log returns during the intraday interval 8:22-9:52
a.m. EST at employment announcement days for which no other macroeconomic report is released at
the same time. The sample period is Jan. 1991 - Dec. 2005, resulting in 7245 observations (i.e. 161 days
with no overlapping announcements × 45 2-min intervals). Prices tend to react stronger to news with
a high precision signal. For high precision signals polynomial terms in nonfarm payroll surprises only
up to second order are captured, while for low precision signals terms up to third order are included.
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TABLE 1

Estimation of price response functions
with surprises as an internal precision signal

Model (A) (B) (C) (D) (E)

Mean equation
cons -0,002 -0,002 -0,002 -0,002 -0,002

D8:28
· SNF 4,406 3,619 3,927 4,078 3,829

D8:30 -0,080 0,530 0,355 0,558 0,637
D8:30

· S1
NF -37,873 *** -42,415 *** -53,447 *** -54,909 *** -50,344 ***

D8:30
· S2

NF -91,220 ** -55,336 * -119,526 -145,530
D8:30

· S3
NF 531,752 *** 624,49 *** 80,073

D8:30
· S4

NF 1658,397 2337,978
D8:30

· S5
NF 9945,756

D8:32
· SNF -4,000 ** -4,322 ** -4,274 ** -4,181 ** -4,277 **

D8:28
· SUN 1,636 1,278 1,320 1,314 1,175

D8:30
· SUN 5,003 ** 5,617 ** 5,746 *** 6,212 *** 6,367 ***

D8:32
· SUN 1,448 * 1,325 1,356 1,332 1,286

D8:28
·RNF 2,206 1,841 2,010 1,999 1,839

D8:30
·RNF -6,872 *** -6,390 *** -6,215 ** -5,889 ** -5,808 **

D8:32
·RNF 0,083 -0,428 -0,071 -0,106 -0,258

rt−1 -0,091 *** -0,091 *** -0,090 *** -0,090 *** -0,091 ***
rt−2 -0,001 0,000 0,000 0,000 0,000

Variance equation
cons 0,439 *** 0,439 *** 0,436 *** 0,436 *** 0,437 ***
ARCH(1) 0,148 ** 0,141 *** 0,146 *** 0,145 *** 0,144 ***
ARCH(2) 0,057 *** 0,059 *** 0,058 *** 0,058 *** 0,058 ***
ARCH(3) 0,031 *** 0,033 *** 0,034 *** 0,034 *** 0,034 ***

LL -8020,69 -7999,57 -7987,29 -7985,32 -7984,12
BIC 2,2485 2,2439 2,2417 2,2424 2,2433

LR-Test against model (A) 42,24 *** 66,80 *** 70,73 *** 73,13 ***
LR-Test against model (B) 24,56 *** 28,49 *** 30,89 ***
LR-Test against model (C) 3,93 ** 6,33 **
LR-Test against model (D) 2,40
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TABLE 1 (continued)

QML estimation of AR(2)-ARCH(3) models for 2-min log returns during the intraday interval 8:22-9:52

a.m. EST at employment announcement days for which no other macroeconomic report is released at the

same time. The sample period is Jan. 1991 - Dec. 2005, resulting in 7245 observations (i.e. 161 days with

no overlapping announcements × 45 2-min intervals).

The estimated model for log returns rt is given by rt = c+
∑

2

j=1
φjrt−j + x′tβ + εt, where εt ∼ N(0, ht),

t indexes the first interval after the announcement, 8:30-8:32 a.m., xt denotes a vector of explanatory

variables and β is the corresponding coefficient vector. ht is given by ht = ω +
∑

3

j=1
ψjε

2
t−j + st, where

st = δs
· t +

∑
5

j=1

(
δs

c,j cos(j · t · 2π) + δs
s,j sin(j · t · 2π)

)
denotes the seasonality function based on the

parameters δs, δs
c,j , δ

s
s,j and a normalized time trend t ∈ [0, 1] given by the elapsed time (in minutes) in

the interval 8:22 to 9:52 a.m. divided by 90. The estimated seasonality parameters are omitted in the

table.

Regressors xt are the surprise in U.S. nonfarm payrolls, SNF , and in unemployment rates, SUN , as well

as revisions of nonfarm payrolls RNF interacted with time dummies indicating the intervals 8:28-8:30

a.m. (D8:28), 8:30-8:32 a.m. (D8:30) and 8:32-8:34 a.m. (D8:32). To capture non-linear immediate price

responses in the interval 8:30-8:32, surprises in nonfarm payrolls SNF are included as polynomials up to

the order 5. Surprises are computed based on U.S. employment report figures released by the BLS and

consensus forecasts provided by Informa Global Markets, formerly MMS.

The table reports the log likelihood (LL), the Bayes information criterion (BIC) and χ2 statistics of LR

tests on the inequality of individual parameters. Statistical inference is based on QML standard errors

(Bollerslev and Wooldridge 1992). ∗∗∗, ∗∗, and ∗ indicates significance at the 1%, 5%, and 10% level,

respectively. Except for the LR tests, the level of significance is based on two-sided tests.
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TABLE 2

Estimation of price response functions
differentiated by low and high values of the additional external precision proxy

Model (F) (G) (H) (I)

Mean equation
cons -0,002 -0,002 -0,002 -0,002
D8:28

· SNF 4,365 3,411 3,862 4,147

D8:30
·Dπlow -0,074 0,782 0,611 -0,069

D8:30
·Dπhigh -0,141 0,315 -0,131 0,203

D8:30
· S1

NF ·Dπlow -30,439 *** -34,498 *** -46,901 *** -30,356 ***

D8:30
· S1

NF ·Dπhigh -47,601 *** -53,413 *** -47,713 *** -56,190 ***

D8:30
· S2

NF ·Dπlow -106,693 ** -77,937 **

D8:30
· S2

NF ·Dπhigh -87,544 * -61,651

D8:30
· S3

NF ·Dπlow 503,544 **

D8:30
· S3

NF ·Dπhigh 217,349
D8:32

· SNF -4,020 ** -4,694 ** -4,422 ** -4,305 **
D8:28

· SUN 1,623 1,197 1,327 1,499
D8:30

· SUN 5,553 ** 6,275 *** 6,286 *** 5,723 **
D8:32

· SUN 1,484 * 1,286 1,414 1,349
D8:28

·RNF 2,051 1,701 1,989 1,885
D8:30

·RNF -5,901 ** -5,220 ** -5,424 ** -5,585 **
D8:32

·RNF -0,080 -0,664 0,010 -0,460
rt−1 -0,091 *** -0,091 *** -0,091 *** -0,090 ***
rt−2 0,000 0,000 0,000 0,000

Variance equation
cons 0,437 *** 0,437 *** 0,437 *** 0,437 ***
ARCH(1) 0,151 ** 0,143 ** 0,148 ** 0,148 **
ARCH(2) 0,057 *** 0,059 *** 0,057 *** 0,058 ***
ARCH(3) 0,032 *** 0,035 *** 0,033 *** 0,034 ***

LL -8008,54 -7982,99 -7981,52 -8002,00
BIC 2,2476 2,2430 2,2426 2,2482

LR-Test against model (A) 24,30 *** 75,40 *** 78,34 *** 37,38 ***
LR-Test against model (C)

LR-Test against model (F) 51,10 *** 54,04 *** 13,08 ***

38



TABLE 2 (continued)

Estimation of price response functions
differentiated by low and high values of the additional external precision proxy

Model (J) (K) (L)

Mean equation
cons -0,002 -0,002 -0,002
D8:28

· SNF 3,660 3,400 3,651

D8:30
·Dπlow 0,630 0,774 0,624

D8:30
·Dπhigh 0,323 0,236 0,264

D8:30
· S1

NF ·Dπlow -46,957 *** -34,580 *** -46,950 ***

D8:30
· S1

NF ·Dπhigh -53,605 *** -55,948 *** -55,534 ***

D8:30
· S2

NF ·Dπlow -78,320 ** -106,453 ** -78,297 **

D8:30
· S2

NF ·Dπhigh -89,156 * -66,847 -73,585

D8:30
· S3

NF ·Dπlow 512,233 ** 509,326 **

D8:30
· S3

NF ·Dπhigh 186,343 141,106
D8:32

· SNF -4,692 ** -4,693 ** -4,692 **
D8:28

· SUN 1,169 1,207 1,176
D8:30

· SUN 6,694 *** 6,097 *** 6,556 ***
D8:32

· SUN 1,230 1,338 1,267
D8:28

·RNF 1,707 1,745 1,744
D8:30

·RNF -4,736 ** -5,464 ** -4,932 **
D8:32

·RNF -0,549 -0,510 -0,435
rt−1 -0,091 *** -0,091 *** -0,091 ***
rt−2 0,000 0,000 0,000

Variance equation
cons 0,436 *** 0,437 *** 0,436 ***
ε2t−1 0,146 ** 0,143 ** 0,146 **
ε2t−2 0,059 *** 0,059 *** 0,058 ***
ε2t−3 0,035 *** 0,035 *** 0,035 ***

LL -7974,53 -7982,74 -7974,38
BIC 2,2419 2,2441 2,2431

LR-Test against model (A) 92,32 *** 75,90 *** 92,62 ***
LR-Test against model (C) 25,82 ***

LR-Test against model (F) 68,02 *** 51,59 *** 68,31 ***
LR-Test against model (G) 16,92 *** 0,50 17,21 ***
LR-Test against model (H) 13,98 *** 14,27 ***
LR-Test against model (I) 38,51 *** 55,22 ***
LR-Test against model (J) 0,29
LR-Test against model (K) 16,71 ***
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TABLE 2 (continued)

QML estimation of AR(2)-ARCH(3) models for 2-min log returns during the intraday interval 8:22-9:52

a.m. EST at employment announcement days for which no other macroeconomic report is released at the

same time. The sample period is Jan. 1991 - Dec. 2005, resulting in 7245 observations (i.e. 161 days with

no overlapping announcements × 45 2-min intervals).

The estimated model for log returns rt is given by rt = c+
∑

2

j=1
φjrt−j + x′tβ + εt, where εt ∼ N(0, ht),

t indexes the first interval after the announcement, 8:30-8:32 a.m., xt denotes a vector of explanatory

variables and β is the corresponding coefficient vector. ht is given by ht = ω +
∑

3

j=1
ψjε

2
t−j + st, where

st = δs
· t +

∑
5

j=1

(
δs

c,j cos(j · t · 2π) + δs
s,j sin(j · t · 2π)

)
denotes the seasonality function based on the

parameters δs, δs
c,j , δ

s
s,j and a normalized time trend t ∈ [0, 1] given by the elapsed time (in minutes) in

the interval 8:22 to 9:52 a.m. divided by 90. The estimated seasonality parameters are omitted in the

table.

Regressors xt are the surprise in U.S. nonfarm payrolls, SNF , and in unemployment rates, SUN , as well

as revisions of nonfarm payrolls RNF interacted with time dummies indicating the intervals 8:28-8:30

a.m. (D8:28), 8:30-8:32 a.m. (D8:30) and 8:32-8:34 a.m. (D8:32). Surprises are computed based on

U.S. employment report figures released by the BLS and consensus forecasts provided by Informa Global

Markets (IGM), formerly MMS. The variables SNF are included as polynomials up to order 3 and

interact with dummy variables Dπ high (Dπ low) which takes on the value 1 if estimated price-response

coefficient π̂m at month m is higher (lower) than its sample median, and 0 otherwise. π̂m is given

by π̂m = ρ̂A,m/ (ρ̂F,m + ρ̂A,m), where ρ̂A,m = 1/ĝm+1|m, ĝm+1|m is the one-step-ahead prediction of

the conditional variance of (percentage) revision of the nonfarm payroll figure in month m, ṘNF,m,

computed based on rolling sample ARMA-GARCH models for the time series of historical revisions,

and ρ̂F,m = 1/ŝ2F,m with ŝF,m denoting the cross-sectional standard deviation of IGM forecasts for the

employment release for a particular month m.

The table reports the log likelihood (LL), the Bayes information criterion (BIC) and χ2 statistics of LR

tests on the inequality of individual parameters. Statistical inference is based on QML standard errors

(Bollerslev and Wooldridge 1992). ∗∗∗, ∗∗, and ∗ indicates significance at the 1%, 5%, and 10% level,

respectively. Except for the LR tests, the level of significance is based on two-sided tests.
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