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Abstract: We present a comprehensive framework for Bayesian estima-
tion of structural nonlinear dynamic economic models on sparse grids. The
Smolyak operator underlying the sparse grids approach frees global approx-
imation from the curse of dimensionality and we apply it to a Chebyshev
approximation of the model solution. The operator also eliminates the curse
from Gaussian quadrature and we use it for the integrals arising from ratio-
nal expectations and in three new nonlinear state space filters. The filters
substantially decrease the computational burden compared to the sequential
importance resampling particle filter. The posterior of the structural pa-
rameters is estimated by a new Metropolis-Hastings algorithm with mixing
parallel sequences. The parallel extension improves the global maximization
property of the algorithm, simplifies the choice of the innovation variances,
allows for unbiased convergence diagnostics and for a simple implementation
of the estimation on parallel computers. Finally, we provide all algorithms
in the open source software JBendge4 for the solution and estimation of a
general class of models.
Keywords: Dynamic Stochastic General Equilibrium (DSGE) Models, Baye-
sian Time Series Econometrics, Curse of Dimensionality
JEL classification: C11, C13, C15, C32, C52, C63, C68, C87

1We thank Wouter Denhaan, Paul Fackler, Jesús Fernández-Villaverde, James Heck-
man, Florian Heiss, Kenneth Judd, Michel Juillard, Felix Kübler, Alexander Ludwig,
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1 Introduction

Many modern macroeconomic models with microeconomic foundations and
rational expectations are nonlinear. The simplest solution method is to lin-
earize the model and to solve the associated quadratic matrix equation for
the optimal policy function, as in Klein (2000). The likelihood implied by the
solution can then be evaluated by the Kalman (1960) filter. The drawback of
linearization is that it produces biased estimates and implied moments of the
observables which may misinform the model evaluation and its further de-
velopment. Moreover, Fernández-Villaverde and Rubio-Ramı́rez (2006) find
evidence for important nonlinearities in macroeconomic data. Beside a poor
empirical performance, a theoretical problem of linear models is that their
solution is certainty equivalent, i.e. it does not depend on shock variances
and therefore a conclusive welfare analysis of risk is not possible. Kim and
Kim (2003), for example, discuss a spurious welfare implication of a linearized
model.

One nonlinear estimation approach is the method of moments. It suffers
from a small sample bias and does not efficiently use the available infor-
mation, neither for parameter estimates nor for a model selection criterion.
According to the likelihood principle, for example in Berger and Wolpert
(1988), all sample information is contained in the likelihood function. Unfor-
tunately a nonlinear likelihood approach is a complex numerical operation
with at least four problems. We propose innovations to all of them.

The first problem is to solve the model. Here we use the Smolyak operator
for a Chebyshev approximation of the model solution as well as for a Gaussian
quadrature of the rational expectations. The second problem is to evaluate
the likelihood, where we introduce three new nonlinear state space filters.
The third problem is to generate parameter estimates. We do this by a new
parallel Metropolis-Hastings algorithm. The fourth problem is to program
all these complex interacting algorithms. As a solution we provide the open
source software JBendge for a general class of models.

There are many different methods to approximate the model solution. The
currently predominant approximation strategy is a local perturbation ap-
proach based on the implicit function theorem discussed by Judd and Guu
(1997), Gaspar and L. Judd (2005) or Judd and Jin (2002). Current software
packages implementing these methods are Juillard (1996), Anderson, Levin,
and Swanson (2005) or Schmitt-Grohé and Uribe (2004). Global approxima-
tions can be done by Chebyshev polynomials or finite elements. Projection
methods are discussed in Judd (1992). A recent comparison of all three ap-
proaches for the growth model can be found in Aruoba, Fernández-Villaverde,
and Rubio-Ramı́rez (2006).
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Solutions for larger models with more than a few states are currently ap-
proximated exclusively by perturbation. The problems of a perturbation
approximation is that its validity may be restricted to a ball around the
steady state, which size is difficult or impossible to derive and that the ap-
proximation quality may be unacceptable if one moves away from the steady
state. This is especially obstructive if the economic argumentation is that
nonlinearities arise due to the system’s fluctuations far from the steady state.

The problem with global approximation is that it is by now widely believed
to suffer from the curse of dimensionality. The curse arises if the tensor oper-
ator is used to extend the univariate approximation or integration operator
to many dimensions. The curse indicates exponentially growing computa-
tional costs for a growing dimensionality of the approximated function or
integrand. It effectively restricts tensor based global approximation methods
to be useful only for a few (in our case - six) dimensions.

We replace the tensor operator by the Smolyak (1963) operator. This op-
erator decreases the approximation burden for many functional forms from
exponentially growing costs to a polynomial order. It also implies that inte-
grals beyond six dimensions do not need to be approximated exclusively by
Monte Carlo methods. The Smolyak operator can be used for a Chebyshev
approximation, as we do, but also for finite elements, wavelets and other
forms of the approximating function. Bungartz and Griebel (2004) provide
an extensive summary of this active field in numerics. Krüger and Kübler
(2004) were to our best knowledge the first who applied the operator in an
economic setting for the approximation of the solution of a high dimensional
OLG model. We use the operator for a Chebyshev approximation of the
model solution as well as for the integrals implied by rational expectations.

Numerical integration problems also appear in the likelihood evaluation of
nonlinear state space models. The current approach to these models is dom-
inated by the sequential importance resampling particle filter. The simple
particle filter and extensions are described in Doucet, de Freitas, and Gordon
(2001). We introduce three new nonlinear filters based on deterministic inte-
gration in order to overcome the high computational burden of the particle
filter.

The first filter we propose is the simple but very fast deterministic Smolyak
Kalman filter which is an improvement of the deterministic unscented Kalman
filter by Julier and Uhlmann (1997). The unscented method is in fact a deter-
ministic multivariate integration method which restricts the computational
costs to rise linear in the dimensions of the integrand. The reverse of the
medal is that the quality of the unscented integration decreases with the
dimensionality and nonlinearity of the integrand. Our approach is therefore
better suited for nonlinear and high dimensional applications in economet-
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rics. Moreover the Smolyak based multivariate Gaussian quadrature can be
more easily adapted to a setting with non normal shocks since Gaussian
quadrature is readily available for many different densities. The Smolyak
Kalman filter, as the unscented filter, is based on the assumption that some
densities processed within the filtering recursions are Gaussian.

For a better approximation of non-Gaussian densities, we propose, as the
second new filter, an extension of the sequential importance resampling par-
ticle filter, where the importance density is generated by the deterministic
Smolyak Kalman filter. We call this combination the Smolyak particle filter
since it bears similarities to the combined unscented particle filter by van der
Merwe, Doucet, de Freitas, and Wan (2000).

Finally, we introduce the third filter which approximates the densities
within the filtering recursions by sums of Gaussian densities. The purpose
of these filters, is to demonstrate robustness of the estimation results. They
also demonstrate that there are various possibilities to apply the Smolyak op-
erator in the nonlinear filter design and that a Monte Carlo approach, as in
the sequential importance resampling filter, is not the only way to implement
nonlinear filters.

For the estimation problem we extend the Metropolis-Hastings algorithm
to a parallel version and implement a feature from the genetic algorithm of
Storn and Price (1997), called differential evolution. This feature improves
the global maximization properties of the Metropolis-Hastings algorithm and
simplifies the choice of the innovation variances since it effectively estimates
the optimal variances on the run. It also allows an unbiased convergence di-
agnostics since the parallel sequences start from different parameter vectors.
And finally due to its parallel nature it provides a natural way to implement
the estimation on parallel computers.

The curse of dimensionality for numerical approximation and integration
arises in many estimation, inference and forecasting problems of Bayesian,
classical or nonparametric econometrics. Beside the application which we
propose in this paper we expect the Smolyak operator and more elaborate
sparse grids approaches to be useful in many other econometric algorithms.
One example is presented in a Monte Carlo experiment by Heiss and Win-
schel (2008) where the Smolyak based mixed logit estimator systematically
outperforms simulation based estimators in a maximum likelihood setting.

Only few attempts to estimate nonlinear dynamic structural models with
likelihood methods are presented in the literature. Fernández-Villaverde and
Rubio-Ramı́rez present in a number of papers (2004, 2005, 2006) the mar-
ginal likelihood as a model selection criterion for non-nested and quasi-true
models, discuss a nonlinear structural parameter estimation and compare
linear to nonlinear estimates. They approximate the model solution by finite
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elements and perturbation, evaluate the likelihood by the particle filter and
estimate the posterior by the serial Metropolis-Hastings algorithm. A recent
nonlinear estimation is presented by Amisano and Tristani (2007) based on
a perturbation solution, a filter called the conditional particle filter by Ion-
ides, Bretó, and King (2006) and the serial Metropolis-Hastings algorithm.
The filter is a combination of the deterministic filter similar to the extended
Kalman filter and the particle filter and comparable to the unscented particle
filter and our Smolyak particle filter.

The rest of the paper is divided into five sections: economics, economet-
rics, results, conclusion and the appendix. In the economic section 2 we
present a generic model class, the optimality conditions for the example
model, the nonlinear Chebyshev approximation, the Smolyak operator and
the approximation error estimator. In the econometric section 3 we describe
the Smolyak Kalman, particle, Smolyak particle and Smolyak sum filter, the
parallel Metropolis-Hastings algorithm, the convergence diagnostics and the
marginal likelihood. In the result section 4 we summarize the performance
of the solution method, the filters and the estimators. In section 5 we con-
clude. In the appendix we present some details on the linearization of the
general model and provide a step by step example of a 2-dimensional Smolyak
polynomial approximation.

2 Economics

2.1 Model

An appropriate model for this paper should allow for an increasing number of
states and degrees of nonlinearity of the policy functions. We therefore use a
multicountry standard growth model and vary the elasticity of intertemporal
substitution and the standard deviation of the productivity shock as a proxy
for the nonlinearity of the model solution.

The social planner allocates by solving the dynamic optimization

max
{{cn,t,ln,t,in,t}N

n=1}∞t=0

U = E0

∞∑
t=0

N∑
n=1

βtUn,t

for n = 1, ..., N countries and all future periods t ≥ 0. The welfare function
U is a discounted sum of country utilities

Un,t =
(cθn

n,t(1− ln,t)
1−θn)1−τn

1− τn
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with discount factor β, elasticity of intertemporal substitutions τn and con-
sumption and leisure substitution rates θn. The policy variables are con-
sumption cn,t, labor ln,t and investment in,t for each country. The world
budget constraint

N∑
n=1

(yn,t − cn,t − in,t) = 0

restricts the world output Σnyn,t to be either consumed or invested in one of
the countries. The production technologies

yn,t = ean,tkαn
n,tl

1−αn
n,t

depend on productivities an,t, capital kn,t and labor ln,t and the technical
substitution rates αn. The capital and productivity transitions are

kn,t+1 = in,t + (1− δn)kn,t − 0.5κni
2
n,t (1)

an,t+1 = ρnan,t + en,t+1 (2)

where δn are the depreciation rates and ρn the autocorrelation coefficients for
the productivity processes with normally distributed shocks en,t ∼ N (0, σen)
independent across the countries and time. In the capital transition equation
(1) we include capital adjustment costs parameterized by κn. These costs
assure that in the multicountry model the state of the system is not simply
the aggregate capital stock but its distribution across the countries.

We have implemented the algorithms for the general model class:

0 = f(st, xt, zt; θ)

zt = Eeh(st, xt, et+1, st+1, xt+1; θ)

st+1 = g(st, xt, et+1; θ).

All functions depend on the structural parameters in θ. The model is for-
mulated in terms of the first order equilibrium conditions f : Rds+dx+dz →
Rdx , expected functions h : Rds+dx+de+ds+dx → Rdz and state transitions
g : Rds+dx+de → Rds . The variables are states st ∈ S ⊆ Rds , policies
xt ∈ X ⊆ Rdx , expected variables zt ∈ Z ⊆ Rdz and stochastic shocks et+1,
which are usually specified to follow a normal distribution et+1 ∼ N (0, Σe).
As the structural shocks are typically modeled to be independent we assume
a diagonal Σe from now on.

Our solution approach is to solve for the policy functions x∗ : Rds → Rdx

that map states into policies. The algorithm is a function iteration scheme
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where we repeatedly solve the first order conditions f(s, x(k+1), Eeh(..., x(k), ...)) =
0 for the next k +1 iteration of the policy x(k+1) for given expected variables
z = Eeh(..., x(k), ...) based on the previous policy xk in iteration step k. This
approach has the advantage that it decomposes one big system, when one
solves for x in f(s, x, Eeh(..., x, ...)) = 0, into several independent smaller
ones - for each grid point we solve one small system for all policies. The
independence implies that the algorithm can be parallelized. We will discuss
this in more detail in section 2.3.4.

Since the numerical integration can be thought as a function approxima-
tion of the integrand with a subsequent analytically simple integration, we
can apply the Smolyak operator also to Gaussian quadrature of the rational
expectations integrals as

Eeh(..., e, ...) =

∫
h(..., e, ...)p(e)de ≈

∑
j

wjh(..., ej, ...),

where the continuous random variable e and its density p(e) is essentially
discretized into some realizations ej with weights wj.

The entire problem of solving the model is to approximate the policy func-
tion x∗(st) in

0 = f(st, x
∗(st),

∑
j

wj; θ)

zt = h(st, x
∗(st), ej,t+1, sj,t+1, x

∗(sj,t+1); θ)

sj,t+1 = g(st, x
∗(st), ej,t+1; θ) ∀j.

The variables and parameters of the example model correspond to the fol-
lowing variables of the general model class:

st = {kn,t, an,t}N
n=1

xt = {cn,t, ln,t, in,t}N
n=1

et = {en,t}N
n=1

θ = {τn, θn, αn, δn, ρn, κn, σen}N
n=1 ∪ {β}.

In the next section we derive the optimality conditions and map them into
the general model functions f, h and g.
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2.2 Optimality

The Bellman equation for the allocation problem is

Vt = max
{cn,t,ln,t,in,t,kn,t+1}N

n=1

N∑
n=1

Un,t + βEtVt+1 + λB

N∑
n=1

(yn,t − cn,t − in,t)

+
N∑

n=1

λn

(
kn,t+1 − (1− δn)kn,t − in,t + 0.5κni

2
n,t

)

where Vt ≡ V (k1,t, ..., kN,t, a1,t, ..., aN,t; θ). The first order conditions for n =
1, ..., N are given by

∂Vt

∂cn,t

=
∂Un,t

∂cn,t

− λB = 0 (3)

∂Vt

∂ln,t

=
∂Un,t

∂ln,t

+ λB
∂yn,t

∂ln,t

= 0 (4)

∂Vt

∂in,t

= −λB + λn(κnin,t − 1) = 0 (5)

∂Vt

∂kn,t+1

= βEt
∂Vt+1

∂kn,t+1

+ λn = 0 (6)

∂Vt

∂λn

= kn,t+1 − (1− δn)kn,t − in,t + 0.5κni
2
n,t = 0 (7)

The last optimality condition is the budget constraint

∂Vt

∂λB

=
N∑

n=1

(yn,t − cn,t − in,t) = 0. (8)

The derivatives of the unknown value functions in equations (6) can be de-
rived by the envelope theorem. It allows us to write the derivatives for
n = 1, ..., N as

∂Vt

∂kn,t

= λB
∂yn,t

∂kn,t

− λn(1− δn) (9)

since the derivatives of the policy variables with respect to kn,t are zero by
optimality. The Lagrange multipliers λn in equation (9) can be substituted by
equations (5) and the multiplier λB by equation (3) to arrive for n = 1, ..., N
at

∂Vt

∂kn,t

=
∂Un,t

∂cn,t

(
∂yn,t

∂kn,t

+
1− δn

1− κnin,t

)
.
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These equations can then be forwarded one period and plugged into equations
(6) to obtain the Euler equations for n = 1, ..., N

1

1− κnin,t

∂Un,t

∂cn,t

− βEt

(
∂Un,t+1

∂cn,t+1

(
∂yn,t+1

∂kn,t+1

+
1− δn

1− κnin,t+1

))
= 0. (10)

Equations (3) and (4) imply the intratemporal optimality conditions between
consumption and labor supply for n = 1, ..., N

∂Un,t

∂ln,t

+
∂Un,t

∂cn,t

∂yn,t

∂ln,t

= 0. (11)

Finally, we can substitute the Lagrange multiplier λB from the first of the
N equations (3) into the other N − 1 equations of (3) to arrive at N − 1
conditions for n = 2, ..., N

∂U1,t

∂c1,t

=
∂Un,t

∂cn,t

, (12)

which enforce equal marginal utilities across all the countries.
The 4N equations which determine the variables cn,t, ln,t, in,t, kn,t+1 are the

N Euler conditions (10), N intratemporal trade offs between consumption
and labor (11), N − 1 equalities of marginal utilities (12), the budget con-
straint (8) and N capital transitions (7). A simplification is to solve the
trade off in equations (11) for consumptions cn,t and the budget constraint
(8) for one investment i1,t.

The mapping into the general model class is the following: The 2N−1 equa-
tions (10) and (12) determine the policy variables l1,t, ..., lN,t and i2,t, ..., iN,t

in the general functions f . The general model functions h for N forward
looking variables are given by the arguments of the expected values in the
Euler equations (10). The N capital transitions (7) and the N productivity
transitions (2) form the state transition functions g of the general model.

2.3 Solution

2.3.1 Approximation

The first step towards the nonlinear solution is to generate start values for
the policy functions. We use a linear approximation of the model around the
deterministic steady state described in appendix A.

The nonlinear solution or policy functions x∗(s) reside in the infinite dimen-
sional space of all functions. In a practical approximation we search in the mi

dimensional space of polynomials x̂∗(s; c) =
∑mi

j=1 cjbj−1(s) characterized by

9



the coefficient vector c. We use orthogonal Chebyshev polynomials as basis
functions bj(s) defined by b0(s) = 1, b1(s) = s and bj+1(s) = 2s bj(s)−bj−1(s)
for j ≥ 1. To identify the mi elements of the coefficient vector c we use
the same number of policy values at the grid si = {si

1, s
i
2, ..., s

i
mi
}. In a 1-

dimensional approximation, for example with mi = 3 coefficients, we have to
solve the linear equations



b0(s
i
1) b1(s

i
1) b2(s

i
1)

b0(s
i
2) b1(s

i
2) b2(s

i
2)

b0(s
i
3) b1(s

i
3) b2(s

i
3)







c1

c2

c3


 =




x∗(si
1)

x∗(si
2)

x∗(si
3)


 . (13)

It requires the approximation on the left hand side to be exact for the policy
values on the right hand side at the grid {si

1, s
i
2, s

i
3}. This equation can be

solved accurately since the orthogonality property of the Chebyshev poly-
nomials guarantees that the basis matrix, defined as the basis polynomials
evaluated at the grid on the left hand side, is well conditioned for the cal-
culation of its inverse. A good grid according to the numerical theory is the
Gauss-Lobatto grid defined by s1

1 = 0 and si
j = − cos(π(j − 1)/(mi − 1))

for j = 1, ..., mi and i > 1. The range of these points is from −1 to 1 and
the grid in the desired approximation space is obtained by a simple linear
transformation.

2.3.2 Tensor Operator

If the functions to be approximated or integrated depend on several variables
we need a rule how to extend a univariate approximation operator to many
dimensions. The usual extension uses the tensor operator. It combines each
element of the univariate grids and basis functions with each other.

The univariate approximation operator for function x : [0, 1] → R is

U i(x) =

mi∑
j=1

ai
jx(si

j)

where i ∈ N is the approximation level and si
j ∈ [−1, 1] are the grid points.

In case of a function approximation, ai
j ∈ C for j = 1, ..., J are functions of s

and in case of numerical integration ai
j are the weights. The Clenshaw-Curtis

function m1 = 1 and mi = 2i−1 + 1 for i > 1 translates the approximation
level i into the polynomial degree of the approximation.

The multidimensional (d > 1) approximation operator based on the tensor
product ⊗ is defined as

(U i1 ⊗ · · · ⊗ U id)(x) =

mi1∑
j1=1

· · ·
mid∑
jd=1

(ai1
j1
⊗ · · · ⊗ aid

jd
)x(si1

j1
, ..., sid

jd
).

10



In order to construct this approximation we need Πd
j=1mij function evalua-

tions x(si1
j1

, ..., sid
jd

). This establishes the exponentially growing costs of the
approximation, a phenomenon called the curse of dimensionality.

The multivariate Chebyshev approximation can be expressed as the ma-
trix equation B(si)c = x(si) where the approximation level is given by
i = {i1, i2, ...id} and the basis matrix by B(si) = b(si1)⊗· · ·⊗b(sid). The grid
si = si1 × · · · × sid is constructed by the Cartesian product of the univariate
grids.

The tensor product based multivariate Gaussian quadrature extends the
univariate grids by the Cartesian product. The associated weights are mul-
tiplied. Since the Gaussian quadrature can be thought as approximating the
integrand by a polynomial with a subsequent trivial integration, the Smolyak
operator for the function approximation also applies for the Gaussian quadra-
ture.

2.3.3 Smolyak Operator

Complete polynomials give us an intuition about how the exponential growth
of tensor product costs can be decreased. A qth-degree expansion of a d-
dimensional function uses a linear combination of the basis functions

Pq,d = {si1
1 · · · sid

d |
d∑

l=1

il ≤ q, 0 ≤ i1, ..., id}.

A second order approximation of a bivariate function is then given by

x∗(s1, s2) = c0 + c1s1 + c2s2 + c3s1s2 + c4s
2
1 + c5s

2
2.

This is the same polynomial as used in a Taylor expansion. We see that
complete polynomials are not based on the tensor product of two second
order univariate polynomials

{1, s1, s
2
1} ⊗ {1, s2, s

2
2} = {1, s1, s2, s1s2, s

2
1, s

2
2, s

2
1s2, s1s

2
2, s

2
1s

2
2}.

The insight is that the products s2
1s2, s1s

2
2 and s2

1s
2
2 can be dropped and in

terms of asymptotic convergence, the complete polynomials will give us as
good an approximation as the tensor product with far fewer elements, see
Judd (1998).

But beyond this intuition we do not know how to combine, for example,
the univariate Gauss-Lobatto grid points in order to arrive at a multivariate
grid for an optimal construction of the basis matrix. A discussion of the
approximating properties of the Smolyak operator beyond this intuition can
be found in Bungartz and Griebel (2004).
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The usual formulation of the Smolyak operator is

Aq,d(x) =
∑

q−d+1≤|i|≤q

(−1)q−|i|
(

d− 1

q − |i|
)

(U i1 ⊗ · · · ⊗ U id).

where d is the dimensionality of the function to be approximated, q is the level
of approximation and the multiindex i translates the approximation level into
the univariate approximation levels. This formula highlights the fact that the
Smolyak operator is a simple linear combination of some lower level tensor
products and that a straightforward implementation of this operator is not
complicated.

The intuition of the complete polynomials does not give a clue about how
to construct the multivariate grid from the univariate grids and thus where
to evaluate the complete polynomials optimally. In contrast to this miss-
ing link, the Smolyak operator constructs the multivariate grid as a com-
bination of some lower level Cartesian products × of the univariate grids
sij = {sij

1 , ..., s
ij
mij
}

Hq,d =
⋃

q−d+1≤|i|≤q

(
si1 × · · · × sid

)
, (14)

analogous to the construction of the multivariate polynomial Aq,d.
We illustrate the complicated looking Smolyak formulas in a step by step

approximation in appendix B. For alternative presentations of the operator
see Krüger and Kübler (2004) and Heiss and Winschel (2008).

For the integration, as in Heiss and Winschel (2008), we use the Kronrod-
Patterson univariate grids derived according to Genz and Keister (1996) and
combine them by the Smolyak operator for a multivariate integration.

2.3.4 Iteration

There are two complications in the approximation of the solution. The first
is rational expectations, which we approximate by a Smolyak based Gaussian
quadrature. The second is that the functions we want to approximate are the
unknown solutions of the functional. Therefore, we cannot obtain function
values at the grid by simple function evaluations, as we assume on the right
hand side of equation (13). The policy values are given only implicitly and
a root finder or a function iteration has to improve a start value. Table 1
summarizes the iterative procedures.

Approximation step 1 and interpolation step 2(a)ii are given for the tensor
product but they are analogous for a Smolyak approximation. Efficient algo-
rithms in the literature are often constructed to optimize the interpolation

12



Table 1: Function Iteration and Root Finding

0. Initial policy: x(0) at grid si.

1. Approximate policy function c(k) = B(si)−1x(k).

2. Rational expectations:

(a) For all discrete shock realizations j = 1, ..., J

i. State transition: s′j = g(si, x(k), e′j)

ii. Next policy: x′j = B(s′j)c
(k)

(b) Expected variables: z =
∑

j wjh(si, x, e′j, s
′
j, x

′
j).

3. Iteration:

(a) Function iteration:

i. Solve for x(k+1) in f(si, x(k+1), z(x(k))) = 0

ii. Residual: R = x(k+1) − x(k)

(b) Root finding:

i. Residuals: R = f(si, x(k), z(x(k)))

ii. Iteration: x(k+1) = x(k) − (∂R/∂x)−1R

4. k=k+1, go to 1. until R ≈ 0

step as a combined construction of approximation coefficients and interpola-
tion. Implicit in the coefficient calculation is the basis matrix inversion. In
our iterative application we need to invert the basis matrix only once since
it is not changed over iterations and structural parameters.

The choice between the function iteration in 3(a) and the root finding algo-
rithm in 3(b) involves a trade off between a few iterations over one big root
finding system in 3(b) and iterations over several small systems in 3(a). For
example, in a model with dg = 1000 grid points and dx = 20 policy functions
the complete system to be solved has dx×dg = 20.000 equations. In the func-
tion iteration routine, on the other hand, the solution x(k+1) can be obtained
point wise. Instead of solving one large system for all dx×dg policy values, we
solve dg systems with dx equations. But since the function iteration usually
needs more iterations the overall gain is not clear cut. Moreover, analytical
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Jacobians are available for the small systems. In JBendge the Jacobians are
automatically derived by the symbolic differentiation engine and do not need
to be supplied by the user. A restriction of the function iteration scheme
is that we need all policy functions to appear in the contemporary policy
vector x in f(s, x, z) = 0 otherwise we can not solve for them (the Jacobians
become singular).

But the main advantage of the function iteration is probably that it can
be parallelized since the policies at each grid point are independent of each
other and the dg small systems of size dx can be solved on parallel CPUs. By
now we solve these systems sequentially with a standard Newton root finder
with analytical derivatives and a line search for the optimal step size.

2.3.5 Error

An approximation procedure has to be accompanied by error estimates in
order to control its accuracy. The exact policy functions would imply zero
residuals in the complete state space and any deviation is therefore due to
the policy function approximation.

Judd (1992) proposed to normalize the residual for an economic interpreta-
tion. Dividing the residual by (1− ln(st))

(1−θn)(1−τn)/(κnin,t − 1) and taking
it to the power of 1/(θn(1 − τn) − 1) gives the Euler equation in terms of
consumption

rc(s) = cn(s)−
(

βEth(s, x∗(s), e, s′, x∗(s′); θ)
(1− ln(s))(1−θn)(1−τn)/(κnin,t − 1)

) 1
θ(1−τ)−1

s′ = g(s, x∗(s), e′).

The Euler error is finally given by rE = |rc(s)/cn(s)|. A log10 error of −3
means that the utility loss due to the approximation is less than one per 1000
dollars.

3 Econometrics

The Bayesian estimation based on models M = {M1, ...,Mm} can be sum-
marized by the factorization of the joint density

p(ω, y, θMi
|Mi) = p(ω|y, θMi

,Mi)p(y|θMi
, Mi)p(θMi

|Mi).

The models can explain the observables by different unobservables, functional
forms of their relations and shock distributions. The unobservables include
the parameters and the states θMi

= {θ} ∪ {s}. The functions and the

14



shock distributions describing the variables of interest p(ω|y, θMi
,Mi), the

density of observables (or likelihood) p(y|θMi
,Mi) and the prior density of

unobservables p(θMi
|Mi) factorize the joint density p(ω, y, θMi

|Mi).
The Bayesian estimation can transparently incorporate prior information.

It is a decision theoretical framework which integrates the modeled subject
and may also contain the researcher’s utility. By that it helps to communicate
the results as described in Geweke (2005).

The variable of interest is a very useful construction. It is an arbitrary
function and can represent specification tests or economically meaningful
variables like a welfare function. Combined with an unobserved state density
we can obtain test statistics which do not rely on the asymptotic theory but
take into account usual small samples in macroeconometrics.

In the Bayesian formula the likelihood contains the evidence in the data
and transforms the prior into the posterior density of the unobservables

p(θMi
|y,Mi) =

p(y|θMi
,Mi)p(θMi

|Mi)

p(y|Mi)
.

The marginal likelihood

p(y|Mi) =

∫
p(y|θMi

,Mi)p(θMi
|Mi)dθMi

allows the data to assign probabilities to model Mi

p(Mi|y) =
p(y|Mi)p(Mi)

p(y)
=

p(y|Mi)p(Mi)∑m
j=1 p(y|Mj)p(Mj)

.

The ratio of two marginal likelihoods is the Bayes factor. It transforms the
model prior into the posterior odds ratio

p(Mi|y)

p(Mj|y)
=

p(Mi)

p(Mj)

p(y|Mi)

p(y|Mj)
.

For equal prior probabilities of the models, the marginal likelihood selects
the model with the best in-sample forecast quality. Information theory also
points out an interesting interpretation of the marginal likelihood as a se-
lection criterion. It is related to Occam’s razor and selects the model which
allows a higher compression of the explained data and by that needs less
bandwidth for a transmission of data and model. This highlights the close
relation between modeling and compression. But it also reveals the short-
coming of this selection criterion: it is an in-sample criterion whereas models
should also perform well out-of-sample.

However, we later check whether this measure can properly select between
the nonlinear and linear approximation of the example model.
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3.1 Filtering

The model solving policy functions x∗(s) can be used to substitute the policy
variables in the state transition equation. Augmented with a measurement
equation, we obtain the model’s empirical implication for the observables in
terms of a nonlinear state space model

st = g∗(st−1, x
∗(st−1), et) = g(st−1, et) ⇔ p(st|st−1)

yt = m∗(st, x
∗(st−1)) + εt = m(st) + εt ⇔ p(yt|st)

where we also switch to a more convenient density representation of the
model for the econometric discussion: with distributional assumptions for
the state and measurement shocks, et and εt, the state space equations can
be expressed in terms of state and measurement densities. For notational
convenience the conditioning of these densities on the parameter vector θ is
suppressed.

The filtering approach evaluates the likelihood of this model by the pre-
diction and filtering step. These steps transform the posterior density of
unobserved states p(st−1|y1:t−1) into the next posterior p(st|y1:t) by recur-
sively processing new data yt for each period t. As a by-product we get a
likelihood value. The notation y1:t is a shorthand for {y1, ..., yt}.

For a given parameter vector, we start at time 0 with the prior information
about the state

p(s0) = p(s0|y0).

The prediction step generates the prior density according to the Chapman-
Kolmogorov equation

p(st|y1:t−1) =

∫
p(st, st−1|y1:t−1)dst−1 =

∫
p(st|st−1)p(st−1|y1:t−1)dst−1 (15)

where the state density p(st|st−1) is weighted by the last posterior density
p(st−1|y1:t−1). The new posterior is obtained in the filtering step, where new
data yt allows to update the prediction density

p(st|y1:t) =
p(st, yt|y1:t−1)

p(yt|y1:t−1)
=

p(yt|st)p(st|y1:t−1)∫
p(yt|st)p(st|y1:t−1)dst

. (16)

This equation is the result of a repeated application of Bayes’ formula. The
normalizing constant

lt =

∫
p(yt|st)p(st|y1:t−1)dst = p(yt|y1:t−1) (17)
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is the period’s contribution to the likelihood of the complete sample

L(θ; y1:T ) = p(y1:T |θ) =
T∏

t=1

p(yt|y1:t−1, θ) =
T∏

t=1

lt. (18)

The state posterior density p(s1:T |y1:T ) can be the end of an estimation or
just a means to obtain the likelihood. The likelihood can then be either
maximized over the parameter vector or used to base the inference on the
parameter posterior density

p(θ|y1:T ) =
p(y1:T |θ)p(θ)

p(y1:T )
.

The particle filter estimates and updates the complete posterior density of
the unobserved states represented by a sample of the states, called particles.
This is done by a costly sequential importance sampling with an inaccurate
but simple to implement proposal density. This filter is computationally
costly because the proposal density does not use the available information
from the current observation. Moreover, as a Monte Carlo approach it does
not use any information, like the smoothness, of the involved functions.

Our first new filter is the Smolyak Kalman filter which assumes that the
prediction p(st|y1:t−1) and posterior densities p(st|y1:t) are Gaussian. We
therefore need to approximate only the first two moments of the densities and
can then use the Kalman update in the filtering step. The moments needed
for the Kalman step can be calculated as expected values of nonlinearly
transformed random variables. Hence, we can use a deterministic Smolyak
Gaussian quadrature for the approximation of these moments. This filter is
very fast but the price may be an undesirably high approximation error.

The second new filter is the Smolyak particle filter. This approach improves
the particle filter by combining it with the Smolyak Kalman filter. We use
the posterior densities obtained by the Smolyak Kalman filter, represented by
the deterministically integrated first two moments of the states, as a proposal
density for the importance sampling of the particle filter. This procedure
incorporates the latest information obtained from the data. It combines the
advantages of both filters, the accurate but slow sampling particle filter and
the potentially inaccurate but fast deterministic filter.

The last filter we present is based on a Gaussian sum approximation of the
involved densities. The filter is again very fast and purely deterministic. It
effectively runs several Smolyak Kalman filters in parallel.

These new filters are used to assure robustness of the simplest Smolyak
Kalman filter and to demonstrate some alternatives to the computationally
costly particle filter. A nice overview for the various approaches can be found
in Arulampalam, Maskell, Gordon, and Clapp (2002).
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3.1.1 Smolyak Kalman Filter

The extended Kalman filter linearizes the state space equations and then
applies the Kalman (1960) filter. A widely used improvement is the deter-
ministic unscented filter by Julier and Uhlmann (1997).

The idea of the unscented filter is that approximating a density is easier
than approximating a function. The unscented filter approximates the first
two moments needed for the Kalman update. The approximation is some
kind of Gaussian quadrature where the number of grid points is taken to
be 2d + 1 where d is the dimension of the integrand. This is an attempt
but not a solution to the curse of dimensionality since the curse in terms of
the number of grid points is effectively transformed into another analogous
curse in terms of the approximation error. As the unscented filter raises the
number of points only linearly the effect is that accordingly the accuracy of
the numerical integration decreases with the dimensionality and nonlinearity
of the integrands. Therefore, the unscented filter’s error of the likelihood
approximation comes from restricting the approximation to two moments
and their ad hoc approximation. The unscented filter is therefore restricted
to a low polynomial exactness and a small number of states.

The Smolyak Kalman filter avoids this ad hoc moment approximation and
instead uses a Smolyak Gaussian quadrature. The moments are then updated
in the usual way by the Kalman gain in the filtering step. An advantage of
this procedure compared to the unscented filter is that the approximation
level can be chosen according to the problem at hand and that the filter is
also useful for other than normally distributed shocks. An approach to non-
Gaussian densities is implemented in the so called scaled unscented transform
which extends the unscented transform by parameters to control higher mo-
ments different from the ones of the Gaussian density.

We assume that the initial state density is N (s0; s0, Σ
s
0). The notation

N (x; µ, Σ) is a shorthand for a Gaussian density with argument x, mean µ
and covariance Σ. Assuming that the previous posterior density is Gaussian

p(st−1|y1:t−1) = N (st−1; st−1|t−1, Σ
s
t−1|t−1),

the prior density

p(st|y1:t−1) = N (g(st−1, et); st|t−1, Σ
s
t|t−1)
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is characterized by its first two moments

st|t−1 =

∫ ∫
g(st−1, et)N (st−1; st−1|t−1, Σ

s
t−1|t−1)N (et; 0, Σe)dst−1det (19)

Σs
t|t−1 =

∫ ∫
g(st−1, et)g(st−1, et)

TN (st−1; st−1|t−1, Σ
s
t−1|t−1)N (et; 0, Σe)dst−1det

−st|t−1s
T
t|t−1, (20)

where T denotes a transpose and Σe is the covariance matrix of the state
shocks. The measurement density of the observables is given by

p(yt|yt−1) = N (yt; yt|t−1, Σ
y
t|t−1)

where the expected value is

yt|t−1 =

∫
m(st)N (st; st|t−1, Σ

s
t|t−1)dst. (21)

and the covariance is

Σy
t|t−1 =

∫
m(st)m(st)

TN (st; st|t−1, Σ
s
t|t−1)dst + Σε − yt|t−1y

T
t|t−1, (22)

where Σε is the covariance matrix of the measurement shocks. We also need
the covariance between the observed and unobserved variables

Σsy
t|t−1 =

∫
stm(st)

TN (st; st|t−1, Σ
s
t|t−1)dst − st|t−1y

T
t|t−1. (23)

The recursion is closed by the filtering step (16) and we obtain the next
posterior density

p(st|y1:t) = N (st; st|t, Σ
s
t|t) (24)

Kt = Σsy
t|t−1(Σ

y
t|t−1)

−1

st|t = st|t−1 + Kt(yt − yt|t−1)

Σs
t|t = Σs

t|t−1 −KtΣ
y
t|t−1K

T
t

according to a usual Kalman update. The numerical problem to be solved for
this filter is the evaluation of the integrals for the expected value and covari-
ance of the state prediction in equations (19) and (20), the expected value of
the observables in equation (21), the innovation covariance in equation (22)
and the covariance between the states and observations in equation (23).
The integrals involved have the form

∫
f(s)N (s, µ, Σs)ds and can therefore

be approximated by a Smolyak Gaussian quadrature with some nodes s(i)

and weights w(i) by
∑N

i=1 w(i)f(s(i)).
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The integrals for the mean and the variance of the prior density in equation
(19) and (20), respectively, can be approximated by the nodes and weights
for the joint density of the states and shocks as the weighted sum

st|t−1 =
N∑

i=1

w(i)g(s
(i)
t−1|t−1, e

(i)
t )

Σs
t|t−1 =

N∑
i=1

w(i)g(s
(i)
t−1|t−1, e

(i)
t )g(s

(i)
t−1|t−1, e

(i)
t )T − st|t−1s

T
t|t−1.

The assumption of a normal density allows us to generate nodes and weights
from the density N (st; st|t−1, Σ

s
t|t−1) and to calculate the moments of the

measurement density in equations (21) and (22) as

yt|t−1 =
N∑

i=1

w(i)m(s
(i)
t|t−1)

Σy
t|t−1 =

N∑
i=1

w(i)m(s
(i)
t|t−1)m(s

(i)
t|t−1)

T + Σε − yt|t−1y
T
t|t−1.

The covariance between states and measurements in equation (23) can be
approximated by the sum

Σsy
t|t−1 =

N∑
i=1

w(i)s
(i)
t|t−1m(s

(i)
t|t−1)

T − st|t−1y
T
t|t−1.

3.1.2 Particle Filter

In the Smolyak Kalman filter we assumed that the state prior and posterior
densities are Gaussian. In general they might be nonstandard and even mul-
timodal. The particle filter provides a general approximation of the posterior
density

p(s0:t|y1:t) ≈
N∑

i=1

w
(i)
t δ(s0:t − s

(i)
0:t) (25)

by a sample of states {s(i)
0:t}N

i=1 and corresponding weights {w(i)
t }N

i=1 with∑
i w

(i)
t = 1, where δ is the Dirac delta function defined by

∫∞
−∞ f(x) δ(x −

a) dx = f(a).

We can use importance sampling to draw a sample s
(i)
0:t from an importance

density q(s0:t|y1:t) and to calculate the weights in (25) as

w
(i)
t ∝ p(s0:t|y1:t)

q(s0:t|y1:t)
. (26)
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For a recursive algorithm we need to factorize the importance density

q(s0:t|y1:t) = q(st|s0:t−1, y1:t)q(s0:t−1|y1:t−1). (27)

This allows us to augment the previous sample {s(i)
0:t−1}N

i=1 with a sample

of the next state s
(i)
t ∼ q(st|s0:t−1, y1:t), for i = 1, ..., N , to obtain the next

sample {s(i)
0:t}N

i=1.
In the following we derive two equations for a sequential update of the

weights. In the first variant for the particle filter, the posterior density can
be written as

p(s0:t|y1:t) =
p(yt|s0:t, y1:t−1)p(s0:t|y1:t−1)

p(yt|y1:t−1)

=
p(yt|s0:t, y1:t−1)p(st|s0:t−1, y1:t−1)p(s0:t−1|y1:t−1)

p(yt|y1:t−1)

=
p(yt|st)p(st|st−1)p(s0:t−1|y1:t−1)

p(yt|y1:t−1)

∝ p(yt|st)p(st|st−1)p(s0:t−1|y1:t−1). (28)

The identities p(yt|s0:t, y1:t−1) = p(yt|st) and p(st|s0:t−1, y1:t−1) = p(st|st−1)
follow from the Markov properties of the processes yt and st. By substituting
(27) and (28) into (26), the weight equation becomes

w
(i)
t ∝ p(s

(i)
0:t−1|y1:t−1)

q(s
(i)
0:t−1|y1:t−1)

p(yt|s(i)
t )p(s

(i)
t |s(i)

t−1)

q(s
(i)
t |s(i)

0:t−1, y1:t)
,

which can be written recursively as

w
(i)
t ∝ w

(i)
t−1

p(yt|s(i)
t )p(s

(i)
t |s(i)

t−1)

q(s
(i)
t |s(i)

0:t−1, y1:t)
. (29)

The importance density is often chosen to depend only on st−1 and yt. This
simplifies the proposal to q(st|s0:t−1, y1:t) = q(st|st−1, yt) and frees us from
the need to save the history of the processes st and yt during the recursion.

The second representation of the weights will be used to derive the recursive
algorithm for the Smolyak particle filter in the next section. Using

p(s0:t−1|y1:t) = p(s0:t−1|y1:t−1, yt) =
p(s0:t−1, yt|y1:t−1)

p(yt|y1:t−1)

=
p(s0:t−1|y1:t−1)p(yt|y1:t−1, s0:t−1)

p(yt|y1:t−1)
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and

p(st|s0:t−1, y1:t) = p(st|s0:t−1, y1:t−1, yt) =
p(st, y1:t−1|s0:t−1, y1:t−1)

p(y1:t−1|s0:t−1, yt)

= p(st|s0:t−1, yt)
p(y1:t−1|st, s0:t−1, yt)

p(y1:t−1|s0:t−1, yt)

= p(st|s0:t−1, yt),

the density p(s0:t|y1:t) can be factorized as

p(s0:t|y1:t) = p(st, s0:t−1|y1:t) = p(st|s0:t−1, y1:t)p(s0:t−1|y1:t)

=
p(st|s0:t−1, yt)p(yt|s0:t−1, y1:t−1)p(s0:t−1|y1:t−1)

p(yt|y1:t−1)

∝ p(st|st−1, yt)p(yt|st−1)p(s0:t−1|y1:t−1).

and we obtain the update equation for the weights

w
(i)
t ∝ w

(i)
t−1

p(yt|s(i)
t−1)p(s

(i)
t |s(i)

t−1, yt)

q(s
(i)
t |s(i)

0:t−1, y1:t)
. (30)

A serious problem with the particle filter is that after a few iterations, most
particles will have weights close to zero. This means that many particles stop
contributing to the approximation. A brute force solution is to increase the
number of the particles and so to waste most of the computational resources.
A more efficient and essentially genetic solution is to resample the particles
according to their weights and to reproduce the ones with the highest weights
and to drop the others. If we resample in each iteration, the weights update
equations (29) and (30) become

w
(i)
t ∝ p(yt|s(i)

t )p(s
(i)
t |s(i)

t−1)

q(s
(i)
t |s(i)

0:t−1, y1:t)
(31)

and

w
(i)
t ∝ p(yt|s(i)

t−1)p(s
(i)
t |s(i)

t−1, yt)

q(s
(i)
t |s(i)

0:t−1, y1:t)
. (32)

We are often interested in an estimate of the posterior density p(st|y1:t)
instead of p(s0:t|y1:t). Again, the Markov property of st allows us to factorize
the posterior density into

p(s0:t|y1:t) = p(s0:t−1|y1:t−1)p(st|y1:t) = . . . = p(s0)
t∏

j=1

p(sj|y1:j).
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Since in

p(st|y1:t) =
p(s0:t|y1:t)

p(s0)
∏t−1

i=1 p(si|y1:i)

the denominator is constant at t, it follows that

p(st|y1:t) ∝ p(s0:t|y1:t)

and we can use the weights given in (31) and (32) to approximate

p(st|y1:t) ≈
N∑

i=1

w
(i)
t δ(st − s

(i)
t ).

The simplest choice for the importance density q(st|s0:t−1, y1:t) is the state
transition p(st|st−1). It is very easy to sample from this proposal density.

Moreover, it simplifies the weights in equation (31) to w
(i)
t ∝ p(yt|s(i)

t ). The
particles are therefore weighted according to their likelihood. Small measure-
ment errors therefore aggravate the problem of degenerating particles and
enforce the need for resampling. Note, that due to this method to calculate
the weights, the filter can not handle state space models without measure-
ment errors. Resampling in turn introduces a bias into the particle filter, see
for example in Berzuini, Best, Gilks, and Larizza (1997).

The recursion for the particle filter is given by the following three steps. We
start with an equally weighted sample from the previous posterior density

s
(i)
t−1 ∼ p(st−1|y1:t−1) for i = 1, . . . , N.

1. In the prediction step, the state transition density is used as a proposal
density to generate N particles

s
(i)
t ∼ p(st|s(i)

t−1) for i = 1, . . . , N.

This is done by evaluating the state transition equation g(s
(i)
t−1, e

(i)
t ) for

each particle s
(i)
t−1 with randomly drawn shocks e

(i)
t from the model’s

state shock distribution.

2. In the filtering step, the particles are weighted with

w
(i)
t = p(yt|s(i)

t ).

This is done by first evaluating the measurement equation y
(i)
t = m(s

(i)
t ).

With additive measurement shocks we know the distribution of the
difference to the observed data. In case of Gaussian errors we have
yt − y

(i)
t ∼ N (εt; 0, Σε).
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3. The particles are then resampled according to their normalized weights

w̄
(i)
t =

w
(i)
t∑N

n=1 w
(n)
t

.

The resampled particles finally represent an equally weighted sample from
the next posterior

s
(i)
t ∼ p(st|y1:t) for i = 1, . . . , N.

The period likelihood is then given by the mean of the weights in step 2.

1

N

N∑
n=1

p(yt|s(i)
t ) ≈

∫ ∫
p(st|st−1)p(st−1|y1:t−1)p(yt|st)dstdst−1

= p(yt|y1:t−1).

These likelihoods are obtained recursively for each period and at the end of
the complete sample we arrive at the sample likelihood in equation (18).

The problem of the filter is that the available observation yt is not taken
into account in the importance density p(st|st−1). The consequence is that
we may sample in very low probability regions of the states density with
many implied particle weights close to zero. This is inefficient and the next
filter uses a better proposal density.

3.1.3 Smolyak Particle Filter

Our idea to improve the particle filter is similar to the one in Amisano and
Tristani (2007) where the proposal density for the particle filter is generated
by an algorithm similar to the extended Kalman filter. Another related
filter is the unscented particle filter by van der Merwe, Doucet, de Freitas,
and Wan (2000), where the unscented Kalman filter is used to generate a
proposal density.

The information about the current observation is embedded in the posterior
of the Smolyak Kalman filter. We use this posterior as the proposal density in
the particle filter. This is more accurate than the proposal generated by the
extended Kalman filter and more accurate and general than in the unscented
filter. The proposal density is now

q(st|s0:t−1, y1:t) = p̃(st|s(i)
t−1, yt) ≈ p(st|s(i)

t−1, yt).

The weights in equation (32) can be updated as

w
(i)
t ∝ p(st|s(i)

t−1, yt)p(yt|s(i)
t−1)

p̃(st|s(i)
t−1, yt)

.
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If we do not correct the error resulting from the approximative proposal we
can calculate the weights as

w̃
(i)
t ∝ p(yt|s(i)

t−1).

We construct the proposal density p̃(st|s(i)
t−1, yt) similar to the posterior of

the Smolyak Kalman filter starting with an equally weighted sample from
the previous posterior density

s
(i)
t−1 ∼ p(st−1|y1:t−1) for i = 1, . . . , N.

In the prediction step, we calculate the mean and variance of the state
prediction by Gaussian quadrature over the state shocks {e(j), w(j)}J

j=1

p(st|s(i)
t−1, y1:t−1) =

∫
p(st|s(i)

t−1)p(s
(i)
t−1|y1:t−1)det ≈ N (st; s

(i)
t|t−1, Σ

s(i)
t|t−1)

s
(i)
t|t−1 =

J∑
j=1

w(j)g(s
(i)
t−1, e

(j))

Σ
s(i)
t|t−1 =

J∑
j=1

w(j)g(s
(i)
t−1, e

(j))g(s
(i)
t−1, e

(j))T − st|t−1s
T
t|t−1

The moments of the observables

p(yt|s(i)
t−1, y1:t−1) =

∫
p(yt|st)p(st|s(i)

t−1, y1:t−1)det ≈ N (yt; y
(i)
t|t−1, Σ

y(i)
t|t−1) (33)

y
(i)
t|t−1 =

J∑
j=1

w(j)m(g(s
(i)
t−1, e

(j)))

Σ
y(i)
t|t−1 =

J∑
j=1

w(j)m(g(s
(i)
t−1, e

(j)))m(g(s
(i)
t−1, e

(j)))T + Σε − yt|t−1y
T
t|t−1

Σ
sy(i)
t|t−1 =

J∑
j=1

w(j)g(s
(i)
t−1, e

(j))m(g(s
(i)
t−1, e

(j)))T − st|t−1y
T
t|t−1

allow to calculate the Kalman gain and to update the prediction moments
to the ones of the proposal density

p(st|s(i)
t−1, yt) ≈ N (st; s

(i)
t|t , Σ

s(i)
t|t )

Kt = Σsy
t|t−1(Σ

y
t|t−1)

−1

s
(i)
t|t = s

(i)
t|t−1 + Kt(yt − y

(i)
t|t−1)

Σ
s(i)
t|t = Σ

s(i)
t|t−1 −KtΣ

y(i)
t|t−1K

T
t
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from which we draw the next state particle:

s
(i)
t ∼ p̃(st|s(i)

t−1, y1:t)

In the filtering step, we weight these new particles according to

w
(i)
t = p(yt|s(i)

t−1, y1:t−1).

If we assume a normal density for p(yt|s(i)
t−1, y1:t−1) we can evaluate the weights

at the already calculated density in equation (33)

w
(i)
t = N (yt; yt|t−1, Σ

y
t|t−1)

Finally, we resample the new particles according to their normalized weights

w̄
(i)
t =

w
(i)
t∑N

n=1 w
(n)
t

.

These steps again transform one posterior into the next one and the period
likelihood can be approximated by the mean of the unnormalized weights

1

N

N∑
n=1

p(yt|s(i)
t−1) ≈

∫ ∫
p(st|st−1, yt)p(st−1|y1:t−1)p(yt|st−1)dstdst−1

= p(yt|y1:t−1).

Note, that the Smolyak particle filter is applicable in state space models
without measurement errors since the weights do not need to be evaluated
at the measurement shock density.

3.1.4 Smolyak Sum Filter

The last filter we present is based on a sum of Gaussian densities to approx-
imate the posterior and prediction densities. The idea can be traced back
to Alsbach and Sorenson (1972). More recently Kotecha and Djurić (2003)
revived this approach but they use importance sampling to approximate the
involved integrals as they do in their Gaussian particle filter. Instead we
propose to use Smolyak Gaussian quadrature again.

It seems that some deterministic approaches to nonlinear filtering were al-
ready developed in the seventies. They somehow dropped out of fashion and
with the development of the particle filtering research turned towards sam-
pling filters. With the advent of powerful deterministic integration schemes
it is worth to reiterate on the deterministic filters.

26



The basic idea is that any density of practical concern can be approximated
as a sum of normal densities

p(x) ≈
I∑

i=1

ωiN (x; µi
x, Σ

i
x) with

I∑
i=1

ωi = 1.

The steps for the filter are similar to the steps of the Smolyak Kalman
filter. The difference is that now we effectively run several Smolyak Kalman
filters in parallel. The prediction density is approximated as a sum of normal
densities

p(st|y1:t−1) =

∫
p(st|st−1)p(st−1|y1:t−1)dst−1

≈
∫ I∑

i=1

ωi;t−1p(st|st−1)N (st−1, s
i
t−1|t−1, Σ

i
s;t−1|t−1)dst−1

=
I∑

i=1

ωi;t−1

∫
p(st|st−1)N (st−1, s

i
t−1|t−1, Σ

i
s;t−1|t−1)dst−1

=
I∑

i=1

ωi;t−1N (st, s
i
t|t−1, Σ

i
s;t|t−1).

This is simply a parallel evaluation of several Smolyak Kalman filter steps
to calculate the mean si

t|t−1 and variance Σi
s;t|t−1 according to equations (19)

and (20), respectively. Anderson and Moore (1979) present this approach to
nonlinear filtering for a model with additive noise in the measurement and
state equations. We therefore have an implicit assumption that the weights
are preserved during the prediction step. For non additive state shocks this
assumption deserves some further elaboration in future research.

The filtering steps involved are again the same as the ones towards the
density in equation (24)

p(st|y1:t) ∝ p(yt|st)N (st, s
i
t|t−1, Σ

i
s;t|t−1)

≈
∫ I∑

i=1

ωi;t−1p(st|st−1)N (st−1, s
i
t|t−1, Σ

i
s;t|t−1)dst−1

=
I∑

i=1

∫
ωi;t−1p(st|st−1)N (st−1, s

i
t|t−1, Σ

i
s;t|t−1)dst−1

=
I∑

i=1

ωi;tp(st|st−1)N (st−1, s
i
t|t−1, Σ

i
s;t|t−1)dst−1.
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The weights are updated according to

ωi;t =
ωi;t−1αi;t∑I
i=1 ωi;t−1αi;t

where αi;t is the likelihood contribution of each summand of the Gaussian
sum.

This extension to the Smolyak Kalman filter is simple to program and
amounts to a parallel evaluation of several Smolyak Kalman filters which
allows to parallelize this filter.

3.2 Posterior Density

Once the likelihood for a given parameter vector is evaluated we can use
it to derive an estimator. The information accumulation in the Bayesian
framework is described by Bayes’ formula and the object of interest is the
posterior of unobservables θ

p(θ|y) =
p(y|θ)p(θ)

p(y)
=

p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

∝ p(y|θ)p(θ).

An analytical expression is available neither for the likelihood nor for the
posterior. But a random number generator drawing from this density can
provide a histogram as an approximation.

3.2.1 Metropolis-Hastings

The Metropolis-Hastings algorithm allows to generate draws from a target
density. As opposed to importance sampling no proposal density is needed.
The only prerequisite is that the target density can be evaluated at any
point of its domain. The algorithm described in Chib and Greenberg (1995)
samples so that the histogram of the sequence of draws θ̂1:N approximates
the target density for large N .

The algorithm is summarized in table 2. The parameter space is traversed
by a random walk. The newly generated candidate parameter vector θ̂∗n is
accepted if its posterior is higher than the posterior of the last accepted
parameter vector θ̂n−1. This qualifies the algorithm as a maximizer. But
even if the candidate’s posterior is smaller still there is a chance for it to
be accepted. This makes the algorithm a global maximizer. The survival
according to the parameter vector’s fitness, measured by the posterior value,
qualifies it as a genetic algorithm. If the acceptance ratio is tuned by the
random walk variances to be around 30% we obtain a representative sample
from the target density after convergence.
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Table 2: Metropolis-Hastings Algorithm

1. Choose start value θ1 and Σε for an acceptance ratio of ≈ 30%

2. For n = 2, while n− J < N , n = n + 1

(a) Candidate: θ̂∗n = θ̂n−1 + ε, where N (ε; 0, Σε).

(b) Acceptance: θ̂n =

{
θ̂∗n if U(0, 1) ≤ p(y1:t|θ̂∗n)p(θ̂∗n)

p(y1:t|θ̂n−1)p(θ̂n−1)

θ̂n−1 otherwise

(c) Decide on J by diagnostic tests

3. Disregard burn-in draws θ̂1:J .

The critical choices of the algorithm are the starting value θ̂0, the density to
generate candidates θ̂∗n and the number of draws N . The choice of θ̂0 drives
the number of draws before convergence. The start value might be far from a
representative draw of the target density and many draws are needed to get
into the representative region. The distributional choice is often a random
walk with normal shocks. For a normal target density the optimal choice
of the innovation variance is Σε = Cov(θ). It has to be scaled so that the
acceptance ratio is around 0.3. For a normal target density this is achieved
by γRW = 2.38/

√
D where D is the number of estimated parameters. Of

course the target density and its covariance Cov(θ) are not known because
they are the objects of interest.

The chosen variances in Σε influence the region covered by the sequence.
Sampling around the mode of the posterior with large variances will gener-
ate candidates far from the current value and a low acceptance probability.
Smaller variances increase the acceptance ratio but decrease the region being
covered so that low probability regions may be undersampled. The recom-
mended acceptance ratio results from the attempt to balance this trade off.

The next section discusses the diagnostic test to decide on convergence.
The decision is about the number J determining how many burn-in draws
θ̂1:J are to be ignored. Formal convergence tests are an important part of
the analysis as well as eye-balling and after some estimations one acquires a
visual feeling for convergence.
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3.2.2 Convergence Test

A convergence test can be based on one subdivided sequence or on several
parallel ones. In general we diagnose convergence if the sequences appear
to be drawn from the same distribution. Examining only one sequence will
result in overly optimistic diagnostic tests. Gelman and Rubin (1992) pointed
out that lack of convergence, in many problems, can easily be detected from
many but not from one sequence.

In both cases the diagnostic test is calculated from a 3-dimensional tensor
θ̂ of size N × D × M with elements θ̂d

n,m. D is the number of estimated

parameters, N the number of draws and M the number of sequences. θ̂n,m

is a 1 ×D vector and represents the nth draw in the mth sequence and θ̂:,m

is a N ×D matrix and represents all draws in sequence m.
Brooks and Gelman (1998) proposed the multivariate potential scale re-

duction factor R as a diagnostic test. The general idea is to check within
and between-sequence-variances and diagnose convergence if they are close
to each other. The within-sequence-variance is the D ×D matrix

W =
1

M(N − 1)

M∑
m=1

N∑
n=1

(θ̂n,m − θ̄m)′(θ̂n,m − θ̄m)

where θ̄m = 1
N

∑N
n=1 θ̂n,m is the 1 × D mean vector in sequence m. W is

the mean of the variances in each sequence. The between-sequence-variance
B/N is the D ×D matrix

B/N =
1

M − 1

M∑
m=1

(θ̄m − θ̄)′(θ̄m − θ̄)

where θ̄ = 1
M

∑M
m=1 θ̄m is the 1×D mean of all draws. The combined variance

can be estimated as

V =
N − 1

N
W + (1 +

1

M
)B/N.

Convergence is detected for similar V and W . A distance measure is calcu-
lated by the multivariate potential scale reduction factor

R =
N − 1

N
+

M + 1

M
λmax where λmax = max

a

a′V a

a′Wa
.

λmax can be obtained by taking the largest absolute eigenvalue of W−1B/N .
The following conditions for convergence should be checked: V and W should
be similar and stabilize and R should be below 1.1.
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These test statistics can be calculated recursively after each draw. Once
the conditions are met the burn-in sequence length J is found and the draws
thereafter are taken to represent draws from the posterior of structural pa-
rameters.

3.2.3 Parallel Extension

The variances of the random walk shocks Σε have to be tuned for an accep-
tance ratio of around 0.3. It is quite demanding to find good values for all
parameters simultaneously and usually many costly training sequences are
needed. The variances can then be estimated from these runs. Moreover,
as in Fernández-Villaverde and Rubio-Ramı́rez (2004), robustness should be
checked by running several sequences with different start vectors.

We propose to run multiple sequences simultaneously and not sequentially.
By that we can assure robustness with respect to start values, calculate
unbiased convergence diagnostic tests, estimate the innovation variance on
the fly and finally implement ideas from evolutionary algorithms to improve
the search for the modus of the posterior in the beginning of the sampling.
The pseudo code for this parallel Metropolis-Hastings Algorithm is given in
table 3.

The problem of choosing all variances of the random walk shocks is reduced
in the proposed parallel variant to the choice of only two scalars b and γGE.
In the estimated models for this paper the optimal parameters were almost
identical for the linear and nonlinear estimation. This means that fast lin-
ear estimations can be used to tune the parameters for a more expensive
nonlinear estimation run.

The parameter draws are again collected in a N × D × M tensor θ̂ with
elements θ̂d

n,m with M sequences of N draws for D parameters.
Our proposal is to add another source of innovation for the generation of the

candidate draw θ̂∗n,mi
in sequence mi. One source is common to the random

walk algorithm where a random shock is added to the previous parameter
draw. The second, additional source of innovation we propose, is the scaled
difference between two parameter vectors from randomly chosen sequences
m1 and m2. Parameter γGE and the shock variance b determine the relative
weight of mixing and random walk innovations.

If the variance of the target density is Σ = Cov(θ) then the variance of the
difference of two population parameter vectors from the sequences m1 and m2

is E[(θm1−θm2)(θm1−θm2)
′] = 2Σ. In case of a converged sequence we get by

the law of large numbers limN→∞
∑N

n=1(θ̂n,m1 − θ̂n,m2)(θ̂n,m1 − θ̂n,m2)
′ = 2Σ.

The intuition behind this procedure is that the variance of the difference
between two randomly drawn parameters is the optimal one given that the
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Table 3: Parallel Metropolis-Hastings Algorithm

1. Choose start values θ̂1,m for all m = 1, ...,M and b, γGE for an
acceptance ratio of ≈ 30%

2. For n = 1, while n− J < N , n=n+1

(a) Repeat for m = 1, ..., M

i. Draw m1 and m2 such that m1 6= m2 6= m

ii. Candidate: θ̂∗m = θ̂m,n +γGE(θ̂m1,n− θ̂m2,n)+ ε, N (ε; 0, bI)

iii. Acceptance:

θ̂n,m =

{
θ̂∗m if U(0, 1) ≤ p(y1:t|θ̂∗m)p(θ̂∗m)

p(y1:t|θ̂m)p(θ̂m)

θ̂n,m otherwise

(b) Decide on J by diagnostic tests

3. Disregard burn-in draws θ̂1:J,1:M

sequence has converged. Our idea originated from the diagnosis test where
the within and between-sequence-variances are examined and convergence is
detected when they are of similar size. ter Braak (2006) derives the same can-
didate by analogy to the global evolutionary optimization algorithm, called
differential evolution, by Storn and Price (1997).

A useful by-product of this parallel Metropolis-Hastings algorithm is that
it allows a simple parallelization of the code for the estimation on a computer
cluster. Each CPU generates only some sequences and the only information
they need to exchange is the matrix θ̂n,1:M of accepted draws. Its size is only
D×M so that overhead costs are driven by the synchronicity of the parallel
posterior evaluations.

We have implemented these parallel executions in JBendge, thus reducing
the computing costs almost proportional to the number of CPUs.

3.3 Marginal Likelihood

Model selection is a difficult but important matter and depends usually on
a variety of more or less formal criteria. A frequent and rather informal
approach is to examine the model’s ability to replicate some moments of the
data.
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One challenge is that models of interest are often not nested and do not
emerge from each other through simple parameter restrictions. In practice
functional forms, the number of estimated and calibrated parameters, the un-
observed states or the shock distributions may differ across candidate models.
Consequently classical likelihood ratio tests are not of much help.

Another problem is that models are inherently wrong since they are at most
approximations of the reality and are designed to explain some features of the
real world in a given application. Landon-Lane (1998) discusses the Bayesian
model selection within 1-dimensional linear processes. The non-nested and
quasi-true nature of alternative models can be addressed within a Bayesian
framework as described in Fernández-Villaverde and Rubio-Ramı́rez (2004).

According to Berger and Wolpert (1988) the likelihood contains all relevant
information. Given some models {M1, ..., Mm} with parameter priors and the
density of observables, the unobservables can be integrated out to obtain the
marginal likelihood

p(y|Mi) =

∫

ΘMi

p(y|θMi
,Mi)p(θMi

|Mi)dθMi
.

The parameter posterior is used for inference, conditional on the adequacy
of the model whereas the marginal likelihood is used for a criticism of the
model in the light of the data.

Most of the work for calculating the marginal likelihood has already been
done once the Metropolis-Hastings algorithm converged and generated para-
meter draws from the posterior density and the associated posterior values.
Gelfand and Dey (1994) show that with any density h(θMi

|Mi) we can write

Ep(θMi
|y,Mi)

(
h(θMi

|Mi)

p(y|θMi
,Mi)p(θMi

|Mi)

)

=

∫

ΘMi

h(θMi
|Mi)

p(y|θMi
,Mi)p(θMi

|Mi)
p(θMi

|y,Mi)dθMi

=

∫

ΘMi

h(θMi
|Mi)

p(y|θMi
,Mi)p(θMi

|Mi)

p(y|θMi
,Mi)p(θMi

|Mi)∫
ΘMi

p(y|θMi
,Mi)p(θMi

|Mi)dθMi

dθMi

=

∫
ΘMi

h(θMi
|Mi)dθMi∫

ΘMi
p(y|θMi

, Mi)p(θMi
|Mi)dθMi

=p(y|Mi)
−1.

According to the last equation all we have to do is to calculate a weighted
mean of the Metropolis-Hastings sequence. Geweke (1999) proposes the fol-
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lowing procedure. First we calculate the mean and covariance of the para-
meter draws for each model Mi

θ̄Mi
=

1

N

N∑
n=1

θ̂n,Mi
ΣMi

=
1

N

N∑
n=1

(θ̂n,Mi
− θ̄Mi

)(θ̂n,Mi
− θ̄Mi

)′.

If D denotes the number of estimated parameters of a model, we define
a χ2 critical value for quantile p, to assure robustness over the quantiles
p = 0.1, ..., 0.9 with

ΘMi
=

{
θ : (θ − θ̄Mi

)′Σ−1
Mi

(θ − θ̄Mi
) ≤ χ2

1−p(D)
}

.

With density h(.)

h(θ) = p−1(2π)−
D
2 |ΣMi

|− 1
2 exp

(
−1

2
(θ − θ̄Mi

)′Σ−1
Mi

(θ − θ̄Mi
)

)
IΘMi

(θ)

where I is the indicator function with IS(s) = 1 if s ∈ S and 0 otherwise, we
can finally estimate the marginal likelihood by

p̂(y|Mi) =

(
1

N

N∑
n=1

h(θ̂n,Mi
)

p(y|θ̂n,Mi
,Mi)p(θ̂n,Mi

|Mi)

)−1

.

4 Results

In solution section 4.1 we compare the performance of the Smolyak and
the tensor operator within the solution algorithm. In estimation section
4.2.1 we compare the likelihood values obtained by the Smolyak Kalman,
Smolyak sum, Smolyak particle and the particle filter. Then in section 4.2.2
we estimate the smallest one country model on simulated data to document
the overall performance of the algorithms and filters.

All results are calculated on a cluster with 16 Xeon CPUs at 2.7 GHz
with hyper threading. The software is the GNU/Linux openSUSE 10.2 op-
erating system, the Java virtual machine 1.6.0 and the 1.4 beta version of
JBendge. Since JBendge is completely programmed in Java it is platform in-
dependent and runs on any operating system with the Java virtual machine.
The Metropolis-Hastings algorithm is parallelized and runs on all 16 CPUs
simultaneously in separate threads.

The model is parameterized equally for all countries by α = 0.4, β =
0.99, δ = 0.02, ρ = 0.95, θ = 0.357, τ = 2.0, σa = 0.007. The solutions for
the multicountry models are calculated for κ = 0.01. The estimations are
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done only for the smallest one country model where we use the parameter-
ization τ = 50.0 and σa = 0.035. To simplify the estimation we set capital
adjustment costs to zero (κ = 0) and obtain analytical expressions for the
steady state values given in appendix A. The parameterization implies the
steady states: ā = 0.0, k̄ = 23.2683, c̄ = 1.28563, ī = 0.465366, l̄ = 0.312104
and ȳ = 1.751. They are independent of τ or σa. The missing invest-
ment costs also allow to compare our estimations to the ones obtained by
Fernández-Villaverde and Rubio-Ramı́rez (2005).

4.1 Solution

The performance of the Smolyak and tensor operators is measured by the
number of grid points, the running time for a solution and the maximal
absolute Euler error evaluated at 10,000 random points in the approximation
space.

We calculate all solutions with the same Smolyak level for the function
approximation and for the numerical integration of the rational expectations.
The tolerance level for the change of the policy function during the function
iteration is set to 1E−5. The bounds of the approximation space are critical
parameters of the solution process. We simulate several data sets to find out
the regions visited by the system and set the bounds to [20;26] for capital
and [-0.06;0.06] for productivity.

The tensor approximation is constructed from univariate approximations
with at least three points. This is necessary for the approximation to be non-
linear otherwise only linear terms are present. Therefore the number of points
for the simplest tensor approximation is given by 3d, where d is the number
of states. The Smolyak approximation on the other hand starts from the very
beginning with nonlinear second order polynomials. For example, the bivari-
ate terms in the Smolyak approximation A3,2 are b0b0, b0b1, b0b2, b1b0, b2b0.

Table 4 documents the results. We use Smolyak levels 2,3 and 4 for the
models with 4 and 6 states and afterwards only levels 2 and 3. The Smolyak
operator is superior to the tensor operator already for a small model with 4
states where the Euler error on a 41 point Smolyak grid is smaller than the
error on a tensor grid with 81 points, although the solution time is the same.
For the next level with a similar error the Smolyak operator is more than
three times faster and uses about five times less points (137 vs. 625).

The efficiency gain for the model with six states is even more dramatic.
Here the Smolyak operator needs only 85 compared to 729 points of the
tensor operator for a similar approximation accuracy. The running times are
accordingly about 4 times lower for the Smolyak operator.

The tensor operator breaks down for models beyond 6 states while the
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Table 4: Smolyak and Tensor based Solutions

States Operator Points Error Time

4 Smolyak 9 6.6E-4 0.3
41 8.1E-6 2.5
137 9.3E-7 24.0

Tensor 81 4.9E-5 2.5
625 1.8E-7 88.5

6 Smolyak 13 6.2E-4 0.7
85 5.1E-5 12.5
389 9.3E-7 201.5

Tensor 729 6.5E-5 54.09

8 Smolyak 17 5.9E-4 1.3
145 3.5E-5 29.9

10 21 7.5E-4 2.3
221 4.0E-5 69.2

12 25 4.4E-4 3.8
313 4.8E-5 157.8

14 29 4.3E-4 5.7
421 3.7E-5 339.1

16 33 4.5E-4 8.5
545 4.0E-5 724.1

18 37 3.7E-4 12.2
685 2.6E-5 1819.4

20 41 3.3E-4 17.1
841 1.9E-5 2107.4

22 45 3.3E-4 23.31
1013 1.7E-5 4087.4

Smolyak operator is still doing fine. The biggest model we are able to solve
has 22 states and it takes around 68 minutes for an approximation error of
1.7E − 5.

4.2 Estimation

In the next subsection we compare the likelihood values of the Smolyak
Kalman, Smolyak particle, Smolyak sum and the particle filter. We simulate
data sets of 100 observations starting from the deterministic steady states
generated by very accurate nonlinear solutions of the one country model with
the states productivity a and capital k and one labor decision l. The observ-
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Table 5: Measurement Errors

small large
σi 8.66E-4 4.65E-3
σl 1.10E-3 3.12E-3
σy 1.58E-4 1.75E-2

ables in the measurement model are investment i, labor l and output y. The
measurement shocks are assumed to be additive.

We present the estimates of two variants of the models, one with small and
one with large measurement errors. Their standard deviations are summa-
rized in table 5. The large standard deviations are set to 1% of the steady
state values and the small errors to the values in Fernández-Villaverde and
Rubio-Ramı́rez (2005) who use the same model to illustrate and test their
algorithms.

4.2.1 Likelihood

The particle filter is run with 40,000 particles and the Smolyak Kalman filter
with integration level 3 for both the time and the measurement steps. The
Smolyak particle filter is run with integration level 2 and 500 particles and
the Smolyak sum filter with integration level 3 for both the time and the
measurement updates and 20 Gaussian summands. All solutions are calcu-
lated with level 3 for the policy approximation and the rational expectation
integrals.

Figure 1: Likelihood at True Parameters for τ = 50.0 and σa = 0.035
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Figures 1 and 2 show slices through the multidimensional likelihood. The
left plots show likelihood values from the data with small measurement errors
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Figure 2: Likelihood at True Parameters for τ = 2.0 and σa = 0.007
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and the right plots with large ones. We set all parameters to their true values
and vary τ at the abscissas and plot them against the likelihood values at
the ordinates. The results are rather encouraging for all our filters as the
values are very similar. It is interesting to see that the particle filter gets
into trouble for small measurement errors in the model with τ = 50.0 and
σa = 0.035 in the left plot of figure 1.

The running times for the filters are very different: the particle filter is
hardly useful in combination with a Chebyshev approximation. The con-
struction of the basis matrix for as many as 40,000 particles is very costly
and it takes around 120 seconds for one likelihood evaluation. It probably
pays off to use a finite element approximation instead, where the trade off is
a more costly approximation due to a larger grid, but a less costly likelihood
evaluation due to a cheap finite element interpolation. The Smolyak Kalman
filter is very fast and it takes around 0.2 seconds for one likelihood evalua-
tion. The Smolyak particle filter is slower and needs around 6 seconds. The
Smolyak sum filter is very fast and needs only 0.5 seconds. The likelihood
evaluation by a linear Kalman filter takes 0.015 seconds and the extended
Kalman filter needs 0.2 seconds.

4.2.2 Parameters

We have implemented an interactive sampling environment in JBendge where
the Metropolis-Hastings parameters driving the innovation variance γGE and
b can be changed while sampling. Together with a regular update of the
sequence plots and diagnostic tests the estimation process becomes very flex-
ible and comfortable. Some of the sequences with the lowest posterior values
or lowest acceptance ratios can be restarted at the parameter values of the
other sequences. This serves the purpose to manually cancel some sequences
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Table 6: Bounds of a Uniform Prior

Low Hi Low Hi

α 0.00 1.00 σa 0.0 0.1
β 0.75 1.00 σi 0.0 0.1
δ 0.00 0.05 σl 0.0 0.1
ρ 0.00 1.00 σy 0.0 0.1
τ 0.00 100
θ 0.00 1.00

which do not improve anymore. A more advanced global maximization al-
gorithm could do this of course automatically. The second situation when a
restart is useful happens while fine tuning the Metropolis-Hastings parame-
ters γGE and b. Their effect on the acceptance ratio can usually be inferred
from the first few draws and therefore restarts are helpful while searching for
the appropriate values.

The usual procedure within our framework has three stages. The first
searches for the posterior mode. At this stage the mixing parameter γGE

can be rather large between 0.8 and 2.0 according to the prescription for
the differential evolution algorithm of Storn and Price (1997). During this
stage the acceptance ratio is usually very low even for parameters γGE and
b which would later achieve the needed acceptance ratio. There is therefore
no use to fine tune these parameters at this stage. During the second stage
we sample until the diagnostic tests signal convergence and we also fine tune
the parameters γGE and b to obtain an acceptance ratio around 0.3. For all
estimations parameter b is set to 1E− 6 and γGE between 0.1 and 0.4. Both
parameters are remarkably stable especially across the linear and nonlinear
estimations. This helps to find the appropriate values for the nonlinear esti-
mation by fast linear estimation runs. Once the convergence of the sampler
is detected we get into the third stage where we sample 50,000 draws.

We run the estimation with around two times more sequences than para-
meters. The estimated model has 13 parameters and we therefore use 32
sequences for a balanced work load on our 16 CPUs. The usual CPU load
on our cluster after convergence is around 800% for the nonlinear and 1500%
for the linear estimation. A CPU load of 100% corresponds to one CPU.
Since the sequences have to be synchronized and the running times of poste-
rior density evaluations for the parallel draws are different, an exactly linear
scaling cannot be expected. However, it is still a dramatic improvement over
a run on a single CPU.
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For all estimations the Metropolis-Hastings sequences were initiated at ran-
dom draws from the prior densities. They are taken to be uniform within
the bounds in table 6.

It takes around 1000 to 2000 draws for each of the 32 sequences to find the
mode of the posterior density and another 1000 to 4000 draws to detect the
convergence according to the R, V and W statistics. We sometimes restarted
half of the sequences during the maximization process. The complete esti-
mation process takes around 5 minutes for the linear estimation, around 2
hours for the nonlinear estimation with the Smolyak Kalman filter, 4 with
the Smolyak sum filter and 20 with the Smolyak particle filter. We only
present estimations with these three filters since the particle filter is much
too slow to be of practical use. In all of the following tables the ”Mean”
column shows the mean and ”SD” the standard deviation of the posterior
density while the ”ML” column shows the maximum likelihood estimates.
The numbers themselves are coded as xy ≡ x× 10y.

We will report only estimates of the model with τ = 50 and σa = 0.35
for small and large measurement errors. The data is generated with a very
accurate solution with integration and solution approximation level 5 and a
function iteration tolerance of 1E − 10. The approximation error is around
1E − 10.

Table 7 shows estimations with small measurement errors. The solution
and integration Smolyak levels are set to 4 for the rational expectations
and the filter integrals. On the left side we report the estimates obtained
by the Kalman filter and on the right side we have the estimates from the
Smolyak Kalman filter. The likelihood value for the Kalman filter is -54,201
at the true parameters. The minimal and maximal likelihoods obtained dur-
ing the Metropolis-Hastings sampling after convergence are 1077 and 1098,
respectively. The values for the Smolyak Kalman filter are 1197 at the true
parameters, 1185 at minimum and 1200 at maximum. The estimates clearly
indicate the superior performance of the nonlinear filter. While the mean
of the nonlinear posterior estimates and the maximum likelihood values are
close to the true parameters of the data generating process, the Kalman filter
shows clear biases. The nonlinear filter has problems to accurately estimate
the parameter τ which is biased and exhibits a large standard deviation of
the posterior. The measurement error standard deviations of output and
investment are hardly identified with large standard errors 4.0−4 and 2.8−4

of the same magnitude as the estimates themselves. The standard deviation
of the labor measurement error is estimated more accurately. Figure 3 shows
the posterior density estimated by the Smolyak Kalman filter. Black vertical
bars indicate the true parameter values.

Table 8 shows on the left side estimates with solution, rational expectations
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Table 7: Kalman and Smolyak Kalman Filter, Small Errors

True Mean SD ML Mean SD ML
θ 3.57−1 3.496−1 1.9−3 3.487−1 3.569−1 2.6−3 3.572−1

β 9.90−1 9.957−1 5.5−4 9.960−1 9.906−1 4.4−3 9.933−1

α 4.00−1 3.839−1 5.1−3 3.815−1 4.003−1 6.7−3 4.010−1

ρ 9.50−1 9.641−1 3.0−3 9.659−1 9.506−1 1.6−3 9.523−1

δ 2.00−2 1.796−2 1.2−3 1.737−2 1.957−2 5.3−4 1.934−2

τ 5.00+1 1.946+1 2.7±0 1.784+1 5.255+1 7.6±0 4.447+1

σa 3.50−2 3.716−2 2.7−3 3.798−2 3.604−2 1.7−3 3.704−2

σy 1.58−4 8.521−4 7.0−4 1.730−4 8.724−4 4.0−4 1.061−3

σi 8.66−4 1.996−3 3.4−4 2.030−3 4.981−4 2.8−4 4.057−4

σl 1.10−3 1.438−3 1.1−4 1.395−3 1.199−3 8.4−5 1.168−3

Table 8: Smolyak Kalman Filters, Small Errors

True Mean SD ML Mean SD ML
θ 3.57−1 3.586−1 2.6−3 3.596−1 3.436−1 2.4−3 3.430−1

β 9.90−1 9.914−1 4.7−3 9.948−1 9.529−1 7.9−3 9.608−1

α 4.00−1 4.047−1 6.7−3 4.074−1 3.641−1 6.8−3 3.625−1

ρ 9.50−1 9.501−1 1.9−3 9.513−1 9.552−1 1.2−3 9.559−1

δ 2.00−2 1.996−2 6.1−4 2.004−2 1.936−2 7.4−4 1.889−2

τ 5.00+1 5.516+1 1.1+1 4.690+1 6.708+1 8.3±0 5.901+1

σa 3.50−2 3.700−2 1.8−3 3.790−2 3.802−2 2.6−3 3.821−2

σy 1.58−4 8.012−4 4.1−4 1.080−3 1.551−3 5.1−4 1.833−3

σi 8.66−4 5.291−4 2.8−4 3.087−4 6.005−4 4.0−4 4.822−5

σl 1.10−3 1.194−3 8.3−5 1.160−3 1.211−3 9.5−5 1.204−3

Table 9: Smolyak Sum and Smolyak Particle Filters, Small Errors

True Mean SD ML Mean SD ML
θ 3.57−1 3.593−1 2.0−3 3.611−1 3.560−1 3.7−3 3.607−1

β 9.90−1 9.927−1 4.5−3 9.968−1 9.870−1 6.8−3 9.952−1

α 4.00−1 4.063−1 5.1−3 4.112−1 3.978−1 9.9−3 4.103−1

ρ 9.50−1 9.505−1 2.4−3 9.513−1 9.503−1 1.5−3 9.498−1

δ 2.00−2 2.011−2 6.3−4 2.043−2 1.973−2 6.7−4 2.047−2

τ 5.00+1 5.372+1 1.5+1 4.463+1 5.467+1 6.9±0 5.244+1

σa 3.50−2 3.647−2 1.9−3 3.765−2 3.619−2 1.8−3 3.704−2

σy 1.58−4 9.368−4 3.3−4 1.080−3 9.005−4 3.6−4 1.124−3

σi 8.66−4 4.941−4 2.6−4 2.873−4 5.201−4 2.8−4 3.638−4

σl 1.10−3 1.191−3 9.0−5 1.141−3 1.184−3 9.2−5 1.119−3
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Table 10: Kalman and Extended Kalman Filters, Small Errors

True Mean SD ML Mean SD ML
θ 3.57−1 3.496−1 1.9−3 3.487−1 3.526−1 1.6−3 3.515−1

β 9.90−1 9.957−1 5.5−4 9.960−1 9.950−1 2.8−4 9.950−1

α 4.00−1 3.839−1 5.1−3 3.815−1 3.890−1 4.2−3 3.861−1

ρ 9.50−1 9.641−1 3.0−3 9.659−1 9.631−1 1.0−3 9.633−1

δ 2.00−2 1.796−2 1.2−3 1.737−2 1.817−2 8.0−4 1.773−2

τ 5.00+1 1.946+1 2.7±0 1.784+1 2.045+1 1.5±0 1.982+1

σa 3.50−2 3.716−2 2.7−3 3.798−2 3.517−2 2.2−3 3.408−2

σy 1.58−4 8.521−4 7.0−4 1.730−4 8.735−4 6.7−4 1.044−5

σi 8.66−4 1.996−3 3.4−4 2.030−3 1.673−3 3.0−4 1.844−3

σl 1.10−3 1.438−3 1.1−4 1.395−3 1.448−3 1.0−4 1.411−3

Table 11: Smolyak Sum and Smolyak Particle Filters, Large Errors

True Mean SD ML Mean SD ML
θ 3.57−1 3.562−1 5.2−3 3.572−1 3.543−1 6.8−3 3.575−1

β 9.90−1 9.873−1 7.7−3 9.822−1 9.864−1 8.6−3 9.897−1

α 4.00−1 3.979−1 1.4−2 4.007−1 3.928−1 1.8−2 4.016−1

ρ 9.50−1 9.437−1 8.4−3 9.400−1 9.472−1 8.9−3 9.444−1

δ 2.00−2 2.038−2 2.2−3 2.053−2 1.966−2 3.0−3 2.085−2

τ 5.00+1 5.719+1 1.9+1 8.012+1 5.403+1 2.0+1 4.873+1

σa 3.50−2 3.357−2 2.7−3 3.303−2 3.385−2 2.4−3 3.422−2

σy 8.75−3 1.680−2 2.1−3 1.597−2 1.696−2 2.1−3 1.745−2

σi 2.33−3 4.969−3 2.5−3 5.671−3 4.726−3 2.4−3 5.044−3

σl 1.56−3 2.873−3 2.1−4 2.700−3 2.882−3 2.1−4 2.888−3

Table 12: Smolyak Sum Filters, Large Errors

True Mean SD ML Mean SD ML
θ 3.57−1 3.570−1 5.9−3 3.553−1 3.558−1 6.6−3 3.551−1

β 9.90−1 9.885−1 7.4−3 9.845−1 9.873−1 6.8−3 9.813−1

α 4.00−1 3.998−1 1.5−2 3.954−1 3.966−1 1.7−2 3.947−1

ρ 9.50−1 9.450−1 8.5−3 9.450−1 9.451−1 9.3−3 9.436−1

δ 2.00−2 2.023−2 2.9−3 1.945−2 2.014−2 3.1−3 2.060−2

τ 5.00+1 6.060+1 2.0+1 7.046+1 5.777+1 1.9+1 6.039+1

σa 3.50−2 3.364−2 2.3−3 3.345−2 3.373−2 2.5−3 3.283−2

σy 8.75−3 1.671−2 2.2−3 1.742−2 1.738−2 2.0−3 1.739−2

σi 2.33−3 5.027−3 2.6−3 3.332−3 4.393−3 2.5−3 4.414−3

σl 1.56−3 2.878−3 2.2−4 2.951−3 2.872−3 2.1−4 2.866−3
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Table 13: Kalman Filter, Linear Model, Small Errors

True Mean SD ML Mean SD ML
θ 3.57−1 3.615−1 3.0−3 3.583−1 3.615−1 3.0−3 3.583−1

β 9.90−1 9.885−1 1.5−3 9.903−1 9.885−1 1.5−3 9.903−1

α 4.00−1 4.125−1 7.8−3 4.040−1 4.125−1 7.8−3 4.040−1

ρ 9.50−1 9.451−1 5.0−3 9.509−1 9.451−1 5.0−3 9.509−1

δ 2.00−2 2.267−2 1.8−3 2.063−2 2.267−2 1.8−3 2.063−2

τ 5.00+1 6.086+1 2.0+1 3.786+1 6.086+1 2.0+1 3.786+1

σa 3.50−2 3.260−2 2.2−3 3.155−2 3.260−2 2.2−3 3.155−2

σy 1.58−4 8.753−4 4.1−4 2.369−4 8.753−4 4.1−4 2.369−4

σi 8.66−4 5.518−4 2.8−4 8.196−4 5.518−4 2.8−4 8.196−4

σl 1.10−3 1.145−3 8.5−5 1.095−3 1.145−3 8.5−5 1.095−3

Table 14: Poor identification of τ

Smallest τ True Values Changes

θ 3.581−1 3.570−1 3.570−1

β 9.964−1 9.900−1 9.964−1

α 4.028−1 4.000−1 4.000−1

ρ 9.552−1 9.500−1 9.552−1

δ 1.911−2 2.000−2 1.911−2

τ 3.188+1 3.188+1 3.188+1

σa 3.919−2 3.500−2 3.500−2

σy 1.149−3 1.580−4 1.580−4

σi 3.173−4 8.660−4 8.660−4

σl 1.260−3 1.100−3 1.100−3

Log Likelihood
Smolyak Kalman 1193 -8167 1164
Particle 1189 -10761 1159
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Figure 3: Parameter Posterior, Smolyak Kalman Filter
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Table 15: Likelihood Slice at σy

σy Particle Smolyak Kalman
3.78−04 1,169 1,170
5.67−04 1,172 1,171
7.56−04 1,174 1,172
9.45−04 1,177 1,174
1.13−03 1,175 1,172
1.32−03 1,177 1,171
1.51−03 1,175 1,169
1.70−03 1,171 1,167

Table 16: Marginal Likelihood

Small Measurement Errors
Smolyak Kalman versus

p Kalman Smolyak Sum Smolyak Particle
0.1 104.5 -1.3 -2.1
0.5 104.0 -1.4 -2.5
0.9 104.2 -1.1 -1.9

Large Measurement Errors
Smolyak Kalman versus

p Smolyak Sum Smolyak Particle
0.1 0.4 0.4
0.5 0.3 0.3
0.9 0.5 0.2
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and filter integration level 3. The results hardly change compared to the more
accurate nonlinear solution and filter in the previous table. We do not report
results of the estimates of a solution with level 3 and the filter with level 2
since they hardly differ. On the right hand side of the table we report the
estimates with solution and filter level 2. Here we see clear biases and can
conclude that the filter integration levels 2 and 3 imply similar results but
a solution level of 2 is not sufficient for an accurate estimation. The log
likelihood values for the accurate Smolyak Kalman filter are 1169 at the true
parameters, 1186 at minimum and 1201 at maximum. The respective values
for the other filters are -6546, 1141 and 1160.

Table 9 shows the other two nonlinear filters. On the left side we have the
Smolyak sum filter with the solution and the rational expectation approxi-
mations at level 3, level 2 for the Smolyak Kalman filter and 5 summands
to approximate the densities involved. On the right hand side we see the
Smolyak particle filter with the same levels and 500 particles. Both filters
deliver comparable estimates. The likelihood values are 1169 at the true pa-
rameters for the sum filter, 1185 at minimum and 1201 at maximum. The
numbers for the Smolyak particle filter are 1172 at the true parameters, 1185
at minimum and 1203 at maximum.

The result of the nonlinear estimation for the data with small measurement
errors is that we obtain accurate estimates for all parameters beside τ and
the measurement error standard deviations of output and investment. The
estimates are essentially the same for all our nonlinear filters.

In table 10 we present the comparison between the Kalman filter estimation
and an estimation with the extended Kalman filter based on a solution with
level 3. The estimates are similar, especially the ones of τ .

The next estimations process data generated with the large set of measure-
ment errors.

The first of these estimations is in table 11 and compares the Smolyak
Kalman filter with the solution and integration level 4 and the Smolyak
particle filter with the solution level 3, filter level 2 and with 500 particles.
Both results are again very similar and differ only in the maximum likelihood
estimates of τ . Given the high inaccuracy for this parameter, indicated by the
high standard deviation of the posterior, this difference is not very surprising.
Compared to the estimation with small measurement errors we observe that
the means of the posterior and the maximum likelihood estimates are similar
and hardly deteriorate with large measurement errors. The difference is that
of course the standard deviations of the posterior substantially increase for
most estimates. The likelihood values for the Smolyak Kalman filter are 851
at the true parameters, 832 and 853 at minimum and maximum, respectively.
For the Smolyak particle filter these numbers are 851, 841 and 852. Again
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the measurement shocks are hardly identified and the parameter τ is badly
estimated as well.

The last nonlinear estimation we report in table 12 tests whether increasing
the number of summands in the Smolyak sum filter improves the estimation.
Both estimations are run with solution level 3 and level 2 for the filters. On
the left side we see the results of the filter with 5 summands while the right
side shows the results from the filter with 20 summands. The results are very
similar and the only difference is again the maximum likelihood estimates of
τ which can be attributed to the high inaccuracy of the estimator. The
likelihood values for the Smolyak sum filter with 5 summands are 851, 838,
853 and 851, 837, 853 for 20 summands.

We finally investigate whether the problem we encounter with the estima-
tion of τ is due to the errors of the approximations or a property of the
model. Table 13 shows the first approach to this question where we esti-
mate the parameters with the Kalman filter from the data generated with
the linearized model. The estimation is therefore not confounded by any
approximation error. The estimates for τ are of similar inaccuracy as for the
nonlinear estimations. Moreover, we can see that the standard deviations of
the output and investment measurement errors are poorly estimated as well.

A more convincing point is made in table 14. It also demonstrates that
peaked likelihood slices are not necessarily informative as regards the stan-
dard deviation of a parameter estimate, since the likelihood slices seem to
be properly peaked for τ at the true parameter values in the left plot of
figure 1. The left column ”Smallest τ” shows the figures with the smallest
τ of the posterior sequences. It exhibits a usual likelihood value of 1193 for
this estimation obtained by the Smolyak Kalman filter based on the third
level solution and integrations (1197 at true parameters, 1185 at minimum,
1200 at maximum). The particle filter with 40,000 particles delivers a sim-
ilar value. If we evaluate the likelihood at the ”True Values” except for τ ,
where we use the smallest value of 31.88, the log likelihood collapses. If we
in addition to τ change the parameters β, ρ and δ towards the ones we ob-
tained together with the smallest τ , the likelihood value recovers. This is
done in column ”Change” where the bold faced numbers show the changed
parameters compared to the true values. Further changes of the parameters
towards the ”Smallest τ” parametrization bring us back to the likelihood of
1193 and 1189.

We conclude that the poor estimates of τ are not a problem of our non-
linear filters but a feature of the model and thanks to good global search
properties of our parallel Metropolis-Hastings algorithm we are able to find
these parameters.

A substantial change of the parameter σy from 1.58−4 to 1.149−3 in the
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parameterization of column ”Changes” does not very much influence the
likelihood value. It changes from 1164 to 1169 for the Smolyak Kalman
filter and from 1160 to 1169 for the particle filter. In table 15 we finally
look at the likelihood slice for σy at the true parameters. The σy values
are between the minimal and maximal values of the posterior sample. The
variations between 1,167 and 1,174 for the Smolyak Kalman filter and 1,169
and 1,177 for the particle filter indicate a flat likelihood, in the sense that
this variation is around the variation of the log likelihood we usually see
during the Metropolis-Hastings sampling. We ascribe the problem of the
measurement errors to the lack of proper identification of this model and
the ad hoc solution by adding some measurement errors. The identification
problem is also discussed by Fernández-Villaverde and Rubio-Ramı́rez (2006),
where they obtain, however, more accurate estimates.

The last calculation is the marginal likelihood in table 16. The upper part
shows the results for the estimations on the data with small measurement
errors. The numbers are the differences of the marginal log likelihoods be-
tween the Smolyak Kalman filter with solution and filter level 4. A positive
number is in favor of the Smolyak Kalman filter and a negative one indi-
cates superiority of the other filters. The upper three columns show that the
Smolyak Kalman filter clearly outperforms the Kalman filter (104.5, 104.0,
104.2). The Smolyak sum, calculated with solution level 3 and 5 summands
with integration level 2, outperforms the Smolyak Kalman filter. Finally, we
have the Smolyak particle filter with solution level 3, integration level 2 and
500 particles. Here, we see a further improvement in the marginal likelihood
compared to the Smolyak Kalman filter.

The lower part of the table shows that in case of large measurement errors
the performances of the filters are very similar.

5 Conclusion

The Smolyak operator is highly effective for the approximation and integra-
tion of high dimensional standard growth models. We have demonstrated
that global approximations of the model solution beyond small models with
around 6 states are possible and that models with around 20 states can be
solved in reasonable time. Moreover, the solution algorithm can be paral-
lelized.

The Smolyak operator can also be used for numerical integration which is
essential in many econometric applications. The Smolyak Kalman filter is
very fast and can be used if the posterior and prediction densities are reason-
ably approximated by a Gaussian density. If not, they can be approximated
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by a Gaussian sum as in the Smolyak sum filter. Both filters are very fast and
the Smolyak sum filter can even be parallelized. The particle filter is of little
use in our implementation in combination with a Chebyshev approximation
where the interpolation is costly and therefore results in very costly likeli-
hood evaluations. The Smolyak particle is slower than both deterministic
filters but much faster than the particle filter. It improves the plain vanilla
particle filter so that measurement errors do not need to be present.

All these results indicate that deterministic filters research is an interest-
ing road to go in nonlinear filter design. Some approaches were already
developed in the seventies but were abandoned probably due to the lack of
computer power and useful deterministic integration algorithms. Both are
now available and a revival of these kinds of filters as an alternative to the
slow Monte-Carlo based filters are worth to be considered. We therefore
suggest to further investigate deterministic filtering schemes.

The parallelized Metropolis-Hastings algorithm improves the global max-
imization properties of the serial algorithm. We were able to discover that
a small τ can be compensated in terms of the log likelihood with a larger
β and ρ and a smaller δ. It is also an improvement that extensive training
sequences and runs for robustness checks are not needed. The mixing fea-
ture simplifies the choice of the innovation variance. The parallel sequences
provide an unbiased convergence diagnostic test and allow to implement the
algorithms on parallel computers. A major improvement for the handling
of the Metropolis-Hastings algorithm is the interactive feature of JBendge
which allows a very comfortable estimation.

A Linearization

The deterministic steady state s̄, x̄ is defined by

0 = f(s̄, x̄, h(s̄, x̄, 0, s̄, x̄))

s̄ = g(s̄, x̄, 0).

For the one country model with states a and k and labor policy l the steady
states are

ā = 0

k̄ = −(α− 1)α
1

1−α β
1

1−α (β(δ − 1) + 1)
α

α−1 θ

−αδβ + δβ + αθβ − β − αθ + 1

l̄ =
(α− 1)(β(δ − 1) + 1)θ

αθ + β((α− 1)δ − αθ + 1)− 1
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The linearized model is given by

[
I 0

−fzhs′ −fzhx′

] [
ds′

dx′

]
=

[
gs gx

fs + fzhs fx + fzhx

] [
ds
dx

]

where ds = s − s̄ and dx = x − x̄. Primes denote the next period variables
{s′, x′} = {st+1, xt+1}. The subscripted functions f , g and h are Jacobians
with respect to the variables in the subscript evaluated at the steady state.
The left matrices on both sides of the equation can be decomposed by the
generalized Schur or QZ decomposition to arrive at the following equation.

[
S11 S12

0 S22

] [
ZH

11 ZH
21

ZH
12 ZH

22

] [
P
CP

]
=

[
T11 T12

0 T22

] [
ZH

11 ZH
21

ZH
12 ZH

22

] [
I
C

]

This equation can then be solved for the linear policy function defined by
C = Z21Z

−1
11 and the state transition matrix P = Z11S

−1
11 T11Z

−1
11 , as described

in Klein (2000). The linear solution of the model is finally given by

xt = x̄ + C(st − s̄)

st+1 = s̄ + P (st − s̄).

B Smolyak Example

The following example is given in order to clarify the difficult notation of the
Smolyak algorithm.

The starting point is the index set. For a d = 2 dimensional approximation
at level q = 4 the index set is given by all 2-dimensional vectors whose
elements sum is between q− d + 1 = 3 and q = 4. These vectors are given in
table (17) in the two left columns captioned by ”Index”. The two columns
to the right, captioned by ”CC” show the Clenshaw-Curtis function values of
the index elements. For each index vector we build a tensor product shown
in column ”Tensor”. For example, the first CC vector [3, 1] means that we
have to combine the univariate Chebyshev polynomial in the first dimension
with degrees from 0 to 2 with the Chebyshev polynomials for degrees from 0
to 0. This gives the tensor products [[0, 0],[1, 0],[2, 0]] representing the three
bivariate polynomials: [b0(s1)b0(s2), b1(s1)b0(s2), b2(s1)b0(s2)] where s1 and
s2 are values in the first and the second dimension, respectively. The column
captioned by ”Smolyak” finally gives the degrees of non-repeating bivariate
polynomial combinations which are shown in the last column. This repetitive
pattern is captured by the binomial coefficient term (−1)q−|i|( d−1

q−|i|
)
. Thus, the

Smolyak approximation A4,2 is characterized by thirteen coefficients c1, ..., c13
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and needs function evaluations at thirteen grid points to identify them in the
2-dimensional space. The approximating polynomial is finally given as the
sum of the last column: x(s1, s2) = b0(s1)b0(s2)c1 + b1(s1)b0(s2)c2 + ... +
b0(s1)b4(s2)c13.

Table 18 shows how the grid is constructed. The operation is similar to
the operations on the basis functions. Apparently, the ”Index” and ”CC”
columns are identical in both tables. The 1-dimensional grids are [0] for a
one point grid, [−1, 0, 1] for three points and [−1,−1/

√
2, 0, 1/

√
2, 1] for five

points.
The basis matrix can now be calculated using both tables. The Smolyak

column of table 17 represents the rows of the basis matrix and each row is
evaluated at the vectors of the rows of the Smolyak column of table 18. The
inverted 13× 13 basis matrix identifies thirteen coefficients in




c1

c2
...

c13


 =




b0(−1)b0(0) ... b0(−1)b4(0)
b0(0)b0(0) ... b0(0)b4(0)

...
. . .

...

b0(0)b0(1/
√

2) ... b0(0)b4(1/
√

2)




−1 


f(−1, 0)
f(0, 0)

...

f(0, 1/
√

2)

.



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Table 17: Smolyak Polynomial Aq,d for d = 2 and q = 4

Index CC Tensor Smolyak Polynomial

i1 i2 mi1 mi2 j1 j2 j1 j2

2 1 3 1 0 0 0 0 b0(s1)b0(s2)c1

1 0 1 0 b1(s1)b0(s2)c2

2 0 2 0 b2(s1)b0(s2)c3

1 2 1 3 0 0
0 1 0 1 b0(s1)b1(s2)c4

0 2 0 2 b0(s1)b2(s2)c5

3 1 5 1 0 0
1 0
2 0
3 0 3 0 b3(s1)b0(s2)c6

4 0 4 0 b4(s1)b0(s2)c7

2 2 3 3 0 0
0 1
0 2
1 0
1 1 1 1 b1(s1)b1(s2)c8

1 2 1 2 b1(s1)b2(s2)c9

2 0
2 1 2 1 b2(s1)b1(s2)c10

2 2 2 2 b2(s1)b2(s2)c11

1 3 5 1 0 0
0 1
0 2
0 3 0 3 b0(s1)b3(s2)c12

0 4 0 4 b0(s1)b4(s2)c13
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Table 18: Smolyak Grid Aq,d for d = 2 and q = 4

Index CC Tensor Smolyak

i1 i2 mi1 mi2 j1 j2 j1 j2

2 1 3 1 -1 0 -1 0
0 0 0 0
1 0 1 0

1 2 1 3 0 -1 0 -1
0 0
0 1 0 1

3 1 5 1 -1 0

−1/
√

2 0 −1/
√

2 0
0 0

1/
√

2 0 1/
√

2 0
1 0

2 2 3 3 -1 -1 -1 -1
-1 0
-1 1 -1 1
0 -1
0 0
0 1
1 -1 1 -1
1 0
1 1 1 1

1 3 5 1 0 -1

0 −1/
√

2 0 −1/
√

2
0 0

0 1/
√

2 0 1/
√

2
0 1
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