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ABSTRACT 
 
In recent years, support vector regression (SVR), a novel neural network (NN) technique, 
has been successfully used for financial forecasting. This paper deals with the application 
of SVR in volatility forecasting. Based on a recurrent SVR, a GARCH method is 
proposed and is compared with a moving average (MA), a recurrent NN and a parametric 
GACH in terms of their ability to forecast financial markets volatility. The real data in 
this study uses British Pound-US Dollar (GBP) daily exchange rates from July 2, 2003 to 
June 30, 2005 and New York Stock Exchange (NYSE) daily composite index from July 3, 
2003 to June 30, 2005. The experiment shows that, under both varying and fixed 
forecasting schemes, the SVR-based GARCH outperforms the MA, the recurrent NN and 
the parametric GARCH based on the criteria of mean absolute error (MAE) and 
directional accuracy (DA). No structured way being available to choose the free 
parameters of SVR, the sensitivity of performance is also examined to the free 
parameters.  
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I. INTRODUCTION 
 
   Volatility is important in financial markets since it is a key variable in portfolio 
optimization, securities valuation, and risk management. Much attention of academics 
and practitioners has been focused on modeling and forecasting volatility in the last few 
decades. So far in the literature, the predominant model of the past was GARCH model 
by Bollerslev (1986), who generalizes the seminal idea on ARCH by Engle (1982), and 
its various parametric extensions. The popularity of GARCH model is due to its ability to 
capture many of the empirically stylized facts of financial time series, such as 
time-varying volatility, persistence and volatility clustering (Marcucci, 2005); see 
Bollerslev, Chou and Kroner (1992) for literature surveys.  
   Evidence on the forecasting ability of GARCH model is somewhat mixed. Anderson 
and Bollerslev (1998) show that GARCH model provides good volatility forecast. 
Conversely, some empirical studies show that GARCH model tends to give poor forecasting 
performances; for example, Figlewski (1997), Cumby et al. (1993), Jorion (1995, 1996), 
Brailsford and Faff (1996), and McMillan et al. (2000).  
   To improve the forecasting ability of GARCH model, some alternative approaches 
have been advocated from the perspective of estimation and forecasting. Neural network 
(NN) is one such method. In recent years, NNs have been successfully used for forecasting 
financial time series; for recent work, see Fernandez-Rodriguez et al. (2000) and Refenes 
and White (1998). The main appeal of NNs is their flexibility in approximating any 
non-linear function arbitrarily well without a priori assumptions about the properties of the 
data; see  Hornik et al. (1989) for a discussion of the NN universal approximation 
property. Motivated by their good property and promising results in a broad range of 
financial applications, various NN-based GARCH models have been suggested and applied 
to forecasting volatility. The basic finding supports that NN-based GARCH outperforms 
traditional GARCH models in forecasting conditional volatility; see Donaldson and Kamstra 
(1997), Schittenkopf et al. (2000), Taylor (2000), Dunis and Huang (2002). However, NN 
suffers from a number of weaknesses including the need for a large number of controlling 
parameters, difficulty in obtaining a global solution and the danger of over-fitting (Tay and 
Cao, 2001). The over-fitting problem is a consequence of the optimization algorithms used 
for parameter selection and the statistical measures used to select the best model.  
   Recently, a novel NN algorithm, called support vector machine (SVM), was developed 
by Vapnik and his co-workers (1995, 1997) and is gaining popularity due to many attractive 
features. While the traditional NN implements the empirical risk minimization (ERM) 
principle, SVM implements the structural risk minimization (SRM) principle which seeks to 
minimize an upper bound on the Vapnik-Chervonenkis (VC) dimension (generalization 
error), as opposed to ERM that minimizes the error on the in-sample estimating data;, refer 
to Gunn (1998) for a good introduction to SVM and related concepts. Based on SRM 
principle, SVM achieves a balance between the training error and generalization error, 
leading to better forecasting performance than traditional NN. Selecting the best model in 
SVM is equivalent to solving a quadratic programming, which gives SVM another merit of 
a unique global solution. SVM was originally developed for classification problems (SVC) 
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and then extended to regression problems (SVR). 
   The main purpose of this paper is to formulate some types of SVR-based GARCH 
models and to compare the forecasting performance to the results obtained from a moving 
average (MA), a recurrent NN and a parametric GACH (MLE). Recently, Pérez-Cruz et al. 
(2003) also proposed a SVR-based GARCH(1,1) model and showed that the proposed method 
provided better volatility forecasts than parametric GARCH model. However, they used 
feedforward SVR procedure which has the same structure as autoressive (AR) process and has 
poor ability to model the long-time memory (Haykin, 1999). In this paper, we apply the recurrent 
SVR procedure, firstly proposed by Chen and Jeong (2005), which can introduce ARMA structure 
into either mean function or conditional variance. The criteria of mean absolute error (MAE) 
and directional accuracy (DA) reveal that recurrent SVR-based GARCH model outperforms 
MA, MLE and NN-based GARCH model in the one- and multi-period-ahead forecasts of volatility. 
   This paper is organized as follows. Section 2 introduces the theory of SVR. Section 3 specifies 
the empirical model and forecasting scheme. Section 4 uses the Monte Carlo Simulation to evaluate 
how the models perform under controlled conditions. Section 5 describes the GBP exchange rates 
and NYSE composite index data and discusses the volatility forecasting performance of all 
models for real data. This paper concludes in section 6. 
 

II. SUPPORT VECTOR REGRESSION 
 
   SVR performs by nonlinearly mapping the input space into a high dimensional feature 
space and then runs the linear regression in the output space. Thus, linear regression in the 
output space corresponds to nonlinear regression in the low dimensional input space. As the 
name implies, the design of the SVR hinges on the extraction of a subset of the training data 
that serves as support vectors and that therefore represents a stable characteristic of the data. 

Given a training data set ( ){ } 1
,

N
t t t

x y
=

, with vector inputs , scalar outputs , 

and unknown function , we need to estimate a decision function 

0m
tx ∈ ty ∈

( )g x ( )f x  that 

approximates  as below. ( )g x

 

 ( ) ( ) ( )
1

1

m
T

j j
j

f x w x b w xϕ ϕ
=

= + =∑ b+

11

T

m ⎤⎦

           (1) 

where . The nonlinear function ( ) ( ) ( )
11 , , ,  , ,

T

mx x x w w wϕ ϕ ϕ⎡ ⎤ ⎡= =⎣ ⎦ ⎣ ( )j xϕ  

is the features of the input space, in SVR jargon. The dimension of the feature space is  

which is directly related to the capacity of the SVR to approximate a smooth input-output 
mapping; the higher the dimension of the feature space, the more accurate the approximation 

will be. Parameter  denotes a set of linear weights connecting the feature space to the 

1m

iw
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output space, and b is the bias. Using the decision function ( )f x , we can achieve the best 

generalization capability in forecasting y  on new inputs. 

   In order to derive the decision function, coefficients  and b have to be estimated from 

the data. First, we define a linear 

iw

ε -insensitive loss function, ( )( ), ,L x y f xε , originally 

proposed by Vapnik (1995), 
 

 ( )( ) ( ) ( )
, ,

0   

y f x for y f x
L x y f x

otherwise
ε

ε ε⎧ − − − ≥⎪= ⎨
⎪⎩

      (2) 

 
Under this loss function, errors belowε  are not penalized; we can ignore the error and say 

the predicted ( )f x  has no loss.  

   The derivation of SVR follows the principle of structural risk minimization that is rooted 
in VC dimension theory. The primal constrained optimization problem of ε -SVR is obtained 
as below. 
 

 
( ) ( ) (
' 2

2' '

, , 1

1 1min , , ,
2N N

N

t t t t
w b t

w b w C
Nξ

)ξ ξ
∈ ∈ ∈ =

⎛ ⎞Φ = + +⎜
⎝ ⎠
∑ ξ ξ ⎟

N

     (3) 

( ). . 1,2, ,T
t ts t w x b y t Nϕ ε ξ+ − ≤ + =       (4) 

( ) ' 1, 2, ,T
t ty w x b t Nϕ ε ξ− − ≤ + =        (5) 

'0, 0 1, 2, ,t t tξ ξ≥ ≥ =          (6) 

  

   The formulation of the cost function ( )', , ,t tw b ξ ξΦ  in equation (3) is in perfect accord 

with the principle of structural risk minimization; see Figure 1 (in which the dark circles are 

data points extracted as support vectors). In equation (3), the first term, 21
2

w , is a measure 

of the function flatness, minimizing what is related to maximizing the margin of separation 

2 / w , i.e., indicates maximizing the generalization ability. The second term describes the 

ε -insensitive loss function (denoted by the nonnegative slack variables '
iξ  and iξ ) and is 

similar to, although not identical with, the empirical risk employed in NN 
 

[Figure 1] 
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   The corresponding dual problem of nonlinear SVR can be derived using the 
Karush-Kuhn-Tucker conditions as follows: 
 

 
( ) ( ) ( ) ( ) ( ) (
' 2

' ' ' '

1 1 1 1

1min
2N

N N N N

)s s t t s t t t t t t
s t t t

K x x y
α

α α α α ε α α α α
∈ = = = =

− − ⋅ + + − −∑∑ ∑ ∑  (7) 

 ( )'
1

. . 0
N

t t
t

s t α α
=

− =∑              (8) 

'0 , , 1, 2, ,t t
C s t N
N

α α≤ ≤ =                (9) 

 

where, '
tα  and tα  are the Lagrange multipliers. The dual problem is easier to solve than 

the primal problem by relying on a quadratic programming (QP) scheme (Scholkopf and 
Smola, 2001; Deng et. al., 2004). We can then use them to obtain the solution of the primal 
problem: 
 

 ( ) ( )'

1

N

t t t
t

w α α ϕ
=

= −∑ x             (10) 

 ( ) ( ) ( ) ( )' '

1 1

1 x x x x
2

N N

t t t tj k t j t k
t t

b y y K Kα α α α
= =

⎡ ⎤⎛ ⎞= + − − ⋅ + − ⋅⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦
∑ ∑   (11) 

 , for 
'

, 0,j k
C
N

α α ⎛ ⎞∈⎜ ⎟
⎝ ⎠

 

 
   Substituting equation (10) and equation (11) into equation (1), the decision function can 
be obtained: 
 

 ( ) ( ) ( ) ( ) ( ) ( )' '

1 1
,

N N
T

t t t tt t
t t

f x x x b K x x bα α ϕ ϕ α α
= =

= − + = −∑ ∑ +

)

)

,     (12) 

  

where  is the kernel function. The SVR theory considers the form 

of  in the feature space without specifying 

( ) ( ) (, T
t tK x x x xϕ ϕ=

( ,tK x x ( )xϕ  explicitly and without 

computing all the corresponding inner products. Therefore, kernels provide the flexibility of 
the high dimensional feature space for low computational costs and are a crucial part of SVR. 
No analytical method is currently available to determine the most suitable kernel for a 
particular data set. This paper experiments with three different kernels to investigate the effect 
of a kernel type. 
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 Linear:                (13) ( ), T
tK x x x x= t

 Polynomial:  ( ) ( ),
dT

t tK x x x x= +1             (14) 

 Gaussian:  ( )
2

2

 
, exp

2
t

t

x x
K x x

σ

⎛ ⎞− −
= ⎜

⎜
⎝ ⎠

⎟
⎟

          (15) 

 

III. EMPIRICAL MODELING AND FORECASTING SCHEME 
 

   In this paper, the data we analyze is just the daily financial returns, ty , converted from 

the corresponding price or index, tI , using continuous compounding transformation as 

 

             (16) ( 1100 log logt ty I += × − )tI

t

 
A GARCH (1, 1) specification is the most popular form of conditional volatility. As such, 
throughout the paper the analysis is restricted to the case of GARCH (1,1) process. 
 
The Linear and Nonlinear GARCH (1, 1) Models 
 
   For the parametric GARCH model, GARCH (1,1) model is usually specified as 
follows: 
 

 1 1t ty c y uφ −= + +              (17-1) 

              (17-2) 2
1 1 1 1t th hκ δ α−= + + tu −

 

The important point is that the conditional variance of  is given bytu
22
| 11 t tt t th E u u −−= = . 

Thus, the conditional variance of  is the ARMA process given by the expression  in 

equation (17-2) (Bollerslev, 1986; Hamilton, 1997; Enders, 2004). 

tu th

 

           (18) ( )2 2
1 1 1 1t t tu u wκ δ α δ−= + + + − 1tw −

 
22 2
| 1t tt t tw u u u h−≡ − = − t  

 

 6



where  is white noisy errors. The parameters tw 1,κ δ and 1α  must satisfy , 0κ >

1 0δ ≥ , and  1 0α ≥  to ensure that the conditional variance is positive. Together with the 

nonnegative assumption, if 1 1 1δ α+ < , then  is covariance stationary. 2
tu

   For recurrent SVR and NN methods, the nonlinear AR(1)–GARCH(1,1) model has the 
following form: 
 

               (19-1) ( )1t ty f y u−= t+

t+              (19-2) ( )2 2
1 1,t t tu g u w w− −=

 
Recurrent SVR-based GARCH Modeling and Forecasting Scheme 
 
   The algorithm of the recurrent SVR-based GARCH model is described as follows: 
 

STEP 1: run the SVR-based AR(1) model for returns ty  in the full sample period ,  T

( ) (1 1,2, ,t t ty f y u t T−= + = )

)

t

,  

to obtain residuals, . 1 2, , , Tu u u

STEP 2: recursively run the recurrent SVR for squared residuals,  with 

updating,  

(
1

2 2 2
1 2 1, , , Tu u u T T<

  ( )2 2
1 1,t t tu g u w w− −= +

to obtain 60 one-period-ahead forecasted volatilities. 

 

1

1

1

2
11

2
1 11

2
59 11

1 : 1, 2, ,

2 : 1, 2, , 1

60 : 1, 2, , 59

T

T

T

st sample t T u

nd sample t T u

th sample t T u

+

+ +

+ +

= →

= + →

= + →

 

STEP 3: run the recurrent SVR for squared residuals, ( )
2

2 2 2
1 2 2, , , 20Tu u u T T= − , without 

updating to obtain 20 multi-period-ahead forecasted volatilities. 

  2 2 2

2 2 2
1 22: 1,2, , , , ,T T Testimating sample t T u u u 20+ + += →  

For each of 60 estimations, the recurrent SVR procedure proposed by Chen and Jeong (2005) 

is run as follows; the residuals of 1tw −  in equation 19-2 are first set to be zero series; then 
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run the feedforward SVR to obtain estimated residuals; using the estimated residuals as 

new  inputs we can carry out this process repeatedly until the stopping criterion is 

satisfied. 

1tw −

   The appropriate parameter ε  dramatically depends on the given data but is not very 
sensitive to the same data; after investigation, we choose 0.0001ε =  for simulation data 
and 0.05ε =  for real data. The value of C has been set to 0.1 for both data because 
investigation reveals that the solution is not very sensitive to C for a wide range. In 
addition, the fixed width value of 0.2 for Gaussian kernels and d=2 for polynomial kernels, 
are also set for the convenience of comparison. 
 
Evaluation Measures and Proxy of Actual Volatility 
 
   We evaluate the forecasting performance using two standard statistical criteria: mean 
absolute forecast error (MAE) and directional accuracy (DA), expressed as follows (Brooks, 
1998; Moosa, 2000): 
 

 
22

1

1 n

ii
i

MAE u u
n =

= −∑              (20) 

 ( )
1

100%
n

i
i

DA a
n =

= ∑              (21) 

 where  
( )( )2 22 2

111 0

0

i ii i
i

u u u u
a

otherwise

++
⎧ − −⎪= ⎨
⎪⎩

≥

 
MAE measures the average magnitude of forecasting error which disproportionately 
weights large forecast errors more gently relative to MSE; and DA measures the 
correctness of the turning points forecasts, which gives a rough indication of the average 
direction of the forecasted volatility. 
   The fundamental problem with the evaluation of volatility forecasts of real data is that 
volatility is unobservable and so actual values, with which to compare the forecasts, do 
not exist. Therefore, researchers are necessarily required to make an auxiliary assumption 
about how the actual ex post volatility is calculated. In this paper, we use square of the return 
minus its mean value as the proxy of actual volatility against which MAE and DA can be 
calculated. This approach is similar to the standard one, squared returns, because the mean of 
returns is usually close to zero. The proxy of actual volatility in real data is expressed as 
 

 ( 22
t tu y y= − )               (22) 

where ty : returns; y : mean of returns.  

 8



 
This proxy has been used in many recent papers such as Pagan and Schwert (1990), Day and 
Lewis (1992), Chan et al. (1995), West and Cho (1995), Chong et al. (1999), Brooks 
(2001), and Brooks and Persand (2003). 
 
Specification of other Methods 
 
   The MA method uses weighted moving averages of past squared innovations to forecast 
volatility (Niemira and Klein, 1994). For simulated data, the MA forecast for the next-day 
volatility, using the 5 most recent observations, is expressed as 
 

 
2 2
5, 1

4

1
5

t

t j
j t

u +

= −

= ∑ u               (23) 

 
For real data, the MA forecast for the next-day volatility is expressed as (Engle et al., 
1993) 
 

 ( 22
5, 1 5,

4

1
5

t

t j t
j t

u y+

= −

= −∑ )y             (24) 

where 5,
4

1
5

t

jt
j t

y y
= −

= ∑ . 

 
   The recurrent networks experimented in this study are multilayer perceptrons (MLP) and 
a radial-basis function (RBF) network with the addition of a global feedback connection from 
the output layer to its input space. We specify a MLP network with the following architectures: 
one nonlinear hidden layer with 4 neurons using a tan-sigmoid differentiable transfer function, 
and one linear output layer with 1 neuron. The fast training Levenberg-Marquardt algorithm is 
chosen and designed into a training function. The value of the learning rate parameter is 0.05. 
The RBF network used in this study is a generalized regression neural network (GRNN) 
which also has two layers: the first layer is a radial basis layer whose weights are set to 
transposed inputs, and the output layer is a special linear layer whose weights are set to target 
vectors. The spread of the radial basis function is 1.0. These specifications and choices are 
quite standard in the literature of neural networks.  
 
Empirical Framework 
 
   In this study the forecasts are obtained by applying the Monte Carlo method1, following 
the suggestions in Andersen and Bollerslev (1998), and Clements and Smith (1999, 2001). 
The main motivation for conducting a simulation experiment is that, since the true volatility is 
known, the candidate volatility measures can be compared with certainty. We also fit each of 

                                                        
1 Each point forecast is obtained as the average over all replications. 
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the models to the daily returns on the GBP exchange rate and NYSE stock indexes and forecast 
their respective volatility. The empirical modeling and forecasting scheme described 
above are employed for both simulation and real data. The results in this paper are 
calculated via MATLAB 7.0 software. 
 

IV. MONTE CARLO SIMULATION 
 
   In this section we investigate the forecasting performance of all candidates using 
artificial simulated data under controlled conditions. To generate the data, we first need to 
parameterize the GARCH (1,1) model in equations (17) with the following settings 

 for medium persistence and a disturbance term 

 distributed first as Gaussian and then as a Student's t with five degrees of freedom 

(kurtosis = 5). The second distribution tries to model the excess of kurtosis that usually 
appears in real financial series. Using the same specified models, two artificial samples with 
sizes, 500 and 1000, are created under two distributions assumption, giving a total of four 
situations. To limit the computational burden, each situation is replicated only 50 times. Then 

the multiple simulated 

( ) (1 1 1, , , , 0,0.5,0.0005,0.8,0.1c φ κ δ α = )

tu

ty  and  are 500-by-50 and 1000-by-50 element matrices for 

different distribution.  

th

   For each replication, the recurrent SVR-based GARCH(1,1) model and others are 
estimated and forecast errors are calculated using the forecasting schemes described in 
Section 3. We have reported the results of one-period-ahead forecasting measures for four 
situations, respectively, in Tables I (a) and (b) and 20-period-ahead forecasting results in 
tables II (a) and (b). The reported results are the mean values of 50 independent replications. 
 

[Tables I (a) and (b)] 
 
Let us first evaluate the one-period-ahead forecasts using the updating forecasting scheme 
described in Table I. In terms of the sum rankings of MAE measures, the order of the forecasting 
ability of the different methods from the highest to lowest is displayed in turn as follows: 
poly-SVR, rbf-SVR, linear-SVR2, RBF, MLE, MA and MLP. Concretely, in the situation of 
normal distribution, MLE which is ranked fourth behaves not bad and is only inferior to the 
three kinds of SVR methods in the 500 sizes, and even ranked third, is only defeated by poly- 
and rbf-SVR in the 1000 sizes. As well, the MAE values of rbf-, poly-, and linear-SVR and 
MLE are also close, for example, 0.0000796, 0.0000924, 0.0000960 and 0.0000972, 
respectively, for the 500 sizes, and 0.0000456, 0.0000479, 0.0000501 and 0.0000488 for the 
1000 sizes; the latter of which becomes smaller for all methods when the sizes of the sample 
increase. However, one thing noteworthy here is that even though the data satisfy the 
Gaussian assumption, the SVR methods still outperform MLE in forecasting volatility error 
magnitude. In the situation of t distribution, the forecasting performance of MLE grows 

                                                        
2 i.e., denotes SVR with different kernel function (polynomial, Gaussian and linear). 
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poorer, only ranked second last for the 500 sizes and third last for the 1000 sizes, and the 
difference of MAE values between SVR and MLE becomes larger. For instance, the values of 
three kinds of SVR are all below 0.00014 for the 500 sizes and below 0.000077 for the 1000 
sizes, while those of MLE are 0.0001765 and 0.0001083, respectively. The performance of 
NN is confusing: MLE is better than MLP but worse than RBF.  
   According to the sum rankings of the DA measures, rbf-SVR ranks highest for all four 
situations; linear- and poly-SVR are ranked second side by side; now, MLE is ranked fourth and 
MA last among all candidates. In the situation of normal distribution, MLE behaves better than 
in forecasting error magnitude, and is ranked second for the 500 sizes (76.27%) only inferior to 
rbf-SVR (86.44%) but equal to linear- and poly-SVR (76.27%), and also ranked second for the 
1000 sizes (79.83%) only inferior to rbf-SVR (83.05%) but better than linear- and poly-SVR 
(74.58% and 71.19%). These values of SVR and MLE are close and, particularly higher than 
the NN and MA methods. Although good, MLE cannot defeat rbf-SVR even in the case of 
normal distribution and large sample sizes. As for the situation of t distribution, the parametric 
GARCH is ranked last for the 500 sizes (55.9%) and second last for the 1000 sizes (59.3%); 
while for any of the sizes, the three kinds of SVR are always the top three methods in 
forecasting the volatility direction, all higher than 70% which none of the other methods can 
reach. This time the NN defeats MLE. As for MLE and MA, in the situation of the 500 sizes 
and t distribution MLE performs worse than MA in terms of both MAE and DA measures. 
 

[Tables II (a) and (b)] 
 
   We now assess the performance of the fixed forecasting rule shown in Table II. Based on the 
sum rankings of the MAE measures, the order of forecasting ability of the different methods 
from the highest to lowest is displayed in turn as follows: rbf-SVR, poly-SVR, linear-SVR, MLP, 
RBF and MLE. The special thing impressing us is that the MLE has almost the worst forecasting 
performance. In the situation of Gaussian distribution, for the 500 sizes, the MAE value of MLE 
is 0.0014271 and that of rbf-SVR, worst among the three kinds of SVR, is 0.0009955, the 
difference between them is 0.0004316. For the 1000 sizes, the MAE value of MLE decreases to 
0.0004216 and that of linear-SVR, the worst among the three SVR, also decreases to 0.0002006, 
the difference reduces to 0.000224. Obviously, even if in the case of normal distribution and 
large sample sizes, SVR still outranks MLE in forecasting volatility error magnitude. In the 
situation of t distribution, for the 500 sizes, the MAE value of MLE increases to 0.0019922 but 
that of linear-SVR, the worst among the three kinds of SVR, decreases to 0.0005832, the 
difference is 0.001409 much larger than that in normal distribution. For the 1000 sizes, the MAE 
value of MLE is 0.0008628 and that of linear-SVR, the worst among the three kinds of SVR, is 
0.0006124, the difference reduces to 0.0002504 which is smaller than the previous one in the 500 
sizes but larger than the corresponding one in normal distribution. In a word, in the case of t 
distribution, the three SVR are greatly superior to MLE, the latter of which grows poorer as it 
always does. As for NN, SVR also outperforms them for all four situations with just a few 
exceptions (normal distribution and the 500 sizes for RBF, the 1000 sizes and both distributions 
for MLP). 
   According to the sum rankings of the DA measures, rbf-SVR also ranks highest for all four 
situations, the same as with the updating forecasting scheme; linear-SVR is ranked second; but 
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poly-SVR is inferior to MLP and RBF; again, MLE is the worst one, the same as that in terms of 
the MAE criteria. The DA value of MLE in the situation of the 500 sizes and t distribution is only 
26.316%, the lowest among all the values; although in the situation of the 1000 sizes and t 
distribution is 68.421% equal to the linear- and poly-SVR. The worst performance of MLE in the 
case of both measures denotes that MLE is not suitable for long-run ex ante forecasts. Two NNs 
hold the same highest position as rbf-SVR in the situation of the 500 sizes and both distribution 
and as linear-SVR in the 500 sizes and t distribution. But, according to the sum rankings of both 
MAE and DA measures, three kinds of SVR still outperform two NNs under the fixed 
forecasting scheme. Taken together, if you want to forecast long-run volatility using a fixed 
forecasting rule, the recurrent SVR is the first choice, followed by NN, and MLE is the final one. 
 

V. REAL DATA ANALYSIS 
 
  The aim of this section is to compare the volatility forecasting performance of different 
methods for two kinds of financial returns: GBP/USD exchange rates and the NYSE stock 
index. 
 
Data description 
 
   The first data set consists of the daily nominal bilateral exchange rates of British 
Pounds (GBP) against the U.S. dollar for the period of July 2, 2003 to June 30, 2005. The data 
are obtained from a database provided by Policy Analysis Computing and Information 
Facility in Commerce (PACIFIC) at the University of British Columbia, which contains the 
closing rates for a total of 81 currencies and commodities. The second data set consists of the 
daily closing price of the New York Stock Exchange TM (NYSE) composite stock index for 
the period of July 3, 2003 to June 30, 2005. The data are downloaded directly from the 
Market Information section of the NYSE TM web page. 
   Both sets of raw real data are transformed into daily returns via equation 16, giving a returns 
series of 503 observations and then a residual series of the same size is obtained from a fitted 
conditional mean equation of the GARCH model. For the squared residuals of the 503 
observations, the recursive estimating samples for the conditional volatility function are updated 
from the former 424 observations through the former 483 and then 60 numbers of 
one-period-ahead forecasts are obtained which correspond to an out-of-sample evaluation sample 
spanned from the 425th through the 484th data points. The multi-period-ahead evaluation sample 
is the last 20 observations which span from the 484th data point to the end. 
 

[Figure 2] 
[Figure 3] 

 
The daily series for the log-levels and the returns of the GBP and NYSE (503 observations) are 
depicted in Figure 2 and 3, respectively. Both figures show that the returns series are 
mean-stationary, and exhibit the typical volatility clustering phenomenon with periods of 
unusually large volatility followed by periods of relative tranquility. Table III reports the summary 
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of the descriptive statistics for the GBP and NYSE returns. The GBP series are typically 
characterized by excessive kurtosis and asymmetry. The Bera-Jarque (1981) test strongly rejects 
the normality hypothesis for GBP. But the NYSE series cannot reject the normality hypothesis. 
For both series, the Ljung-Box Q(6) statistics of raw returns indicate no significant correlation; but 
the Q(6) values of the squared returns reveal that there is significant serial correlation in the 
squared returns. Engle’s (Engle, 1982) ARCH tests show significant evidence in support of 
GARCH effects (i.e., heteroscedasticity) for both series. This examination of daily returns on the 
GBP and NYSE data reveals that returns can be characterised by heteroscedasticity and 
time-varying autocorrelation, therefore, we expect the GARCH models to capture it adequately. 
 

[Table III] 
 
Evaluating the forecasting performance of each method 
 
   The results of forecasting accuracy for each model using real data are shown in Table 
IV for both one- and multi-period-ahead forecasts; where, (a) reports the values of the 
evaluation measures and (b) is the ranking of all the models.  
 

[Table IV (a) and (b)] 
 
We first evaluate one-period-ahead forecasts of volatility, as described in Table IV. According 
to the sum rankings of the MAE of two returns, three kinds of SVR are the top three methods, 
followed by the MLE method which is ranked fourth for the NYSE, characterized by 
Gaussian distribution, but fifth for GBP returns which show a high excess kurtosis. 
Obviously, the values of MAE of the three kinds of SVR are below 0.21 and 0.44, 
respectively, for the GBP and NYSE returns, while those of MLE are 0.25718 and 
0.46323. RBF and MA method which are ranked fifth perform equally well while the 
MLE method is ranked last. Therefore, the values of MAE indicate the smallest deviation 
between the actual and forecasted volatility for the recurrent SVR method as opposed to the 
competing methods. In terms of the sum rankings of the DA criteria, the three kinds of SVR 
also rank the highest among all the methods and perform equally well, followed by MLP, 
RBF and MA method which are equally ranked fourth side by side. For example, the DA 
values of the three SVR for both returns all exceed 50%; among the other values, only that of 
the RBF for the NYSE data is a little more than 50%. MLE method performs worst for both 
GBP and NYSE returns, the DA values of which are only 28.8% and 30.5%, respectively. 
Here, MA almost outranks MLE based on two measures only except for the MAE value in 
the NYSE. 
   Next, we consider the situation of multi-period-ahead forecasts of volatility. Based on the 
sum rankings of MAE for the two returns, the three kinds of SVR are also the best methods 
(the MAE values of which are below 0.19 and 0.21 for GBP and NYSE), followed by MLE 
(0.20919 and 0.32067 for both data), NN is the worst one (more than 0.24 and 0.329 for the 
two returns). There is a change in terms of the DA measure. Two kinds of NN rank in the first 
class, the correctness ratio of which is higher than 78%. Now, the three kinds of SVR rank in 
the second class in the sum rankings of the two returns. Also, MLE ranks the lowest as it does 
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in one-period-ahead forecasting. However, in terms of the sum rankings of the MAE and DA 
measures, the recurrent SVR is still better than the other methods while NN beats back MLE. 
   Taken together, the recurrent SVR consistently being the best in error magnitude and 
direction forecasts while MLE is always the worst in forecasting the turning points of 
volatility3 and is only inferior to SVR in forecasting error size. We cannot conclude that NN 
outperforms MLE overall as argued in other studies. 
 

[Figure 4 (a) and (b)] 
 
We have plotted the forecasted volatility from three recurrent SVR- and MLE–based 
GARCH (1,1) models, along with the actual ex-post volatility measures based on the squares 
of returns minus their means4, for GBP exchange rates and the NYSE stock index in 
Figures 4 and 5, respectively; in which (a) graphs 60 one-period-ahead forecasts for the 
out-of-sample period of March 10, 2005 to June 3, 2005 resulting from the updating 
forecasting scheme, and (b) displays 20 multi-period-ahead forecasts for the out-of-sample 
period of June 3, 2005 to June 30, 2005 from the fixed rule.  
 

[Figure 5 (a) and (b)] 
 
Seen from (a) and (b) in the two Figures, it is clear that the updating forecasting scheme 
tracks the ex-post actual volatility better than the fixed one for all the models. For both 
forecasting schemes, overall, the three kinds of recurrent SVR-based GARCH (1,1) models 
seem to do a remarkable job of capturing the future volatility clustering effect in two returns 
in the out-of-sample. 
 

CONCLUSIONS 
 
   In many applications, SVR has shown excellent forecasting performance due to its particular 
design of minimizing structural risk rather than empirical risk employed by neural networks and 
traditional methods (Vapnik, 1995, 1997). This inspires us to use it to improve the forecasting 
ability of the traditional GARCH models. In terms of the MAE and DA measures, in this study, 
we investigate the forecasting ability of the recurrent SVR-based GARCH (1,1) models as 
compared with MA, recurrent NN and MLE methods by using a Monte Carlo simulation and real 
data of the British Pound-US Dollar (GBP) daily exchange rates. 
   The real data results, together with the simulation evidence, consistently support the use of the 
three recurrent SVR-based GARCH models in forecasting one- and multi-period-ahead volatility 
error magnitude and direction; although, in the case of forecasting long-term volatility direction, 
neural networks also perform equally well. As for the performance of the different kinds of SVR, 
simulation supports poly-SVR but real data analysis favors linear-SVR in one-period-ahead error 

                                                        
3 It is noteworthy that, DA provides a measure of the consistency in the prediction of the volatility direction which 
may yield important information for financial decisions in risk management field. Therefore, the problem should 
be considered seriously when using the MLE method. 
4 The forecasted volatility from MLP, RBF and MA methods are not plotted just to not make the figure 
complicated. 
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size forecasts. Simulation also favors rbf-SVR in short-term volatility direction forecasts and in 
long-term error size and direction forecasts, the conclusions of which are confirmed by the real 
data only with the one exception of long-term direction forecasts. Since no single kernel function 
dominates all predictions, practitioners should try more than one kernel function.  
   MLE cannot always perform better than SVR even with the required assumptions of 
Gaussian distribution and large sample sizes being satisfied for data. NN is also inferior to SVR 
in volatility forecasts. Therefore, it is concluded that the problem of good estimation and poor 
forecasts can be resolved using our recurrent SVR method. In multi-period-ahead volatility 
forecasts, particularly noteworthy, MLE almost ranks the lowest among all methods, which 
indicates that MLE is not suitable for long-run volatility forecasting. Due to the introduction of 
global feedback loops and the corresponding richer dynamic structures, SVR looks more 
promising in doing so.  
   Using the squares of the returns as the proxy of actual data would greatly influence the 
forecasting evaluation results; therefore, we have left for future work the investigation of an 
alternative use of cumulative squared returns from high frequency intraday data as the proxy of 
ex post volatility, following Anderson and Bollerslev (1998). The relative accuracies of the 
various methods are also highly sensitive to the statistic measures used to evaluate them; therefore, 
it is generally impossible to specify a forecast evaluation criterion that is universally acceptable. 
This problem is especially acute in the context of nonlinear volatility forecasting (Engle et al. 1993; 
Diebold and Mariano 1995; West 1996; Andersen et al. 1999; Dacco and Satchell 1999; and 
Clements and Smith 2001), which should prompt us to consider more appropriate evaluation 
criteria that are linked directly to our future applications. 
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Table I (a) One-Period-Ahead Forecasting Accuracy for Monte Carlo Simulation 

Sample Numbers = 500 Sample Numbers = 1000 

Normal Distribution Student's T Distribution Normal Distribution Student's T Distribution

Methods used for 

GARCH(1,1) 

Model MAE DA MAE DA MAE DA MAE DA 

MA 0.0001276  44.068 0.0001747 59.322 0.0001198 54.237 0.0002130 40.678
MLE 0.0000972  76.271 0.0001765 55.932 0.0000488 79.831 0.0001083 59.322
MLP 0.0001517  72.881 0.0002481 57.627 0.0000904 62.712 0.0001442 67.797
RBF 0.0001120  45.763 0.0001216 57.627 0.0000566 49.153 0.0000746 67.797

SVR-linear 0.0000960  76.271 0.0001369 71.186 0.0000501 74.576 0.0000715 72.881
SVR-poly 0.0000924  76.271 0.0001371 71.186 0.0000479 71.186 0.0000714 77.966
SVR-rbf 0.0000796  86.441 0.0001397 81.356 0.0000456 83.051 0.0000769 98.305

Note: The latter 5 methods, except for MA, are used for estimating and forecasting GARCH(1,1) model. 

 

Table I (b) Rankings of One-Period-Ahead Forecasting Accuracy for Simulation Data 

MAE DA 

Normal T Normal T 
Methods used for 

GARCH(1,1) Model 
500  1000  500 1000 

Sum
500 1000 500 1000  

Sum 

MA 6  7  5 7  25 7 6 4 7 24 
MLE 4  3  6 5  18 2 2 7 6 17 
MLP 7  6  7 6  26 5 5 5 4 19 
RBF 5  5  1 3  14 6 7 5 4 22 

SVR-linear 3  4  2 2  11 2 3 2 3 10 
SVR-poly 2  2  3 1  8 2 4 2 2 10 
SVR-rbf 1  1  4 4  10 1 1 1 1 4 
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Table II (a) Multi-Period-Ahead Forecasting Accuracy for Monte Carlo Simulation Data (horizon=20) 

Sample Numbers = 500 Sample Numbers = 1000 

Normal Distribution Student's T Distribution Normal Distribution Student's T Distribution

Methods used for 

GARCH(1,1) 

Model MAE DA MAE DA MAE DA MAE DA 

MLE 0.0014271  63.158 0.0019922 26.316 0.0004246 63.158 0.0008628 68.421
MLP 0.0016831  89.474 0.0021186 68.421 0.0001416 68.421 0.0005001 47.368
RBF 0.0008876  89.474 0.0006417 68.421 0.0002604 63.158 0.0006128 52.632

SVR-linear 0.0008776  78.947 0.0005832 68.421 0.0002006 78.947 0.0006124 68.421
SVR-poly 0.0008747  78.947 0.0005677 63.158 0.0001856 73.684 0.0006019 68.421
SVR-rbf 0.0009955  89.474 0.0004087 68.421 0.0001123 84.211 0.0004518 73.684

 
Table II (b) Rankings of Multi-Period-Ahead Forecasting Accuracy for Simulation (horizon=20) 

MAE DA 

Normal T Normal T 
Methods used for 

GARCH(1,1) Model 
500  1000  500 1000 

Sum
500 1000 500 1000  

Sum 

MLE 5  6  5 6  22 6 5 6 2 19 
MLP 6  2  6 2  16 1 4 1 6 12 
RBF 3  5  4 5  17 1 5 1 5 12 

SVR-linear 2  4  3 4  13 4 2 1 2 9 
SVR-poly 1  3  2 3  9 4 3 5 2 14 
SVR-rbf 4  1  1 1  7 1 1 1 1 4 
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Figure 2 British Pounds Exchange Rates: 2003.7.2-2005.6.30 
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Figure 3 New York Stock Exchange Composite Index: 2003.7.3-2005.6.30 
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Table III Descriptive Statistics for Daily Financial Returns 

Returns  GBP NYSE 

Mean  -0.0142   0.0527   
Variance  0.3340  0.4531  
Skewness  0.2529  -0.1741  
Kurtosis  3.4385  2.9963  
Normality  9.2067 [0.010018] 2.5555 [0.278670] 
Q(6)  8.8882 [0.179970] 4.1016 [0.662920] 
Q(6)*  26.7050 [0.000164] 13.9460 [0.030249] 
ARCH(6)  23.3750 [0.000680] 15.1020 [0.034711] 
Notes: Kurtosis quoted is excess kurtosis; Normality is the Bera-Jarque (1981) normality test; Q(6) is the 

Ljung-Box Q test at 6 order for raw returns; Q(6)* is LB Q test for squared returns; ARCH(6) is Engle's 

(1982) LM test for ARCH effect. Significance levels (p-values) are in brackets. 
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Table IV (a) One- and multi-Period-Ahead Forecasting Accuracy for Real Data 

GBP NYSE 

One- Multi- One- Multi- 

Methods used for 

GARCH(1,1) 

Model MAE DA MAE DA MAE DA MAE DA 

MA 0.23668 37.288     0.48852 35.593     
MLE 0.25718 28.814 0.20919 52.632 0.46323 30.508 0.32067 42.105
MLP 0.29589 32.203 0.2772 84.211 0.46678 42.373 0.32989 78.947
RBF 0.27959 30.508 0.24919 78.947 0.46496 50.847 0.33223 84.211

SVR-linear 0.20632 54.237 0.18641 68.421 0.43376 54.237 0.20427 47.368
SVR-poly 0.20613 42.373 0.18588 26.316 0.43748 61.017 0.20564 73.684
SVR-rbf 0.20819 50.847 0.1897 52.632 0.43477 59.322 0.18352 47.368

Note: Moving average method is not included in multi-period-ahead forecasting evaluation. 

 

 

 

Table IV (b) Rankings of One- and multi-Period-Ahead Forecasting Accuracy for Real Data 

One- Multi- 

MAE DA MAE DA 

Methods used for 

GARCH(1,1) 

Model GBP NYSE sum GBP NYSE sum GBP NYSE sum GBP NYSE sum

MA 4 7 11 4 6 10           

MLE 5 4 9 7 7 14 4 4 8 4 6 10
MLP 7 6 13 5 5 10 6 5 11 1 2 3 
RBF 6 5 11 6 4 10 5 6 11 2 1 3 

SVR-linear 2 1 3 1 3 4 2 2 4 3 4 7 
SVR-poly 1 3 4 3 1 4 1 3 4 6 3 9 
SVR-rbf 3 2 5 2 2 4 3 1 4 4 4 8 
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Figure 4 Volatility Forecasts of British Pounds Exchange Rates Returns 
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Figure 5 Volatility Forecasts of NYSE Composite Index Returns 

5 10 15 20 25 30 35 40 45 50 55 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) One-Period-Ahead Forecasts of Volatility

Actual
MLE
SVR-lin
SVR-poly
SVR-rbf

 
Figure 5 Volatility Forecasts of NYSE Composite Index Returns 

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(b) Multi-Period-Ahead Forecasts of Volatility

Actual
MLE
SVR-lin
SVR-poly
SVR-rbf

 
 

 25



 
 

SFB 649 Discussion Paper Series 2008 

 
For a complete list of Discussion Papers published by the SFB 649, 
please visit http://sfb649.wiwi.hu-berlin.de. 
 

001 "Testing Monotonicity of Pricing Kernels" by Yuri Golubev, Wolfgang 
Härdle and Roman Timonfeev, January 2008. 

002 "Adaptive pointwise estimation in time-inhomogeneous time-series 
 models" by Pavel Cizek, Wolfgang Härdle and Vladimir Spokoiny, 
 January 2008. 
003 "The Bayesian Additive Classification Tree Applied to Credit Risk 
 Modelling" by Junni L. Zhang and Wolfgang Härdle, January 2008. 
004 "Independent Component Analysis Via Copula Techniques" by Ray-Bing 
 Chen, Meihui Guo, Wolfgang Härdle and Shih-Feng  Huang, January 
 2008. 
005   "The Default Risk of Firms Examined with Smooth Support Vector 
 Machines" by Wolfgang Härdle, Yuh-Jye Lee, Dorothea Schäfer 
 and Yi-Ren Yeh, January 2008. 
006 "Value-at-Risk and Expected Shortfall when there is long range 
 dependence" by Wolfgang Härdle and Julius Mungo, Januray 2008. 
007  "A Consistent Nonparametric Test for Causality in Quantile" by 
 Kiho Jeong and Wolfgang Härdle, January 2008. 
008 "Do Legal Standards Affect Ethical Concerns of Consumers?" by Dirk 
 Engelmann and Dorothea Kübler, January 2008. 
009   "Recursive Portfolio Selection with Decision Trees" by Anton Andriyashin, 
 Wolfgang Härdle and Roman Timofeev, January 2008. 
010 "Do Public Banks have a Competitive Advantage?" by Astrid Matthey, 
 January 2008. 
011 "Don’t aim too high: the potential costs of high aspirations" by Astrid 
 Matthey and Nadja Dwenger, January 2008. 
012   "Visualizing exploratory factor analysis models" by Sigbert Klinke and 
 Cornelia Wagner, January 2008. 
013 "House Prices and Replacement Cost: A Micro-Level Analysis" by Rainer 
 Schulz and Axel Werwatz, January 2008. 
014 "Support Vector Regression Based GARCH Model with Application to 
 Forecasting Volatility of Financial Returns" by Shiyi Chen, Kiho Jeong and 
 Wolfgang Härdle, January 2008. 
 
 

SFB 649, Spandauer Straße 1, D-10178 Berlin 
http://sfb649.wiwi.hu-berlin.de 

 
This research was supported by the Deutsche 

Forschungsgemeinschaft through the SFB 649 "Economic Risk". 


	Frontpage 014.pdf
	SFB649DP2008-014_ges.pdf
	CJH_SVR-GARCH_volatility.pdf
	Endpage 014.pdf


