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Abstract

Empirical studies have shown that a large number of financial asset
returns exhibit fat tails and are often characterized by volatility clus-
tering and asymmetry. Also revealed as a stylized fact is Long memory
or long range dependence in market volatility, with significant impact
on pricing and forecasting of market volatility. The implication is that
models that accomodate long memory hold the promise of improved
long-run volatility forecast as well as accurate pricing of long-term con-
tracts. On the other hand, recent focus is on whether long memory
can affect the measurement of market risk in the context of Value-at-
Risk (V aR). In this paper, we evaluate the Value-at-Risk (V aR) and
Expected Shortfall (ESF ) in financial markets under such conditions.
We examine one equity portfolio, the British FTSE100 and three
stocks of the German DAX index portfolio (Bayer, Siemens and Volk-
swagen). Classical V aR estimation methodology such as exponential
moving average (EMA) as well as extension to cases where long mem-
ory is an inherent characteristics of the system are investigated. In
particular, we estimate two long memory models, the Fractional Inte-
grated Asymmetric Power-ARCH and the Hyperbolic-GARCH with
different error distribution assumptions. Our results show that models
that account for asymmetries in the volatility specifications as well as
fractional integrated parametrization of the volatility process, perform
better in predicting the one-step as well as five-step ahead V aR and
ESF for short and long positions than short memory models. This
suggests that for proper risk valuation of options, the degree of persis-
tence should be investigated and appropriate models that incorporate
the existence of such characteristic be taken into account.

JEL classification: C14, C32, C52, C53, G12

Keywords: Backtesting, Value-at-Risk, Expected Shortfall, Long Mem-
ory, Fractional Integrated Volatility Models
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1 Introduction

Empirical studies have shown that a large number of financial asset returns

exhibit fat tails (leptokurtosis) and are often characterized by volatility clus-

tering (large changes that tend to be followed by large changes and vice

versa), leverage effects (changes in stock prices that tend to be negatively

correlated with changes in volatility) as well as long range dependence (signs

of dependence between far apart observations in a given time series). Ding

et al. (1993), So (2000), Henry (2002), Aloui et al. (2005) have found that

financial assets may exhibit long range dependence on stock market volatil-

ity. Bollerslev and Mikkelsen (1996), Herzberg and Sibbertsen (2004) have

shown that such long term dependence has significant impact on the pricing

of financial derivatives as well as forecasting market volatility. This may in

turn affect an investment portfolio, bringing about huge losses or gains.

An important part of modern financial risk management is the measuring

and forecasting portfolio risk and fluctuations due to changing market and/

or portfolio shares. A number of applications of Value-at-risk (V aR) on

financial asset returns have shown that due to excess kurtosis, estimation

under the assumption of normally distributed residuals tend to underestimate

or overestimate the true V aR. Brooks and Persand (2003a) showed that

models that do not allow for asymmetries in the unconditional distribution

or volatility specification, underestimate the true V aR and are most likely to

generate inaccurate forecasts. Giot and Laurent (2004) pointed out that the

V aR for daily stock indexes with a skewed student-t distribution performed

better than with pure symmetric distribution.

On the other hand, studies on whether long memory phenomena can affect

the measurement of market risk in the context of value-at-risk (V aR) is a

topic of interest. In this paper, we focus on financial market risk which refers

to the risk that arises due to unforeseen movements in markets price (e.g.

equity or option prices) or market rates (e.g. interest or exchange rates). We

examine one equity portfolio, the British FTSE100 and three stocks of the

German DAX index portfolio (Bayer, Siemens and Volkswagen). In addition

to applying classical risk estimation methodology such as the exponential

moving average (EMA) and the empirical distribution function (EDF ), our

3



VaR timeplot

5 10 15

time*E2

-1
0

-5
0

5
10

re
tu

rn
s*

E-
2

Figure 1: Time plots of V aR forecasts at 99% and 1% level using (EDF ) and
(EMA) (with decay factor, λ = 0.94 and a 250 days window) for the Volk-
swagen stock returns from 3rd January 2000 - 10th October 2006. Returns
which exceed the VaR are marked in red. A total of 1781 data points.

focus is on risk evaluation in the case where long memory is an inherent

characteristics of the system. Figure 1 shows a time plot of V aR forecasts

using the exponential moving average (EMA) method (with decay factor,

λ = 0.94 and a rolling window of 250 days) and the empirical distribution

function (EDF ) method on Volkswagen log-returns from 3rd January 2000 -

10th October 2006. The significance level under consideration is 1% for large

losses and 99% for large profits. Returns which exceed the V aR are marked in

red. Though the EMA method shows better forecast result than the (EDF ),

the poor forecast quality of these methods are reflected by the number of

V aR exceeded. This indicates a possible inadequacy of an assumed normal

distribution. Guermat and Harris (2002) have shown that the EMA-based

V aR forecasts are excessively volatile and unnecessarily high, when returns

are not conditionally normal.

In what follows, we focus on risk evaluation under long range depen-
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dence in the volatility process. In particular, we apply two long memory

in volatility models, the Fractional Integrated Asymmetric Power-ARCH

(FIAPARCH) and the Hyperbolic-GARCH (HY GARCH) with different

error distribution assumptions. Our results show that models that account

for asymmetries in the volatility specifications as well as fractional integrated

parametrization of the volatility process, perform better in predicting the

one-step as well as five-step ahead V aR and ESF for short and long posi-

tions than short memory models. For example, results for the DAX stocks

suggest that accurate V aR estimates may be obtained from a long memory

in volatility model, coupled with skewed Student-t distributed innovations.

This indicates that for proper risk valuation of these stocks, the degree of

persistence should be investigated and appropriate models that incorporate

the existence of such characteristic be taken into account.

Measuring financial market risk can be described by the V aR, which

estimates the probability of a portfolio of assets losing a specific amount over

a specified time period due to adverse movements in the underlying market

factors, Jorion (2001).

Let S1, . . . , Sn be a time series of stock’s prices. For the price series

St (t = 1, . . . , n), daily logarithmic return (log-return) is defined as rt =

log
(

St

St−1

)
. The loss that rt could incur over a given time horizon h with a

given confidence level 1−α, at time t conditionally on available information,

Ft−1 is defined by the V aR:

P {(rt ≥ V aRt,h(α)|Ft−1} = α.

V aR can also be defined from the distribution of log-returns, Jorion

(2001). If qα is the αth percentile of continuously compounded return rt,

then the h−step ahead V aR in time t is defined as

V aRt,h(α) = (1− eqα)St−h.

This definition shows that a good V aR estimate can be realized with accu-

rate forecasts of the percentiles qα, which depends on appropriate volatility

modelling. V aR can describe extreme events, but it can not aggregate risk
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in the sense of subadditivity on portfolios (in this case, risk is diversified).

This recognized shortcoming is addressed by the concept of expected shortfall

(ESF ), a ”coherent risk measure” in the sense of Artzner et al. (1999).

The ESF is a coherent measure for such risk, used to predict the expected

value of the loss given that the loss is greater than the V aR, Scaillet (2004).

ESFt = E(|Lt| > |V aRt|),

where Lt is the expected value of loss if a V aRt violation occurs.

An equivalent measure is the average multiple of tail event to risk (AMTERM),

that ”measures how much events in tail distribution exceed the V aR, by cal-

culating the average multiple of these outcomes to their corresponding V aR

measures”, Hendricks (1996).

In our application, we estimate simultaneously V aR and ESF for the

long and short positions. We apply long memory in volatility models using

Student-t and skewed student-t distribution assumptions to find out which

model has the best overall performance. Without including all long mem-

ory GARCH-type specification models available in the literature, we estimate

only models that are extensions of specifications implemented in similar stud-

ies. We employ evaluation by backtesting procedure to investigate and select

models that predict the V aR accurately and minimizes, if a V aR violation

occurs.

In this regard, using daily returns, we analyze a V aR and ESF for daily

trading portfolios made up of long, (V aRL) and short, (V aRS) positions,

using various long-memory GARCH-type models. At long position, traders

incur losses when drop in stock prices (negative returns) are observed as

opposed to short position where losses are incurred when increase in stock

prices (positive returns) are observed.

Our analysis is twofold; first, we test and estimate long range depen-

dence in the return indexes by employing the rescaled variance test, Geweke

and Porter-Hudak (1983) (GPH) and two estimators, the log-periodogram

regression (GPH), Geweke and Porter-Hudak (1983) and the Gaussian semi-

parametric (GSP ), Robinson (1995a) estimators. We then model long range

dependence by fitting GARCH-type models that are known to accommo-
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date distributional characteristics such as volatility clustering, asymmetry,

leptokurtosis as well as long memory. This includes the (HY GARCH),

Davidson (2004) model that can well accommodate long memory and the

(FIAPARCH), Tse (1998) that can accommodate both asymmetry and

long memory.

Second, we assume that investors in today’s financial market can invest by

holding not only long but short positions. We compute the V aR and ESF

for both positions based on the chosen models. Our results suggest that

accurate V aR estimates may be obtained from a long memory in volatility

model, coupled with skewed Student-t distributed innovations. Although

these models can achieve accurate V aR and ESF for insample one-step

ahead prediction, we find that models that account for asymmetries as well as

fractional integrated parametrization of the volatility process, perform better

than those that reflect only symmetry or long-memory. This confirms, the

findings of Angelidis and Degiannakis (2006), in suggesting that models with

fractional integration parametrization of the volatility process are necessary

for accurate assessment of market risk. Long- memory in volatility models

hold the promise of improved long-run volatility forecast and more accurate

pricing of long-term contracts. The implication can therefore be extended to

the context of risk management.

An outline of the remaining sections of this paper is as follows. In section

2 we characterize the long memory models used and their specifications.

Section 3 present and overview on Backtesting V aR valuation methods. In

section 4 we present our empirical application and results.

2 Long Memory Models Specifications

We consider the continuously compounded rate of returns of a stock index,

rt = log
(

St

St−1

)
(St is the stock price at time t) from time t − 1 to t, which

can be decomposed into a predictable component, µt and an unpredictable
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component, εt, that:

rt = µt + εt, (1)

εt = ztσt (2)

Following Bollerslev (1986), the GARCH(p, q) model for conditional variance

is specified as

σ2
t = ω +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjε
2
t−j (3)

where ω > 0, αi ≥ 0 for i = 1, . . . , q and βj ≥ 0 for j = 1, . . . , p. In the case

where
∑q

i=1 αi +
∑p

j=1 βj < 1, the process εt is covariance stationary with

unconditional variance

σ2 =
α

1−
∑q

i=1 αi +
∑p

j=1 βj

.

A shock to σ2
t is known to have decaying impact on future volatility, σ2

t+h,

for increasing h, but is asymptotically negligible. Many high-frequency times

series applications that have employed GARCH(p, q) process to estimate σ2
t ,

show strong dependence in that
∑q

i=1 αi +
∑p

j=1 βj ≈ 1.

In the framework of risk management, the application of the GARCH(1, 1)

model to forecast investors risk have yield mixed results. Billo and Pelizzon

(2000) have shown that for V aR valuation, the number of exceptions gener-

ated by the GARCH(1, 1) model deviates significantly from the theoretical

values. Using lag-operator L, equation (3) can be expressed as an ARMA

process:

[1− α(L)− β(L)]ε2
t = ω + [1− β(L)](ε2

t − σ2
t )

where α(L) = α1(L) + · · ·+ αqL
q and β(L) = β1(L) + · · ·+ βpL

p.

For α(L)+β(L) = 1, Engel and Bollerslev (1986) proposed the Integrated-

GARCH, IGARCH(p, q) model, expressed as

φ(L)(1− L)ε2
t = ω + [1− β(L)](ε2

t − σ2
t ) (4)

where φ(L) = [1−α(L)−β(L)](1−L)−1, is of order max(p, q)−1. Compared
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to GARCH(p, q), the σ2
t in IGARCH(p, q) is infinite and a shock to σ2

t is

persistent, indicating its importance for volatility forecasting.

A special case of the IGARCH(p, q) is the Exponential Weighted Mov-

ing Average (EWMA) model or RiskMetrics, expressed as

σ2
t = (1− λ)ε2

t−1 + λσ2
t−1 (5)

where λ = 0.94 for daily and λ = 0.97 for weekly data respectively. In this

case the ARCH and GARCH coefficients are fixed. This model process

provides a cumulative impulse response function that is constant over time,

which is not very reliable. So and Yu (2006) have shown that for the 99% V aR

valuation, the EWMA model is outperformed by stationary and fractionally

integrated GARCH models.

Between stationarity and unit root, the concept of fractional integration

has been extended to GARCH type models, with many ways to parametrisize

the conditional volatility. In our application, we consider two long memory

in volatility models, the FIAPARCH of Tse (1998) and the HY GARCH

of Davidson (2004).

FIAPARCH Model

Tse (1998) introduced this model by incorporating a fractional filter (1−L)d

into the Asymmetric Power ARCH (APARCH) model frame work of Ding

et al. (1993). The APARCH(p, q) can be expressed as

σδ
t = ω +

q∑
i=1

αi(|εt−i| − γiεt−i)
δ +

p∑
j=1

βjσ
δ
t−j, (6)

where δ > 0 and −1 < γi < 1. δ represent a Box-Cox transformation of σt

and γi the leverage effect. For the FIAPARCH(p, d, q) model of Tse (1998),

the conditional volatility specification is given as

σδ
t = ω +

{
1− [1− β(L)]−1α(L)(1− L)d

}
(|εt| − γεt)

δ. (7)
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(1− L)d is the fractional filter defined by its binomial expansion

(1− L)d =
∞∑

j=0

Γ(j − d)

Γ(−d)Γ(j + 1)
Lj (8)

where Γ(z) =
∫∞

0
tz−1e−tdt is the gamma function. The autocorrelation

function is defined by

ρk =
Γ(1− d)Γ(k + d)

Γ(d)Γ(k + 1− d)
∼ Ck2d−1

If k is large, the coefficients in equation (8) for (0 < d < 1) decay hyperboli-

cally. Therefore the effect of past innovations on current conditional variance

dies out at a hyperbolic rate with increasing lag length.

The term (|εt| − γεt)
δ reflects ”leverage” effect, γ 6= 0. When 0 < γ < 1,

a positive innovation increases volatility less than a negative innovation and

vice versa for −1 < γ < 0. For γ = 0, positive and negative innovations

of same magnitude have thesame effect on volatility. The FIAPARCH

model allows for volatility clustering, leptokurtosis, long memory and features

asymmetry in relationship between the conditional variance and the lagged

squared innovations. It nests the GARCH, IGARCH, GRJ − GARCH,

APARCH, FIPARCH, FIGARCH and FIAGARCH models as special

cases.

HYGARCH Model

To test whether nonstationarity of the fractional integrated GARCH process

FIGARCH(p, d, q) of Baillie et al. (1996) holds, Davidson (2004) proposed

the hyperbolic GARCH (HY GARCH) model. The FIGARCH process is

expressed as

Φ(L)(1− L)dε2
t = ω + Θ(L)νt (9)

with νt = ε2
t − σ2

t . The conditional variance for the FIGARCH(p, d, q) can
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be represented as

σ2
t =

ω

1− θ(L)
+

{
1− φ(L)(1− L)d

1− θ(L)

}
ε2

t (10)

= ω[1− θ(L)]−1 +
{
1− [1− θ(L)]−1φ(L)(1− L)d

}
ε2

t (11)

where 0 ≤ d ≤ 1.

The HY GARCH model is obtained by extending the conditional variance

of the FIGARCH(p, d, q) by introducing weights to its difference operator.

By replacing 1 − [1 − θ(L)]−1φ(L)(1 − L)d in equation (11) by 1 − [1 −
θ(L)]−1φ(L)

[
1 + α

{
(1− L)d

}]
, the conditional variance of the HY GARCH

process can be formulated as

σ2
t = ω[1− θ(L)]−1 +

{
1− [1− θ(L)]−1φ(L)

[
1 + α

{
(1− L)d

}]}
ε2

t (12)

This model is able to reproduce the characteristics of volatility clustering,

leptokurtosis and long memory but disregards asymmetry and the fact that

the conditional volatility is best represented by non-integer powers of the

absolute value of the observations. It nests the GARCH models (for α = 0),

IGARCH (for α = d = 1) and FIGARCH (for α = 1 or log α = 0).

2.1 Long Memory Test and Estimation

Many empirical studies have focused on testing the presence of long mem-

ory in volatility of financial markets. Motivations for such studies include

the use of volatility as preliminary measure of risk in financial markets and

their predictions can lead to improve forecasts of asset price movement. In

this paper, long memory in volatility in an equity portfolio (British FTSE)

and German DAX stocks (Bayer, Siemens, Volkswagen) is examined using

two proxies of volatility returns: absolute and square returns. The rescaled

variance (V/S) test of Giraitis et al. (2003) and two semiparametric estima-

tors of long memory parameter, the log-periodogram regression (GPH) of

Geweke and Porter-Hudak (1983) and the Gaussian semiparametric (GSP )

of Robinson (1995a) are employed.
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Rescaled Variance test

Giraitis et al. (2003) introduced the Rescaled Variance test (V/S), by center-

ing the Kwiatkowski et al. (1992), (KPSS) test of trend stationarity against

a unit root alternative, based on the partial sum of deviations from the mean.

For testing long memory in a stationary series the KPSS statistic is given

as

KPSST =
1

T 2σ̂2
T (q)

T∑
k=1

{
k∑

j=1

(rj − rT )

}2

(13)

where σ̂2
T (q) = γ̂0 + 2

∑q
j=1

(
1− j

1+q

)
γ̂j, is the heteroscedastic and auto-

correlation consistent (HAC) estimator of the variance, (q < T ). γ̂0 is the

variance of the process and the sequence {γ̂j}q
j=1 denotes the autocovariances

of the process up to the order q.

Centering KPSST based on the partial sum of the deviations from the

mean, the Rescaled Variance test statistic is expressed as:

V/S(q) =
1

T 2σ̂2
T (q)

 T∑
k=1

{
k∑

j=1

(rj − rT )

}2

− 1

T

{
T∑

k=1

k∑
j=1

(rj − rT )

}2
 (14)

Giraitis, Kokoszka, Leipus (2001) have shown that this statistic can detect

long range dependence in the volatility for the class of ARCH(∞) processes.

Log-Periodogram Estimator

Geweke and Porter-Hudak (1983) (GPH), proposed a semi-parametric pro-

cedure to obtain an estimate of the fractional difference parameter based on

the periodogram of a time series zt, (t = 1, . . . , T ) defined by

I(λj) =
1

2πT

∣∣∣∣∣
T∑

t=1

zte
−iλt

∣∣∣∣∣
2

(15)

where λj = 2πj
T

, j = 1, . . . ,m (m is a positive integer). The memory parame-

ter d̂GPH is the OLS estimator in a linear regression of the log-periodogram,
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log I(λj) of the process on a constant and a variable Xj = log
{
4 sin2(λj/2)

}
:

d̂GPH = −
∑m

j=1(Xj − X̄) log {I(λj)}
2
∑m

j=1(Xj − X̄)
(16)

The theoretical asymptotic variance of the spectral regression error term

is known to be π2

6
. Details on the consistency and asymptotic normality

of the GPH estimator can be found in Geweke and Porter-Hudak (1983),

Robinson (19990), Hassler (1993a). For nonstationary fractional integrated

process, Kim and Phillips (2006) have shown that this estimator is consistent

in the range 0.5 < d ≤ 1.

Gaussian Semiparametric Estimator

The spectrum of a stationary process with long memory parameter d can be

approximated in the neighborhood of the zero frequency

f(λ) ∼ Cλ−2d (17)

as λ → 0+, C > 0. The GSP estimator is derived from the approximation,

limλi→0+ f(λi) = Cλ−2d
i of a long memory process in the Whittle approximate

maximum likelihood estimator, LW (θ). For m∗ = [T
2
], an approximation to

the Gaussian likelihood, Beran (1994) is given as

LW (θ) = − 1

2π

m∗∑
j=1

log fθ(λj) +
IT (λj)

fθ(λj)
(18)

for a given parametric spectral density fθ(λ). d is estimated by solving the

minimization,

arg min
C,d

L(C, d) =
1

m

m∑
j=1

{
log(Cλ−2d

j ) +
I(λj)

Cλ−2d
j

}

where I(λj) is the periodogram evaluated for a degenerated range of m har-

monic frequencies, λj = 2πj
T

, (j = 1, . . . ,m << [T
2
]). [.] represents the

integer part operator, bounded by the bandwidth parameter m, which in-

creases with the sample size T but more slowly. The bandwidth m must
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satisfy 1
m

+ m
T
→ 0 as T → ∞. For m = [T

2
], this estimator is Gaussian for

the parametric model f(λ) = Cλ−2d.

The Gaussian Semiparametric Estimator estimator for d, d̂GSP is ex-

pressed as

d̂GSP = arg min
d

{
log

(
1

m

m∑
j=1

I(λj)

Cλ−2d
j

)
− 2d

m

m∑
j=1

log(λj)

}
. (19)

Robinson (1995a) showed that
√

m(d̂GSP − d)
d→ N(0, 1/4) and Robinson

(1999) showed its validity in the presence of some form of conditional het-

eroscedasticity. In general, the ranges of consistency and asymptotic nor-

mality for GSP are the same as those of the GPH estimator, Phillips and

Shimotsu (2004).

3 Value-at-Risk Analysis

Mathematically, V aR at α probability level can be defined as

V aRα,t = F−1
t (α) = σtqα

where F−1
t is the inverse function of the conditional cumulative distribution

of the underlying at time t, σt is the volatility. In this case, the accuracy of

the V aR forecast depends heavily on proper estimation of the volatility σt

and the assumption of the underlying distribution. In our application, we

characterize the FIAPARCH and HY GARCH models under the student-

t and skewed student-t distribution of the error term and compare their

performance.

Suppose that f(zt) is the pdf of the standardized residuals zt. We charac-

terize different specifications for f(zt), namely student-t, zt ∼ st(0, 1; ν) and

skewed student-t, zt ∼ skst(0, 1; ξ, ν) where ν is the degrees of freedom and

ξ the asymmetry parameter.
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The Student-t distribution for zt ∈ IR is given by

fst(zt; ν) =
Γ(ν+1

2
)

Γ(ν
2
)
√

ν(ν − 2)

(
1− z2

t

ν − 2

)− ν+1
2

(20)

where the degree of freedom ν, (ν > 2) and Γ(ν) =
∫∞

0
e−xxν−1dx is the

gamma function. Under the Student-t distribution, the V aR of α quantile

for the long and short position is expressed as

V aRL = µ̂t + stα,ν σ̂t (21)

V aRS = µ̂t + st1−α,ν σ̂t (22)

where stα,ν and st1−α,ν are the left and right quantiles respectively at α%

for the (standardized) student-t distribution and µ̂t, estimate of the sam-

ple mean. The student-t distribution has thicker tails and can deal with

leptokurtosis, Bollerslev (1987). For independent and student-t distributed

innovations, the conditional variance and kurtosis may vary freely over time,

Brooks et al. (2005).

The skewed student-t distribution has a density for zt ∈ IR:

fskst(zt; ν, ξ) =


2

ξ+ 1
ξ

sg {ξ(szt + m); ν} if zt < −m
s

2
ξ+ 1

ξ

sg
{

(szt+m)
ξ

; ν
}

if zt ≥ −m
s
,

(23)

where g(.; ν) is the symmetric (unit variance) student density, ξ the asymmet-

ric coefficient, ν the degree of freedom. m and s2 are the mean and variance

respectively of the non-standardized skst, Lambert and Laurent (2001).

m =
Γ(ν+1

2
)
√

ν − 2
√

πΓ(ν
2
)

(
ξ − 1

ξ

)
,

s =

√(
ξ2 +

1

ξ2
− 1

)
−m2.

The skewed student-t distribution is able to reduce excess kurtosis and skew-
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ness in standardized residuals, providing efficiency gains. It nests the student-

t for ξ = 1 and the normal distribution for ξ = 1 and ν = ∞.

Under skewed student-t distribution the V aR of α quantile for the long

and short position is expressed as

V aRL = µ̂t + skstα,ν,ξσ̂t (24)

V aRS = µ̂t + skst1−α,ν,ξσ̂t (25)

where skstα,ν,ξ and skst1−α,ν,ξ are the left and right quantiles respectively at

α%.

3.1 Backtesting VaR

To compare the accuracy of the different V aR statistical forecasts, tests

based on Kupiec (1995) and Christoffersen (1998) backtesting measures are

applied.

Unconditional coverage

The basic idea of the Kupiec (1995) test is to examine whether the failure rate

of a model is statistically equal to the expected one (unconditional coverage).

Let N =
∑T

t=1 It be the number of exceptions in the sample of size T , where

It+1 =

1 if rt+1 < V aRt+1|t(p)

0 if rt+1 ≥ V aRt+1|t(p),

follow a binomial distribution, N ∼ B(T, p). If p = E[N
T

] is the expected

exception frequency (expected ratio of violations), then the hypothesis for

testing whether the failure rate of the model equals the expected one, is

given as

H0 : p = p0 (26)

where p0 is a pre-specified V aR level. The appropriate likelihood ratio sta-

tistic under H0 is expressed as

LR1 = −2 log
{
pN

0 (1− p0)
T−N

}
+ 2 log

{
(N/T )N (1−N/T )T−N

}
(27)
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Asymptotically, LR1 ∼ χ2(1) distributed under H0. A preferred model for

V aR prediction should exhibit the property that the unconditional coverage,

measured by p = E[N
T

], equals the desired coverage level, p0.

Conditional coverage

The Christoffersen (1998) likelihood ratio statistics, test the assumption of

unconditional coverage and independence of failures. Let πij = P (1t =

j|1t−1 = i) be the transition probability and nij =
∑T

t=1 1(1t = j and 1t−1 =

i), where i, j = 0 or 1. The test hypothesis of independence is given as:

H0 : π00 = π10 = π, π01 = π11 = 1− π (28)

One can test the hypothesis of unconditional coverage and independence

using the likelihood ratio statistic:

LR2 = −2 log {π̂n0(1− π̂)n1}+ 2 log {π̂n00
00 π̂n01

01 π̂n10
10 π̂n11

11 } (29)

where π̂ij =
nij

(nij+ni,1−j)
, nj = n0j + n1j and π̂ = n0

(n0+n1)
. Under H0, LR2 ∼

χ2(2). This test has an advantage in that it can reject a V aR model that

generates either too many or too few clustered violations, i.e. it takes into ac-

count the conditionality in the forecast and enables one to separate clustering

effects from distributional assumption effects.

4 Empirical Application

The data consist of daily closing prices for the English FTSE stock index

(04.01.2000−30.10.2006) and three German DAX stocks; the Bayer, Siemens

and Volkswagen, each from (04.01.2000 − 30.10.2006). For each series, the

log-returns is expressed (in %) as,

rt = 100 ∗ log

(
St

St−1

)
denotes the continuously compounded daily returns where St is the stock

price at time t. Log-returns have the nice property in that the T − day

17



log-returns are the arithmetic sums of one-day log-returns and therefore one

can relate between one-day and T -day Value-at-Risk. Summary statistics

presented in Table 1 show that all returns share similar properties in kurtosis.

The FTSE index and the Volkswagen stock are negatively skewed. The Box-

Pierce statistic for remaining serial correlation in the squared standardized

residuals (using 24 lags) indicates high serial correlation in the variance.

From the descriptive graphics presented in Figure 3, several volatility periods

can be observed, such as the periods ending 2001, 2002 and the beginning of

2003. Figure 4 shows the boxplots of log-returns for the four data sets. It

also provides evidence of changes in volatilty from time to time.

The V/S test results for long range dependence in the absolute and square

returns are presented in Table 2. At 5% level, we fail to reject long memory

since the evaluated statistic is over the critical value, 0.1869. The GPH

estimates ( bandwidths, m = T 0.5, m = T 0.6, m = T 0.8) and the GSP esti-

mates ( bandwidths, m = [T
4
], m = [ T

16
], m = [ T

64
]) are reported in Table

3. Results from both estimators show that d ∈ (0.11, 0.74). To balance the

tradeoff between bias and variance, estimates for bandwidths m = Tα with

α = 0.525, 0.575 for GPH and m = [T
8
], [ T

32
] for GSP are also investigated.

Results not included here show that estimates of d for both estimators fall

within (−0.05 < d < 0.75), the range of consistency for fractional integrated

process with long range dependence, Kim and Phillips (2006).

4.1 Model Estimation

Since the returns show serial autocorrelation, we fit an autoregressive struc-

ture to the return series:

Φ(L) = (rt − µ) = εt (30)

where Φ(L) = φ1L− · · · − φpL
p as an autoregressive lag polynomial of order

p. We assume that the conditional mean

µt = µ +

p∑
i=1

φi(rt−i − µ) (31)
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Stock index Stocks
FTSE Bayer Siemens VW

std. dev. 1.15 2.31 2.45 2.11
min. -5.58 -19.42 -10.95 -9.65
max. 5.90 32.99 10.59 10.69
skew. -0.16 1.10 0.07 -0.01
exc. kurt 2.96 27.71 1.79 2.38
Q2(24) 2329.98 [0.0] 136.64 [0.0] 1724.63 [0.0] 794.20 [0.0]

Table 1: Descriptive statistics for the daily log-returns for the FTSE stock
index (04.01.2000− 30.10.2006) and DAX stocks; Bayer, Siemens and Volk-
swagen (V W ) from (04.01.2000− 30.10.2006). Q2(24) is the Box-Pierce sta-
tistic for remaining serial correlation in the squared standardized residuals
using 24 lags, with p-values in brackets.
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Figure 2: Daily closing prices for the FTSE index level and DAX stocks;
Bayer, Siemens and Volkswagen.
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Figure 3: Daily log-returns for the FTSE index level and DAX stocks;
Bayer, Siemens and Volkswagen.

|rt| r2
t

V/S FTSE Bayer Siemens VW FTSE Bayer Siemens VW
m
5 2.41 1.90 3.27 1.86 1.52 0.66 5.40 1.42
10 1.33 1.31 2.09 1.25 0.97 0.56 4.43 0.99
32 0.56 0.58 0.83 0.58 0.43 0.35 2.86 0.50
40 0.47 0.48 0.69 0.49 0.37 0.32 2.62 0.44
110 0.21 0.23 0.31 0.25 0.21 0.20 1.83 0.23

Table 2: Rescaled Variance test on log-returns for absolute return, |rt|, square
returns of the FTSE index and DAX stocks: Bayer, Siemens, Volkswagen
(V W ). Sample size T = 1781 and 5% significance level.
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Figure 4: Boxplots of log-returns of the FTSE index and the DAX stocks,
Bayer, Siemens and Volkswagen.

|rt| r2
t

FTSE Bayer Siemens VW FTSE Bayer Siemens VW
GPH

m = T 0.5 0.66 0.67 0.71 0.58 0.49 0.26 0.64 0.52
m = T 0.6 0.58 0.54 0.60 0.48 0.57 0.35 0.55 0.40
m = T 0.8 0.35 0.22 0.25 0.25 0.37 0.12 0.24 0.24

GSP
m = [T

4
] 0.67 0.24 0.30 0.25 0.57 0.11 0.28 0.24

m = [ T
16

] 0.45 0.44 0.53 0.46 0.44 0.25 0.51 0.39
m = [ T

64
] 0.33 0.65 0.74 0.66 0.35 0.35 0.75 0.70

Table 3: Log-periodogram regression (GPH), and the Gaussian semiparamet-
ric (GSP ) estimates for absolute return, |rt|, square returns of the FTSE
index and DAX stocks: Bayer, Siemens, Volkswagen (V W ). Sample size
T = 1781.
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follows an AR(2) process in order to capture non-synchronous trading effects.

The process specification is expressed as

rt = c + a1rt−1 + a2rt−2 + εt (32)

εt = ztσt (33)

where zt is identically and independently distributed with zero mean and

unit variance, εt ∼ (0, σ2
t ). For the conditional variance of εt, we fit the

FIAPARCH and HY GARCH models under the student-t and skewed

student-t distributed innovations. A lag order, p = q = 1 is assumed for

both models specifications.

Estimation results for the FIAPARCH and HY GARCH models are

presented in Tables 4 and 5 respectively. Under skewed student-t distribution,

returns of the FTSE equity and Siemens stock are skewed to the left, while

Bayer and Volkswagen exhibit right skewness. This result also reveal evidence

of the fat-tail phenomenon, given that the tail dependence parameter (ν) is

significantly different from zero. Since estimates of δ for FTSE, Bayer and

Siemens are not significantly different from 1 but significantly different from

2, it is more relevant to model the conditional standard deviation instead of

the conditional variance. For Volkswagen stock, modelling the conditional

variance is relevant as the δ estimates are significantly different from 1. In

addition, γ is positive and significant, indicating leverage effect for negative

returns in the conditional variance specification.

For the HY GARCH model results, Table 5, the hyperbolic parame-

ter, log(α̂) < 0 are not significantly different from zero, indicating that the

GARCH components are covariance stationary. The AIC and log-likelihood

values show that the FIAPARCH model with skewed student-t distributed

innovations perform better for all the returns series. This is in line with

Degiannakis (2004), that the FIAPARCH models with skewed student-t

distributed innovations effectively captures the characteristics of the empiri-

cal distribution.

Diagnostic results from the standardized and squared standardized resid-

uals (Q-statistics) and the residual based test (RBD, Tse (2002) for con-

22



ditional heteroscedasticity do not reject the null hypothesis of a correct

model specification for both models. The FIAPARCH model is observed to

perform better in modeling the returns than the symmetric (HY GARCH)

model. It has the advantage in that, it features asymmetry in relationship

between the conditional variance and the lagged squared innovations, what-

ever the chosen error term. Our reference to symmetry and asymmetry is in

relation to the distribution of the innovations. In this case, the FIAPARCH

model is more adequate to model the negative leverage effect with skewed

student-t distributed innovations.

Several criteria have been used to assess the forecasting performance

of the models; the Mincer-Zarnowitz (1969) regression, Mean Square Er-

ror (MSE), Mean Absolute Prediction Error (MAPE) and the logarithmic

Loss Function (LL). In-sample one-day-ahead forecast performance of the

HY GARCH and FIAPARCH models under the skewed student-t distrib-

uted innovations are given in Table 6. Our result shows that the forecast accu-

racy for the FIAPARCH is marginally better compared to the HY GARCH

model.

Figure 5 presents plots of the time path of conditional standard deviation

for each log-return series based on the FIAPARCH and HY GARCH mod-

els. As observed, the FIAPARCH model is slightly better in estimating

the magnitude of volatility than the HY GARCH. Our results suggest that

such models hold the promise of improved long-run volatility forecast and

more accurate pricing of long-term contracts. The implication can therefore

be extended to the context of risk management. In what follows, we employ

the FIAPARCH model (the EWMA model as benchmark) with skewed

student-t distributed innovations for Value-at-Risk and Expected Shortfall.

4.2 Value-at-Risk and Expected Shortfall Predictions

For an overview, we present in Figure 6 the V aR predictions for the FTSE

index and DAX stocks returns (Bayer, Siemens, Volkswagen) based on the

classical EMA and EDF estimation methods. As observed, these methods

do not give satisfactory results since the plots show many returns exceed-

ing the V aR. Though EMA gives better calibration results than EDF , it
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FTSE Bayer Siemens V olkswagen
t Skt t Skt t Skt t Skt

µ 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.04
(0.32) (0.12) (0.36) (0.56) (0.35) (0.35) (0.38) (1.07)

a1 -0.06 -0.05 0.01 0.01 0.01 0.01 0.05 0.05
(-2.66) (-1.96) (0.56) (0.57) (0.63) (0.67) (2.18) (2.28)

a2 -0.03 -0.03 0.00 0.00 0.02 0.02 -0.02 -0.02
(-1.21) (-1.42) (0.04) (0.05) (0.64) (0.64) (-1.03) (-0.97)

ω 1.65 1.12 4.25 4.28 12.03 12.01 5.87 5.97
(5.22) (2.94) (3.94) (3.94) (2.50) (2.50) (3.10) (3.09)

d 0.42 0.38 0.41 0.41 0.61 0.61 0.46 0.47
(8.69) (9.10) (6.87) (6.96) (7.02) (6.98) (7.67) (7.88)

α1 0.26 0.28 0.35 0.35 0.20 0.20 0.30 0.29
(5.88) (7.48) (4.98) (4.78) (4.11) (4.11) (4.68) (4.60)

β1 0.60 0.60 0.69 0.69 0.78 0.78 0.65 0.66
(12.48) (12.49) (9.32) (9.03) (13.23) (13.15) (10.25) (10.69)

γ 0.93 0.95 0.79 0.78 0.45 0.45 0.21 0.22
(4.74) (6.44) (3.33) (3.32) (3.19) (3.19) (2.39) (2.46)

δ 1.16 1.22 1.27 1.27 1.38 1.38 1.80 1.79
(11.61) (12.78) (10.15) (10.17) (7.46) (7.44) (11.27) (11.45)

ν 119.20 132.89 6.70 6.67 12.46 12.45 7.12 6.95
(38.03) (47.45) (5.18) (5.18) (3.60) (3.60) (6.06) (6.28)

ξ -0.17 0.02 -0.01 0.07
(-4.66) (0.68) (-0.07) (2.47)

Ln(`) -2292.49 -2291.27 -3580.33 -3580.12 -3750.44 -3750.44 -3631.49 -3628.60

AIC 2.67 2.66 4.03 4.03 4.22 2.77 4.09 4.08

Q(24) 14.36 18.49 19.71 19.78 24.33 24.33 31.05 30.87
(0.70) (0.73) (0.60) (0.59 (0.33) (0.32) (0.09) (0.09)

Q2(24) 19.87 23.21 2.98 3.00 20.96 20.95 18.68 18.77
(0.33) (0.38) (0.99) (0.99) (0.52) (0.52) (0.66) (0.65)

RBD(24) 22.59 21.20 2.30 2.32 21.07 21.08 17.80 17.93
(0.54) (0.62) (1.00) (1.00) (0.63) (0.63) (0.81) (0.80)

Table 4: Estimation results from AR(2) − FIAPARCH(1, d, 1) model us-
ing student-t, and skewed student-t distribution. t-statistics of corresponding
tests in brackets. Ln(`) is the value of the maximized log-likelihood. Q(24)
and Q2(24) are the Box-Pierce statistic for remaining serial correlation in
the standardized and squared standardized residuals respectively. RBD(24)
is the residual based diagnostic for conditional heteroscedasticity, using 24
lags with p-values in parenthesis.
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FTSE Bayer Siemens V olkswagen
t Skt t Skt t Skt t Skt

µ 0.04 0.03 0.05 0.06 0.05 0.06 0.03 0.06
(2.29) (2.07) (1.30) (1.54) (1.42) (1.46) (0.67) (1.41)

a1 -0.08 -0.09 0.01 0.02 0.02 0.02 0.05 0.05
(-3.12) (-3.79) (0.56) (0.63) (0.67) (0.71) (2.13) (2.28)

a2 -0.04 -0.05 -0.01 -0.01 0.01 0.01 -0.02 -0.02
(-1.64) (-2.03) (-0.27) (-0.35) (0.41) (0.42) (-1.02) (-0.91)

ω 0.02 0.02 0.01 0.02 0.01 0.01 0.06 0.05
(1.69) (1.66) (0.70) (69) (0.20) (0.17) (0.73) (0.49)

d 0.60 0.60 1.13 1.14 0.65 0.65 0.48 0.46
(7.01) (6.49) (7.34) (7.55) (3.40) (3.55) (3.84) (3.73)

α1 0.06 0.08 -0.09 -0.10 0.16 0.16 0.29 0.29
(1.20) (1.42) (-0.83) (-0.91) (1.77) (1.83) (3.63) (3.57)

β1 0.60 0.60 0.97 0.97 0.79 0.79 0.66 0.65
(7.32) (6.48) (23.89) (24.88) (7.23) (7.59) (7.73) (7.63)

ξ -0.16 0.03 0.02 0.07
(-4.45) (0.97) (0.51) (2.36)

ν 33.97 58.97 5.84 5.80 11.13 11.12 6.76 6.56
(1.25) (5.22) (6.09) (6.10) (3.98) (2.79) (6.14) (6.34)

log ˆ(α) -0.02 -0.03 -0.01 -0.01 0.00 0.00 0.01 0.02
(-0.90) (-1.12) (-0.72) (-0.71) (0.26) (0.30) (0.15) (0.36)

Ln(`) -2319.74 -2310.46 -3599.01 -3598.57 -3765.05 -3764.93 -3636.06 -3633.42

AIC 2.70 2.67 4.05 4.05 4.24 4.24 4.05 4.02

Q(24) 17.65 19.02 20.32 20.37 22.31 22.31 29.70 29.39
(0.72) (0.64) (0.56) (0.55) (0.44) (0.44) (0.13) (0.13)

Q2(24) 18.37 18.25 2.42 2.41 22.06 22.18 18.14 18.54
(0.68) (0.64) (0.99) (0.99) (0.45) (0.44) (0.69) (0.67)

RBD(24) 17.76 17.65 2.24 2.23 22.16 22.31 16.96 17.59
(0.81) (0.82) (1.00) (1.00) (0.56) (0.56) (0.85) (0.82)

Table 5: Estimation results from AR(2) − HY GARCH(1, d, 1) model us-
ing student-t, and skewed student-t distribution. t-statistics of corresponding
tests in brackets. Ln(`) is the value of the maximized log-likelihood. Q(24)
and Q2(24) are the Box-Pierce statistic for remaining serial correlation in
the standardized and squared standardized residuals respectively. RBD(24)
is the residual based diagnostic for conditional heteroscedasticity, using 24
lags with p-values in parenthesis.
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Figure 5: Plots of the time path of conditional standard deviation for each
log-return series based on the FIAPARCH and HY GARCH models under
the skewed student-t distributed errors.
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HY GARCH c β R2 MSE MAPE LL
FTSE 0.02 0.99 0.15 1.24 15300 7.22
Bayer 0.36 0.67 0.03 18.66 2479 7.62

Siemens 1.14 0.42 0.01 18.47 103.40 6.99
V W 2.20 0.22 0.002 59.37 145.50 7.69

FIAPARCH c β R2 MSE MAPE LL
FTSE 0.04 1.13 0.18 1.21 11600 7.22
Bayer -0.94 1.50 0.11 17.02 1913 6.79

Siemens 0.50 0.80 0.03 17.76 95.47 6.69
V W 1.94 0.35 0.003 58.19 131.50 7.30

Table 6: In sample one-step-ahead forecasting performance of the
HY GARCH and FIAPARCH models on log returns. Forecast criteria are
the Mincer-Zarnowitz regression (c, β are regression coefficients, R2, the
determination coefficient of regression for the model), MSE is the Mean Ab-
solute Prediction Error, MAPE is the Root Mean Square Error and LL, the
logarithmic Loss Function.

cannot effectively be applied to model long range dependence because of its

exponentially decreasing memory.

We apply the FIAPARCH model under the skewed student-t distributed

innovations to calculate the Value-at-Risk and Expected Shortfall. Backtest-

ing V aR and ESF results for the FIAPARCH models are presented in Ta-

bles 7 to 10. The computed values are the failure rate, Kupiec LR test and

P-values, the Expected Shortfall (ESF ) with significance level, α = 0.01, 0.05

and α = 0.95, 0.99 for long and short positions respectively. The failure rate

for short position refers to the percentage of positive returns larger than the

VaR prediction, while the failure rate for the long position is the percentage

of negative returns smaller than the V AR prediction. Results show that the

V aR for the FIAPARCH model performs very well for the one-day as well

as for the five-days time horizon. With more consecutive choice of α, the

model captures the fat tails exhibited in the returns very well.

The one-step ahead V aR prediction plots, Figure 7 for the FIAPARCH

model shows that the model does well in predicting critical loss for long

and short positions. The test of V aR is not rejected for all levels. For
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FTSE h = 1 day h = 5 days
Short position

α Quantile 0.950 0.990 0.950 0.990
Failure rate (N

T
) 0.948 0.990 0.948 0.991

Kupiec-LR1 0.039 0.092 0.048 0.297
P-value 0.842 0.761 0.825 0.587

ESF 1.915 2.409 1.915 2.511
Long position

α Quantile 0.050 0.010 0.050 0.010
Failure rate (N

T
) 0.055 0.008 0.054 0.008

Kupiec-LR1 0.916 0.307 0.761 0.297
P-value 0.338 0.579 0.382 0.585

ESF -2.241 -2.587 -2.257 -2.587

Table 7: In-sample Value-at-Risk (V aR) and Expected Shortfall (ESF ) eval-
uation under the skewed student-t distribution - FIAPARCH for FTSE
log-returns.

example, the proportion of exceptions at 1% is about 0.8% for FTSE, Bayer,

Siemens and 1.1% for Volkswagen. Our results indicate that, models that

account for asymmetries as well as fractional integrated parametrization of

the volatility process, perform better in predicting V aR and ESF for short

and long positions than short memory models. This suggest that for proper

risk valuation, the degree of persistence of the process should be investigated

and appropriate model that incorporate the existence of such characteristics

be taken into account.

Predicted five-days-ahead out-of-sample V aR and ESF forecast results

for the EWMA and FIAPARCH models are presented in Tables 11 and

12 respectively. These forecasts are based on a ’sliding window’, updating

the model parameters every 50 observations. Though not as good as the in-

sample forecasts, the results show that the FIAPARCH model specification

performs well for out-of-sample V aR predictions.
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Figure 6: Time plots of V aR forecasts at 99% and 1% level using the EDF
(blue) and EMA (green) models (with decay factor, λ = 0.94 and a rolling
window of 250 days) for the returns series. Returns which exceed the VaR
are marked in red.
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Figure 7: One-day-ahead V aR forecast plots for the FTSE and DAX stocks
log-returns (Bayer, Siemens, Volkswagen) with FIAPARCH model under
skewed student-t distributed innovations. The α quantiles for long and short
positions are α = 0.01, 0.05 and α = 0.95, 0.99 respectively.
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Bayer h = 1 day h = 5 days
Short position

α Quantile 0.950 0.990 0.950 0.990
Failure rate (N

T
) 0.951 0.992 0.952 0.992

Kupiec-LR1 0.107 0.884 0.093 0.867
P-value 0.742 0.347 0.759 0.351

ESF 4.556 7.916 4.556 7.916
Long position

α Quantile 0.050 0.010 0.050 0.010
Failure rate (N

T
) 0.052 0.008 0.051 0.008

Kupiec-LR1 0.186 0.470 0.056 0.457
P-value 0.665 0.492 0.811 0.498

ESF -4.531 -7.131 -4.526 -7.131

Table 8: In-sample Value-at-Risk (V aR) and Expected Shortfall (ESF ) eval-
uation under the skewed student-t distribution - FIAPARCH for Bayer log-
returns. ∗ is the 5% confidence level.

Siemens h = 1 day h = 5 days
Short position

α Quantile 0.950 0.990 0.950 0.990
Failure rate (N

T
) 0.952 0.992 0.953 0.992

Kupiec-LR1 0.301 0.884 0.407 0.867
P-value 0.583 0.347 0.523 0.351

ESF 4.737 5.781 4.775 5.781
Long position

α Quantile 0.050 0.010 0.050 0.010
Failure rate (N

T
) 0.053 0.008 0.052 0.009

Kupiec-LR1 0.417 0.190 0.314 0.182
P-value 0.518 0.662 0.574 0.669

ESF -4.468 -5.075 -4.492 -5.075

Table 9: In-sample Value-at-Risk (V aR) and Expected Shortfall (ESF ) eval-
uation under the skewed student-t distribution - FIAPARCH for Siemens
log-returns.
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Volkswagen h = 1 day h = 5 days
Short position

α Quantile 0.950 0.990 0.950 0.990
Failure rate (N

T
) 0.951 0.992 0.951 0.992

Kupiec-LR1 0.107 0.884 0.093 0.457
P-value 0.742 0.347 0.759 0.498

ESF 4.087 6.166 4.093 6.050
Long position

α Quantile 0.050 0.010 0.050 0.010
Failure rate (N

T
) 0.052 0.011 0.052 0.012

Kupiec-LR1 0.186 0.549 0.206 0.564
P-value 0.665 0.458 0.649 0.452

ESF -4.359 -5.738 -4.359 -5.738

Table 10: In-sample Value-at-Risk (V aR) and Expected Shortfall (ESF )
evaluation under the skewed student-t distribution - FIAPARCH for Volk-
swagen log-returns.

h = 5 days FTSE Bayer Siemens VW

Short position 0.95 0.99 0.95 0.99 0.95 0.99 0.95 0.99
Failure rate (N

T
) 0.95 0.99 0.94 0.99 0.95 0.97 0.93 0.96

Kupiec-LR1 0.16 0.09 0.50 0.80 0.01 2.01 1.65 10.39
P-value 0.68 0.75 0.47 0.36 0.91 0.15 0.19 0.00∗

ESF 1.59 1.71 3.45 4.32 3.00 4.46 4.12 5.14

Long position 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01
Failure rate (N

T
) 0.06 0.02 0.04 0.02 0.04 0.01 0.02 0.00

Kupiec-LR1 1.04 3.64 0.01 2.01 0.50 0.10 7.97 1.14
P-value 0.30 0.05∗ 0.91 0.15 0.47 0.74 0.00∗ 0.28

ESF -1.68 -1.80 -2.86 -3.88 -2.89 -3.23 -3.73 -5.54

Table 11: EWMA: backtesting results for five-day-ahead out-of-sample V aR
and ESF forecasts for the FTSE and DAX stocks log-returns. ∗ indicates
a rejection of the model used.
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h = 5 days FTSE Bayer Siemens VW

Short position 0.95 0.99 0.95 0.99 0.95 0.99 0.95 0.99
Failure rate (N

T
) 0.95 0.98 0.93 0.99 0.93 0.97 0.92 0.97

Kupiec-LR1 0.01 0.10 0.56 0.09 0.50 2.00 3.26 5.60
P-value 0.91 0.74 0.45 0.75 0.45 0.15 0.07 0.01∗

ESF 1.28 1.51 3.25 5.03 2.77 4.46 3.97 5.43

Long position 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01
Failure rate (N

T
) 0.05 0.01 0.04 0.01 0.05 0.01 0.02 0.00

Kupiec-LR1 0.03 0.10 0.50 0.10 0.03 0.10 2.87 1.14
P-value 0.85 0.74 0.47 0.74 0.85 0.74 0.09 0.28

ESF -1.21 -1.24 -3.14 -4.54 -2.82 -3.37 -3.19 -5.54

Table 12: FIAPARCH: backtesting results for five-days-ahead out-of-
sample V aR and ESF forecasts for the FTSE and DAX stocks log-returns.
∗ indicates a rejection of the model used.

4.3 Summary

In this paper, we applied Value-at-Risk and Expected Shortfall to valuate

financial market risk when there is long range dependence. We examined the

British equity portfolio, FTSE100 and three stocks of the German DAX

index (Bayer, Siemens and Volkswagen). Long range dependence test and

estimation is carried out using the rescaled variance test of Geweke and

Porter-Hudak (1983) (GPH) and two estimators, the log-periodogram re-

gression (GPH), Geweke and Porter-Hudak (1983) and the Gaussian semi-

parametric (GSP ), Robinson (1995a) estimators. With long memory in the

volatility process, we fitted the (HY GARCH) model of Davidson (2004) that

can accommodate distributional characteristics such as volatility clustering,

leptokurtosis, long memory and the (FIAPARCH) of Tse (1998), that can

well accommodate volatility clustering, leptokurtosis, asymmetry and long

memory. In particular, we estimated these models with different error distri-

bution assumptions, the student-t and skewed student-t. Our results show

that models that account for asymmetries in the volatility specifications as

well as fractional integrated parametrization of the volatility process, perform

better in predicting the one-step ahead as well as five-step ahead V aR and

ESF for short and long positions than short memory models. Such models

hold the promise of improved long-run volatility forecast and more accurate

pricing of long-term contracts. We extended this implication to the context

of financial risk management. Our results suggest that for proper risk val-
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uation of equity or portfolio of stocks, the degree of persistence should be

investigated and appropriate modelling that incorporate the existence of such

characteristic be taken into account.
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