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Abstract

Independent component analysis (ICA) is a modern factor analysis tool de-
veloped in the last two decades. Given p-dimensional data, we search for that
linear combination of data which creates (almost) independent components.
Here copulae are used to model the p-dimensional data and then independent
components are found by optimizing the copula parameters. Based on this idea,
we propose the COPICA method for searching independent components. We
illustrate this method using several blind source separation examples, which
are mathematically equivalent to ICA problems. Finally performances of our
method and FastICA are compared to explore the advantages of this method.

Key words: Blind source separation, Canonical maximum likelihood method,
Givens rotation matrix, Signal/noise ratio, Simulated annealing algorithm.

1 Introduction

Independent component analysis (ICA) solves an important and fundamental
practical problem: it represents the joint co-movements of multivariate data
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series as a linear combination of stochastically independent sources. Unlike
Principal Component Analysis, it is based on non-Gaussian stochastic struc-
ture of the involved data signals and in fact makes only sense for non-Gaussian
multivariate distributions. ICA has been successfully applied in blind source
separation (Comon, 1994), image de-noising (Hyvärinnen, 1999) and many
other applications. The computational technique to identify the ICA transfor-
mation is based on the principle of finding the “best” non-Gaussian directions.
This principle can be implemented with different measures of non-Gaussianity.
One characteristic of the Gaussian distribution is that its excess kurtosis is
zero. Kurtosis based algorithms therefore try to find linear combinations of
the original data signals that deviate most from zero excess kurtosis.

Hyvärinnen et al (2001) argued that such a kurtosis based method is neces-
sarily outlier sensitive and may therefore yield practically less realizable inde-
pendent signals. Their proposed alternative is based on negative entropy and
mutual information criteria. Again the principle is to find that projection that
is the best non-Gaussian one. The effect of outliers is reduced in that technique
since the weight functions in the so-called negentropy criterion have bounded
tail behavior.

Non-Gaussianity is not only an important issue in signal processing and
other engineering applications but also an important element of financial risk
management techniques. The normal distribution lacks the heavy tail behav-
ior that is typical for financial return distributions and cannot model joint tail
dependence of several stock returns (Schmidt, 2002). For better modelling of
these and other empirical facts of financial data copulae have been introduced
into the quantitative finance practice. The copula technique is based on the
simple thought that every multivariate distribution can be seen as a coupling
of a distribution function (on the unit cube) operating on the marginal dis-
tribution functions of each variable. This coupling function has been coined
the name “copula”, (Sklar, 1959 and 1996). Copulae can be parameterized
with low dimensional parameters and fitted to multivariate data by a variety
of optimization techniques (Nelsen, 2006). Copulae provide a flexible family
for modelling dependencies and include the product copula as the family el-
ement representing independence. This property makes them an interesting
alternative in ICA.

The idea of this research is to investigate the use of copulae in determin-
ing the ICA transformations. The proposed procedure can be summarized in
the following. First, one pre-whitens the data as is done for ICA estimation.
Second, one fits a copula (with low dimensional parameter space) to a linear
transformation of this pre-processed data. Third, one optimizes with respect
to the linear transformation the copula parameter so that the current copula

2



corresponds to the product (independence) copula. This proposed procedure
combines ICA ideas from the engineering literature with the empirical copula
based research in quantitative finance. We therefore call our technique the
COPICA method. Our results are:

(1) The numerical burden to determine the ICA transformation of the COP-
ICA is equivalent to the FastICA method, the current standard method
for estimating ICA transformations.

(2) The signal/noise ratios of blind source separation problems with near-
Gaussian sources are better reflected by the COPICA method, and some-
times the FastICA method fails to converge in near-Gaussian sources.

(3) The performance of the COPICA is superior to the FastICA for blind
source separation with more than one Gaussian sources.

In next section, the ICA method combined with copula techniques, COP-
ICA, is introduced. The 2-dimensional blind source separation examples are
demonstrated to illustrate the performance of our method and to start the path
to the higher dimensional analysis which we deal with in Section 3. In Section
4, based on blind source separation problems with different kinds of source
samples, we compare the performances of COPICA with FastICA in terms of
the signal/noise ratio. We discuss the connection and difference of COPICA
and FastICA in Section 5. Finally we present a conclusion and outline the
perspective of future work in Section 6.

2 COPICA Procedure

Given p-dimensional data, X, our goal is to find linear combinations of the
data such that the resulting components are nearly independent. Herein, we
propose a novel method to find the coefficients of the linear combination of
independent component via copula technique. The proposed procedure, called
COPICA, contains two main steps. The first step is to whiten the p-dimensional
data, X, which is the same as in the FastICA procedure. That is to find a
whitening matrix W such that the components of Z = WX are uncorrelated
and Cov(Z) = Ip. One popular method to get the whitening matrix W is to
set W = S−1/2, where S is the covariance matrix of the data. In the second
step, we seek for a linear transformation, R, of the whitened data, Z, such that
the outputs Y = RZ are as statistically independent as possible. The proposed
method is outlined as following:

1. Whiten the observations by W first, then

2. Rotate the whitened observations by multiplying R to achieve indepen-
dence.
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In an ICA model, the following two ambiguities are well known to hold.
(1) Since we can freely change the order of the terms, and call any of the
independent components the first one, we cannot determine the order of the
independent components. This ambiguity is insignificant in most applications.
(2) We cannot determine the variances of the independent components. Thus,
without loss of generality we assume that each component of Y has unit vari-
ance, i.e. Cov(Y ) = Ip. Since the matrix R satisfies

RR> = RCov(Z)R> = Cov(RZ) = Cov(Y ) = Ip,

it is an orthogonal matrix and therefore can be represented as the product of
the following Givens rotation matrices, for example see Hastings (1970),

R =
∏

1≤i<j≤p

Gij(βij). (1)

The matrix Gij(βij) is a p-dimensional Givens rotation matrix which represents
a rotation in the plan spanned by the axes xi and xj , i < j, with angle βij .
Specifically, Gij(βij) is obtained by modifying the identity matrix so that the
(i, i), (i, j), (j, i) and (j, j) elements of this matrix are respectively cosβij ,
sinβij , − sinβij , and cosβij , where βij ∈ [0, 2π). Finally the product of R

and W , B = RW , is the objective transformation matrix. Clearly, the matrix
R is determined by the rotation angles, βij , and the main problem now is to
choose the angles such that the components of Y = BX = RWX are nearly
independent.

Dependencies among the components is used as the criterion to find the
“best” rotation angles. Unlike the conventional ICA methods using mutual
information, kurtosis or negentropy to measure dependence, we adopt copula
parameters as measure of dependence. Copula has recently become the most
significant new tool to handle the co-movement between markets in the field of
finance, since it provides a flexible way to connect the marginal distributions
of individual component to their multivariate joint distribution. For example,
if assume the marginal distribution of X = (X1, . . . , Xp)> is FXj (xj ; δj), where
δj is the marginal parameter, j = 1, . . . , p, then we can use a copula function
C to model the joint distribution FX(x1, · · · , xp) of (X1, · · · , Xp), by setting

FX(x1, · · · , xp) = C(FX1(x1; δ1), . . . , FXp(xp; δp); θ), (2)

where θ = (θ1, . . . , θd) is the copula parameter. Then the joint density of
(X1, · · · , Xp) is given by

f(x1, · · · , xp; δ1, . . . , δp, θ) = c(FX1(x1; δ1), . . . , FXp(xp; δp); θ)
d∏

j=1

fj(xj ; δj),
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where c is a copula density and fj ’s are the marginal densities of Xi’s. A special
copula is the product copula, defined as C(u1, · · · , up) = u1 · · ·up. By Eq.(2),
we have FX(x1, · · · , xp) = FX1(x1; δ1) · · ·FXp(xp; δp) under the product copula
assumption, which is correspond to the case when Xj ’s are independent. This
explains why the product copula is also called the independence copula. In the
following, we introduce the copulae considered in this work.

(1) Gaussian copula:

C(u1, · · · , up) = ΦR(Φ−1(u1), · · · , Φ−1(up)),

where ΦR is the standardized multivariate normal distribution with cor-
relation matrix R and Φ is the distribution of N(0, 1). In particular, if
the correlation matrix is an identity matrix, then Gaussian copula is the
independence copula. Furthermore, if the marginals of Xj ’s are also nor-
mal distributed, then Gaussian copula is correspond to the multivariate
normal distribution.

(2) Clayton copula:

C(u1, · · · , up) =
( p∑

j=1

u−θ
j − p + 1

)−1
θ

, θ > 0.

As θ → 0, the Clayton copula approaches to the independence copula.
Furthermore, the Clayton copula can model for multivariate lower tail
dependence. For bivariate case, the lower tail dependence of two variables
X1 and X2 is defined as λL = limv→0+ P (FX2(X2) ≤ v | FX1(X1) ≤ v) =
limv→0+

C(v,v)
v . If λL > 0, then X1 and X2 are said to have lower tail

dependence. For bivariate Clayton copula, we have λL = 2−1/θ > 0, for
θ > 0, and thus one can use Clayton copula to model the data with lower
tail dependence property.

(3) Gumbel copula:

C(u1, · · · , up) = exp
{
−

[ p∑

j=1

(− ln uj)θ
] 1

θ
}

, θ ≥ 1.

If θ = 1, we obtain the independence copula as a special case. In con-
trast to the Clayton copula, the Gumbel copula can model upper tail
dependence. For bivariate case, the upper tail dependence is defined as
λU = limv→1− P (FX2(X2) > v | FX1(X1) > v) = limv→1−

1−2v+C(v,v)
1−v . If

λU > 0, then there exists upper tail dependence. For bivariate Gumbel
copula, we have λU = 2 − 21/θ > 0, for θ > 1, and thus one can use
Gumbel copula to model upper tail dependent data.
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Figure 1: Bivariate plots of Clayton and Gumbel copulae with θ = 3 and N(0,1)

marginals.
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Further note that the bivariate Gaussian copula can neither model upper
nor lower dependence, unless the correlation coefficient ρ = 1. Specifically,
λU = λL = 0 for ρ < 1 and λU = λL = 1 for ρ = 1. Since the Gaussian,
Clayton and Gumbel copulae model different tail dependence structures, we
adopt the parameters of these three copulae in the criterion of independence
to enhance the adaptability of our method. In Figure 1, we give the bivariate
plots of random samples generated from Clayton and Gumbel copulae with
N(0,1) marginals, respectively. Although the marginal distributions of the two
cases are the same, different tail dependencies are demonstrated.

If the multivariate dependence is modeled by a single copula, then the
magnitude of the divergence function o(θ) = ‖θ − θ0‖ can be used to measure
the strength of the dependency among the variables, where θ and θ0 denote
the copula parameters of the data and the independence case, respectively. For
example, o(θ) = ‖θ − 1‖ for the Gumbel copula. If we adopt d copula models
for the given data set, then the independency among the given data can be
measured by a weighted sum of the individually independent measures, i.e.

O(θ1, . . . , θd) =
d∑

i=1

wioi(θi), (3)

where oi(θi) = ‖θi−θi0‖, θi and θi0 are respectively the fitted parameter and the
independent parameter value of the ith copula model, and wi’s are the positive
weights. Apply to the ICA problem, the goal is to find the rotation angles βij

minimizing O(θ̂1, . . . , θ̂d) = O(β12, . . . , β(p−1)p), where θ̂i is the estimate of the
ith copula parameter, i = 1, · · · , d. Therefore, our ICA problem is transformed
into the following constrained minimization problem,

min
βij ,1≤i<j≤p

O(β12, . . . , β(p−1)p).
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Due to constraints of copula parameter estimation method, it is in general
difficult to have close form expression of O(β12, . . . , β(p−1)p) even for low dimen-
sional case. Derivative-free optimization methods, such as genetic algorithm,
simulated annealing algorithm, direct search method and so on, can aid to solve
this minimization problem. Herein, the simulated annealing algorithm, pro-
posed by Metropolis et al. (1953) and introduced as an optimization technique
by Kirkpatrick et al. (1983), is used to search the optimal angles. For simplic-
ity of notation, we denote β12, . . . , β(p−1)p by β1, . . . , βq, where q = p(p− 1)/2.
Since the target is to minimize O(β), first define a density

πT (t)(β) ∝ exp(−O(β)/T (t)),

where β = (β1, . . . , βq), and T (t) is the “temperature” at time t and is a
decreasing function from initial temperature, T (0) > 0, to 0+. Following Liu
(2001), our simulated annealing (SA) algorithm is as follows.

1. Select the initial angles, β
(0)
i , i = 1, . . ., q.

2. Run Nt iterations of the Gibbs sampler to sample β from πT (t)(β), and at
each iteration of the Gibbs sampler, draw βi, i = 1, . . . , q, from πT (t)(βi|β−i).

3. Set t = t + 1, go to step 1 until t is large enough.

Here β−i is the set of all angles βj except the ith angle, i.e. β−i = (β1, . . . , βi−1,

βi+1, . . . , βq). For more details about the simulated annealing algorithm, see
Liu (2001).

Here the COPICA procedure used to find the independent components of
a given data set, X, is summarized in the following:

1. Center the data to make its mean zero and compute the sample covariance
matrix, S.

2. Whiten the data to give Z by multiplying X by W = S−1/2.

3. Choose d copulae and define the objective function, O(θ1, . . . , θd).

4. Apply SA algorithm to find the rotation matrix R =
∏

1≤i<j≤p Gij(βij)
by minimizing O(θ̂1, . . . , θ̂d) with respect to the rotation angles, βij .

5. Multiple R with W , i.e. B = RW .

3 Simulations and Real Examples on Blind

Source Separation

Now we illustrate the performance of our COPICA by solving blind source
separation (BSS) problems. In BSS problems, the observations are assumed
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to be the mixtures of the p independent sources. Let A be a p × p invertible
mixing matrix. Then we have the following linear mixing equation,

xt = Ast, t = 1, . . . , T, (4)

where xt = (x1t, . . . , xpt)> is the observation vector at time t, and st =
(s1t, . . . , spt)> is the source vector at time t whose components, s1t, . . . , spt,
are mutually independent. The goal of the BSS problem is that only given
the mixtures, xt, t = 1, . . . , T , we want to estimate the mixing matrix A and
recover the original sources st, t = 1, . . . , T, simultaneously. Since A is invert-
ible, then we focus on the inverse of A, because the independent sources can be
recovered by A−1xt, t = 1, . . . , T . Thus BSS problems is closely related to ICA
problems. In fact, when we apply ICA methods to BSS problems, the true in-
verse matrix, A−1, might not be obtained directly, however, the transformation
matrix, B, is the inverse of the true mixing matrix, A, up to a permutation
and scale change. Here in our simulations, we assume that the sources st are at
each time instant mutually and come from an identical heavy-tail distribution,
for example, double exponential distribution or mixture normal distribution.
Then given the true mixing matrix, A, the observations, xt, t = 1, . . . , T , are
mixed by ourselves.

Applying COPICA to BSS, we need to pre-specify copulae, and then to
estimate these corresponding copula parameters, θi for divergence functions,
oi(θ̂i). Here canonical maximum likelihood (CML) method is adopted to esti-
mate the copula parameter. The first step of CML method is to estimate the
marginals via the empirical distributions, denoted by F̂Xi(xit), i = 1, · · · , p.
Then estimate the copula parameters via

θ̂CML = argmax
θ

T∑

t=1

ln c(F̂X1(x1t), · · · , F̂Xp(xpt); θ)),

where c is the copula density.
In order to measure the performance of our COPICA, we compute the

inverse of the transformation matrix, B, whose columns should be proportional
to the true mixing matrix, and in addition to, we also calculate the signal/noise
ratio (SNR) value by

SNRsi(ŝi)[dB] = 10 log10

‖si‖2

‖si − ŝi‖2
, (5)

where si = (sit, t = 1, ..., T ), i = 1, ..., M , are original signals from the sources;
ŝi = (ŝit, t = 1, ..., T ), i = 1, ...,M , are recovered signals, and ‖x‖ is the two-
norm of the vector x. According to this definition of SNR value, the larger
SNR values are, the better performance we have.
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Figure 2: The tendency of the objective function for the simulation.
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3.1 Blind source separation with two sources

First a two-dimensional simulation is illustrated. We independently generate
two double exponential samples with 2000 points for each source, and the
mixing matrix is set to be

(
0.8000 1.0000

−0.6000 1.0000

)
. (6)

In this simulation, two copulae are chosen, one is Gumbel copula, and another
one is Clayton copula. The objective function is defined as

O(θ) = 10(θG − 1) + |θC |,

where θ = (θG, θC), θG is the parameter of Gumbel copula, and θC is the pa-
rameter of Clayton copula. Both parameters are all estimated by canonical
maximum likelihood method. As mentioned before, we need to white the data
first. After whitening, the estimations of these two parameters are θ̂G = 1.0639
and θ̂C = 0.0850. Then we apply COPICA to search the independent compo-
nents. After 400 steps, the trend of the objective function is shown in Figure
2, and the minimum value of the objective function is 0.0221. At this time, the
corresponding parameter estimations are θ̂G = 1.0022 and θ̂C = 1e−6, and the
inverse of the transformation matrix, B, is

B−1 =
(

0.2841 0.3600
−0.2057 0.3601

)
,

whose two columns are all proportional to the corresponding columns in the
true matrix, A. To compare the estimation of the mixing matrix, we suggest
to use the ratios, Ak1/Ak2, k = 1, 2, to compare B−1 and A. In this case, the
ratios of B−1 are 1.3812 and −0.9997, which are close to the ratios in A, 1.3333
and −1.0000. The original source samples and recovered signals are shown in
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Figure 3: The simulation results for blind source separation problem. The green lines

are the mixtures; the red lines are the original double exponential sources, and the

blue lines are the corresponding recovered signals.

Figure 3. The SNR values for each recovered signals are also computed here,
and the values are 98.4980 and 83.8026 for each source respectively.

Next two human speeches with 10000 samples are used as our original
sources, and in this experiment, our observations are mixed by the same mixing
matrix, Eq. (6). Here to speed up the convergence of the objective function,
O(θ) is modified as

O(θ) = exp{100(θG − 1) + |θC |}.
After 100 steps of our COPICA, the objective function is stable, and we find
that

B−1 =
(

0.0970 0.1186
−0.0736 0.1187

)
,

and the SNR values are 156.2844 and 108.9266. Figure 4 shows the original
human speeches and the recovered sounds by COPICA.

3.2 Blind source separation with more sources

Here blind source separation problems with more sources are considered. In
two dimensional cases, the objective function is constructed by mixing two

10



Figure 4: The numerical results for blind source separation problem with two human

speeches. The green lines are the mixtures; the red lines are the original human

speeches, and the blue lines are the recovered signals.

divergence functions of the parameters of two-dimensional copulae. Hence a
natural extension of COPICA for p-dimensional BSS problem is that our ob-
jective function is also defined as the mixture of several divergence functions
of p-dimensional copula parameters. However, this approach fails for the high
dimensional situation. The reason might be due to the weakness of the copula
and the estimation method of the copula parameter. In order to successfully
extend COPICA for solving higher dimensional BSS problem, we suggest that
our objective function should not only contain the divergence functions of p-
dimensional copula parameters but also need to mix with lower dimensional
copula parameters. For example, when three dimensional case is considered,
besides the three dimensional copulae, two dimensional copulae are also chosen
for fitting any two marginal samples. Here three dimensional BSS problems are
used to illustrate our approach. Two simulations are shown first with different
source generators, and then an example with three natural sounds is displayed.

In the first simulation, three original sources are independently generated
from double-exponential distribution with the corresponding parameter, λ = 5.

11



Figure 5: The simulation results for three dimensional blind source separation prob-

lem with independent double exponential sources. The red lines are the original

double exponential sources, and the blue lines are the recovered signals.

The mixing matrix is set to be

A =




1.0000 −2.0000 −1.0000
−1.0000 1.0000 2.0000
−1.0000 1.0000 1.0000


 . (7)

Applying our COPICA to this case, three different copulae are used for mod-
eling the data, Gumbel copula, Clayton copula and Gaussina copula. Here
one three-dimensional Gumbel copula is adopted, and two-dimensional Gum-
bel, Clayton and Gaussian copulae are also used to measure the dependency
among any two of three marginal samples. The notation θ123,C is used to denote
the parameter of the three-dimensional copula, C, and θij,C is the parameter
of the two-dimensional copula, C, for the ith and the jth current marginal
samples. In this simulation, our objective function is defined to be

O(θ) = exp[200 ∗ (θ123,Gumbel − 1)] + exp[200 ∗
∑

i<j

(θij,Gumbel − 1)]

+ exp[200 ∗
∑

i<j

(θij,Clayton)] + exp[200 ∗
∑

i<j

|θij,Gaussian|], (8)

where θ = {θ123,Gumbel, θij,Gumbel, θij,Clayton, θij,Gaussian, 1 ≤ i < j ≤ 3}. Thus

12



Figure 6: The simulation results for a three dimensional blind source separation

problem with mixture normal sources. The red lines are the original sources, and the

blue lines are the recovered signals.

 

 

our goal is to minimize this objective function with respect to the rotation
angles, β12, β13 and β23. Then after 400 steps of our COPICA algorithm, the
inverse matrix of B is

B−1 =




0.3799 −0.5365 −0.2617
−0.3739 0.2439 0.5301
−0.3484 0.2524 0.2542


 .

Since each column of this matrix is proportional the corresponding column of
the true mixing matrix, we believe COPICA successfully solve this simulated
BSS problem. Figure 5 shows the original source signals and our recovered
signals, and the corresponding SNR values are 40.7656, 42.1369 and 46.6162.

Three original sources in the second simulation are generated independently
from a mixture normal distribution,

si ∼ 0.7N(0, 1) + 0.3N(0, 32).

That is for each sample point, it is sampled from standard normal distribution
with probability 0.7 and from the normal distribution with variance 9 with
probability 0.3. The true mixing matrix is also set to be the same as Eq. (7).
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Applying our COPICA to this simulation, three different copulae are also used
for modeling the data, Gumbel copula, Clayton copula and Gaussina copula.
The our objective function is set to be

O(θ) = exp[200 ∗ (θ123,Gumbel − 1) + 300 ∗
∑

i<j

(θij,Gumbel − 1)

+200 ∗
∑

i<j

(θij,Clayton) + 500 ∗
∑

i<j

|θij,Gaussian|]. (9)

In this objective function, unlike the equal wights in previous objective func-
tion, Eq. (8), the weights are proportional to the inverse of the standard
deviations of the CML estimations for the corresponding copula parameters.
Then after 100 steps of our COPICA algorithm,

B−1 =




2.3435 −3.5881 −1.9690
−2.1897 1.6172 3.6652
−2.1347 1.7093 1.8532


 .

Since each column of this matrix is proportional the corresponding column of
the true mixing matrix, we believe COPICA successfully solve this simulated
BSS problem. Figure 6 shows the original source signals and our recovered
signals, and the corresponding SNR values are 57.1508, 41.3515 and 55.8527.

Finally three natural sounds of thunder, water and fire are used as our
original signals, and there are 5000 sample points for each sound data. With
the same mixing matrix, Eq. (7), and Eq. (9) as our objective function, after
100 steps of COPICA, we find that

B−1 =




1.8152 −2.1149 −0.8616
−1.8085 1.0665 1.6384
−1.8360 1.0706 0.8641


 ,

and the corresponding SNR values are 57.0622, 79.6792 and 67.3711. Figure 7
shows the original natural sounds and our recovered signals.

4 Comparisons

The FastICA (Hyvarinen and Oja, 1997) is a widely used and efficient method
for identifying independent components. The FastICA is also a two-step method.
After whitening the data as the first step, the FastICA is based on a fixed-point
iteration scheme for finding the components with maximum of the nongaussian-
ity, which are the independent components. Here kurtosis or negentropy is used
as the measure of nongaussianity. The computer program of the FastICA is
available at the web-site, http://www.cis.hut.fi/projects/ica/fastica/.
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Figure 7: The numerical results for three dimensional blind source separation problem

with three natural sounds. The red lines are the original sounds; green lines are their

mixtures, and the blue lines are the recovered signals.

In this section, we compare COPICA with FastICA through BSS problems
that original independent sources are generated from mixture normal distribu-
tions with different values of kurtosis. Let X follow a mixture normal distri-
bution, i.e. X ∼ pN(0, σ2

1) + (1− p)N(0, σ2
2). Then the kurtosis of X is

3{pσ4
1 + (1− p)σ4

2}/{pσ2
1 + (1− p)σ2

2}2.

Therefore, here we call a sample is heavy-tail if the value of kurtosis is larger
than 5, and the near-Gaussian sample if the kurtosis is less than 4. Thus a
heavy-tail sample or a near-Gaussian samples can be drawn from the mixture
normal distribution by choosing the different values of p, σ1 and σ2. In the fol-
lowing comparison, (p, σ1, σ2) is set to be either (0.7, 1, 3), (0.6, 1, 3), (0.2, 1, 3),
(0.15, 1, 3) and (0.2, 1, 2), and the corresponding value of kurtosis is shown in
Table 1.

Here the mixing matrix is fixed as Eq. (7), and then after generating
the original sources with 1000 sample points for each, the observations are
mixed according to Eq. (4). The SNR values are used as the criterion for
the comparison. That is we count the number of sources that the SNR values
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Table 1: The values of kurtosis of our source generators

Heavy-tail Near-Gaussian

(p, σ1, σ2) Kurtosis (p, σ1, σ2) Kurtosis

(0.7,1,3) 6.4879 (0.2,1,3) 3.5610

(0.6,1,3) 5.6122 (0.15,1,3) 3.4024

(0.2,1,2) 3.3737

Table 2: The SNR ratios of COPICA/FastICA for the heavy-tail sources. The ratios

greater than 1 are in bold font.
(p, σ1, σ2) = (0.7, 1, 3) (p, σ1, σ2) = (0.7, 1, 3)

Cases Source 1 Source 2 Source 3 Source 1 Source 2 Source 3
1 58.8/45.2 40.9/35.3 51.8/46.3 48.5/34.8 54.6/30.3 57.8/80.0
2 48.2/50.5 63.7/49.7 65.6/43.4 56.0/45.4 44.9/47.5 48.8/48.0
3 36.5/43.9 50.5/73.0 64.9/55.8 36.7/44.3 45.1/48.2 63.9/30.0
4 63.3/59.3 62.8/41.0 59.1/42.6 71.3/44.7 38.0/39.5 37.4/39.1
5 53.2/41.8 50.6/43.1 54.8/70.1 39.8/56.5 53.5/24.7 58.6/24.4
6 54.5/38.6 49.8/55.3 49.9/50.9 41.1/71.2 46.9/55.4 50.7/59.3
7 57.3/51.1 49.4/53.0 51.6/49.1 46.1/40.4 51.1/93.1 44.8/35.8
8 42.8/57.1 52.9/62.4 45.4/46.9 43.1/40.9 69.6/51.9 56.2/33.8
9 56.7/50.9 59.0/56.3 62.6/71.0 45.4/35.5 52.9/27.9 54.6/35.3
10 57.2/40.0 41.4/57.6 55.9/40.2 51.6/38.2 49.3/48.0 46.4/46.2

produced by COPICA are better than those done by FastICA. The results are
shown as follows:

Heavy-tail sources. Two different heavy-tail samples are generated from
mixture normal distribution with σ1 = 1; σ2 = 3, and p = 0.7 or 0.6. For
each type of original sources, we repeat the same simulation ten times,
and for each replication, we re-generate the source samples according to
the same mixture normal distribution. The COPICA and the FastICA
are then applied to separate the source signals from their mixtures. As
mentioned before, for COPICA, we need to pre-specified the copulae used
here and defined the corresponding objective function, O(θ). Here O(θ)
is set to be the same as Eq. (9). The SNR ratios of COPICA/FastICA
for the heavy-tail sources are shown in Table 2. When p = 0.7, we see
from the left panel of Table 2 that COPICA provides the better recovered
results in cases 1,2,4,5,7,9 and 10, and there are 18 sources out of total 30
sources that SNR values produced by COPICA are larger than those pro-
duced by FastICA. When p = 0.6, the similar results are displayed in the
right panel of Table 2. Thus it seems that the performance of COPICA
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Table 3: The SNR ratios of COPICA/FastICA for the near-Gaussian sources. The

ratios in favor of COPICA are in bold font.
(p, σ1, σ2) = (0.2, 1, 3) (p, σ1, σ2) = (0.15, 1, 3)

Cases Source 1 Source 2 Source 3 Source 1 Source 2 Source 3
1 79.5/29.8 36.7/35.4 32.3/26.3 21.9/21.4 21.2/19.1 23.9/15.2
2 35.1/38.6 45.9/31.6 29.0/25.8 33.7/(-10.9)† 57.4/ 2.2 37.3/15.9
3 36.7/34.8 37.6/45.7 49.5/38.1 23.4/31.7 52.8/36.1 25.1/33.1
4 26.5/57.0 34.8/61.9 25.5/77.6 25.9/33.2 33.7/26.1 28.2/27.1
5 32.4/37.3 35.5/33.2 62.7/49.0 18.6/12.2 34.2/20.1 27.3/23.5

(p, σ1, σ2) = (0.2, 1, 2)
Cases Source 1 Source 2 Source 3

1 24.2/NA‡ 43.1/NA‡ 29.4/NA‡

2 41.5/21.8 44.9/12.5 60.9/13.0
3 40.8/45.5 28.5/34.5 31.6/39.3
4 26.3/NA‡ 21.9/NA‡ 28.1/NA‡

5 44.9/30.9 29.0/28.2 26.3/24.9

† Negative SNR value means that FastICA cannot identify the correct independent com-

ponent.

‡ “NA” means that at that case, FastICA could not find the independent components.

is similar as that of FastICA in our replications with heavy-tail samples.

Near-Gaussian sources. Three types of near-Gaussian sources are gener-
ated from the independent mixture normal distribution with different
setting of parameters. For each type of source, we repeat the simula-
tion five times and we also re-generate the independent sources at each
replication. Then the COPICA and the FastICA are used to find the inde-
pendent components for every replications. Here Eq. (8) is the objective
function of our COPICA. The SNR ratios of COPICA/FastICA for the
each case are shown in Table 3. From Table 3, regardless of what type
of source we generate, COPICA always outperforms than FastICA, be-
cause COPICA provides better SNR values for more than half of sources.
When (p, σ1, σ2) = (0.15, 1, 3), in the second case, the negative SNR value
means that FastICA fails to recover the signals from their mixtures. In
the bottom panel of Table 3, there are two cases that FastICA cannot sep-
arate any one original sources from the observations. However, COPICA
successfully solve these BSS problems with near-Gaussian samples.

We summery the comparison results here. No matter what kind of sources
we generate, COPICA can successfully identify all three independent compo-
nents. FastICA works well for heavy-tail sources, but may fail for the cases
of near-Gaussian sources. The reason should be due to the limitation of the
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kurtosis and negentropy. However, the signals whose kurtosis is close to 3 does
exist naturally. For example, the sample kurtosis of thunder sound in Section
3.2 is 3.5323. Thus, we would suggest to use our COPICA to solve the BSS
problems.

5 COPICA and FastICA

In Section 4, we numerically compare the performances of COPICA and Fas-
tICA through the blind sources separation with different independent sources.
Here, we would like to note the connection and difference between FastICA
and COPICA from the point of view of their methods.

Search approach: FastICA is closely related to projection pursuit (Jones and
Sibson, 1987). Basically FastICA is performed by finding the most non-
Gaussian projections of the data. According to the algorithm of FastICA,
the independent components are found “one by one”. That is the Fas-
tICA algorithm is a one-unit algorithm. When we have p−1 independent
components, we can run FastICA algorithm for the pth independent com-
ponent. However, we must orthogonalize this current component with
the previous components at each iteration of the algorithm. Of course,
we can use FastICA to search the whole independent components in par-
allel, but at each iteration of the FastICA algorithm, it is still necessary
to orthogonalize all the components by a symmetric orthogonalization
method.

In COPICA, we have shown the matrix R is an orthogonal matrix. Here
we set R as the product of the Givens rotation matrices with different
angles, and then these angles are determined by minimizing an objective
function which is constructed by parameters of copulae. Thus we search
these independent components “simultaneously” without orthogonalizing
the vectors at each iteration of the COPICA algorithm. In fact, our
search approach can be easy modified into FastICA algorithm by changing
the corresponding objective function to be as the measure of kurtosis or
negentropy of data.

The measure of independence: The fundamental principle of the FastICA
is “Non-Gaussian is independent”. Then independent components are
found by maximizing non-Gaussianity, and the possible non-Gaussian
measures are kurtosis and negentropy. However, the successfulness of
this principle is based on the linear mixing model assumption, Eq (4),
and the central limit theory. Thus, when this mixing model holds, Fas-
tICA can be used to identify independent components. Otherwise, what
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FastICA provide are only the “projection pursuit directions”.

In COPICA, it is not necessary to have the mixing model assumption for
observations. After whitening, COPICA is to find a rotated orthogonal
coordinate system such that the elements in new coordinates are as inde-
pendent as possible, and here the independencies among the components
are measured directly by the parameters of the corresponding copulae.
Thus COPICA can be treated as a direct generalization of the principal
component analysis (PCA).

More than one Gaussian source: A limitation of FastICA is that there is
at most one Gaussian source. When there are more than one Gaussian
source, it is hard to separate original sources from their mixtures by only
maximizing the non-Gaussianity. However, in COPICA, since the CML
method is used here to estimate copula parameters, we do not need the
explicit density assumptions of original sources. Thus we still have chance
to separate sources from their mixtures even though there are more than
one Gaussian source.

One BSS example with more than one Gaussian source is illustrated here.
Three original sources are generated as follows: The first source signals are
the normal sample with σ2 = 4; the second source signals are generated
from a double exponential distribution with λ = 1, and the third source
are the normal sample with σ2 = 2. The observation is mixed according
to Eq. (4) with the same mixing matrix A in Eq. (7). The objective
function is defined as Eq. (9). Applying COPICA, we obtain that the
inverse matrix of B is

B−1 =




1.8536 −3.0923 −1.4786
−1.7672 1.5700 2.9192
−1.8587 1.5696 1.5093


 .

Since each column of this matrix is proportional the corresponding column
of the true mixing matrix, we believe COPICA successfully solve this
BSS problem. The corresponding SNR values are 52.7718, 77.6114 and
54.1027. However,when FastICA is applied to this example, the result is

B−1
F =




1.3250 −2.9654 −2.1496
−0.8216 1.3606 3.4014
−1.3251 1.4444 2.0847


 ,

and the SNR values of each recovered signals are 20.4576, 62.7093, 18.9869.
That is FastICA identify that non-Guassian source but fail to separate
the other two Gaussian sources.

19



6 Conclusions

In this article, a new ICA method, COPICA, is proposed. COPICA is a two-
steps procedure which is similar to FastICA. After whitening the data, COP-
ICA project the whiten data into the p-dimensional plan simultaneously, and
this projection is chosen in terms of the parameters of the pre-specified cop-
ulae. Thus in COPICA, ICA problem is transformed to be a minimization
problem whose objective function is constructed by the linear combination of
the divergence functions of copula parameters, and here the minimization is
accomplished by a simulated annealing algorithm.

When dimensionality of data, p, is large than 2, only p-dimensional cop-
ula with one corresponding parameter could not be used to find independent
components. Besides p-dimensional copulae, we suggest to cooperate with the
other low dimensional copulae. This approach is reasonable, because any sub-
set of independent components are still statistically independent. For example,
when p = 3, our objective function is contained a three dimensional copula and
three two dimensional copulae. Here we demonstrate that COPICA success-
fully solve BSS problems for p = 2 and 3. Using BSS problems as examples,
we compare COPICA with FastICA. When original sources come form heavy-
tail distributions, the performance of COPICA is similar as that of FastICA.
However, for the cases that sources are generated from near-Gaussian random
variables, COPICA outperforms than FastICA. Besides the numerical compar-
ison, the differences between COPICA and FastICA are that there is no linear
mixing model assumption in COPICA, and we do not have the restriction with
at most one Gaussian source. Since we only need to pre-specify the copulae
without any marginal distributed assumptions, COPICA can be treated as a
semi-parametric ICA method.

In COPICA, we need to pre-specify copulae first. Three different types
of copulae with one corresponding parameter are chosen for demonstration
here. When p is large, more and more copula parameters need to be estimated
resulting in a high computational burden. Thus how to choose the proper
copulae is an important issue. One possibility is the hierarchical Archimedean
copulas (Okhrin, Okhrin and Schmid, 2007), because fewer parameters are in
this kind of copulae. After choosing copulae, the corresponding weights in
the objective function are also need to be determined. Two possible types
of weights are shown in Eqs. (8) and (9). Intuitively we would suggest to
treat every divergence functions equally likely. Otherwise the weights might
be proportional to the inverse of the standard deviations of the parameter
estimations. Hence one of future works would be on the selection of the weights
in the objective function. Simulated annealing algorithm is adopted here for
minimization due to its simplicity. However, the initial status will affect the
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overall performance of SA algorithm, and the convergence of SA algorithm is
quit slow. Therefore, an efficient optimization procedure would be necessary
to improve the efficiency of COPICA.
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