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A solution method is derived in this paper for solving a system of linear rational-
expectations equation with lagged expectations (e.g., models incorporating sticky
information) using the method of undetermined coefficients for the infinite MA
representation. The method applies a combination of a Generalized Schur De-
composition familiar elsewhere in the literature and a simple system of linear
equations when lagged expectations are present to the infinite MA represen-
tation. Execution is faster, applicability more general, and use more straight-
forward than with existing algorithms. Current methods of truncating lagged
expectations are shown to not generally be innocuous and the use of such meth-
ods are rendered obsolete by the tremendous gains in computational efficiency
of the method here which allows for a solution to floating-point accuracy in a
fraction of the time required by standard methods. The associated computa-
tional application of the method provides impulse responses to anticipated and
unanticipated innovations, simulations, and frequency-domain and simulated
moments.
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1 Introduction

In this paper, I present an undetermined-coefficients method for solving linear
rational expectations models with lagged expectations. This method treats sys-
tems without lagged expectations as a subcase of systems with a finite number
of lagged expectations and explicitly handles systems with an infinite number
of lagged expectations. The freely-available software1 for use with MATLAB R©

strives to minimize processing time both on behalf of the user and his computer
and to maximize pre-packaged output providing impulse responses to unantic-
ipated and anticipated shocks (pre-announced shocks), frequency-domain mo-
ments, and simulations with sample moments. The method and its software
application should be of great interest to researchers interested in, e.g., models
with “sticky information” à la Mankiw and Reis (2002), and should also be useful
for researchers interested in analyzing the effects of anticipated (pre-announced)
shocks in all DSGE models.

The method presented here is an extension of the methods provided by Tay-
lor (1986). By combining the Generalized Schur Decomposition with a finite
system of linear equations, the method in this paper drastically reduces com-
putational requirements and eliminates tedious and user-error-prone manual
state-space expansion for systems with a finite number of lagged expectations.
For models possessing an infinite number of lagged expectations, e.g. models
with the sticky-information Phillips Curve of Mankiw and Reis (2002), both
an explicit convergence criterium to allow for approximation with arbitrary ac-
curacy and a method to ensure the accuracy of the asymptotic behavior of
the approximated recursion are introduced. Much of the current literature that
examines sticky information (e.g., Andrés, López-Salido, and Nelson (2005)) im-
poses some form of truncation on an other infinite sum of lagged expectations.
The methods presented in this paper face a near-linear cost of including addi-
tional lagged expectations of variables and, thus, can include as many lagged
expectations as are required to reach floating-point tolerance for adding addi-
tional lagged expectations. This allows not only for a more accurate solution to
be derived more quickly, but also allows for the examination of the consequences
of the truncation methods frequently encountered in the literature.

Alternative methods in the literature explicitly designed for solving models
with lagged expectations have, the exception being Wang and Wen (2006), been
model-specific. By combing the numerical efficiency of a tri-diagonal system for
coefficients as implemented by Mankiw and Reis (2007) with a modified version
of the Generalized Schur Decomposition as presented by Klein (2000) and a
convergence criterium, this method provides recursive solutions to a general
class of models more quickly and reliably than existing algorithms.

Following Blanchard and Kahn (1980), King and Watson (1998), King and
Watson (2002), and Uhlig (1999) and unlike Klein (2000) and Sims (2001),
predetermined variables are defined by the user input on the model structure and
possess a zero one-step prediction error as opposed to an arbitrary exogenous
prediction error. Furthermore, the software provided requires that the MA
coefficients of exogenous processes follow a first-order autonomous recursion (or,
abstracting from unit root processes, VAR(1)) in order to take advantage of all
features; although this lack of generality has been criticized in, e.g., Anderson

1Software with examples available at:
http://www.wm.tu-berlin.de/~makro/Meyer-Gohde/Working-Papers.htm
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(2006), the same author acknowledges that “straightforward formulae” exist to
achieve the same level of generality. Thus, some generality has been sacrificed
in the approach in favor of transparency with respect to existing methods for
solving linear rational expectations models.

Following the method and associated software of Uhlig (1999), the method
here strives to provide a “cookbook” method to users, shifting the burden of
calculation from the user to the computer. Likewise as Uhlig (1999, p. 32),
“the issue of existence or multiplicity of equilibria as well as the reasons for
concentrating on stable solutions are not discussed.” However, by operating on
the infinite moving average representation of the solution, the method here will
provide the unique, stable (with respect to an exogenous growth restriction)
solution of the problem should it exist.

The remainder of the paper is organized as follows: section (2) states the
form of the model to be analyzed, section (3) presents the solution methods for
the foregoing problem, section (4) examines the dangers associated with prema-
turely truncating the number of lagged expectations included in the solution,
section (5) compares the method of this paper and its performance with existing
methods, section (6) briefly outlines the necessary steps for implementing the
solution method presented here, and section (7) concludes.
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2 Statement of the Problem

Many macroeconomic problems can be summarized by first-order conditions,
budget constraints, and market clearing restrictions. Log-linearizing these con-
ditions (see, e.g., Uhlig (1999)) yields a system of expectational difference equa-
tions linear in the percentage deviations of variables from their respective non-
stochastic steady states:

0 =
I

∑

i=0

AiEt−i [Yt+1] +
I

∑

i=0

BiEt−i [Yt] +
I

∑

i=0

CiEt−i [Yt−1]

+

I
∑

i=0

FiEt−i [Wt+1] +

I
∑

i=0

GiEt−i [Wt](1)

(2) Wt =

∞
∑

j=0

Njǫt−j , ǫt ∼ i.i.d.N (0, Ω)

(3) lim
j→∞

ξ−jEt [Yt+j ] = 0, ∀ξ ∈ R s.t. ξ > gu, where gu ≥ 1

where Yt be a k × 1 vector of endogenous variables of interest, Wt an n × 1
vector of exogenous processes with given moving average coefficients {Nj}

∞
j=0,

and where I ∈ N0. That the system not be underdetermined, the dimensions of
the matrices in (1) are such that there are as many equations (k) as endogenous
variables of interest. Following, e.g., Uhlig (1999) and Sims (2001), variables
dated t are in the information set at t.

Equation (1) represents the aforementioned collection of log-linearized equi-
librium equations. Equation (2) specifies the exogenous process Wt as a vector
MA(∞) process. Equation (3) may be interpreted as a transversality condition
derived as a condition from intertemporal maximization, where gu is the max-
imal growth rate of endogenous variables (see, e.g., Sims (2001) or Burmeister
(1980) for discussion on the limitations of this interpretation). Sims (2001) for-
mulates this restriction as upper bounds on the growth rates of a set of linear
combinations of variables. This is obviously more general than the assumption
here, but the restriction here is slightly more general than that used in Klein
(2000) insofar as non-stationary solutions that conform to the uniform growth
restriction are included in the solution space.

Following Muth (1961) and Taylor (1986), the solution will take the form

Yt =

∞
∑

j=0

Θjǫt−j .(4)
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Inserting (4) and (2) into (1) yields

0 =

∞
∑

j=0





min(I,j)
∑

i=0

Ai



 Θj+1ǫt−j +

∞
∑

j=0





min(I,j)
∑

i=0

Bi



Θjǫt−j

+

∞
∑

j=0





min(I,j+1)
∑

i=0

Ci



 Θjǫt−j−1 +

∞
∑

j=0





min(I,j)
∑

i=0

Fi



 Nj+1ǫt−j

+

∞
∑

j=0





min(I,j)
∑

i=0

Gi



 Njǫt−j(5)

Defining

(6) M̃j =

min(I,j)
∑

i=0

Mi, for M = A, B, C, F, G

one can rewrite the foregoing as

0 =

∞
∑

j=0

ÃjΘj+1ǫt−j +

∞
∑

j=0

B̃jΘjǫt−j +

∞
∑

j=0

C̃j+1Θjǫt−j−1

+
∞
∑

j=0

F̃jNj+1ǫt−j +
∞
∑

j=0

G̃jNjǫt−j(7)

Comparing coefficients, this yields the non-stochastic linear recursion

(8) 0 = ÃjΘj+1 + B̃jΘj + C̃jΘj−1 + F̃jNj+1 + G̃jNj

with initial conditions

(9) Θ−1 = 0

and terminal conditions from (3)

(10) lim
j→∞

ξ−jΘj = 0
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3 Solution of the Problem

In the following, I shall differentiate between three cases

1. I = 0

2. 0 < I < ∞

3. I → ∞

The distinction between the first two is unnecessary, but serves to compare
the solution here with methods in the literature for standard (i.e. without lagged
expectations) formulations. The limiting case will need to be handled separately
as I shall need to make some assumptions regarding the convergence of matrix
sums.

3.1 Case 1: I = 0

This is the standard case examined in the literature. Here

(11) M̃j = M0, for M = A, B, C, F, G

and thus (8) reduces to a recursion with constant coefficients

(12) 0 = A0Θj+1 + B0Θj + C0Θj−1 + F0Nj+1 + G0Nj

this system can then be rewritten in first-order form as

(13)

[

0 −A0

I 0

] [

Θj

Θj+1

]

=

[

C0 B0

0 I

] [

Θj−1

Θj

]

+

[

F0Nj+1 + G0Nj

0

]

Following Klein (2000) and Sims (2001), one uses the QZ Method to look for
a Generalized Schur Decomposition (cf. Golub and van Loan (1989, p. 394-6),
i.e. unitary matrices Q and Z and upper-triangular matrices S and T such that
Q

[

0 −A0

I 0

]

Z = S and Q
[

C0 B0

0 I

]

Z = T . The generalized eigenvalue λi of the
system is given by the pair Si,i, Ti,i as

(14) λi =

{

Ti,i

Si,i
if Si,i 6= 0

∞ otherwise

noting the abuse of language as acknowledged by Klein (2000). The degener-
ate case (or “mundane source” of non-uniqueness or non-existence) discussed by
King and Watson (1998, p. 1017) would reveal itself here if both Si,i, Ti,i = 0 for
some i, it shall be assumed that there are no unrestricted linear combination of
variables in the system and, therefore, that this case is irrelevant. The decom-
position will be arranged such that the 2k generalized eigenvalues are split into
two groups: the first s eigenvalues are those less than or equal to the maximal
growth rate gu (thus satisfying (3)) and the remaining 2k − s eigenvalues (λu)
greater than gu (thus violating(3)) follow thereafter.

Following Blanchard and Kahn (1980), the solution will be unique if s = k,
indeterminate if s > k, and explosive if s < k. This can be readily seen by
the structure of the problem: the initial conditions (9) require that Yt−1 not
be a function of ǫt (i.e. variables from yesterday cannot respond to innovations
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today), leaving an additional k restriction to complete the deterministic recur-
sion. If the system has k eigenvalues greater than gu in modulus, the terminal
conditions (2) should provide the missing k linear restrictions needed to com-
plete the recursion. This is, as Klein (2000) notes, unfortunately not enough:
that the system have k eigenvalues greater than gu need not necessarily mean
that these k eigenvalues can be associated with the conditions remaining to be
determined; if the upper-left k × k block of Z (responsible for completing this
association) is invertible, however, this problem will not arise. Further general-
ity could be achieved by relaxing the assumption of a uniform growth restriction
on all variables to allow for “non-homogeneous growth rates” (Sims 2001).

Thus, assuming that s = k and that Z11 is of full rank and defining

[

Ξs
j

Ξu
j

]

≡

Z+

[

Θj−1

Θj

]

, (13) can be rewritten as

(15)

[

0 −A0

I 0

]

Z

[

Ξs
j+1

Ξu
j+1

]

=

[

C0 B0

0 I

]

Z

[

Ξs
j

Ξu
j

]

+

[

F0Nj+1 + G0Nj

0

]

multiplying through with Q and recalling that S and T are upper-triangular,

(16)

[

S11 S12

0 S22

] [

Ξs
j+1

Ξu
j+1

]

=

[

T11 T12

0 T22

] [

Ξs
j

Ξu
j

]

+

[

Q1

Q2

] [

F0Nj+1 + G0Nj

0

]

Following Klein (2000), Ξu
j can be solved forward, yielding

(17) Ξu
j = −T−1

22

∞
∑

k=0

[

T−1
22 S22

]k
Q2

[

F0Nj+1+k + G0Nj+k

0

]

as long as2

(18) lim
k→∞

[

T−1
22 S22

]k
Q2

[

F0Nj+1+k + G0Nj+k

0

]

= 0

Defining,

(19) Mj = −T−1
22

∞
∑

k=0

[

T−1
22 S22

]k
Q2

[

F0Nj+1+k + G0Nj+k

0

]

then

(20) Ξu
j = Mj

Following Theorem 5.1 of Klein (2000, p. 1417),

(21) Θj =
(

Z21Z
−1
11

)

Θj−1 +
(

Z22 − Z21Z
−1
11 Z12

)

Mj

yielding a recursive form, along with (9), for the MA-coefficients of Yt.
The difference between the solution form here, based on the infinite MA-

representations proposed by Muth (1961) and Taylor (1986), and those more
commonly encountered in the literature (e.g. Uhlig (1999) or Klein (2000)),

2See Appendix (A) for a discussion of the existence of this limit.
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is that the solution derived here yields a recursive form for the infinite MA
coefficients, whereas current standard methods solve for a recursive law of mo-
tion for the endogenous variables themselves. The solution derived here can,
assuming an autoregressive representation of the exogenous process exists, be
reformulated into such a recursive law of motion as will be shown in section
(3.4):

3.2 Case 2: 0 < I < ∞

This is a deviation of the standard case examined in the literature. Here

(22) M̃j = M̃I , for M = A, B, C, F, G, and ∀j ≥ I

and thus (8) reduces to a recursion with constant coefficients ∀j ≥ I.

(23) 0 = ÃIΘj+1 + B̃IΘj + C̃IΘj−1 + F̃INj+1 + G̃INj

This system can then be rewritten in first-order form

(24)

[

0 −ÃI

I 0

] [

Θj

Θj+1

]

=

[

C̃I B̃I

0 I

] [

Θj−1

Θj

]

+

[

F̃INj+1 + G̃INj

0

]

Analogously to the foregoing section, if s = k and if

(25) lim
k→∞

[

T I
22

−1
SI

22

]k

QI
2

[

F̃INj+1+k + G̃INj+k

0

]

= 0

where the superscript I refers to the matrices associated with the Generalized
Schur Decomposition of (24), then

(26) M I
j = −T I

22

−1
∞
∑

k=0

[

T I
22

−1
SI

22

]k

QI
2

[

F̃INj+1+k + G̃INj+k

0

]

and

(27) Θj =
(

ZI
21Z

I
11

−1
)

Θj−1 +
(

ZI
22 − ZI

21Z
I
11

−1
ZI

12

)

M I
j , ∀j ≥ I

Thus, this yields a recursive solution for all MA-coefficients from I onward. The
remaining coefficients can then be obtained as the solutions to





















B̃0 Ã0 0 . . . 0

C̃1 B̃1 Ã1 0 . . . 0

0 C̃2 B̃2 Ã2 0 . . . 0
...

...

0 . . . 0 C̃I−1 B̃I−1 ÃI−1

0 . . . 0 −
(

ZI
21Z

I
11

−1
)

I







































Θ0

Θ1

Θ2

...
ΘI−1

ΘI



















=





















F̃0N1 + G̃0N0

F̃1N2 + G̃1N1

F̃2N3 + G̃2N2

...

F̃I−1NI + G̃I−1NI−1
(

ZI
22 − ZI

21Z
I
11

−1
ZI

12

)

M I
I





















(28)
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The left-hand side of the equation is sparse with a block tri-diagonal structure,
which can be readily exploited numerically (see, e.g., Golub and van Loan (1989,
p. 170)).

As in the case when I = 0, the method here provides a linear recursion for
the infinite MA coefficients for j ≥ I, but solves a sparse system of equations
for all coefficients up to I. Note that in solving the sparse system, a boundary
condition consistent with the recursion thereafter is added.

As discussed at the end of the foregoing section, the solution here can as well
be reformulated as a recursive law of motion as will be shown in section(3.4).

3.3 Case 3: I → ∞

Unlike the previous two cases, (8) cannot be reduced to a linear recursion with
constant coefficients for j ≥ I. Assuming, however, that (where l and m denote
row and column)

(29) lim
j→∞

(

M̃j

)

l,m
=

(

M̃∞

)

l,m
, for M = A, B, C, F, G

exists and is finite, then there exists, by the definition of a limit in R
1, some

I(δ)M,l,m for each M , l, and m, such that

(30) ∀δ > 0, ∃I(δ)M,l,m s.t. n > I(δ)M,l,m ⇒ |
(

M̃n

)

l,m
−

(

M̃∞

)

l,m
| < δ

and, thus, there exists some upper bound I(δ)max = max{I(δ)M,l,m}
(31)

∀δ > 0, ∃I(δ)max s.t. n > I(δ)max ⇒ |
(

M̃n

)

l,m
−

(

M̃∞

)

l,m
| < δ; ∀M, l, m

Therefore, (8) can be approximated as

(32) 0 = ÃjΘj+1 + B̃jΘj + C̃jΘj−1 + F̃jNj+1 + G̃jNj , 0 ≤ j < I(δ)max

and

(33) 0 = Ã∞Θj+1 + B̃∞Θj + C̃∞Θj−1 + F̃∞Nj+1 + G̃∞Nj , j ≥ I(δ)max

This system is now analogous to the system in the foregoing section where I

now equals I(δ)max and can be solved using the methods presented there.
The main distinction, however, is that the autonomous recursion is defined

by the limiting coefficients (I → ∞) rather and not by the finite I = I(δ)max

coefficients. As the behavior of the system in the limit is decisive for the appli-
cation of (3) to determine whether additional restrictions exist to determine the
system, the use of coefficients other than those of the limiting case might pro-
duce spurious results; e.g. in the knife-edge case of a unit root in the recursive
solution for the MA coefficients, any deviation of the autonomous coefficients
from the limiting ones would produce the spurious result of an asymptotically
stable or unstable solution.

The existence and uniqueness of a solution, thus, now depends on the eigen-
values of the system defined by these limiting coefficients. The assumption of
the existence of element-wise limits in the coefficient matrices rules out the pos-
sibility of periodic coefficients (i.e. M̃i+j = M̃j for some i) and ensures that
by choosing an appropriate δ, any desired degree of accuracy can be achieved
without endangering the asymptotic behavior of the recursion.
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3.4 A Recursive Law of Motion

For a recursive law of motion, infinite MA solution can be rewritten as

Yt =

∞
∑

j=0

Θjǫt−j =

I−1
∑

j=0

Θjǫt−j +

∞
∑

j=I

Θjǫt−j(34)

Assuming the MA coefficients of the exogenous process Wt follow the simple
recursion Nj+1 = NNj with all eigenvalues of N less than or equal to gu, a
recursive law of motion can be derived as all MA coefficients after I (recalling
from the foregoing section that I = I(δ)max with infinite lagged expectations)
follow an autonomous recursion. From equations (26) and (27), as well as Klein
(2000, p. 1423),

(35) Θj =
(

ZI
21Z

I
11

−1
)

Θj−1 +
(

ZI
22 − ZI

21Z
I
11

−1
ZI

12

)

M IN j , j ≥ I

where

(36) vec
(

M I
)

= −
(

N ′ ⊗ SI
22 − I ⊗ T I

22

)

vec

(

QI
2

[

F̃IN + G̃I

0

])

Defining

(37) Ut =

∞
∑

j=I

Θjǫt+I−j

then

(38) Yt =

I−1
∑

j=0

Θjǫt−j + Ut−I

where

(39) Ut =
(

ZI
21Z

I
11

−1
)

(Ut−1 + ΘI−1ǫt) +
(

ZI
22 − ZI

21Z
I
11

−1
ZI

12

)

M IN IWt

Noting that in the foregoing only superscripts associated with the matrix N

imply exponents.
Thus, the solution in the case of VAR(1) exogenous processes can be written

as

Yt =

I−1
∑

j=0

Θjǫt−j + Ut−I

Ut =
(

ZI
21Z

I
11

−1
)

(Ut−1 + ΘI−1ǫt)

+
(

ZI
22 − ZI

21Z
I
11

−1
ZI

12

)

M IN IWt

Wt = NWt−1 + ǫt(40)
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or, by taking conditional expectations,

Yt =

I−1
∑

j=0

Θjǫt−j + Et−I [Yt]

Et [Yt+I ] =
(

ZI
21Z

I
11

−1
)

(Et−1 [Yt+I−1] + ΘI−1ǫt)

+
(

ZI
22 − ZI

21Z
I
11

−1
ZI

12

)

M IEt [Wt+I ]

Wt = NWt−1 + ǫt(41)

Note that if I = 0, the foregoing reduces to

Yt = Et [Yt]

Et [Yt] =
(

Z0
21Z

0
11

−1
)

Et−1 [Yt−1]

+
(

Z0
22 − Z0

21Z
0
11

−1
Z0

12

)

M0Et [Wt]

Wt = NWt−1 + ǫt(42)

or simply

Yt =
(

Z0
21Z

0
11

−1
)

Yt−1 +
(

Z0
22 − Z0

21Z
0
11

−1
Z0

12

)

M0Wt

Wt = NWt−1 + ǫt(43)

the same form for the recursive law of motion as found in, e.g., Uhlig (1999)
using the Generalized Schur Decomposition of Klein (2000) and Sims (2001).

The recursive law of motion for systems with lagged expectations, i.e. equa-
tion (41), is not, however, as directly applicable empirically as recursive laws of
motion without lagged expectations: Whereas with I = 0 one need only specify
Yt−1 and Wt−1 – both potentially observable empirically – for (43) as well as

{ǫt+i}
T

i=0 to determine {Yt+i, Wt+i}
T

i=0, one would need to specify Et−I [Yt] –

a much more formidable challenge – {ǫt−i}
I

i=0, and Wt−I−1 for (41) as well as

{ǫt+i}
T
i=0 to determine {Yt+i, Wt+i}

T
i=0. This disadvantage is not limited to the

solution method of this paper, but is common to all solution methods when
models with lagged expectations are analyzed. Expanding the vector of vari-
ables to conform to the form of equation (43) as is required by standard methods
would necessitate the inclusion of additional state variables in the form of lagged
expectations in the vector Yt−1: these inherited expectations are, generally, not
observable.
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4 The Perils of Premature Truncation

Aside from the numerical deficiencies in terms of computation that I shall dis-
cuss in the section (5), the use of standard methods of solving linear rational
expectations models when many lagged expectations appear in the structural
equations entails premature truncation of the number of lagged expectations
included in the model. If such a truncation should not cause significant changes
to the predictions of the model, then the truncation ought to be considered
justified; this is, however, not generally the case.

The model of Mankiw and Reis (2002), incorporating an infinite sum of
lagged expectations, has presented the literature with an alternative to the
New Keyensian sticky-price Phillips Curve or, according to McCallum (2003,
p. 1159), “today’s near-canonical monetary policy model.” The prospects of an
alternative to this near-canonical model has led to several articles that juxta-
pose sticky-information and sticky-price models. Korenok (2007 In Press) and
Korenok and Swanson (2007), as in Mankiw and Reis’s (2002) original model,
investigate purely backward-looking models (the assumed money-demand func-
tion and log-preferences in the latter leads to a purely backward-looking model,
once interest rates are solved for) that allow for an analytical solution of the
infinite MA representation. Andrés, López-Salido, and Nelson (2005), Trabandt
(2007), Keen (2007), Paustian and Pytlarczyk (2006), Wang and Wen (2006),
and Wang and Wen (2007) are a few examples of models that combine forward-
looking agents and an infinity of lagged expectations: all of them truncate this
infinity with the truncation point ranging from 3, Andrés, López-Salido, and
Nelson (2005), to 50, Wang and Wen (2006). Kiley (2007, p. 112) compares
sticky-price and sticky-information empirically and notes,“ [i]n practice, the
longest information lag is truncated at four quarters.” I shall demonstrate that
this truncation can be far from innocuous.

Mankiw and Reis’s (2002) model of sticky information can be represented
by the following four equations

(44) ∆mt = πt + ∆yt

(45) ∆yt = yt + yt−1

(46) ∆mt = ρ∆mt−1 + ǫt, ǫt ∼ WN
(

0, σ2
)

(47) πt =
λα

1 − λ
yt + λ

∞
∑

j=0

(1 − λ)j
Et−j−1 [πt + α∆yt]

where equations (44), (45), and (46) are the quantity equation in first-difference
form, the definition of a first difference, and the exogenous process for the
growth of money, respectively; with ∆mt, πt, ∆yt, and yt being the growth of
money, the gross inflation rate, the growth of the output gap, and the output
gap itself. Equation (47) is the sticky-information Phillips curve and, as it is

11



the only equation here to contain lagged expectations, will be the focus of the
examination of the consequences of truncation.

Andrés, López-Salido, and Nelson (2005) and Trabandt (2007) both solve
models that include sticky-information Phillips curves with an infinity of lagged
expectations by using the same truncation method. Andrés, López-Salido, and
Nelson (2005, p. 1033) notes that to make the model tractable, “[they] ap-
proximate it by truncating [lagged expectations in the Phillips curve] at three
quarters.”3 Using this truncation, but extending the truncation point for com-
parability with Kiley (2007), would alter equation (47) to

(48) πt =
λα

1 − λ
yt + λ

3
∑

j=0

(1 − λ)
j
Et−j−1 [πt + α∆yt]

Kiley (2007, p. 112) follows a different truncation technique and states,“ the
probabilities of information arrival are constant in each period up to the trun-
cation period, with the remaining mass of the probability distribution placed on
the last period.” Following this truncation, equation (47) would be rewritten as
(49)

πt =
λα

1 − λ
yt+λ





2
∑

j=0

(1 − λ)
j
Et−j−1 [πt + α∆yt] +

(1 − λ)
3

λ
Et−4 [πt + α∆yt]





Figure (1), clockwise starting from the upper-left panel, shows the impulse
responses of inflation to a negative one-standard-deviation shock to the money
growth rate, the impulse responses of the output gap to the same, the cross-
correlations of the output gap with contemporary inflation, and the autocorre-
lation of inflation for the two approximations and the original specification of
Mankiw and Reis (2002). As the model does not contain any standard forward-
looking behavior (“the relevant expectations are past expectations of current
economic conditions” (Mankiw and Reis 2002, p. 1300)), the initial responses
of inflation and the output gap are the same in all three versions. The second
truncation, equation (49), displays a sharp jump in the response of inflation
four periods after the innovation, owing to the large weight attached to lagged
expectations at this horizon. Neither of the two truncations can reproduce the
maximal response of inflation at seven quarters. The impulse response of the
output gap is insightful insofar as it shows the transition of the rate of conver-
gence of the output gap from the first truncation, equation (48), to the second.
Although the second truncation predicts the same asymptotic rate of conver-
gence as the non-truncated specification, it systematically underestimates the
cross-correlation of the output gap with inflation and the autocorrelation of the
latter. The first specification, despite its shortcomings with respect to the im-
pulse responses, matches the autocorrelation of inflation within the displayed
horizon remarkably well, though it misses the horizon of the lead of the output
gap in the cross-correlation. That there may exist another truncation with the
same horizon that more closely matches the impulses responses and second mo-
ments of the non-truncated model certainly cannot be ruled out; yet, it would

3Note that Andrés, López-Salido, and Nelson (2005, p. 1038) interpret the parameter for
the probability of the arrival of new information according to the non-truncated version and
concludes that its estimated value “leads to an average duration slightly higher than six
quarters” despite the fact that their estimated model permits a duration of at most three
quarters.
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Figure 1: Consequences of Truncation in the Model of Mankiw and Reis (2002)
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seem unreasonable to suppose that such an “optimal” truncation form would be
invariant to model structures and parameter settings and, furthermore, to find
such a truncation form would assume the knowledge of the true solution, which
would make the search for such a form moot.

The absence of traditional forward-looking behavior in the model of Mankiw
and Reis (2002) admits an analytical solution to the linearized problem and,
furthermore, leads to the equivalence of the two truncation forms and the non-
truncated versions for the impulse responses in the first three periods following
an innovation. When forward-looking behavior is, in a non-trivial and non-
disentanglable manner, added to the model, then current responses will depend
on the future trajectories: as the trajectories differed under the different trun-
cation forms, so too will all current responses. Wang and Wen (2006) present
a simple model with sticky information and monopolistic competition on the
supply side (leading to a sticky-information Phillips curve) and capital accumu-
lation, a cash-in-advance constraint, bond holdings, and labor and consumption
decisions maximized intertemporally on the demand side.

Using the truncation methods presented above, figure (2)4 shows the im-
pulse responses of inflation and marginal costs (replacing output gap from the
previous Phillips curve) to a positive unit innovation in the money growth rate.
Both truncation methods (again, with truncation imposed at four quarters) fail
to match the peak of inflation as occurring six periods after the innovation,
with responses differing now both before and after truncation. The impulse re-
sponses of marginal costs demonstrate similar short-comings. Whereas the first
truncation, analogous to equation (48), might have been interpreted as being
superior to the second when applied to the model of Mankiw and Reis (2002);
yet here, one might draw the opposite conclusion.

Different truncation methods can have different consequences, which them-
selves might differ when applied to different models. Knowing a priori which
method will be appropriate for the given application and what consequences
the method will have for the predictions of the model would seem difficult to
accomplish. Both of the truncation methods presented above, as found in the
literature, will converge to the true model if the truncation point is extended.
Exactly this extension is computationally prohibitive with standard methods,
but is exactly the advantage of the method presented by this paper: the trun-
cation point can be extended to ensure floating-point-accuracy of the solution
in less time with the method of this paper than would be required by standard
(state-space QZ) methods with just a few lagged expectations included.

4The solution not labeled as a truncation is implemented using the method developed here
with δ (the tolerance parameter from section (3.3)) set to floating point accuracy. This level
of tolerance implies that the computer is no longer capable of distinguishing between the au-
tonomous recursion from the limiting coefficients, see equation (33), and the non-autonomous
recursion, see equation (32), continued past I(δ)max. The floating point precision of the ma-
chine used is 5E-324 and this δ leads to I(δ)max of 3329. Computation time required is about
1.9 seconds.
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Figure 2: Consequences of Truncation in the First Model of Wang and Wen
(2006)
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5 Comparison of Solution Methods

In this section, I compare the solutions generated by the method presented in
the foregoing section with several methods presented in the literature for mod-
els with and without lagged expectations. I first show that, in the case of a
model without lagged expectations, the solution method presented above per-
forms favorably in comparison with the software associated with Uhlig (1999),
establishing that the method fits within the class of existing methods for models
without lagged expectations insofar as computation time is concerned. There-
after, I compare the solution method of this paper with three alternative solution
methods for models with lagged expectations (potentially going back into the
infinite past). I demonstrate that, for the models and methods presented in
these papers, the solution method here strictly dominates all three in terms of
computation time and/or implementation time on behalf of the user for given
error tolerances.

Table 1: Computation Comparison with Uhlig (1999)
Time in Seconds, Averaged over 1000 Runs

Model from Method Computation Method Computation
Uhlig (1999)’s Toolkit Uhlig (1999) Speed Here Speed

exampl0.m
QZ 0.0054

QZ 0.0023
Mat. Quad. 0.0046

exampl3.m
QZ 0.0088

QZ 0.0041
Mat. Quad. 0.0069

The first case examined in the foregoing section is the standard case in the
literature, i.e. when the problem is formulated such that no lagged expectations
are present. Anderson (2006) provides a comparison of the performance of the
most common methods for solving such linear rational expectations models and
can be used to compare the method presented here with those more commonly
encountered in the literature. In essence, the method here for models without
lagged expectations is analogous to the method of Klein (2000) and its com-
putational efficiency should thusly be self-evident, but the assumed structure
of the model and the use of pre-compiled LAPACK routines in MATLAB to
reorder the Schur decomposition present potentially substantial computational
differences. Table (1) compares the computation times in seconds required to
solve the first and fourth examples of Uhlig’s (1999) toolkit (the only routine
examined by Anderson (2006) to compare favorably with authors’ own method).
Striking here is that the method provided in this paper appears to be consider-
ably faster than those of Uhlig (1999). This should, however, be tempered as it is
not the computational times of the actual solution methods that are compared,
but rather the run times of the programs (for Uhlig’s (1999) method, the time
required to run solve.m is reported) used to build the solution (i.e. overhead,
etc. are not controlled for)5. Nonetheless, this should suffice to demonstrate

5Note that Uhlig (1999) and Sims (2001), and Klein (2000) until recently, use Christopher
Sims’s programs qzdiv.m and qzswitch.m to reorder the QZ decomposition. With the inclusion
of the MATLAB functions ordeig and ordqz in the standard release of MATLAB version 7.0.1,
a gain in efficiency can be achieved as the MATLAB functions are pre-compiled and directly
use LAPACK functions *TGSEN to reorder the the Schur decomposition
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that the method here fits neatly, insofar as computational times are concerned,
into the class of existing methods.

In what follows, the solution method presented here is compared with three
alternate methods in the literature for solving models with lagged expectations.
Computation times and relative errors of impulse responses (measured using a
Euclidean norm and (Golub and van Loan 1989, p. 54)) between the alterna-
tive solution methods and the method presented here are reported. Trabandt
(2007) does provide computation times for his “up-to-date unix machine”, but
as the software is not publicly available, the comparison must restrict itself to
comparing computation time across platforms. For both Wang and Wen (2006)
and Mankiw and Reis (2007), software is publicly available from the authors’
websites and can be used to compare computation times and calculated impulse
responses on the same platform6.

Trabandt (2007) uses an existing method (the QZ implementation of Uhlig
(1999)) to solve a general equilibrium model with sticky information via an
expansion of the state vector. That is, a variable Et−1 [xt] is modeled by defining
x1

t−1 = Et−1 [xt] and adding the additional equation x1
t = Et [xt+1]. While this

method has the advantage of using standard methods, it requires the definition
of an ever-increasing state vector through the inclusion of additional variables
and relationships. That the number of additional variables required increases
more quickly than the number of lagged expectations included can be seen
by examining the variable Et−2 [xt]: define x

2,1
t−1 = Et−1 [xt] and add x

2,1
t =

Et [xt+1] to the system of equations; define and add x
2,2
t = Et

[

x
2,1
t+1

]

; define

and add x
2,3
t = x

2,2
t−1; thus x

2,3
t−1 = x

2,2
t−2 = Et−2

[

x
2,1
t−1

]

= Et−2 [xt]. Thus, three

additional variables were necessary to bring Et−2 [xt] into the canonical form
required by Uhlig (1999): this is costly not only in terms of computation time,
but also in terms of programming time as these lagged expectations must either
be manually redefined by additional variables or an additional algorithm must
be programmed to accomplish the same.

Table 2: Computation Comparison with Trabandt (2007)
Time in Seconds, N= Number of Lagged Expectations Included

Method Computation Method Computation
Trabandt (2007) Time Here Time

I=20 180
I=20 0.0131
I=2583 1.8416

In Table (2), computation times required to solve Trabandt’s (2007) model
are reported. Note that the method of Trabandt (2007) requires three minutes
to find a recursive solution for the model derived there with only twenty lagged
expectations included, whereas the method here requires approximately one-
and-a-half hundredths of a second to incorporate twenty lagged expectations.
When the tolerance for convergence for the matrix sums (as presented Section
(3.3)) is set to floating-point accuracy, the resulting number of included lagged
expectations rises to 2583; the method here is still two orders of magnitude

6Platform used: PentiumR© IV 3 GHz machine with 2 GB of RAM running MATLABR©

version R2007a under WindowsR© XP 2002 SP 2.
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faster than the solution of Trabandt (2007) and incorporates more than one
hundred times as many lagged expectations.

The enormous computational disadvantage of methods based on the QZ de-
composition and state-vector expansion is due to the computation costs associ-
ated with a QZ decomposition. The number of floating-point operations (flops)
involved in the calculation of the QZ decomposition is a function of the cube

of the dimensions of the matrix pencil in question. (Golub and van Loan 1989,
p. 404) As was just shown, the application of traditional methods entails an ex-
pansion of the state space and, thereby, an expansion of the dimensions of the
matrix pencil (see Klein (2000)) used in the QZ decomposition: thus, the number
of flops increases cubically with the number of lagged expectations of endoge-
nous variables included. Anderson and Moore’s (1985) AIM-method presents
an alternative to eigenvalue-based methods and, as shown be Anderson (2000,
p. 20), their method entails a number of flops that is a function of the mere
square of lags and leads. Exploiting the this numerical advantage, Matthias
Trabandt7 notes that the application of the AIM-method reduces computation
time to 1.75 seconds 8. While this presents a substantial improvement, it is still
more than two orders of magnitude slower than the method developed here.
The advantage of the method presented in this paper comes from its division of
the problem into an autonomous and a non-autonomous part. The autonomous
recursion (imposed after all lagged expectations have been included or tolerance
has been reached) involves a QZ decomposition with non-expanded dimensions:
the calculation of the QZ step is invariant to the inclusion of lagged expec-
tations. The non-autonomous part of the recursion is modeled via the block
tri-diagonal system of linear equations which, due to the high degree of banded-
ness (cf. Golub and van Loan (1989, pp. 149-157, 170-177), can be solved via,
e.g., Gaussian elimination with the number of floating point operations being
a near linear function of the the number of lagged expectations of variables
included in the system.

Wang and Wen (2006) present a method for solving linear rational expecta-
tions models with lagged expectations that, in several ways, is very similar to
the solution presented here. In contrast to the method here, however, the au-
thors’ work directly with a recursion in state variables and solve for the forecast
errors induced by lagged expectations. By approximating models with lagged
expectations reaching back into the infinite past with a finite number of forecast
errors to be solved for, Wang and Wen (2006) impose the same condition that is
imposed in the method presented here: namely that after the inclusion of some
finite number of lagged expectations, the system is represented by the system
with the limiting coefficients. Their method, however, requires the modeler to
reformulated lagged expectations into expectation errors, opening an unneces-
sary window for user error. Furthermore, the solution method of Wang and
Wen (2006) poses a much more general and complicated fix-point problem than
the (block) tri-diagonal problems posed by Mankiw and Reis (2007) and this
paper and relies on a non-linear equation solver (fsolve.m in the software associ-
ated with Wang and Wen (2006), which appears to be a variant of Prof. Sims’s
csolve.m). Both the formulation of the fix-point problem and the convergence
parameter used by the non-linear solver would seem to contribute to the limita-

7Personal communication
8Computation times achieved using a Windows Intel Xeon 3GHZ, 2,75 GB RAM machine.
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tions of Wang and Wen’s (2006) method in terms of accuracy with the former
also being a likely culprit for the rather excessive increase in computation time
when nlag (the authors’ parameter for the number of lagged expectation errors
included) is increased past 100.

In Figure (3), for varying values of δ (the convergence criterium defined in
the section (3.3)) and nlag (the number of lagged forecast errors included in the
method of Wang and Wen (2006)), the computation time and relative errors
associated with solving the first example in Wang and Wen’s (2006) paper are
compared. Using the software available from the website of the the authors
of Wang and Wen (2006), direct comparisons regarding computation times and
relative errors are made. The relative errors refer to the relative distances (using
a Euclidean norm) of the (vectorzied) impulse responses of consumption, infla-
tion, labor, capital, marginal costs, output, nominal interest rate, and money
growth with respect to a shock to the rate of money growth (responses calcu-
lated out to 3329 periods after the shock) relative to the impulses calculated
when using, respectively, δ equal to floating-point accuracy (eps(0) in MAT-
LAB) and nlag = 252. The relatively low value of nlag [for comparison, the
baseline with the method of this paper is I(δ = eps(0))max = 3329] is used, as
calculating using nlag = 252 itself took more than one hour. As can be seen in
the figure, the method proposed here solves the model for a given relative error
at least 100 times more quickly than the method of Wang and Wen (2006).

The methods used by Trabandt (2007) and Wang and Wen (2006) differ
theoretically in a subtle but non-trivial manner. Contrary to the claim of Tra-
bandt (2007, p. 18) that “Wang and Wen (2006) propose a solution algorithm
for linear difference systems with a finite number of lagged expectations” (as is
the case with the method of Trabandt (2007)), Wang and Wen (2006) propose
a solution algorithm for linear difference systems with a finite number of lagged
expectation (or forecast) errors. The consequences of this subtle difference can
be readily illustrated by the method proposed in this paper. The approximation
of systems with an infinite number of lagged expectations as proposed in section
(3.3) replaces the non-autonomous recursion for the MA-coefficients of endoge-
nous variables with an autonomous recursion for all MA-coefficients past some
N(δ)max. If, contrary to the approximation proposed in section (3.3), the au-
tonomous recursion were to use the coefficients implied by the non-autonomous
coefficients based on the matrix sums M̃N(δ)max

, for M = A, B, C, F, G, the
solution would be equivalent to that in Trabandt (2007) and would imply an
approximation by using only a finite number of lagged expectations. This recur-
sion would not preserve the asymptotic qualities of the non-autonomous recur-
sion (e.g. in the case of a stationary gross inflation rate in a sticky-information
model, the price level would be susceptible to displaying erroneous stationary
behavior). The methods proposed by Wang and Wen (2006) and in this paper,
by contrast, do preserve these asymptotic qualities. Though, in the limiting
case of letting the number of past expectations or past expectation errors go to
infinity, all three approaches are (at least theoretically, as the method of Tra-
bandt (2007) would imply an infinite vector space) equivalent; it would seem
desirable to select a method which preserves these asymptotic qualities.

Mankiw and Reis (2007) develop a solution method from the MA representa-
tion as in this paper following the method of Taylor (1986) and the representa-
tion of Muth (1961). There solution method differs in two major respects from
the method presented here. Firstly, they reduce the problem to a second-order
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non-autonomous difference equation in a single variable (the MA response of
prices). This has the notable disadvantage that considerable work is required
on behalf of the modeler to reduce the number of variables in the system and,
as such, is liable to considerable user error. Furthermore, it is not clear that
every model can be reduced to a scalar second-order difference equation. The
method developed here is more general and not as liable to user error as no
manual reduction is necessary and the structure of a scalar second-order differ-
ence equation is not imposed on the model. Secondly, Mankiw and Reis (2007)
solve the model by imposing a stability condition for inflation prematurely. This
difference certainly does not in and of itself pose a problem with respect to the
method presented here, as this paper imposes an autonomous recursion prema-
turely; both are liable to some approximation error. Both the method of Mankiw
and Reis (2007) and the method here exploit readily available and fast imple-
mentations of Gaussian elimination to solve a (block) tri-diagonal system. That
the autonomous recursion consistent with the limiting coefficients is imposed
instead of the boundary conditions themselves allows fewer non-autonomous
coefficients to be added to achieve a given relative error.

In Figure (4), for varying values of δ (the convergence criterium defined in
the previous section) and N (the number of MA coefficients included before the
boundary conditions are imposed in the method of Mankiw and Reis (2007))
the computation time and relative errors associated with solving the model
in Mankiw and Reis (2007) are compared. The interpretation of computation
times, however, needs to be tempered by at least two differences in the methods
used. Firstly, the method here solves for the joint responses of ten endogenous
variables to five exogenous shocks as opposed to six endogenous variables and
their responses to five exogenous shocks solved serially as in Mankiw and Reis
(2007). Secondly, the method of this paper entirely avoids the several pages
of “tedious algebra” included in and excluded from the technical appendix of
Mankiw and Reis (2007) to arrive at their solution. That Mankiw and Reis’s
(2007) method solves the model more quickly than the method presented here
for large relative errors is most likely due to the initial fixed costs of the pro-
grams associated with this paper that attack the problem with a higher level
of generality. The method presented in this paper, however, requires a smaller
increase in computational time for a given increase in the level of accuracy; at
some level of accuracy, the method here surpasses that of Mankiw and Reis
(2007) in terms of computation time and remains superior until numerical limi-
tations on the QZ decomposition are reached. Less than two seconds are needed
to solve the model using the convergence criterium δ = eps(0), incorporating
3651 lagged expectations, thus including thrice as many lagged expectations
in half as much time. That the two methods perform comparably in terms of
computation time would seem to give the method of this paper an enormous
advantage, as the method derived here is not model specific and does not require
any manual reformulation or variable reduction on behalf of the user.

When the model to be analyzed possesses no lagged expectations, the method
here fits within the class of solution methods used throughout the literature. For
models with lagged expectations, the method derived in this paper is superior
to current models with respect to computation and/or implementation times.
With the exception of the method derived by Wang and Wen (2006), the method
here is the only non-model-specific one and can be readily applied to existing
and new DSGE models both with and without lagged expectations efficiently.
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6 The General Procedure and Use of the Algo-

rithm

In this section, I shall break the method of solution into several steps and outline
the necessary inputs for the algorithms following Uhlig (1999).

The solution procedure can be characterized by the following steps:

• Derive and collect the necessary equations for an equilibrium; i.e. first-
order conditions, budget constraints, market-clearing constraints, and ex-
ogenous processes

• Solve for the steady state(s)

• Log-linearize the necessary equations

• Define the matrices needed for the equations (1) and (2)

• Analyze the results

The necessary methods for the first three steps can be found in, e.g., Uhlig
(1999).

The software package requires (in this order):

• Numerical values for parameters

• Steady-state relationships in terms of parameters

• Labels for the endogenous and exogenous variables in the order in which
they appear in the vectors Yt and Wt

• Matrices A0, B0, C0, F0, G0 dependant on parameters and steady states

• Declaration of the value of I as an integer or “infinity”

• Matrix functions Aj , Bj , Cj , Fj , Gj as strings dependant on parameters,
steady states, and j for j = 1 to I

• Matrix N , the VAR(1) coefficients of the exogenous processes

• Matrix Ω, the covariance matrix of the exogenous innovations

No definitions or reformulations of the necessary conditions are required.
The only new (compared to standard methods such as Uhlig (1999)) technique
required is the formulation of the matrix functions. The user’s guide associated
with the software9 explains how this is done and works through a couple of
examples.

9Software with examples available at:
http://www.wm.tu-berlin.de/~makro/Meyer-Gohde/Working-Papers.htm
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7 Conclusion

I have derived a method for solving linear rational expectations models with
lagged expectations based on a QZ decomposition for the autonomous recursion
of the MA coefficients and a sparse block tri-diagonal system of equations for
the non-autonomous coefficients. With lagged expectations reaching back into
the infinite past, the non-autonomous recursion is replaced after some itera-
tion (consistent with a convergence criterium) with the autonomous recursion
implied by the limiting coefficients of the original non-autonomous recursion.

The software provided minimizes user input, eliminating intensive reformu-
lation and variable reduction, and provides solutions with considerably less com-
putation time than existing methods. To further simplify the work on behalf of
the user, the software package calculates impulse responses to innovations, sim-
ulated and population moments, provides simulations, and automatically calcu-
lates impulse responses to anticipated (or pre-announced) innovations. This fi-
nal feature, a direct consequence of the MA representation Taylor (1986), should
make the software attractive even for users not interested in models with lagged
expectations and the package as a whole should facilitate the analysis of models
with lagged expectations.

The solution method derived here fits favorably in the class of standard
methods when no lagged expectations are present. When lagged expectations
are present, the solution method here is computationally superior to standard
methods and existing general methods for models with lagged expectations,
achieving an at least equal degree of computational efficiency as the most ef-
ficient model-specific solution method presented in Mankiw and Reis (2007).
The frequently encountered shortcut of truncating the number of lagged expec-
tations can be avoided while still achieving a level of computational efficiency
compatible with, e.g., Bayesian estimation techniques. The investigation and es-
timation of models containing lagged expectations ought now to be limited only
by available data and not the computational capabilities of available solution
methods.
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A Exposition on the Existence of Equation (18)

Assuming that Nj+1 = ΨNj (i.e., the exogenous process is a VAR(1)), and
defining

Hk =
[

T−1
22 S22

]k
Q2

[

F0Nj+1+k + G0Nj+k

0

]

Φ = T−1
22 S22

∆ = Q2

[

F0N
j+1 + G0N

j

0

]

then

Hk = Φk∆Ψk ⇒ Hk+1 = ΦHkΨ ⇒ vec (Hk+1) = (Ψ′ ⊗ Φ) vec (Hk)

defining

Ξ = Ψ′ ⊗ Φ

then the stability of this recursion (and thusly the convergence of the limit) is
determined by

eig (Ξ) = vec
(

eig (Ψ′)
′
eig (Φ)

)

but as, by definition, |eig (Φ) | < 1
gu then |eig (Ξ) | < 1 so long as |eig (Ψ′) | ≤ gu.

Thus, so long as the moving-average coefficients of the exogenous process follow a
recursion that itself satisfies the uniform growth restriction, (18) holds, allowing
(17) to be well defined.
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