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Abstract

In this paper, we give an overview of the state-of-the-art in the econometric literature
on the modeling of so-called financial point processes. The latter are associated with the
random arrival of specific financial trading events, such as transactions, quote updates,
limit orders or price changes observable based on financial high-frequency data. After
discussing fundamental statistical concepts of point process theory, we review duration-
based and intensity-based models of financial point processes. Whereas duration-based
approaches are mostly preferable for univariate time series, intensity-based models pro-
vide powerful frameworks to model multivariate point processes in continuous time.
We illustrate the most important properties of the individual models and discuss major
empirical applications.

Keywords: Financial point processes, dynamic duration models, dynamic intensity mod-
els.

JEL Classification: C22, C32, C41

1 Introduction

Since the seminal papers by Hasbrouck (1991) and Engle and Russell (1998) the modelling of

financial data at the transaction level is an ongoing topic in the area of financial economet-

rics. This has created a new body of literature which is often referred to as ”the econometrics

of (ultra-)high-frequency finance” or ”high-frequency econometrics”. The consideration of

the peculiar properties of financial transaction data, such as the irregular spacing in time,
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Humboldt-Universität zu Berlin as well as Center for Financial Studies (CFS), Frankfurt. Address: Span-
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the discreteness of price changes, the bid-ask bounce as well as the presence of serial de-

pendence, provoked the surge of new econometric approaches. One important string of the

literature deals with the irregular spacing of data in time. Taking into account the latter

is indispensable whenever the full amount of information in financial transaction data has

to be exploited and no loss of information due to fixed-interval aggregation schemes can

be accepted. Moreover, it has been realized that the timing of trading events, such as the

arrival of particular orders and trades, and the frequency in which the latter occur have

information value for the state of the market and play an important role in market mi-

crostructure analysis, for the modelling of intraday volatility as well as the measurement of

liquidity and implied liquidity risks.

Taking into account the irregular occurrence of transaction data requires to consider it

as a point process, a so-called financial point process. Depending on the type of the financial

”event” under consideration, we can distinguish between different types of financial point

processes or processes of so-called financial durations. The most common types are trade

durations and quote durations as defined by the time between two consecutive trade or quote

arrivals, respectively. Price durations correspond to the time between absolute cumulative

price changes of given size and can be used as an alternative volatility measure. Similarly,

a volume duration is defined as the time until a cumulative order volume of given size is

traded and captures an important dimension of market liquidity. For more details and

illustrations, see Bauwens and Giot (2001) or Hautsch (2004).

One important property of transaction data is that market events are clustered over time

implying that financial durations follow positively autocorrelated processes with a strong

persistence. Actually, it turns out that the dynamic properties of financial durations are

quite similar to those of daily volatilities. Taking into account these properties leads to

different types of dynamic models on the basis of a duration representation, an intensity

representation or a counting representation of a point process.

In this chapter, we review duration-based and intensity-based models of financial point

processes. In Section 2, we introduce the fundamental concepts of point process theory and

discuss major statistical tools. In Section 3, we review the class of dynamic duration models.

Specifying a (dynamic) duration model is presumably the most intuitive way to characterize

a point process in discrete time and has been suggested by Engle and Russell (1998), which

was the starting point for a huge body of literature. Nevertheless, Russell (1999) realized

that a continuous-time setting on the basis of the intensity function constitutes a more

flexible framework which is particularly powerful for the modelling of multivariate processes.

Different types of dynamic intensity models are presented in Section 4.
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2 Fundamental Concepts of Point Process Theory

In this section, we discuss important concepts and relationships in point process theory

which are needed throughout this chapter. In Section 2.1, we introduce the notation and

basic definitions. The fundamental concepts of intensity functions, compensators and hazard

rates are defined in Section 2.2, whereas in Section 2.3 different classes and representations

of point processes are discussed. Finally, in Section 2.4, we present the random time change

theorem which yields a powerful result for the construction of diagnostics for point process

models. Most concepts discussed in this section are based upon Chapter 2 of Karr (1991).

2.1 Notation and Definitions

Let {ti}i∈{1,...,n} denote a random sequence of increasing event times 0 < t1 < . . . < tn

associated with an orderly (simple) point process. Then, N(t) :=
∑

i≥1 1l {ti≤t} defines the

right-continuous (càdlàg) counting function. Throughout this chapter, we consider only

point processes which are integrable, i.e. E[N(t)] < ∞ ∀ t ≥ 0. Furthermore, {Wi}i∈{1,...,n}

denotes a sequence of {1, . . . ,K}-valued random variables representing K different types

of events. Then, we call the process {ti,Wi}i∈{1,...,n} an K-variate marked point process

on (0,∞) as represented by the K sequences of event-specific arrival times {tki }i∈{1,...,nk},

k = 1, . . . ,K, with counting functions Nk(t) :=
∑

i≥1 1l {ti≤t}1l {Wi=k}.

The internal history of an K-dimensional point process N(t) is given by the filtration FN
t

with FN
t = σ(Nk(s) : 0 ≤ s ≤ t, k ∈ Ξ), Nk(s) =

∑
i≥1 1l {ti≤s}1l {Wi∈Ξ}, where Ξ denotes

the σ-field of all subsets of {1, . . . ,K}. More general filtrations, including e.g. also processes

of explanatory variables (covariates) {zi}i∈{1,...,n} are denoted by Ft with FN
t ⊆ Ft.

Define xi := ti − ti−1 with i = 1, . . . , n and t0 := 0 as the inter-event duration from

ti−1 until ti. Furthermore, x(t) with x(t) := t − tN̆(t), with N̆(t) :=
∑

i≥1 1l {ti<t} denoting

the left-continuous counting function, is called the backward recurrence time. It is a left-

continuous function that grows linearly through time with discrete jumps back to zero after

each arrival time ti. Finally, let θ ∈ Θ denote model parameters.

2.2 Compensators, Intensities, and Hazard Rates

In martingale-based point process theory, the concept of compensators plays an important

role. Using the property that an Ft-adapted point process N(t) is a submartingale1, it can

be decomposed into a zero mean martingale M(t) and a (unique) Ft-predictable increasing

process, Λ̃(t), which is called the compensator of N(t) and can be interpreted as the local

conditional mean of N(t) given the past. In statistical theory, this decomposition is typically

1An Ft-adpated càdlàg process N(t) is a submartingale if E[|N(t)|] < ∞ for each t and if s < t implies
that E[N(t)|Fs] ≥ N(s).
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referred to as the Doob-Meyer decomposition.

Define λ(t) as a scalar, positive Ft-predictable process, i.e. λ(t) is adapted to Ft, and

left-continuous with right hand limits. Then, λ(t) is called the (Ft-conditional) intensity of

N(t) if

Λ̃(t) =
∫ t

0
λ(u)du, (1)

where Λ̃(t) is the (unique) compensator of N(t). This relationship emerges from the in-

terpretation of the compensator as integrated (conditional) hazard function. Consequently,

λ(t) can be also defined by the relation

E[N(s)−N(t)|Ft] = E
[∫ s

t
λ(u)du

∣∣∣Ft

]
(2)

which has to hold (almost surely) for all t, s with 0 ≤ t ≤ s. Letting s ↓ t leads to the

heuristic representation which is more familiar in classical duration analysis. Then, λ(t) is

obtained by

λ(t+) := lim
∆↓0

1
∆

E [N(t + ∆)−N(t)| Ft] , (3)

where λ(t+) := lim∆↓0 λ(t + ∆). In case of a stationary point process, λ̄ := E[dN(t)]/dt =

E[λ(t)] is constant.

Equation (3) manifests the close analogy between the intensity function and the hazard

function which is given by

h(x) := f(x)/S(x) = lim
∆→0

1
∆

Pr[x ≤ X < x + ∆|X ≥ x] (4)

with x denoting the (inter-event) duration as represented by the realization of a random

variable X with probability density function f(x), survivor function S(x) = 1− F (x), and

cumulative distribution function (cdf) F (x) = Pr[X ≤ x]. Whereas the intensity function

is defined in (continuous) calendar time, the hazard rate is typically defined in terms of the

length of a duration x and is a key concept in (cross-section) survival analysis.

2.3 Types and Representations of Point Processes

The simplest type of point process is the homogeneous Poisson process defined by

Pr [(N(t + ∆)−N(t)) = 1 |Ft ] = λ∆ + o(∆), (5)

Pr [(N(t + ∆)−N(t)) > 1 |Ft ] = o(∆), (6)

with ∆ ↓ 0. Then, λ > 0 is called the Poisson rate corresponding to the (constant)

intensity. Accordingly, equations (5) and (6) define the intensity representation of a Poisson

process. A well-known property of homogenous Poisson processes is that the inter-event
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waiting times xi = ti − ti−1 are independently exponentially distributed, leading to the

duration representation. In this context, λ is the hazard rate of the exponential distribution.

Furthermore, it can be shown (see e.g. Lancaster (1997)) that the number of events in

an interval (a, b], N(a, b) := N(b) − N(a) is Poisson distributed with Pr[N(a, b) = k] =

exp[−λ(b−a)][λ(b−a)]k/k!, yielding the counting representation. All three representations

of a Poisson process can be used as the starting point for the specification of a point process

model.

Throughout this chapter we associate the term duration models to a model of the

(discrete-time) duration process observable at the event-times {ti}i=1,...,n. Then, researchers

parameterize the conditional distribution function F (xi|Fti−1) or, alternatively, the condi-

tional hazard rate h(xi|Fti−1). Generally, such a model should aim, in particular, at fitting

the dynamical and distributional properties of durations. The latter is often character-

ized by the excess dispersion, corresponding to the ratio between the standard deviation

to the mean. In classical hazard rate models employed in traditional survival analysis, the

hazard rate is typically parameterized in terms of covariates, see e.g. Kalbfleisch and Pren-

tice (1980), Kiefer (1988) or Lancaster (1997). The most well-known hazard model is the

proportional hazard model introduced by Cox (1972) and is given by

h(x|z; θ) = h0(x|γ1)g(z, γ2), (7)

where θ = (γ1, γ2), h0(·) denotes the so-called baseline hazard rate and g(·) is a function

of the covariates z and parameters γ2. The baseline hazard rate may be parameterized

in accordance with a certain distribution, like e.g., a Weibull distribution with parameters

λ, p > 0 implying

h0(x|γ1) = λp(λx)p−1. (8)

For p = 1 we obtain the exponential case h0(x|γ1) = λ, implying a constant hazard rate.

Alternatively, if p > 1, ∂h0(x|γ1)/∂x > 0, i.e. the hazard rate is increasing with the length of

the spell which is referred to as ”positive duration dependence”. In contrast, p < 1 implies

”negative duration dependence”. Non-monotonic hazard rates can be obtained with more

flexible distributions, like the generalized F and particular cases thereof, including the

generalized gamma, Burr, Weibull and log-logistic distributions. We refer to the Appendix

to Chapter 3 of Bauwens and Giot (2001) and to the Appendix of Hautsch (2004) for

definitions and properties. Alternatively, the baseline hazard may be left unspecified and

can be estimated nonparametrically, see Cox (1975).

An alternative type of duration model is the class of accelerated failure time (AFT)

models given by

h(x|z; θ) = h0[xg(z, γ2)|γ1]g(z, γ2). (9)
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Here, the effect of the exogenous variables is to accelerate or to decelerate the time scale

on which the baseline hazard h0 is defined. As illustrated in Section 3.1, AFT-type models

are particularly attractive to allow for autocorrelated duration processes.

Because of their discrete-time nature, duration models cannot be used whenever the

information set has to be updated within a duration spell, e.g. caused by time-varying

covariates or event arrivals in other point processes. For this reason, (discrete-time) duration

models are typically used in a univariate framework.

Whenever a continuous-time modelling is preferential (as e.g. to account for the asyn-

chronous event arrivals in a multivariate framework), it is more natural to specify the

intensity function directly. This class of models is referred to as intensity models. One im-

portant extension of a homogenous Poisson process it to allow the intensity to be directed

by a real-valued, non-negative (stationary) random process λ∗(t) with (internal) history F∗
t

leading to the class of doubly stochastic Poisson processes (Cox processes). In particular,

N(t) is called a Cox process directed by λ∗(t) if conditional on λ∗(t), N(t) is a Poisson

process with mean λ∗(t), i.e. Pr[N(a, b) = k|F∗
t ] = exp[−λ∗(t)] [λ∗(t)]k /k!. The doubly

stochastic Poisson process yields a powerful class of probabilistic models with applications

in seismology, biology and economics. For instance, specifying λ∗(t) in terms of an autore-

gressive process yields a dynamic intensity model which is particularly useful to capture

the clustering in financial point processes. For a special type of doubly stochastic Poisson

process see Section 4.2.

A different generalization of the Poisson process is obtained by specifying λ(t) as a

(linear) self-exciting process given by

λ(t) = ω +
∫ t

0
w(t− u)dN(u) = ω +

∑
ti<t

w(t− ti), (10)

where ω is a constant, w(s) denotes a non-negative weight function, and
∫ t
0 w(s)dN(s)

is the stochastic Stieltjes integral of the process w with respect to the counting pro-

cess N(t). The process (10) was proposed by Hawkes (1971) and is therefore named a

Hawkes process. If w(s) declines with s, then, the process is self-exciting in the sense that

Cov[N(a, b), N(b, c)] > 0, where 0 < a ≤ b < c. Different types of Hawkes processes and

their applications to financial point processes are presented in Section 4.1. A further type

of intensity models which is relevant in the literature of financial point processes is given

by a specification where the intensity itself is driven by an autoregressive process which is

updated at each point of the process. This leads to a special type of point process models

which does not originate from the classical point process literature but originates from the

autoregressive conditional duration (ACD) literature reviewed in Section 2 and brings time

series analysis into play. Such a process is called an autoregressive conditional intensity

6



model and is considered in Section 4.2.

Finally, starting from the counting representation of a Poisson process leads to the

class of count data models. Dynamic extensions of Poisson processes in terms of counting

representations are not surveyed in this chapter. Some references reflecting the diversity

of approaches are Rydberg and Shephard (2003), Heinen and Rengifo (2003), Liesenfeld,

Nolte, and Pohlmeier (2006), and Quoreshi (2006).

2.4 The Random Time Change Theorem

One fundamental result of martingale-based point process theory is the (multivariate) ran-

dom time change theorem by Meyer (1971) which allows to transform a wide class of point

processes to a homogeneous Poisson process:

Theorem (Meyer, 1971, Brown and Nair, 1988): Assume a multivariate point process

(N1(t), . . . , NK(t)) is formed from the event times {tki }i∈{1,...,nk}, k = 1, . . . ,K, and has

continuous compensators (Λ̃(t)1, . . ., Λ̃(t)K) with Λ̃k(∞) = ∞ for each k = 1, . . . ,K, then

the point processes formed from {Λ̃k(tki )}{i=1,...,nk}, k = 1, . . . ,K, are independent Poisson

processes with unit intensity.

Proof: See Meyer (1971) or Brown and Nair (1988) for a more accessible and elegant

proof.

Define τk(t) as the (Ft-)stopping time obtained by the solution of∫ τk(t)
0 λk(s)ds = t. Applying the random time change theorem to (1) implies that the

point processes Ñk(t) with Ñk(t) := Nk(τk(t)) are independent Poisson processes with

unit intensity and event times {Λ̃k(tki )}{i=1,...,nk} for k = 1, . . . ,K. Then, the so-called

integrated intensities

Λk(tki−1, t
k
i ) :=

∫ tki

tki−1

λk(s)ds = Λ̃k(tki )− Λ̃k(tki−1) (11)

correspond to the increments of independent Poisson processes for k = 1, . . . ,K. Conse-

quently, they are independently standard exponentially distributed across i and k. For more

details, see Bowsher (2006). The random time change theorem plays an important role in

order to construct diagnostic tests for point process models (see Section 4.3) or to simulate

point processes (see e.g. Giesecke and Tomecek (2005)).

3 Dynamic Duration Models

In this section, we discuss univariate dynamic models for the durations between consecutive

(financial) events. In Section 3.1, we review in detail the class of ACD models, which is

by far the most used class in the literature on financial point processes. In Section 3.2,

7



we briefly discuss statistical inference for ACD models. In Section 3.3, we present other

dynamic duration models, and in the last section we review some applications.

3.1 ACD Models

The class of ACD models has been introduced by Engle and Russell (1997, 1998) and Engle

(2000). In order to keep the notation simple, define xi in the following as the inter-event

duration which is standardized by a seasonality function s(ti), i.e. xi := (ti − ti−1)/s(ti).

The function s(ti) is typically parameterized according to a spline function capturing time-

of-day or day-of-week effects. Time-of-day effects arise because of systematic changes of the

market activity throughout the day and due to opening of other related markets. In most

approaches s(ti) is specified according to a linear or cubic spline function and is estimated

separately in a first step yielding seasonality adjusted durations xi. Alternatively, a non-

parametric approach has been proposed by Veredas, Rodriguez-Poo, and Espasa (2002).

For more details and examples regarding seasonality effects in financial duration processes,

we refer the reader to Chapter 2 of Bauwens and Giot (2001) or to Chapter 3 of Hautsch

(2004).

The key idea of the ACD model is to model the (seasonally adjusted) durations {xi}i=1,...,n

in terms of a multiplicative error term model in the spirit of Engle (2002), i.e.

xi = Ψi εi, (12)

where Ψi denotes a function of the past durations (and possible covariates), and εi defines

an i.i.d. random variable for which it is assumed that

E[εi] = 1, (13)

so that Ψi corresponds to the conditional duration mean (the so-called ”conditional dura-

tion”) with Ψi := E[xi|Fti−1 ]. The ACD model can be rewritten in terms of the intensity

function as

λ(t|Ft) = λε

(
x(t)

ΨN̆(t)+1

)
1

ΨN̆(t)+1

, (14)

where λε(s) denotes the hazard function of the ACD error term. This formulation clearly

demonstrates that the ACD model belongs to the class of AFT models. Assuming εi to

be standard exponentially distributed yields the so-called Exponential ACD model. More

flexible specifications arise by assuming εi to follow a more general distribution, see the

discusssion after equation (8). It is evident that the ACD model is the counter-part to the

GARCH model (Bollerslev (1986)) for duration processes. Not surprisingly, many results

and specifications from the GARCH literature have been adapted to the ACD literature.

8



The conditional duration, Ψi, is defined as a function Ψ of the information set Fti−1 and

provides therefore the vehicle for incorporating the dynamics of the duration process. In

this respect it is convenient to use an ARMA-type structure of order (p, q), whereby

Ψi = Ψ(Ψi−1, . . . ,Ψi−p, xi−1, . . . , xi−q). (15)

For simplicity, we limit the exposition in the sequel to the case p = q = 1.

The first model put forward in the literature is the linear ACD model, which specializes

(15) as

Ψi = ω + βΨi−1 + αxi−1. (16)

Since Ψi must be positive, the restrictions ω > 0, α ≥ 0 and β ≥ 0 are usually imposed. It

is also assumed that β = 0 if α = 0, otherwise β is a redundant parameter. The process

defined by (12), (13) and (16) is known to be covariance-stationary if

(α + β)2 − α2σ2 < 1, (17)

where σ2 := Var[εi] < ∞, and to have the following moments and autocorrelations:

(1) E[xi] := µx = ω/(1− α− β),

(2) Var[xi] := σ2
x = µ2

x σ2 1−β2−2αβ
1−(α+β)2−α2σ2 ,

(3) ρ1 = α (1−β2−α β)
1−β2−2 α β

and ρn = (α + β)ρn−1 (n ≥ 2).

The condition (17) ensures the existence of the variance. These results are akin to those for

the GARCH(1,1) zero-mean process. They can be generalized to ACD(p,q) processes when

p, q > 1. It is usually found empirically that the estimates of the parameters are such that

α + β is in the interval (0.85,1) while α is in the interval (0.01,0.15). Since the ACD(1,1)

model can be written as

xi = ω + (α + β)xi−1 + ui − βui−1, (18)

where ui := xi − Ψi is a martingale difference innovation, the resulting autocorrelation

function (ACF) is that of an ARMA(1,1) process that has AR and MA roots close to each

other. This type of parameter configuration generates the typical ACF shape of clustered

data. Nevertheless, the ACF decreases at a geometric rate, though it is not uncommon

to find duration series with an ACF that decreases at a hyperbolic rate. This tends to

happen for long series and may be due to parameter changes that give the illusion of long

memory in the process. In order to allow for long range dependence in financial duration

processes, Jasiak (1998) extends the ACD model to a fractionally integrated ACD model.

For alternative ways to specify long memory ACD models, see Koulikov (2002).

9



A drawback of the linear ACD model is that it is difficult to allow Ψi to depend on

functions of covariates without violating the non-negativity restriction. For this reason,

Bauwens and Giot (2000) propose a class of logarithmic ACD models, where no parametric

restrictions are needed to ensure positiveness of the process:

lnΨi = ω + β lnΨi−1 + αg(εi−1), (19)

where g(εi−1) is either ln εi−1 (log-ACD of type I) or εi−1 (type II). Using this setting, it

is convenient to augment Ψi by functions of covariates, see e.g. Bauwens and Giot (2001).

The stochastic process defined by (12), (13) and (19) is covariance-stationary if

β < 1, E [εi exp[αg(εi)]] , E [exp[2αg(εi)]] < ∞. (20)

Its mean, variance and autocorrelations are given in Section 3.2 in Bauwens and Giot (2001),

see also Fernandes and Grammig (2006) and Bauwens, Galli, and Giot (2008). Drost and

Werker (2004) propose to combine one of the previous ACD equations for the conditional

duration mean with an unspecified distribution for εi, yielding a class of semi-parametric

ACD models.

The augmented ACD (AACD) model introduced by Fernandes and Grammig (2006)

provides a more flexible specification of the conditional duration equation than the previous

models. Here, Ψi is specified in terms of a Box-Cox transformation yielding

Ψδ1
i = ω + βΨδ1

i−1 + αΨδ1
i−1[|εi−1 − ξ| − ρ(εi−1 − ξ)]δ2 ,

where δ1 > 0, δ2 > 0, ξ, and ρ are parameters. The so-called news impact function

[|εi−1− ξ|−ρ(εi−1− ξ)]δ2 allows for a wide variety of shapes of the curve tracing the impact

of εi−1 on Ψi for a given value of Ψi−1 and the remaining parameters. The parameter ξ is a

shift parameter and the parameter ρ is a rotation parameter. If ξ = ρ = 0, the linear ACD

model is obtained by setting δ1 = δ2 = 1, the type I logarithmic ACD model by letting

δ1 and δ2 tend to 0, and the type II version by letting δ1 tend to 0 and setting δ2 = 1.

Fernandes and Grammig (2006) compare different versions of the AACD model using IBM

price durations arising from trading at the New York Stock Exchange. Their main finding

is that ”letting δ1 free to vary and accounting for asymmetric effects (by letting ξ and ρ

free) seem to operate as substitute sources of flexibility”. Hautsch (2006) proposes an even

more general augmented ACD model that nests in particular the so-called EXponential

ACD model proposed by Dufour and Engle (2000) implying a kinked news impact function.

As a counterpart to the semiparametric GARCH model proposed by Engle and Ng (1993),

Hautsch (2006) suggests specifying the news impact function in terms of a linear spline

function based on the support of εi. He illustrates that the high flexibility of this model is

needed in order to appropriately capture the dynamic properties of financial durations.
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Another way to achieve flexibility in ACD models is to use the idea of mixtures. The

mixture may apply to the error distribution alone, as in De Luca and Zuccolotto (2003),

Hujer and Vuletic (2005), De Luca and Gallo (2004) and De Luca and Gallo (2006), or

may involve the dynamic component as well. Zhang, Russell, and Tsay (2001) propose a

threshold ACD model (TACD), wherein the ACD equation and the error distribution change

according to a threshold variable such as the previous duration. For J regimes indexed by

j = 1, . . . , J , the model is defined as

xi = Ψ(j)
i ε

(j)
i , (21)

Ψ(j)
i = ω(j) + β(j)Ψi−1 + α(j)xi−1 (22)

when xi−1 ∈ [rj−1, rj), and 0 = r0 < r1 < . . . < rJ = ∞ are the threshold parameters.

The superscript (j) indicates that the distribution or the model parameters can vary with

the regime operating at observation i. This model can be viewed as a mixture of J ACD

models, where the probability to be in regime j at i is equal to 1 and the probabilities to

be in each of the other regimes is equal to 0. Hujer, Vuletic, and Kokot (2002) extend this

model to let the regime changes be governed by a hidden Markov chain.

While the TACD model implies discrete transitions between the individual regimes,

Meitz and Teräsvirta (2006) propose a class of smooth transition ACD (STACD) models

which generalize the linear and logarithmic ACD models in a specific way. Conditions for

strict stationarity, ergodicity, and existence of moments for this model and other ACD

models are provided in Meitz and Saikkonen (2004) using the theory of Markov chains. A

motivation for the STACD model is, like for the AACD, to allow for a nonlinear impact of

the past duration on the next expected duration.

3.2 Statistical Inference

The estimation of most ACD models can be easily performed by maximum likelihood (ML).

Engle (2000) demonstrates that the results by Bollerslev and Wooldridge (1992) on the

quasi-maximum likelihood (QML) property of the Gaussian GARCH(1,1) model extend to

the Exponential-ACD(1,1) model. Then, QML estimates are obtained by maximizing the

quasi-loglikelihood function given by

lnL
(
θ; {xi}{i=1,...,n}

)
= −

n∑
i=1

[
lnΨi +

xi

Ψi

]
. (23)

For more details we refer to Chapter 3 of Bauwens and Giot (2001), Chapter 5 of Hautsch

(2004), and to the survey of Engle and Russell (2005).

Residual diagnostics and goodness-of-fit tests are straightforwardly performed by eval-

uating the stochastic properties of the ACD residuals ε̂i = xi/Ψ̂i. The dynamic properties

11



are easily analyzed based on Portmanteau statistics or tests against independence such

as proposed by Brock, Scheinkman, Scheinkman, and LeBaron (1996). The distributional

properties can be evaluated based on Engle and Russell’s (1998) test for no excess disper-

sion using the asymptotically standard normal test statistic
√

n/8 σ̂2, where σ̂2 denotes

the empirical variance of the residual series. Dufour and Engle (2000) and Bauwens, Giot,

Grammig, and Veredas (2004) evaluate the model’s goodness-of-fit based on the evalua-

tion of density forecasts using the probability integral transform as proposed by Diebold,

Gunther, and Tay (1998). A nonparametric test against distributional misspecification

is proposed by Fernandes and Grammig (2005) based on the work of Aı̈t-Sahalia (1996).

Statistics that exclusively test for misspecifications of the conditional mean function Ψi have

been worked out by Meitz and Teräsvirta (2006) using the Lagrange Multiplier principle

and by Hautsch (2006) using (integrated) conditional moment tests. A common result is

that too simple ACD specifications, such as the ACD or Log-ACD model are not flexible

enough to adequately capture the properties of observed financial durations.

3.3 Other Models

ACD models strongly resemble ARCH models. Therefore it is not surprising that Taylor’s

(1986) stochastic volatility model for financial returns has been a source of inspiration of

similar duration models. Bauwens and Veredas (2004) propose the stochastic conditional

duration model (SCD) as an alternative to ACD-type models. The SCD model relates to

the logarithmic ACD model in the same way as the stochastic volatility model relates to

the exponential GARCH model of Nelson (1991). Thus the model is defined by equations

(12), (13), and

lnΨi = ω + β lnΨi−1 + γεi−1 + ui, (24)

where ui is iid N(0, σ2
u) distributed. The process {ui} is assumed to be independent of

the process {εi}. The set of possible distributions for the duration innovations εi is the

same as for ACD models. This model allows for a rich class of hazard functions for xi

through the interplay of two distributions. The latent variable Ψi may be interpreted as

being inversely related to the information arrival process which triggers bursts of activity

on financial markets. The ”leverage” term γεi−1 in (24) is added by Feng, Jiang, and Song

(2004) to allow for an intertemporal correlation between the observable duration and the

conditional duration, and the correlation is found to be positive. Bauwens and Veredas

(2004) use a logarithmic transformation of (12) and employ QML estimation based on

the Kalman filter. Knight and Ning (2005) use the empirical characteristic function and

the method of generalized moments. Strickland, Forbes, and Martin (2003) use Bayesian

estimation with a Markov chain Monte Carlo algorithm. For the model with leverage term,
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Feng, Jiang, and Song (2004) use the Monte Carlo ML method of Durbin and Koopman

(2004).

The ACD and SCD models reviewed above share the property that the dynamics of

higher moments of the duration process are governed by the dynamics of the conditional

mean. Ghysels, Gourieroux, and Jasiak (2004) argue that this feature is restrictive and

introduce a nonlinear two factor model that disentangles the movements of the mean and of

the variance of durations. Since the second factor is responsible for the variance heterogene-

ity, the model is named the stochastic volatility duration (SVD) model. The departure point

for this model is a standard static duration model in which the durations are independently

and exponentially distributed with a gamma heterogeneity, i.e.

xi =
Ui

aVi
=

H(1, F1i)
aH(b, F2i)

, (25)

where Ui and Vi are two independent variables which are gamma(1,1) (i.e. exponential) and

gamma(b, b) distributed, respectively. The last ratio in (25) uses two independent Gaussian

factors F1i and F2i, and H(b, F ) = G(b, ϕ(F )), where G(b, .) is the quantile function of the

gamma(b, b) distribution and ϕ(.) the cdf of the standard normal distribution. Ghysels,

Gourieroux, and Jasiak (2004) extend this model to a dynamic setup through a VAR model

for the two underlying Gaussian factors. Estimation is relatively difficult and requires

simulation methods.

3.4 Applications

ACD models can be used to estimate and predict the intra-day volatility of returns from

the intensity of price durations. As shown by Engle and Russell (1998), a price intensity is

closely linked to the instantaneous price change volatility. The latter is given by

σ̃2(t) := lim
∆↓0

1
∆

E

[(
p(t + ∆)− p(t)

p(t)

)2
∣∣∣∣∣Ft

]
, (26)

where p(t) denotes the price (or midquote) at t. By denoting the counting process associated

with the event times of cumulated absolute price changes of size dp by Ndp(t), we can

formulate (26) in terms of the intensity function of the process of dp-price changes. Then,

the dp-price change instantaneous volatility can be computed as

σ̃2
(dp)(t) = lim

∆↓0

1
∆

Pr [|p(t + ∆)− p(t)| ≥ dp |Ft ] ·
[

dp

p(t)

]2

= lim
∆↓0

1
∆

Pr
[
(Ndp(t + ∆)−Ndp(t)) > 0 |Ft

]
·
[

dp

p(t)

]2

:= λdp(t) ·
[

dp

p(t)

]2

, (27)
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where λdp(t) denotes the corresponding dp-price change intensity. Hence, using (14), one

can estimate or predict the instantaneous volatility of the price process p(t) at any time

point. Giot (2005) compares these estimates with usual GARCH based estimates obtained

by interpolating the prices on a grid of regularly spaced time points. He finds that GARCH

based predictions are better measures of risk than ACD based ones in a Value-at-Risk (VaR)

evaluation study.

ACD and related models have been typically used to test implications of asymmetric

information models of price formation. For example, the model of Easley and O‘Hara (1992)

implies that the number of transactions influences the price process through information

based clustering of transactions. Then, including lags as well as expectations of the trading

intensity as explanatory variables in a model for the price process allows to test such theo-

retical predictions. For a variety of different applications in market microstructure research,

see Engle and Russell (1998), Engle (2000), Bauwens and Giot (2000), Engle and Lunde

(2003), and Hafner (2005) among others. Several authors have combined an ACD model

with a model for the marks of a financial point process. The idea is generally to model

the duration process by an ACD model, and conditionally on the durations, to model the

process of marks. Bauwens and Giot (2003) model the direction of the price change between

two consecutive trades by formulating a competing risks model, where the direction of the

price movement is triggered by a Bernoulli process. Then, the parameters of the ACD pro-

cess depend on the direction of the previous price change, leading to an asymmetric ACD

model. A related type of competing risks model is specified by Bisière and Kamionka (2000).

Prigent, Renault, and Scaillet (2001) use a similar model for option pricing. Russell and

Engle (2005) develop an autoregressive conditional multinomial model to simultaneously

model the time between trades and the dynamic evolution of (discrete) price changes.

A related string of the literature studies the interaction between the trading intensity and

the trade-to-trade return volatility. Engle (2000) augments a GARCH equation for returns

per time by the impact of the inverse of the observed and expected durations (xi and Ψi),

and of the surprise xi/Ψi. A decrease in xi or Ψi has a positive impact on volatility while

the surprise has the reverse impact. Dionne, Duchesne, and Pacurara (2005) use a related

model to compute an intraday VaR. Ghysels and Jasiak (1998) and Grammig and Wellner

(2002) study a GARCH process for trade-to-trade returns with time-varying parameters

which are triggered by the trading intensity. Meddahi, Renault, and Werker (2006) derive

a discrete time GARCH model for irregularly spaced data from a continuous time volatility

process and compare it to the ACD-GARCH models by Engle (2000) and Ghysels and

Jasiak (1998).
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4 Dynamic Intensity Models

In this section, we review the most important types of dynamic intensity models which

are applied to model financial point processes. The class of Hawkes models and extensions

thereof are discussed in Section 4.1. In Section 4.2, we survey different autoregressive

intensity models. Statistical inference for intensity models is presented in Section 4.3,

whereas the most important applications in the recent literature are briefly discussed in

Section 4.4.

4.1 Hawkes Processes

Hawkes processes originate from the statistical literature in seismology and are used to

model the occurrence of earthquakes, see e.g. Vere-Jones (1970), Vere-Jones and Ozaki

(1982), and Ogata (1988) among others. Bowsher (2006) was the first applying Hawkes

models to financial point processes. As explained in Section 3.2, Hawkes processes belong

to the class of self-exciting processes, where the intensity is driven by a weighted function

of the time distance to previous points of the process. A general class of univariate Hawkes

processes is given by

λ(t) = ϕ
(
µ(t) +

∑
ti<t w(t− ti)

)
, (28)

where ϕ denotes a possibly nonlinear function, µ(t) is a deterministic function of time,

and w(s) denotes a weight function. If ϕ : R → R+, we obtain the class of nonlinear

Hawkes processes considered by Brémaud and Massoulié (1996). In this case, µ(t) and w(t)

can take negative values since the transformation ϕ(·) preserves the non-negativity of the

process. Such a specification is useful whenever the intensity may be negatively affected

by the process history or covariates. For instance, in the context of financial duration

processes, µ(t) can be parameterized as a function of covariates. Stability conditions for

nonlinear Hawkes processes are derived by Brémaud and Massoulié (1996). For the special

case where ϕ is a linear function, we obtain the class of linear Hawkes processes originally

considered by Hawkes (1971). They are analytically and computationally more tractable

than their nonlinear counterparts, however, they require µ(t) > 0 and w(t) > 0 in order to

ensure non-negativity.

As pointed out by Hawkes and Oakes (1974), linear self-exciting processes can be viewed

as clusters of Poisson processes. Then, each event is one of two types: an immigrant process

or an offspring process. The immigrants follow a Poisson process and define the centers of

so-called Poisson clusters. If we condition on the arrival time, say ti, of an immigrant,

then independently of the previous history, ti is the center of a Poisson process, Υ(ti), of

offspring on (ti,∞) with intensity function λi(t) = λ(t − ti), where λ is a non-negative
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function. The process Υ(ti) defines the first generation offspring process with respect to ti.

Furthermore, if we condition on the process Υ(ti), then each of the events in Υ(ti), say tj ,

generates a Poisson process with intensity λj(t) = λ(t − tj). These independent Poisson

processes build the second generation of offspring with respect to ti. Similarly, further

generations arise. The set of all offspring points arising from one immigrant are called

a Poisson cluster. Exploiting the branching and conditional independence structure of a

(linear) Hawkes process, Møller and Rasmussen (2004) develop a simulation algorithm as

an alternative to the Shedler-Lewis thinning algorithm or the modified thinning algorithm

by Ogata (1981) (see e.g. Daley and Vere-Jones (2003)). The immigrants and offsprings can

be referred to as ”main shocks” and ”after shocks” respectively. This admits an interesting

interpretation which is useful not only in seismology but also in high-frequency finance.

Bowsher (2006), Hautsch (2004) and Large (2007) illustrate that Hawkes processes capture

the dynamics in financial point processes remarkably well. This indicates that the cluster

structure implied by the self-exciting nature of Hawkes processes seem to be a reasonable

description of the timing structure of events on financial markets.

The most common parameterization of w(t) has been suggested by Hawkes (1971) and

is given by

w(t) =
P∑

j=1

αje
−βjt, (29)

where αj ≥ 0, βj > 0 for j = 1, . . . , P are model parameters, and P denotes the order of the

process and is selected exogenously (or by means of information criteria). The parameters

αj are scale parameters, whereas βj drive the strength of the time decay. For P > 1, the

intensity is driven by the superposition of differently parameterized exponentially decaying

weighted sums of the backward times to all previous points. In order to ensure identification

we impose the constraint β1 > . . . > βP . It can be shown that the stationarity of the process

requires 0 <
∫∞
0 w(s)ds < 1, which is ensured only for

∑P
j=1 αj/βj < 1, see Hawkes (1971).

While (29) implies an exponential decay, the alternative parameterization

w(t) =
H

(t + κ)p
, (30)

with parameters H, κ, and p > 1 allows for a hyperbolic decay. Such weight functions are

typically applied in seismology (see e.g. Vere-Jones and Ozaki (1982) and Ogata (1988))

and allow to capture long range dependence. Since financial duration processes also tend to

reveal long memory behavior (see Jasiak (1998)), specification (30) might be an interesting

specification in financial applications.

Multivariate Hawkes models are obtained by a generalization of (28). Then, λ(t) is given
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by the (K × 1)-vector λ(t) = (λ1(t), . . . , λK(t))′ with

λk(t) = ϕ
(
µk(t) +

∑K
r=1

∑
tri <t wk

r (t− tri )
)

, (31)

where wk
r (s) is a k-type weight function of the backward time to all r-type events. Using

an exponential decay function, Hawkes (1971) suggests to parameterize wk
r (s) as

wk
r (t) =

P∑
j=1

αk
r,je

−βk
r,jt, (32)

where αk
r,j ≥ 0 and βk

r,1 > . . . > βk
r,P > 0 drive the influence of the time distance to past

r-type events on the k-type intensity. Thus, in the multivariate case, λk(t) depends not

only on the distance to all k-type points, but also on the distance to all other points of the

pooled process. Hawkes (1971) provides a set of linear parameter restrictions ensuring the

stationarity of the process.

Bowsher (2006) proposes a generalization of the Hawkes model which allows to model

point processes which are interrupted by time periods where no activity takes place. In

high-frequency financial time series these effects occur because of trading breaks due to

trading halts, nights, weekends or holidays. In order to account for such effects, Bowsher

proposes to remove all non-activity periods and to concatenate consecutive activity periods

by a spill-over function.

4.2 Autoregressive Intensity Processes

Hamilton and Jordà (2002) establish a natural link between ACD models and intensity

models by extending the ACD model to allow for covariates which might change during a

duration spell (time-varying covariates). The key idea of their so-called autoregressive con-

ditional hazard (ACH) model is to rely on the fact that in the ACD model with exponential

error distribution, the intensity (or the hazard function, respectively) corresponds to the

inverse of the conditional duration, i.e. λ(t) = Ψ−1

N̆(t)+1
. They extend this expression by a

function of variables which are known at time t− 1,

λ(t) =
1

ΨN̆(t)+1 + z′t−1γ
, (33)

where zt are time-varying covariates which are updated during a duration spell.

An alternative model which can be seen as a combination of a duration model and an

intensity model is introduced by Gerhard and Hautsch (2007). They propose a dynamic

extension of a Cox (1972) proportional intensity model, where the baseline intensity λ0(t)

is non-specified. Their key idea is to exploit the stochastic properties of the integrated

intensity and to re-formulate the model in terms of a regression model with unknown left-

hand variable and Gumbel distributed error terms – see Kiefer (1988) for a nice illustration
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of this relation. To identify the unknown baseline intensity at discrete points, Gerhard

and Hautsch follow the idea of Han and Hausman (1990) and formulate the model in

terms of an ordered response model based on categorized durations. In order to allow for

serial dependence in the duration process, the model is extended by an observation-driven

ARMA dynamic based on generalized errors. As a result, the resulting semiparametric

autoregressive conditional proportional intensity (ACPI) model allows to capture serial

dependence in duration processes and to estimate conditional failure probabilities without

requiring explicit distributional assumptions.

In autoregressive conditional intensity (ACI) models as introduced by Russell (1999),

the intensity function is directly modeled in terms of an autoregressive process which is

updated by past realizations of the integrated intensity. Let λ(t) = (λ1(t), . . . , λK(t))′.

Then, Russell (1999) proposes to specify λk(t) in terms of a proportional intensity structure

given by

λk(t) = Φk
N̆(t)+1

λk
0(t)s

k(t), k = 1, . . . K, (34)

where ΦN̆(t)+1 captures the dynamic structure, λk
0(t) is a baseline intensity component cap-

turing the (deterministic) evolution of the intensity between two consecutive points and

sk(t) denotes a deterministic function of t capturing, for instance, possible seasonality ef-

fects. The function ΦN̆(t) is indexed by the left-continuous counting function and is updated

instantaneously after the arrival of a new point. Hence, Φi is constant for ti−1 < t ≤ ti.

Then, the evolution of the intensity function between two consecutive arrival times is gov-

erned by λk
0(t) and sk(t).

In order to ensure the non-negativity of the process, the dynamic component Φk
i is

specified in log-linear form, i.e.

Φk
i = exp

(
Φ̃k

i + z′i−1γ
k
)

, (35)

where zi denotes a vector of explanatory variables observed at arrival time ti and γk the

corresponding parameter vector. Define εi as a (scalar) innovation term which is computed

from the integrated intensity function associated with the most recently observed process,

i.e.

εi =
K∑

k=1

1−
∫ tk

Nk(ti)

tk
Nk(ti)−1

λk(s;Fs)ds

 yk
i , (36)

where yk
i defines an indicator variable that takes the value 1 if the i-th point of the pooled

process is of type k. Using the random time change argument presented in Section 2.4, εi

corresponds to a random mixture of i.i.d. centered standard exponential variates and thus
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is itself an i.i.d. zero mean random variable. Then, the (K × 1) vector Φ̃i =
(
Φ̃1

i , . . . , Φ̃
K
i

)′
is parameterized as

Φ̃i =
K∑

k=1

(
Akεi−1 + BkΦ̃i−1

)
yk

i−1, (37)

where Ak = {ak
j } denotes a (K×1) innovation parameter vector and Bk = {bk

ij} is a (K×K)

matrix of persistence parameters. Hence, the fundamental principle of the ACI model is that

at each event ti all K processes are updated by the realization of the integrated intensity with

respect to the most recent process, where the impact of the innovation on the K processes

can be different and also varies with the type of the most recent point. As suggested by

Bowsher (2006), an alternative specification of the ACI innovation term might be ε̃i =

1−Λ(ti−1, ti), where Λ(ti−1, ti) :=
∑K

k=1 Λk(ti−1, ti) denotes the integrated intensity of the

pooled process computed between the two most recent points. Following the arguments

above, ε̃i is also a zero mean i.i.d. innovation term. Because of the regime-switching nature

of the persistence matrix, the derivation of stationarity conditions is difficult. However, a

sufficient (but not necessary) condition is that the eigenvalues of the matrices Bk for all

k = 1, . . . ,K lie inside the unit circle.

As proposed by Hautsch (2004), the baseline intensity function λk
0(t) can be specified

as the product of K different Burr hazard rates, i.e.

λk
0(t) = exp(ωk)

K∏
r=1

xr(t)ps
r−1

1 + ηs
rx

r(t)ps
r
, (ps

r > 0, ηs
r ≥ 0). (38)

According to this specification λk(t) is driven not only by the k-type backward recurrence

time but also by the time distance to the most recent point in all other processes r = 1, . . . ,K

with r 6= k. A special case occurs when ps
r = 1 and ηs

r = 0, ∀ r 6= s. Then, the k-th process

is affected only by its own backward recurrence time.

Finally, sk(t) is typically specified as a spline function in order to capture intraday

seasonalities. A simple parameterization which is used in most studies is given by a linear

spline function of the form sk(t) = 1 +
∑S

j=1 νk
j (t − τj) · 1l {t>τj}, where τj , j = 1 . . . , S,

denote S nodes within a trading period and νj the corresponding parameters. A more

flexible parameterization is e.g. given by a flexible Fourier form (Gallant (1981)) as used by

Andersen and Bollerslev (1998) or Gerhard and Hautsch (2002) among others.

If K = 1 and η1
1 = 0, the ACI model and the ACD model coincide. Then, the ACI

model corresponds to a re-parameterized form of the Log-ACD model. If the ACI model is

extended to allow for time-varying covariates (see Hall and Hautsch (2007)), it generalizes

the approach by Hamilton and Jordà (2002). In this case, all event times associated with

(discrete time) changes of time-varying covariates are treated as another point process that
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is not explicitly modelled. Then, at each event time of the covariate process, the multivariate

intensity process is updated, which requires a piecewise computation of the corresponding

integrated intensities.

A generalization of the ACI model has been proposed by Bauwens and Hautsch (2006).

The key idea is that the multivariate intensity function λ(t) = (λ1(t), . . . , λK(t))′ is driven

not only by the observable history of the process but also by a common component. The

latter may be considered as a way to capture the unobservable general information flow

in a financial market. Such a setting turns out to be useful for the modelling of high-

dimensional point processes which are driven by an unobservable common random process.

By assuming the existence of a common unobservable factor λ∗(t) following a pre-assigned

structure in the spirit of a doubly stochastic Poisson process (see Section 2.3), we define

the internal (unobservable) history of λ∗(t) as F∗
t . Then, we assume that λ(t) is adapted

to the filtration Ft := σ(Fo
t ∪ F∗

t ), where Fo
t denotes some observable filtration. Then, the

so-called stochastic conditional intensity (SCI) model is given by

λk(t) = λo,k(t)
(
λ∗

N̆(t)+1

)σ∗k
, (39)

where λ∗
N̆(t)+1

:= λ∗(tN̆(t)+1) denotes the common latent component which is updated

at each point of the (pooled) process {ti}i∈{1,...,n}. The direction and magnitude of the

process-specific impact of λ∗ is driven by the parameters σ∗k. The process-specific function

λo,k(t) := λo,k(t|Fo
t ) denotes a conditionally deterministic idiosyncratic k-type intensity

component given the observable history, Fo
t .

Bauwens and Hautsch (2006) assume that λ∗i has left-continuous sample paths with

right-hand limits and in logarithm is the zero mean AR(1) process given by

lnλ∗i = a∗ lnλ∗i−1 + u∗i , u∗i ∼ i.i.d. N(0, 1). (40)

Because of the symmetry of the distribution of ln λ∗i , Bauwens and Hautsch impose an

identification assumption which restricts the sign of one of the scaling parameters σ∗k. The

observation-driven component λo,k(t) is specified in terms of an ACI parameterization as

described above. However, in contrast to the basic ACI model, in the SCI model, the

innovation term is computed based on the observable history of the process, i.e.

εi =
K∑

k=1

{
−$ − lnΛo,k

(
tkNk(ti)−1, t

k
Nk(ti)

)}
yk

i , (41)
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where $ denotes Euler’s constant, $ = 0.5772, and Λo,k
(
tki−1, t

k
i

)
is given by

Λo,k
(
tki−1, t

k
i

)
:=

N(tki )−1∑
j=N(tki−1)

∫ tj+1

tj

λo,k(u)du

=
N(tki )−1∑

j=N(tki−1)

(
λ∗j
)−σ∗k Λk (tj , tj+1) (42)

corresponding to the sum of (piecewise) integrated k-type intensities which are observed

through the duration spell and are standardized by the corresponding (scaled) realizations

of the latent component. This specification ensures that εi can be computed exclusively

based on past observables implying a distinct separation between the observation-driven

and the parameter-driven components of the model. Bauwens and Hautsch (2006) analyze

the probabilistic properties of the model and illustrate that the SCI model allows for a wide

range of (cross-)autocorrelation structures in multivariate point processes. In an application

to a multivariate process of price intensities, they find that the latent component captures

a substantial part of the cross-dependences between the individual processes resulting in a

quite parsimonious model. An extension of the SCI model to the case of multiple states

is proposed by Koopman, Lucas, and Monteiro (2005) and is applied to the modelling of

credit rating transitions.

4.3 Statistical Inference

Karr (1991) shows that valid statistical inference can be performed based on the intensity

function solely, see Theorem 5.2. in Karr (1991) or Bowsher (2006). Assume a K-variate

point process N(t) = {Nk(t)}K
k=1 on (0, T ] with 0 < T < ∞, and the existence of a K-

variate Ft-predictable process λ(t) that depends on the parameters θ. Then, it can be

shown that a genuine log likelihood function is given by

lnL
(
θ; {N(t)}t∈(0,T ]

)
=

K∑
k=1

[∫ T

0
(1− λk(s))ds +

∫
(0,T ]

lnλk(s)dNk(s)

]
,

which can be alternatively computed by

lnL
(
θ; {N(t)}t∈(0,T ]

)
=

n∑
i=1

K∑
k=1

(−Λk(ti−1, ti)) + yk
i ln

[
λk(ti)

]
+ TK. (43)

Note that (43) differs from the standard log likelihood function of duration models by the

additive (integrating) constant TK which can be ignored for ML estimation. By apply-

ing the so-called exponential formula (Yashin and Arjas (1988)), the relation between the

integrated intensity function and the conditional survivor function is given by

S(xi|Fti−1+xi) = exp (−Λ(ti−1, ti)) , (44)
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which is the continuous counterpart to the well-known relation between the survivor function

and the hazard rate, S(xi) = exp(−
∫ xi

0 h(u)du). Hence, by ignoring the term TK, (43)

corresponds to the sum of the conditional survivor function and the conditional intensity

function. However, according to Yashin and Arjas (1988), the exponential formula (44)

is only valid if S(xi|Fti−1+xi) is absolutely continuous in xi, which excludes jumps of the

conditional survivor function induced by changes of the information set during a spell.

Therefore, in a continuous, dynamic setting, the interpretation of exp (−Λ(ti−1, ti)) as a

survivor function should be done with caution.

The evaluation of (43) for a Hawkes model is straightforward. In the case of an ex-

ponential decay function, the resulting log likelihood function can be even computed in a

recursive way (see e.g. Bowsher (2006)). An important advantage of Hawkes processes is

that the individual intensities λk(t) do not have parameters in common and the parameter

vector can be expressed as θ =
(
θ1, . . . , θK

)
, where θk denotes the parameters associated

with the k-type intensity component. Given that the parameters are variation free, the

log likelihood function can be computed as lnL
(
θ; {N(t)}t∈(0,T ]

)
=
∑K

k=1 lk(θk) and can

be maximized by maximizing the individual k-type components lk(θk) separately. This fa-

cilitates the estimation particularly when K is large. In contrast, ACI models require to

maximize the log likelihood function with respect to all the parameters jointly. This is due

to the fact that the ACI innovations are based on the integrated intensities which depend

on all individual parameters. The estimation of SCI models is computationally even more

demanding since the latent factor has to be integrated out resulting in a n-dimensional

integral. Bauwens and Hautsch (2006) suggest to evaluate the likelihood function numeri-

cally using the efficient importance sampling procedure introduced by Richard and Zhang

(2005). Regularity conditions for the maximum likelihood estimation of stationary simple

point processes are established by Ogata (1981). For more details, see Bowsher (2006).

Diagnostics for intensity based point process models can be performed by exploiting

the stochastic properties of compensators (see Bowsher (2006)) and integrated intensities

given in Section 2.4. The model goodness-of-fit can be straightforwardly evaluated through

the estimated integrated intensities of the K individual processes, ek
i,1 := Λ̂k(tki−1, t

k
i ), the

integrated intensity of the pooled process ei,2 := Λ̂(ti−1, ti) =
∑K

k=1 Λ̂k(ti−1, ti), or of the

(non-centered) ACI residuals ei,3 :=
∑K

k=1

(
Λ̂k(tki−1, t

k
i )
)

yk
i . Under correct model specifica-

tion, all three types of residuals must be i.i.d. standard exponential. Then, model evaluation

is done by testing the dynamic and distributional properties. The dynamic properties are

easily evaluated with Portmanteau statistics or tests against independence such as proposed

by Brock, Scheinkman, Scheinkman, and LeBaron (1996). The distributional properties can

be evaluated using Engle and Russell’s (1998) test against excess dispersion (see Section
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3.2). Other alternatives are goodness-of-fit tests based on the probability integral trans-

form (PIT) as employed for diagnostics of ACD models by Bauwens, Giot, Grammig, and

Veredas (2004).

4.4 Applications

For financial point processes, dynamic intensity models are primarily applied in multivari-

ate frameworks or whenever a continuous-time setting is particularly required, like, for

instance, in order to allow for time-varying covariates. One string of applications focusses

on the modelling of trading intensities of different types of orders in limit order books. Hall

and Hautsch (2007) apply a bivariate ACI model to study the intensities of buy and sell

transactions in the electronic limit order book market of the Australian Stock Exchange

(ASX). The buy and sell intensities are specified to depend on time-varying covariates cap-

turing the state of the market. On the basis of the buy and sell intensities, denoted by

λB(t) and λS(t), Hall and Hautsch (2007) propose a measure of the continuous net buy

pressure defined by ∆B(t) := lnλB(t)− lnλS(t). Because of the log-linear structure of the

ACI model, the marginal change of ∆B(t) induced by a change of the covariates is computed

as γB − γS , where γB and γS denote the coefficients associated with covariates affecting

the buy and sell intensity, respectively (see eq. (35)). Hall and Hautsch (2006) study the

determinants of order aggressiveness and traders’ order submission strategy at the ASX by

applying a six-dimensional ACI model to study the arrival rates of aggressive market orders,

limit orders as well as cancellations on both sides of the market. In a related paper, Large

(2007) studies the resiliency of an electronic limit order book by modelling the processes

of orders and cancellations on the London Stock Exchange using a ten-dimensional Hawkes

process. Finally, Russell (1999) analyzes the dynamic interdependences between the sup-

ply and demand for liquidity by modelling transaction and limit order arrival times at the

NYSE using a bivariate ACI model.

Another branch of the literature focusses on the modelling of the instantaneous price

change volatility which is estimated on the basis of price durations, see (27) in Section

3.4. This relation is used by Bauwens and Hautsch (2006) to study the interdependence

between instantaneous price change volatilities of several blue chip stocks traded at the

New York Stock Exchange (NYSE) using a SCI model. In this setting, they find a strong

evidence for the existence of a common latent component as a major driving force of the

instantaneous volatilities on the market. In a different framework, Bowsher (2006) analyzes

the two-way interaction of trades and quote changes using a two-dimensional generalized

Hawkes process.
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