
Budish, Eric B.; Cramton, Peter C.; Kyle, Albert S.; Lee, Jeongmin; Malec, David

Working Paper

Flow trading

ECONtribute Discussion Paper, No. 146

Provided in Cooperation with:
Reinhard Selten Institute (RSI), University of Bonn and University of Cologne

Suggested Citation: Budish, Eric B.; Cramton, Peter C.; Kyle, Albert S.; Lee, Jeongmin; Malec, David
(2022) : Flow trading, ECONtribute Discussion Paper, No. 146, University of Bonn and University of
Cologne, Reinhard Selten Institute (RSI), Bonn and Cologne

This Version is available at:
https://hdl.handle.net/10419/252307

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/252307
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
Germany´s Excellence Strategy – EXC 2126/1– 390838866 is gratefully acknowledged.

www.econtribute.de

ECONtribute
Discussion Paper No. 146

February 2022

Eric Budish Peter Cramton Albert S. Kyle
Jeongmin Lee David Malec

Flow Trading



Flow Trading*

Eric Budish† Peter Cramton‡ Albert S. Kyle§ Jeongmin Lee¶

David Malec||

January 31, 2022
Preliminary Version

Abstract

We propose a new market design for trading financial assets. The design com-
bines three elements: (1) Orders are downward-sloping linear demand curves with
quantities expressed as flows; (2) Markets clear in discrete time using uniform-price
batch auctions; (3) Traders may submit orders for portfolios of assets, expressed as
arbitrary linear combinations with positive and negative weights. Thus, relative to
the status quo design: time is discrete instead of continuous, prices and quanti-
ties are continuous instead of discrete, and traders can directly trade arbitrary port-
folios. Clearing prices and quantities are shown to exist, with the latter unique,
despite the wide variety of preferences that can be expressed via portfolio orders;
calculating prices and quantities is shown to be computationally feasible; micro-
foundations for portfolio orders are provided. The proposal addresses six concerns
with the current market design: (1) sniping and the speed race; (2) the complexi-
ties and inefficiencies caused by tick-size constraints; (3) the cost and complexity
of trading large quantities over time, (4) of trading portfolios, and (5) of providing
liquidity in correlated assets; (6) fairness and transparency of optimal execution.
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1 Introduction

Description of the current design Current exchanges for trading equities and many

other financial assets, such as futures, options and treasury bonds, implement a market

design with the following features. Most orders are variations on a standard limit order,

such as “Buy 1000 shares of AAPL at $150.00 or better,” which has one maximum quan-

tity and one limit price. The orders are processed continuously, one-at-a-time in order

of arrival, with incoming “executable” orders matched in whole or in part with “non-

executable” orders resting in the limit order book. Orders are for single securities rather

than for portfolios of securities. Displayed bids and offers respect a minimum “tick size,”

which is typically $0.01 per share for U.S. stocks, and a minimum “lot size,” which has

historically been 100 shares for most U.S. stocks. In some markets, traded quantities

must also respect a minimum tick size and minimum lot size.

This market design is the natural electronic version of the limit order books used

in the era of human trading—in a sense, tracing not only to the era of specialists and

trading pits, but all the way back to trading under the buttonwood tree. A human can

run a limit order book market with pen-and-paper or simple electronic recordkeeping

if the orders arrive slowly enough, and computers can run limit order book markets at

modern speeds and order volumes.1

However, there are multiple ways that this market design creates unnecessary costs,

complexity and perceptions of unfairness for investors and other financial market par-

ticipants.

First, since any order resting on the limit order book is subject to immediate exe-

cution against the next incoming order, any time there is new public information that

affects an asset’s market price, resting limit orders risk being “picked off” or “sniped”

by high-frequency traders acting on this information. Such orders trade at a price that

just became stale. This raises the cost of providing liquidity using limit orders and is

perceived by many market participants to be unfair. Recent evidence suggests that such

sniping races constitute over 20% of all trading volume.2

1See MacKenzie (2021) for a history of this evolution from human based trading to computer based
trading. See Aquilina, Budish and O’Neill (2022) Section 2 for a detailed overview of the market design
and associated computer systems architecture for handling modern levels of speed and order activity.

2See Budish, Cramton and Shim (2015) on the concept of sniping, how it differs from traditional ad-
verse selection based on asymmetric private information (Kyle 1985, Glosten and Milgrom 1985), and its
equilibrium effects on investments in speed and the market’s cost of liquidity. See Aquilina, Budish and
O’Neill (2022) for empirical evidence on the magnitude of sniping races.
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Second, the discrete minimum tick size, which is necessary to prevent an explosion

of message traffic under the current market design, artificially constrains the market’s

cost of liquidity. This constraint has been shown to lead to (i) high-frequency trading

races for queue position, (ii) a proliferation of complex order types to navigate this race

for queue position, and (iii) the proliferation of exchanges with creative fee schedules

designed to circumvent this constraint. Both sniping and tick-size constraints also likely

play a role in the proliferation of off-exchange trading, now nearly 50% of equity volume

in the United States.3

Third, institutional investors trading large quantities of stock typically now do so by

placing and canceling thousands of small orders, spread out over a period of time, to

reduce price impact and disguise trading intents. If an institutional investor’s trading

leaves a detectable statistical trace, algorithmic trading firms who detect the trading de-

mand can profitably trade in front of the institutional investor.4 Institutional investors

therefore must have access to complex, expensive trading platforms to manage their or-

ders, or risk being algorithmically front run. Such trading tools are simply unavailable

to many smaller investors.

Fourth, these costs and complexities of optimal trading are even more severe for in-

vestors trading portfolios or engaging in long-short arbitrage strategies. Not only must

investors manage price impact and smoothing their trading over time for each individ-

ual security in the trading strategy, they must handle the additional complexity that

comes from managing the relative rates of trade across the different securities in the

trading strategy. Some indirect evidence on the value of efficiently trading portfolios

comes from the rise of exchange traded funds (ETFs). ETFs are redundant assets that

enable investors to trade portfolios efficiently, in exchange for a management fee on

holdings that averages about 20 basis points. ETFs now constitute a remarkable [30-

50%] of all U.S. stock market volume.5

3See the series of papers Chao, Yao, and Ye (2017, 2019), Yao and Ye (2018) and Li, Wang and Ye (2021) on
the various complexities created by tick-size constraints in U.S. equity markets, with additional references
contained therein. Data on the share of off-exchange trading is available from SIFMA and was cited in Sept
2021 Senate testimony by SEC Chair Gary Gensler.

4As one simple example, Hasbrouck and Saar (2013) pointed out that execution algorithms that trade
every second, on the second, leave an obvious statistical trace in a continuous-time market. If trading
can take place at any nanosecond, it would be an astonishing coincidence for a sequence of trades to
occur at exactly 1.000000000, 2.000000000, 3.000000000, etc. Note that the same trading would not leave
as obvious a statistical trace in a discrete-time batch process market, in which all trade occurs at exactly
1, 2, 3, etc.

5Add source
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Flow trading This paper proposes a new market design for financial exchanges, “flow

trading”. The design is motivated by the costs and complexities described above and the

design possibilities enabled by modern computational power.

Flow Trading Traditional Exchange

Downward-sloping piecewise-linear Discontinuous step functions
supply and demand curves for discrete quantities
for flows

Batch auctions once per second Sequential matching one at a time

Orders for portfolios (linear combinations) Orders for one asset

Table 1: Comparison of Flow Trading with the Status Quo Design

Flow trading is a combination of three key elements (Table 1). First, instead of limit

orders that define demands as step functions of price, traders place flow orders that

specify demands as piecewise-linear downward-sloping functions of price, with quan-

tities expressed as flows rather than as discrete quantity changes (Kyle and Lee, 2017).

For example, "Buy a maximum of one share per second until 1000 shares are bought"

instead of "Buy a maximum of 1000 shares right now."

Second, instead of the market processing orders one at a time in sequence, orders

are processed in discrete time using uniform-price batch auctions (i.e., “frequent batch

auctions”, Budish, Cramton and Shim (2015)). Suppose the discrete time interval is one

second. A flow order to buy at a maximum rate of one share per second will buy one

share per batch if fully executable at the market-clearing price, a fraction of a share per

batch if partially executable (i.e., the clearing price is in the range where the order’s de-

mand is strictly downward sloping), or no shares per batch if non-executable. Orders

persist over many auctions; an order remains outstanding until either the trader can-

cels it or a user-defined termination criterion is met, such as the cumulative purchase

of 1000 shares.

The combination of flow orders and batch auctions allows prices and quantities to

be approximately continuous—tiny fractions of shares can trade each second within a

nearly continuous price grid. For example, quantities could be expressed in nano-shares

(billionths of shares) and prices in micro-dollars (millionths of dollars). In the status quo

market design, making prices and quantities approximately continuous would cause an

explosion of message traffic, with traders constantly canceling and replacing orders to
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improve their queue position. In our proposed design, prices and quantities can be ap-

proximately continuous without issue. That is, relative to the status quo market design,

our proposed market design makes time discrete instead of continuous, and prices and

quantities continuous instead of discrete.

Third, instead of orders for a single asset, each order is for a portfolio of assets. A

“portfolio” is a user-defined linear combination of assets, in which the asset weights can

be arbitrary positive or negative real numbers. Portfolio orders allow assets to be either

complements or substitutes. If two assets in a portfolio have weights with the same sign,

the assets are complements in the usual sense that an increase in the price of one asset

decreases the quantity demanded of the other. If two assets have opposite weights, the

assets are substitutes because an increase in the price of one asset increases the quantity

demanded of the other. For example, a pairs trade has a positive weight on the stock

being bought and a negative weight on the stock being sold. An order to buy the S&P

500 has positive weights on each of the 500 stocks in the index. An order to sell a single

asset, which represents an upward-sloping supply curve for the asset, is implemented

as an equivalent downward sloping demand curve for a portfolio with a negative weight

on the asset sold and zero weight on other assets.

Benefits Flow trading directly addresses the four concerns raised above about the sta-

tus quo market design. First, sniping is directly addressed by discrete-time batch pro-

cessing (Budish, Cramton and Shim, 2015). Moreover, flow trading makes the executed

quantity proportional to the length of time, which means that even if new public infor-

mation arrives just before the next batch auction, so that regular traders are vulnerable

to sniping, the actual quantity executed at unfavorable prices will remain small. Sec-

ond, the various complexities and inefficiencies caused by tick-size and lot-size con-

straints are directly addressed by making prices and quantities approximately continu-

ous. There no longer would be a reason to use non-standard exchange fee schedules or

off-exchange trading venues to “hack the penny”. Additionally, there no longer would

be incentive to race for advantageous queue position, further reducing the rents from

speed. Third, investors who wish to trade large quantities over a period of time can do

so directly, with a single order. They can easily tune the urgency of trade by choosing

the maximum flow rate—e.g., trading more slowly if their information is not time sen-

sitive, and vice versa. In effect, the ability to trade at the time-weighted average price

(TWAP) is built directly into the market design. Moreover, since trading is batched it is
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easier for a large trader to blend in with other traders (as in models such as Kyle 1985,

Vayanos 1999, Du and Zhu 2017) without complex infrastructure. Fourth, investors who

wish to trade portfolios can do so directly. Investors can define and directly trade their

own custom ETFs, or long-short arbitrage portfolios, etc. Again, this reduces the need

for costly trading infrastructure—expensive for large investors and unavailable to many

smaller investors.

Another benefit of flow trading, related both to this last point about trading portfo-

lios and to arguments in Budish, Cramton and Shim (2015), is that market participants

can more easily provide liquidity across correlated assets, and link price discovery across

correlated assets. Suppose A and B are highly correlated assets. In the continuous mar-

ket, a change in the price of one asset can lead to a sniping race in the other asset—this

adds to the expense of providing liquidity. Under flow trading, a market participant can

directly provide liquidity in the pairs trades “Buy A, Sell B” and “Sell A, Buy B” (indeed,

the latter is just an offer to sell the former). This means that even if an investor arrives

wanting to buy just A, their trade can be automatically incorporated into the clearing

prices of both A and B. There need not be a sniping race in asset B, nor is there any “cor-

relation breakdown” of prices between A and B (Budish, Cramton, and Shim (2015)). The

pairs trade order is like a string that ties the correlated assets’ prices together, maintain-

ing their underlying economic pricing relationships.

Last, the new market design significantly improves transparency and fairness. The

key feature is that all orders that are executable at the clearing prices are executed, either

at their full rate or a partial rate depending on the order’s pricing parameters, and all or-

ders that execute for a given asset receive the same pricing for that asset. This allows,

for example, a retail investor who trades 100 shares over a minute, or an institutional

investor who trades 100,000 shares over an hour, to infer the appropriate execution rate

on their order from publicly announced market clearing prices exactly. An institutional

investor trading a sophisticated portfolio can confirm directly that they received the cor-

rect execution. This perhaps should not sound radical, but it is a major transparency im-

provement over the current market design, where checking whether one’s order received

appropriate execution is very difficult (see Tyc (2014)).

Having mentioned these potential benefits, we add an important caveat, which is

that flow trading is not designed to mitigate market failures related to market power or

private information (see Rostek and Yoon 2020 for a recent survey of these issues). Mar-

ket participants still must think strategically about how to trade on private information
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and manage their price impact, just as in the status quo market design. Flow trading re-

moves some of the unnecessary technological costs and complexities surrounding this

game, but the fact remains that large trades will move prices.

Technical Foundations We provide three sets of technical results: on existence and

uniqueness of market-clearing prices and quantities; on computability of these prices

and quantities; and results that provide micro-foundations for the bidding language.

To prove existence of equilibrium prices and quantities, we transform the problem

into a well-understood quadratic optimization problem with linear constraints. To do

so, we first formulate a quasi-linear quadratic utility function for each order by inter-

preting the order as an expression of preferences defining a linear marginal utility curve

over the range where it is partially executable. The sum of these utility functions creates

a concave planner objective function. The restrictions that each order must execute at a

rate between zero and its maximum rate (e.g., one share per second) are linear inequal-

ity constraints. Market clearing defines linear equality constraints for each asset. Zero

trade is feasible, i.e., satisfies both sets of constraints. This setup allows us to use known

results from the convex optimization literature to prove existence of unique equilibrium

quantities.

Equilibrium prices are found as Lagrange multipliers of the primal problem. Re-

gardless of whether assets are complements or substitutes, market-clearing prices exist

because our language imposes downward sloping demand curves on all user-defined

portfolios. (We discuss the connection to other existence and non-existence results in

the literature in the next sub-section). Prices, however, may be non-unique when there

are no partially executable orders from which unique prices can be inferred. For exam-

ple, when there is only one order to buy or sell some asset, the market clearing quan-

tity must be zero, but any price at which the order is non-executable clears the market.

Prices can easily be made unique by introducing a tie-breaking rule, such as selecting

the clearing prices closest to the prices from the last auction.

To show computational feasibility of the market design, we start by showing our

problem has a structure such that the gradient method (i.e., tatonnement) is guaran-

teed to converge. This proves that our problem is computationally simpler than some

cases of finding competitive equilibrium prices (Scarf and Hansen (1973)), as the reader

will anticipate from the quadratic-programming setup described just above. It is well

known, however, that the gradient method can be slow and inaccurate for problems with
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this structure. We therefore add to the market design that the exchange itself can serve as

a “market maker of last resort”. Formally, the exchange is willing to buy or sell an epsilon

amount of any portfolio at clearing prices. This allows us to use interior point methods,

which are known to be much faster and more accurate than the gradient method. With-

out the exchange as market maker, we know that zero trade is feasible but it is not strictly

on the interior of the constraint set; with the exchange as market maker, we can easily

find a feasible point strictly on the interior, from which the algorithm can be initialized.

We provide computational proof-of-concept by calculating market clearing prices

for a simulated order book using our own implementation of a public-domain interior-

point method on an ordinary office workstation. In a market with 30,000 orders and

500 assets, with parameters chosen to try to make the problem difficult, our algorithm

calculates prices in about 0.30 seconds. If the number of assets exceeds 2000, the com-

putation time approaches 1.00 second with the same number of orders. If the number

of orders increases to 1,000,000, computation time approaches 10 seconds with 500 as-

sets. Conceptually, our goalpost for the computational exercise is to suggest that serious

computing power can solve a practical problem of realistic size in less than one second,

not just to illustrate that the solution to the problem is in P and not NP.

We provide a stylized micro-foundation for portfolio orders. Portfolio orders can-

not express arbitrary preferences. Indeed, with wealth effects, demand schedules may

slope upward; such demands cannot be expressed in our language because we require

demand schedules to be downward sloping. For a “CARA–normal” investor (with expo-

nential utility or constant absolute risk aversion and subjective beliefs that liquidation

values are normally distributed), the demands for assets are linear functions of the as-

set’s own price and the prices of other assets. Such demands cannot be implemented

with standard limit orders due to the dependence of demand on prices for other assets.

We show that, by rotating the assets in portfolios in a specific manner, such demands

can be implemented with downward-sloping portfolio orders consistent with our pro-

posal. In general, implementing N asset demands requires N portfolio orders. If traders

believe that assets have a factor structure of rank K < N , they can implement the opti-

mum with only K portfolio orders, which may be practically appealing. Moreover, we

then find that a trader who wishes to use K ′ < K orders optimally does so by sorting on

the portfolio Sharpe ratios, which may be practically appealing as well.
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1.1 Related Literature

The key conceptual ideas behind this paper’s market design proposal—piecewise-linear

downward-sloping demand schedules, portfolios as linear combinations of assets, gen-

eral equilibrium theory, quadratic programming, batch auctions, reducing temporary

price impact by trading slowly—are well-understood by researchers in economics and

finance. At some level, our contribution is to combine these ideas into a coherent and

practical market design for trading financial assets such as stocks, bonds, and futures

contracts.

More specifically, our paper builds closely on Kyle and Lee (2017) and Budish, Cram-

ton, and Shim (2015). Kyle and Lee (2017) propose downward sloping, piecewise-linear

flow orders for individual assets (“continuously scaled limit orders”). Budish, Cramton,

and Shim (2015) propose frequent batch auctions as a market design for financial ex-

changes. Combined, these two market design ideas yield a market design for financial

assets in which time is discrete instead of continuous, and prices and quantities are con-

tinuous instead of discrete. This is appealing for many reasons described above. Put

another way, the present paper shows that these two prior market design ideas are com-

plements, not substitutes.

The third ingredient of the market design proposal, portfolio orders, is a novel con-

tribution. More precisely, the broad idea of bidding for financial portfolios instead of

individual assets is obvious from the combinatorial auctions literature, but our specific

language for portfolio bidding is novel, and different potential ways of representing pref-

erences for portfolios might not yield the existence and computability results we obtain

here.

Another closely-related body of work is Li, Wang, and Ye (2021), Chao, Yao, and Ye

(2019), Chao, Yao, and Ye (2017) and Yao and Ye (2018). This research highlights the

complexities created by tick-size constraints in modern markets, and associates tick-

size constraints with an important aspect of high-frequency trading, the race for queue

position. As emphasized, our market design makes time discrete and prices continuous,

thus eliminating the inefficiencies caused by tick-size constraints.

Sophisticated expression of preferences over multiple objects is a theme in the mar-

ket design literature more broadly. Research on this topic has straddled computer sci-

ence, economics, and operations research (Lahaie and Parkes (2004); Sandholm and

Boutilier (2006); Milgrom (2009); Klemperer (2010); Vohra (2011); Bichler (2017); Cram-

ton (2017); Budish, Cachon, Kessler, and Othman (2017); Parkes and Seuken (2018);
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Budish and Kessler (forthcoming)). This literature has mostly focused on indivisible-

goods combinatorial allocation problems, such as spectrum auctions. Relative to this

burgeoning literature, our contribution is our proposed language for portfolio orders,

which treats all goods as perfectly divisible, and allows complementarities and substi-

tutabilities only to the extent that they can be expressed with linear portfolio weights.

This language is simple enough to obtain strong existence and computational results,

while being expressive enough to capture many important use cases in financial mar-

kets.

The idea that optimal trading strategies involve flow trading to reduce temporary

price impact costs, even when prices and quantities are continuous, emerges as an equi-

librium result in game-theoretic models of rationally-optimizing strategic traders. Black

(1971) conjectures that more urgent execution of large orders incurs greater price im-

pact costs. In the context of a continuous-time model of information-based trading

among overconfident and privately informed traders, Kyle, Obizhaeva, and Wang (2018)

describe an equilibrium in which exponential utility and normal distribution imply all

traders optimally submit linear flow strategies. In discrete-time models with trading mo-

tivated by private values or endowment shocks, Vayanos (1999) and Du and Zhu (2017)

derive optimal trading strategies in which quantities are linear functions of price and

inventories become differentiable functions of time in the limit as the time interval be-

tween auctions becomes zero.

A growing literature studies the implications of the status-quo market-design re-

quirement that orders to trade an asset to be contingent only on the asset’s own price

and not on the price of other assets. In a competitive framework, Cespa (2004) studies

price efficiency implications when traders instead can make their demands for a given

asset contingent not only on the asset’s own price but also on other asset prices. The

more recent literature emphasizes the importance of strategic trading and price impact.

Rostek and Yoon (2020b) and Wittwer (2021) find that such fully contingent demand can

either increase or decrease welfare depending on market characteristics such as the size

of the market and the correlation across assets. Rostek and Yoon (2020c) show that the

welfare implications of introducing a new synthetic asset, like a portfolio of original as-

sets, depend on price impact and symmetry across traders and assets. Chen and Duffie

(2021) show that trading the same asset in multiple fragmented markets can improve

welfare under some conditions. Antill and Duffie (forth.), on the other hand, find that

fragmentation of financial markets generally harms welfare if some of the fragmented
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markets free-ride off of prices discovered on others of the fragmented markets (i.e., some

markets engage in “size discovery” as distinct from “price discovery”).

Researchers have also investigated the welfare implications of market design when

information asymmetries and strategic trading are both important. Rostek and Yoon

(2020a) survey the literature on strategic trading; see Kyle (1985, 1989) and Klemperer

and Meyer (1989) for some early contributions. Duffie and Zhu (2017) examine a specific

model with welfare improvement when the market design is based on “size discovery,” in

which an auctioneer announces prices and traders indicate quantities they are willing to

trade at the specified price. Zhang (2020) proposes to tax traders who take liquidity and

subsidize traders who provide liquidity. There is also an older proposal for “sunshine

trading,” in which traders transparently announce quantities before the auction is held

to mitigate adverse selection (Wunsch (1986)).

Relationship to General Equilibrium Theory Readers familiar with the standard treat-

ment of general equilibrium theory will notice differences in our approach to existence

and uniqueness. Mas-Colell, Whinston, and Green (1995, Chapter 17) (“MWG”) is a

reference for the standard treatment, descending from Arrow and Debreu (1954) and

McKenzie (1959). This standard approach uses fixed-point theorems to derive existence

results for general convex preferences which include income effects. Actually finding the

fixed point is known to often be computationally intractable (Scarf and Hansen (1973);

Daskalakis, Goldberg, and Papadimitriou (2009); Budish, Cachon, Kessler, and Othman

(2017)). By contrast, our market design approach focuses on a language for preferences

that yields existence and uniqueness within a computationally tractable framework.

There are three main differences with the standard treatment, as explicated in MWG.

First, the setting and assumptions are different.

1. While MWG define preferences for the entire positive orthant, our model defines

preferences for a given portfolio on the line segment (0, q), representing partial

execution of an order to buy the portfolio. The portfolio can be a short position.

By defining utility to be minus-infinity off the line segment, we preserve convexity

over a larger space, but we lose continuity.

2. While MWG allow general preferences that allow income effects, we assume quasi-

linear utility functions of the form u(x)−πππ⊺x, which do not have income effects.
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3. While MWG require strongly monotone preferences and strictly positive prices,

our preferences are not strongly monotone and prices can be negative. Individual

assets can be “goods” or “bads”. Moreover, it may be difficult to make preferences

monotone, even over the restricted domain of agents’ demands, because there is

no natural “up” direction for the legs of a pairs trade.

Second, the technique to prove the existence of equilibrium is distinct. While MWG

relies on Kakutani’s fixed-point theorem, we use quadratic programming.

Third, while equilibrium may not be unique in MWG, we have uniqueness up to a

convex set. This results from using quasi-linear utility, which makes the second deriva-

tive of the planner’s objective function negative (semi) definite, and this guarantees that

all equilibria must lie in a convex set. In our framework, substitutes and complements

do not matter for existence or uniqueness, since the matrix is negative semi-definite

anyway, but substitutes and complements may matter for computational performance.

Relationship to the Indivisible Goods Literature Our assumptions are in some re-

spects more similar to assumptions made in the literature on indivisible goods, which

typically uses quasi-linear utility.

A classic reference is Kelso Jr and Crawford (1982), who show that competitive equi-

librium is guaranteed to exist in an indivisible goods setting under a substitutes condi-

tion. There have been many different variations of the Kelso-Crawford substitutes con-

dition defined in the literature; see Gul and Stacchetti (1999); Milgrom (2000); Hatfield

and Milgrom (2005); Ostrovsky (2008); Hatfield et al. (2013). Hatfield, Kominers, and

Westkamp (2021) discusses the relationship among many of these criteria and provides

a maximum domain result for existence.

Baldwin and Klemperer (2019), on the other hand, use tropical geometry to show

that existence can be obtained not only when indivisible goods are substitutes but also

in some cases when they are complements. For example, left-shoes and right-shoes are

clearly complements, but prices for shoes may nevertheless be guaranteed to exist if all

agents’ preferences regard them as complements in ways that enable the application of

the Baldwin and Klemperer (2019) existence theorems. For example, if all agents pur-

chase shoes as pairs, and no agents regard left shoes and right shoes as substitutes for

each other, prices are guaranteed to exist.

Unlike in Baldwin and Klemperer (2019), or in most of the indivisible-goods sub-

stitutes literature, we obtain existence for any preferences expressible in our language.
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This stronger existence result relies on our treatment of all assets as perfectly divisible

(avoiding the potential difficulties of exact market-clearing when there are indivisibili-

ties), and—as noted above in the discussion of the relationship to general equilibrium

theory—the restriction that preferences are only defined for each portfolio on a line seg-

ment exactly corresponding to those portfolio weights, as opposed to preferences being

well defined on a richer consumption space.

Two other papers in the indivisible goods literature that stand out as especially re-

lated to ours are Klemperer (2010), which proposes the product-mix auction, and Mil-

grom (2009), which proposes the assignment auction (see also Demange, Gale, and So-

tomayor (1986)). Both papers describe multi-object auction designs that use linear pref-

erence languages and are motivated in part by financial applications—Klemperer’s auc-

tion, in particular, was designed for the Bank of England to purchase toxic financial as-

sets during the financial crisis. Technically, the key difference is the preference language.

In our design, participants bid for portfolios of assets—e.g., buy a portfolio in which the

ratio of AMZN:GOOG is fixed 1:1, at rate up to 1 portfolio unit per second, up to a limit

price of $5000. In Klemperer’s and Milgrom’s designs, participants express preferences

over substitutable assets—e.g., I value AMZN at $3000 per share and GOOG at $2000 per

share, buy one share of whichever asset gives me greater surplus at the realized prices.

This difference in language then drives differences in existence and uniqueness results.

The papers also have different intended use cases. We have in mind near-continuous

trading of financial assets, in which users trade portfolios in flows. Klemperer’s and Mil-

grom’s designs are intended for more of a one-shot, high-value allocation—e.g., a high-

value auction for toxic assets during the financial crisis, or a spectrum auction. This

difference in intended use case lies behind the difference in the proposed languages.

Structure of the paper The rest of the paper is structured as follows. Section 2 de-

scribes flow orders for portfolios. Section 3 discusses the existence and uniqueness of

market clearing prices and quantities. Section 4 provides a characterization of equilib-

rium, discusses optimization approaches, and shows computational feasibility of our

proposal. Section 5 provides a microfoundation for portfolio orders. Section 6 discusses

implementation and policy issues. Section 7 concludes.

12



2 Flow Orders

2.1 Formal Definition of Flow Orders

Traditional limit orders consist of a price, quantity, and direction of trade for a single

symbol. For example, buy 1000 shares of AAPL at $150.00 per share. The order implic-

itly defines a step-wise demand curve, with full demand (i.e., 1000 shares) at any price

weakly better than the limit, and zero demand at any price strictly worse than the limit.

Flow orders depart from traditional limit orders in 3 ways:

1. Orders are for portfolios of assets instead of individual assets. A portfolio is defined

by a vector of weights, wi ∶= (wi 1, . . . , wi N)⊺, where i identifies the order, N de-

notes the number of assets in the market, and wi n ∈R denotes the portfolio weight

of asset n in order i . A strictly positive weight denotes buying the asset, a strictly

negative weight denotes selling the asset, and a zero weight denotes that that the

asset is not a part of that portfolio.

2. Instead of step-wise demand, flow orders specify piecewise-linear downward-sloping demands.

The user specifies two prices: a lower limit pL
i and an upper limit p H

i , with pL
i < p H

i .

The flow order interprets pL
i as a demand to buy the portfolio in full quantity at

prices weakly lower than pL
i , and interprets p H

i as indicating zero demand for the

portfolio at prices weakly higher than p H
i . Then, in the interval [pL

i , p H
i ], the flow

order linearly interpolates the quantity demanded from full quantity at pL
i to zero

quantity at p H
i .6 Note that we use the phrase “buy the portfolio” to include the

case of selling assets—in our language, selling an asset is buying a portfolio with a

negative weight on the asset at a negative price (i.e., receiving a transfer). We will

clarify this point, which can be confusing at first, in detail below.

3. Quantities are expressed as flows per batch interval, up to a total quantity limit. For

each order i , the user specifies two quantity parameters, qi > 0 and Qmax
i > 0, ex-

pressing their demand to buy up to quantity qi of the portfolio per batch interval,

up to a cumulative total purchased quantity of Qmax
i . Instead of requiring that

6In a traditional limit order at price p, the implied demand is the full quantity at prices weakly better
than p and zero quantity at prices strictly worse than p. In our language, these two implications of the
traditional limit price are split into two separate parameters: demand in full at prices weakly better than
the lower limit pL

i , and demand zero at prices weakly worse than the upper limit p H
i .
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quantities express a demand to trade immediately (1000 shares right now!) the

user can tune their urgency to trade.

Thus, a flow order is described by the tuple (wi , pL
i , p H

i , qi ,Qmax
i ). (Throughout this

paper, we use a lower-case bold font to denote vectors, an upper-case bold font to de-

note matrices, a subscript i to denote orders, and a subscript n to denote assets.)

Next we formally define a flow order’s demand within a batch auction. Assume that

the order’s cumulative purchased quantity is not within qi of Qmax
i , so that the order

can purchase its full quantity qi in the next batch without exceeding Qmax
i .7 Let πππ =

(π1, . . . ,πN)⊺ denote the column vector of market prices of all assets n = 1,. . . ,N . The

market price for the portfolio defined by the weight vector wi is the inner product

pi =wi
⊺πππ ∶=

N

∑
n=1

wi nπn . (1)

Order i ’s demand per batch auction, which we call its “flow demand”, is the downward-

sloping linear function of the portfolio price pi =wi
⊺πππ defined by:

Di (pi ∣wi , qi , pL
i , p H

i ) = qi trunc(
p H

i −pi

p H
i −pL

i

) , where trunc(z) ∶=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

1, for z ≥ 1

z, for 0 < z < 1

0, for z ≤ 0

.

(2)

Notice how the rate at which order i buys the portfolio depends on both the order’s

quantity limit qi and where the price for the portfolio is relative to the order’s price pa-

rameters pL
i and p H

i . If the portfolio price pi is less than or equal to pL
i , the order is “fully

executable” and the portfolio is bought at the maximum rate qi . If the portfolio price pi

is higher than p H
i , then the order is “nonexecutable” and does not buy at all. If the port-

folio price is somewhere between p H
i and pL

i , then the order is “partially executable” and

buys at the rate determined by linear interpolation between the two price parameters.

Buying vs. Selling This formulation treats “selling” an asset as buying a portfolio with

a negative weight on that asset at a negative price. This not only generates compact

notation for representing both buying and selling but also emphasizes a symmetry be-

tween buying and selling which will be important for understanding how market clear-

7In the case where the order’s cumulative purchased quantity, say Q t
i , is within qi of the limit Qmax

i ,
replace qi with the remaining quantity demanded Qmax

i −Q t
i .
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Figure 1: Plots of (a) the function trunc(z); (b) a single buy order, with pricing parameters
pL

i = $41.00 and p H
i = $42.00, and maximum flow demand of qi = 5.00 portfolio units per batch

auction; (c) a single sell order, initially plotted as an upward-sloping supply curve with one
upward-sloping linear segment, and (d) the same sell order, now plotted as a downward-sloping
demand for negative quantities, which is our treatment here. The pricing parameters for the
sell order are pL

i = −$42.00 and p H
i = −$41.00, with maximum flow demand of qi = 5.00 portfolio

units per batch auction. The figures for buy and sell orders are plotted with flow quantity on the
horizontal axis and price on the vertical axis.

ing works. General equilibrium theory often uses this idea that an upward sloping sup-

ply curve for positive quantities is equivalent to a downward sloping demand curve for

negative quantities.

Whether buying or selling, we have pL
i < p H

i and demand defined according to equa-

tion (2). However, when selling, both pL
i and p H

i are negative. For example, an order

to sell XYZ in full at price $42.00 or higher, with the sell rate declining linearly to zero

at price $41.00, would be encoded with pL
i = −$42.00 and p H

i = −$41.00. There are two

equivalent ways to remember this. First, think of pL
i as analogous to the price limit in a

traditional limit order (willing to trade in full at this price or better), with demand then

declining linearly to zero in the interval [pL
i , p H

i ]. Alternatively, think of p H
i as the price

at which the trader is exactly indifferent between trading and not. Then, as the price

improves from p H
i , the trader’s quantity demanded increases linearly, up to a maximum

quantity of qi when the price reaches pL
i or better.

See Figure 1 for an illustration of buying and selling.

Last, note that if a portfolio has both positive and negative weights, there may not

be a natural buying versus selling direction to the order. The trader is always “buying

the portfolio” under our approach, but whether their pricing parameters pL
i and p H

i are

positive or negative will depend on the weighted valuations of the assets in the portfolio.
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Additional Technical Remarks on the Formulation We make two additional technical

remarks on this formulation.

First, observe that while the above demand function (2) has just a single downward-

sloping segment, the user can define an arbitrary piecewise-linear downward-sloping

demand function for a given portfolio by using multiple flow orders.

Second, order specification using the tuple of parameters (wi , pL
i , p H

i , qi ,Qmax
i ) con-

tains an intentional redundancy of notation. Buying a portfolio containing one share

each of two stocks at a rate of ten portfolio units per batch auction is equivalent to buy-

ing a portfolio containing half a share of each stock at a rate of twenty portfolio units per

batch auction. More generally, for some parameterα > 0, changing the order parameters

from (wi , pL
i , p H

i , qi ,Qmax
i ) to (αwi ,αpL

i ,αp H
i , qi /α,Qmax

i /α) has no effect on the trade

rates for each asset as a function of asset prices. We do this because in some circum-

stances it will be natural to normalize some stocks’ individual weights to one or minus

one, while in others it may be more natural to normalize the sum of weights.

Proxy Instructions For Orders Over Time As in the traditional market design, users

may modify or cancel their flow orders at any moment in time throughout the trading

day. Additionally, users may want to specify what we will refer to as “proxy instructions”

that modify or cancel their orders under specified contingencies.

The parameter Qmax
i is a simple example of such a proxy instruction: cancel the or-

der from the market once the cumulative total quantity Qmax
i has been reached. Another

simple example is time-in-force instructions, such as “good for day” or good for some

other user-specified period of time. In principle, the exchange could provide more com-

plex examples, such as allowing an order’s pricing parameters to vary dynamically over

time as a function of recent prices (“Ensure that my order’s price impact is never more

than ten basis points”), or allowing an order’s quantity parameter to vary over time (“Re-

duce this order’s flow quantity if I am averaging above ten percent of trading volume”).

We will not discuss such complex order contingencies in this paper.

2.2 Key Examples

We give several key examples to illustrate the flexibility of portfolio orders.

1. Standard limit order.
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A standard limit order expresses preferences to buy or sell a fixed quantity of one

asset at one limit price. A flow order can be specified to approximate a standard

limit order. First, when only one weight wn is nonzero, the order is a simple order

to buy one asset if the weight is positive or to sell one asset if the weight is negative.

Second, the maximum rate qi can be set to equal the quantity the trader wants to

buy or sell, Qmax
i . Third, the price parameters can be set so that pL

i corresponds to

the intended limit price, and p H
i is as close as is allowed to pL

i . Theoretically, we

obtain a standard limit order in the limit as p H
i → pL

i
+

.

2. Time-weighted average price (TWAP) order.

In the traditional market design, a market order executes immediately at the clear-

ing price. The analog here is a time-weighted average price (TWAP) order. The

user specifies a price parameter pL
i that is sufficiently aggressive relative to recent

prices that it is esssentially guaranteed to execute.8 Then, the user will trade quan-

tity qi of the portfolio every batch auction until their quantity limit is achieved, i.e.,

they will trade at the TWAP over this time period.

3. Pairs trades.

A pairs trade can be executed by specifying a portfolio weight vector wi with one

strictly positive entry, one strictly negative entry, and the rest zeros.

4. Portfolio trades.

A portfolio trade can be executed by specifying a portfolio weight vector wi with

either all entries weakly positive (if buying the portfolio) or all entries weakly neg-

ative (if selling the portfolio). The assets whose weights are strictly positive or

strictly negative comprise the portfolio.

We note that traders can construct and trade their own index portfolios. For exam-

ple, an order to buy the S&P 500 has positive weights on each stock in the S&P 500

index, with weights proportional to S&P 500 weights and zero weight on stocks not

in the S&P 500 index. An order to sell an index has negative weights on all stocks

8In the traditional formulation of a market order, one thinks of the limit price as ∞ if buying and as 0
if selling. The 0 for selling implicitly encodes that assets are “goods” that can always be sold at a weakly
positive price. Here, if the order is for a portfolio with both positive and negative weights, it is not auto-
matic from the order itself whether the portfolio is a “good” that should always trade at a positive price or
a “bad” that should trade at a negative price. Either way, the trader can guarantee execution by specifying
pL

i sufficiently large, but they may not wish to do that.
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in the index. Traders can easily customize index portfolios by adjusting portfo-

lio weights—e.g., adjusting weights based on valuation models, or setting to zero

weights for assets that fail a screening criterion such as ESG constraints.

5. General long-short strategies.

A general long-short strategy combines the previous two cases: multiple positive

entries and multiple negative entries.

6. Market making strategies.

A trader can engage in market making—whether for a single asset, a pairs trade, a

portfolio trade, or a general long-short strategy—by using two orders with opposite-

signed weights and price parameters. For example, a market maker who is willing

to buy portfolio wi in full at 41.00 and sell it in full at 42.00, could use orders like

• Buy leg: weights wi , price parameters pL
i = $41.00, p H

i = $41.25

• Sell leg: weights -wi , price parameters pL
i =−$42.00, p H

i =−$41.75

2.3 Limitations of the Language

We note several important limitations of the language for representing trading demands.

First, trading demands are only defined at exactly the ratio of portfolio weights spec-

ified in the order. If an order specifies it wants to buy assets A and B at a ratio of 2:1, the

order contains no information about the trader’s willingness to trade at, say, a ratio of

2.2:1 or 1.8:1. This restriction relative to traditional consumer theory, where preferences

are typically defined on the whole positive orthant, is key to our method of existence

proof (below in Section 3.2).

Second, trading demands are linear within each order. In principle, we could replace

the linear trunc function with the flexibility to specify an arbitrary downward-sloping

function on the interval of prices [pL
i , p H

i ]. However, our existence proof and computa-

tional results do take advantage of this linearity. We view the linearity restriction as less

important a limitation than some of the others, because arbitrary downward-sloping

functions can be approximated, if needed, with a set of linear orders.

Third, the language does not allow for indivisibilities. Most importantly, a user can-

not specify a minimum transaction quantity per batch, only a maximum. So, for exam-

ple, an order cannot be “fill or kill”, or “at least 100 shares per batch, otherwise stay out”.
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That said, a user may be able to approximate such preferences with marketable orders

if prices are continuous enough.

Last, the language does not allow for in-order contingencies. This includes cases

like “buy A if the price of B is high enough” or “buy whichever of A or B gives me more

surplus given my valuations”. This latter kind of preference expression is analyzed in

Demange, Gale, and Sotomayor (1986) and is present in market design proposals of

Klemperer (2010) and Milgrom (2009). As with indivisibilities, a user may be able to

approximate such preferences with marketable orders if prices are continuous enough.

3 Market Clearing Prices and Quantities

Now we turn our attention to the exchange’s problem of finding clearing prices and

quantities.

3.1 Definition of Market Clearing

To define market clearing we need to convert individual traders’ demand curves for

portfolios as a function of portfolio prices into a market demand curve for assets as a

function of asset prices. For each portfolio i , first replace the portfolio price pi by the

weighted vector of asset prices, using pi =πππ
⊺wi . Then, convert the demand for portfo-

lio units Di(πππ
⊺wi) into the demand for individual assets by multiplying by the portfolio

weights wi . Last, sum up the demand for assets across all orders i to obtain the market

net excess demand curve for assets as a function of asset prices:

D(πππ) ∶=
I

∑
i=1

Di (πππ
⊺wi ∣wi , qi , pL

i , p H
i ) wi . (3)

The function D(⋅) maps asset price vectorsπππ ∈RN to net asset quantity vectors q ∈RN . A

price vector is market clearing if each asset’s net excess demand is zero:

D(πππ) = 0. (4)

This market clearing condition defines N equations in N unknowns. At clearing pricesπππ,

order i ’s trading rate for the individual assets is given by Di(πππ
⊺wi)wi , i.e., by its demand

for portfolio units at the clearing prices times the portfolio weights.
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For arbitrary, non-clearing price vectors, the quantity vector q =D(πππ) may have both

positive and negative components. Note as well that we do not enforce a constraint that

prices be nonnegative. Negative prices arise naturally in some commodity markets, such

as electricity, with limited storage and costly curtailment.

3.2 Existence of Market Clearing Prices and Quantities

To show the existence of clearing prices, which then determine market clearing quanti-

ties, we formulate an optimization problem by imputing to each order “as-bid” prefer-

ences which define the dollar utility value of the number of portfolio units bought, then

sum the utility functions across orders to obtain the objective function to be maximized.

In the range of prices where an order is partially executable, the demand is a lin-

ear function of prices. Therefore, a quadratic quasilinear utility function defines prefer-

ences. The constraints preventing overfilling or underfilling the order are linear inequal-

ity constraints. The constraint that markets clear are linear equality constraints. Putting

this together mathematically results in the problem of maximizing a quadratic objective

function subject to linear constraints.

Quadratic programs have been thoroughly studied and are well-understood. Given

the structure of our problem, we can use well-known results to show that unique utility

maximizing quantities exist, and the solution implies Lagrange multipliers which corre-

spond to clearing prices. A solution to the dual problem of calculating optimal (market-

clearing) prices also exists and implies the same solution as the original (“primal”) prob-

lem.

Imputing utility functions to orders is a convenient mathematical modeling device.

We proceed as though orders directly represent traders’ preferences, even though, in

practice, traders submit orders strategically. Thus, our methodology does not measure

actual economic welfare and does not generate welfare results on market efficiency.

Rather, the method provides a practical approach to prove that clearing prices and quan-

tities exist.

Pseudo-Utility Let Vi(x) denote the dollar utility of order i from a trade rate of x in

portfolio units per second. To find Vi(x), we first define the marginal utility function

Mi(x) as the inverse demand curve, pi = Mi(xi), where recall the order i demand curve

is denoted by Di(pi) = xi . In words, the inverse demand curve maps order i ’s trade rate
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x ∈ [0, qi ] into prices p ∈ [pL
i , p H

i ].9 Rearranging equation (2) we have:

Mi(x) ∶= p H
i −

p H
i −pL

i

qi
x for x ∈ [0, qi ]. (5)

The value of Mi(x) measures marginal as-bid flow value in dollars per portfolio unit.

Utility Vi(x), as a function of the trade rate x, is defined as the integral of the marginal

utility function for trade rate over the interval [0, x]:

Vi(x) ∶=∫
x

0
Mi(u) du (6)

Since the marginal value is linear in x, the total value is quadratic and therefore strictly

concave in x:

Vi(x) = p H
i x −

p H
i −pL

i

2qi
x2 (7)

We will think of Vi(x) as defined for all x ∈ R, with order specifications imposing the

constraint x ∈ [0, qi ].10

Value Maximization Our problem of finding clearing prices is formulated as two opti-

mization problems, a primal problem of finding quantities which maximize “as-bid dol-

lar value” and a dual problem of finding prices which minimize the cost of non-clearing

prices. The first-order conditions for optimality of either of these two problems imply

market clearing quantities and prices.

The exchange, acting analogously to a social planner in general equilibrium theory,

chooses a vector of execution rates for all orders x = (x1, . . . , xI) to maximize aggregate

as-bid value, defined as the sum of pseudo-utility functions across orders,

V (x) ∶=
I

∑
i=1

Vi (xi) for x ∈RI , (8)

subject to choosing quantities consistent with market clearing constraints and order ex-

9For trade rates in the interval (0, qi ), the fact that the order chooses an interior quantity tells us that the
order’s as-bid marginal utility is equal to the corresponding price in the interval (pL

i , p H
i ). The same logic

extends to the boundary points 0 and qi , corresponding respectively to prices p H
i and pL

i , by assuming
as-bid utility is continuous.

10We could equivalently think of the domain of Vi (x) as x ∈ [0, qi ] or define Vi (x) =−∞ for x ∉ [0, qi ].

21



ecution rate constraints:

max
x

V (x) subject to

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∑
I
i=0 xi wi = 0 (market clearing)

xi ∈ [0, qi ] for all i (order execution rate).
(9)

The objective function V (x) is concave because it is a sum of concave functions.

Indeed, since the objective function is quadratic and the constraints are linear, this

is a quadratic program. To make this quadratic structure apparent using matrix and

vector notation, let W denote the N × I matrix whose i th column is wi . Let pH denote

the column vector whose i th element is p H
i . Let D denote the I × I positive definite

diagonal matrix whose i th diagonal element is (p H
i −pL

i )/qi . Then problem (9) may be

written compactly as

max
x

[x⊺pH − 1
2 x⊺D x] subject to W x = 0 and 0 ≤ x ≤ q. (10)

We first show that quantities which maximize aggregate utility exist. Then we show

that clearing prices exist by examining the dual problem to the utility maximization

problem.

Theorem 1 (Existence and Uniqueness of Optimal Quantities). There exists a unique

quantity vector x∗ which solves the maximization problem (10).

Proof. The problem has the following properties:

1. Compactness and convexity: The inequality constraints on trade rates define the

Cartesian product of I intervals, [0, q1]× ⋅ ⋅ ⋅ × [0, qI ], which is compact and convex. The

market clearing conditions are linear constraints, which defines the intersection of hy-

perplanes. The intersection of a compact, convex set with hyperplanes is compact and

convex. Thus, the set of vectors of trade rates x that satisfies all constraints is compact

and convex.

2. Feasibility: No trade (x = 0) generates well-defined utility for each order (Vi(0) = 0),

clears markets and is allowed on each order. In this sense, no-trade is feasible.

3. Strict concavity: Each function Vi(xi) is quadratic and therefore strictly concave

for all xi ∈R. Since V is the sum of Vi across i , the function V is concave on the domain

RI and thus also on the compact and convex subset defined by the constraints.

It is a well-known principle of convex analysis (Boyd and Vandenberghe (2004); Bert-

sekas (2009); Nocedal and Wright (2006)) that a strictly concave objective function on a
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non-empty compact and convex set has a unique maximizing vector x∗.

Our approach makes the problem compact by assuming that traders are not inter-

ested in trading additional quantities beyond some very favorable level of prices. This is

like putting upper and lower bounds on quantities and linear combinations of quanti-

ties.

To prove that clearing prices exist, we exploit the duality between the problems of

finding optimal quantities and prices. For this, we define a Lagrangian function of the

vector of quantities x with three constraints: (1) the market clears (∑I
i=1 xi ⋅wi = 0); (2)

the order execution rate is greater than or equal to zero (x ≥ 0); (3) the order execution

rate is less than or equal to the maximum (x ≤ q). In vector notation, the Lagrangian is

defined by

L(x,πππ,λλλ,µµµ) ∶= x⊺pH − 1
2 x⊺D x−πππ⊺W x+µµµ⊺x+λλλ⊺(q−x). (11)

Since the multipliers associated with the market clearing equality constraint have the

economic interpretation of market prices for assets, we use the notationπππ = (π1, . . . ,πN)

for these multipliers. Two vectors of order-execution-rate multipliers, µµµ = (µ1, . . . ,µI)

and λλλ = (λ1, . . . ,λI), are associated with inequality constraints on order execution rates,

with two constraints for each order.

The dual problem associated with the primal problem of maximizing aggregate util-

ity (10), is then defined by

Ĝ(πππ,λλλ,µµµ) ∶=max
x

L(x,πππ,λλλ,µµµ) for πππ ∈RN , µµµ ≥ 0, λλλ ≥ 0. (12)

The dual problem is a minimization problem with infimum g∗ defined by

g∗ ∶= inf
πππ,λλλ,µµµ

Ĝ(πππ,λλλ,µµµ) subject to πππ ∈RN , µµµ ≥ 0, λλλ ≥ 0. (13)

The dual problem (13) is formulated as an infimum rather than minimum because we

have not yet shown that there exists a solution (πππ∗,λλλ∗,µµµ∗) which attains the infimum.

Theorem 2 (Existence of clearing prices). There exists at least one optimal solution (πππ∗,λλλ∗,µµµ∗)
to the dual problem (13). The solutions x∗ and (πππ∗,λλλ∗,µµµ∗) are a primal-dual pair which

satisfies the strict duality relationship

g∗ =V (x∗). (14)
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Proof of Theorem 2. The primal problem has the following properties:

1. Concavity: The objective function V (x) is strictly concave.

2. Finite solution: The primal objective is the sum of a finite number of concave

quadratic functions. Since each quadratic function is bounded above, the solution to

the primal problem is bounded above.

3. Linear constraints: The minimum execution rate constraint x ≥ 0, the maximum

execution rate constraint x ≤ q, and the market clearing constraint W x = 0 are all linear.

4. Feasibility: No trade (x = 0) is feasible because it clears the markets and is allowed

on each order.11

It is a standard result from convex programming that a concave primal problem, a fi-

nite supremum on the primal problem, feasibility, and linear constraints guarantee that

a solution to the dual problem exists and has the same optimal value as the supremum

to the primal problem even if a solution to the primal problem does not exist like it does

in our problem; see Boyd and Vandenberghe (2004), Bertsekas (2009, Proposition 5.3.4,

p. 173), Nocedal and Wright (2006, Theorem 16.4, p. 464). Since Theorem 1 guarantees

that a solution to the primal problem does exist, the solution to the primal problem has

the same value as the solution to the dual problem.

There are three Lagrange multipliers in this problem: πππ, λλλ, and µµµ. The multiplier on

the market clearing conditionπππ is the vector of prices for all assets. The other multipliers

λλλ andµµµ ensure that orders are not underfilled ( x < 0 ) or overfilled (x > q).

Theorem 2 does not guarantee that clearing prices are unique. The set of clearing

prices is convex and may be unbounded. A trivial example occurs when all orders are

buy orders for individual assets, and there are no sell orders. Then any sufficiently high

price clears the market with zero trade. There may also be cases where the clearing price

is not unique even when trade occurs. A trivial example occurs when there is one buy

order and one sell order for the same asset (or portfolio) with the same quantities q , and

the buyer’s lower-limit price exceeds the absolute value of the seller’s lower limit price.

In this case, there is an interval of prices where both orders are fully executable. We

discuss a tie-breaking rule to pick a unique price in the next section.

11Feasibility does not require a strict interior point (Slater’s condition) because the constraints are linear
in this problem (linear constraint qualification).
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4 Computation

In this section we study computational feasibility of flow trading. The objective here is

to provide a proof of concept, finding market clearing solutions in less than a second

for a reasonably difficult problem, with 500 assets and 100,000 orders, using an ordinary

workstation and a publicly available algorithm. For this, we simulate order books and

find that solutions can be found in less than a quarter of a second for a wide range of pa-

rameters. Section 4.1 proposes a computational methodology, and Section 4.2 explores

computational performance in a simulation environment.

4.1 Methodology

Gradient Method For economists, Walrasian tatonnement is an intuitive approach for

calculating market clearing prices. An auctioneer announces tentative prices, and traders

respond with their quantities. The auctioneer then adjusts prices in a direction propor-

tional to net excess demand, and the process continues until the market clears. Taton-

nement is equivalent to using the gradient method of optimization when there is a func-

tion of prices whose first order conditions correspond to market clearing. In our setting,

such a function can be found by minimizing out the multipliers µ and λ in the dual ob-

jective function in equation (12), which we call the gains function. Theorem 2 implies

that the function’s first order condition corresponds to market clearing.

Since the gains function has a piecewise-linear derivative, it is continuously differ-

entiable, and the derivative satisfies a Lipschitz condition12. These conditions assure

that the gradient method converges (Nesterov (2004, Corollary 2.1.2, p. 70)). However,

while the guaranteed convergence rate is much faster than for the traditional general-

equilibrium theory problems discussed by Scarf and Hansen (1973)13, it is too slow for

our purpose. Reducing the error by a factor of one million may require approximately

one million iterations, a prohibitively large number in our setting, where we need to

solve for prices very frequently throughout the trading day (as opposed, e.g., to a single

high-stakes allocation problem like in combinatorial auctions).

12
∣∇G(πππ+∆πππ)−∇G(πππ)∣ < L∣∆πππ∣ for some Lipschitz constant L.

13More modern work in computer science has focused on the complexity of computing Brouwer and
Kakutani fixed points (Daskalakis, Goldberg, and Papadimitriou (2009); Budish, Cachon, Kessler, and Oth-
man (2017)) and supports the claim that computing competitive equilibrium prices can be computation-
ally difficult.
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4.1.1 Interior Point Method

We propose to use an interior point method for quadratic programming. The literature

shows that interior point methods are computationally more efficient than the intuitive

gradient method, both theoretically (see Nesterov (2004, Chapter 4); Bertsekas (2009),

Boyd and Vandenberghe (2004)) and in practice (Gondzio (2012)).14

Exchange as a Small Market Maker Theoretically, the interior point method requires

the existence of an interior point, a feasible allocation on the interior of the constraint

set. Such an allocation clears the market and strictly satisfies the inequality constraints

(0 < x < q). In our setting, however, there is no natural candidate for such an interior

point. For example, no-trade (x = 0), which satisfies market clearing, does not lie on the

interior of the constraints.

To ensure an interior point, we introduce the possibility that the exchange acts as a

very small market maker for every asset. This makes allocations feasible by taking into

its inventory otherwise uncleared quantities. Specifically, the exchange submits a linear

demand curve for each asset n:

εn(π0n −πn), (15)

where εn is the slope, and π0n is a base price below which the exchange buys and above

which it sells. Here, εn can be a very small positive number such that the exchange trades

little. The strategy can be implemented by placing two flow orders for each asset: one

order to buy at prices below π0n and the other to sell at prices above π0n .

With the exchange as a small market maker, existence of an interior point is easily

assured. For example, pick any x such that 0 < x < q. Then the exchange can soak up any

uncleared quantity to clear the market.

Further, allowing modest exchange trading has two other benefits. First, it can re-

solve the “tiebreaker problem”, in case there is an interval of market-clearing prices (as

we know is possible from Theorem 2). Since the exchange has an active order for every

asset at every relevant price vector, market prices are chosen uniquely for all assets when

multiple prices are possible otherwise. For example, if π0n is set at the previous clearing

14For interior point methods, the maximum number of iterations has an upper bound proportional
to O(log(1/ε)), where ε is the proportion by which the error is reduced (Nesterov (2004) Theorem 3.1).
For example, reducing error by proportion 0.000001 (one-millionth) is O(log(1,000,000)) ≈O(13.8). For
gradient methods, the upper bound is proportional to O(1/ε) or O(1/ε2

) depending on the structure of
the problems.
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price for asset n, then the exchange’s small trading demand will break ties in favor of the

price closest to the previous price. Second, it can absorb uncleared quantities due to

rounding error and inexact convergence of the algorithm for calculating clearing prices,

even if the algorithm has practically “converged” to a target tolerance.

Solving the KKT Conditions To find market clearing prices and quantities, the interior

point method solves the Karush–Kuhn–Tucker (KKT) conditions, utilizing information

about both quantities from the primal problem and prices and multipliers from the dual

problem.

From here on, we redefine pH , pL , D, W, q, and x to include the exchange’s orders.

Then all of the results from Section 3 still hold, and it is straightforward to show that a

solution to the KKT conditions clears the market. Further, since the exchange has an

active order at every price, the solution is unique.

Theorem 3 (Karush–Kuhn–Tucker (KKT) Conditions with Exchange Trading). Any so-

lution of the KKT conditions (16)–(19) for quantities x∗ ∶= (x∗1 , . . . , x∗I ) and multipliers

(πππ∗,λλλ∗,µµµ∗) is a solution to both the primal problem and dual problem:

W x∗ = 0, 0 ≤ x∗ ≤ q, (Primal Feasibility) (16)

πππ∗ ∈RN , λλλ∗ ≥ 0, µµµ∗ ≥ 0, (Dual Feasibility) (17)

pH −Dx∗−W⊺πππ∗+µµµ∗−λλλ∗ = 0, (Primal Optimality) (18)

λλλ∗ ⋅(q−x∗) = 0, µµµ∗ ⋅x∗ = 0, (Complementary Slackness) (19)

With exchange trading defined in equation (15), there exists a unique solution to the KKT

conditions.

Proof of Theorem 3. Existence is a straightforward consequence of Theorems 1 and 2,

which imply that a unique optimal primal solution x∗ exists and some optimal dual

solution (πππ∗,λλλ∗,µµµ∗) exists, and these solutions form a primal dual pair with the same

optimized value; see Bertsekas (2009, Theorem 5.34(b), p. 173). Uniqueness follows

from the exchange having a partially executable order for every asset. If market clear-

ing prices were not unique, then any change in the price of any asset would change the

aggregate quantity demanded, which implies multiple market clearing quantities. Since

the quantities are unique from Theorem 1, prices must also be unique.
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Instead of solving these conditions directly, the interior point method first modifies

the problem by replacing the complementary slackness conditions in equation (19) with

a set of constraints parameterized by ν̄ > 0:

λλλ∗ ⋅(q−x∗) = ν̄ ⋅1, µµµ∗ ⋅x∗ = ν̄ ⋅1. (20)

Then as we take a limit as ν̄→ 0, a sequence of solutions to the modified KKT conditions

satisfies the original KKT conditions in Theorem 3.

The modified complementary slackness conditions in equation (20) imply that a so-

lution to the modified KKT conditions satisfies the constraints with strict inequality:

0 < x < q. Exchange trading plays a role in guaranteeing the existence of such a solu-

tion for any ν̄ > 0.

Implementation Details The algorithmic strategy is to solve the modified KKT condi-

tions (16), (17), (18), and (20) iteratively by starting with an initial guess for x,πππ,µµµ,λλλ. On

each iteration, we substitute x+∆x for x,πππ+∆πππ forπππ,µµµ+∆µµµ forµµµ, andλλλ+∆λλλ forλλλ, then

solve the linearized system for ∆x, ∆πππ, ∆µµµ, and ∆λλλ with the value of ν̄ set to 0. To keep

the new guess an interior point, the solution vectors are multiplied by a scalar α (with

0 < α ≤ 1) to insure that the best guess for the next iteration x+α∆x, πππ+α∆πππ, µµµ+α∆µµµ,

λλλ+α∆λλλ is such that x remains an interior point. Since the KKT conditions are essentially

first-order conditions, the linearized approximation is a version of Newton’s method.

On each iteration, the linear system is solved in the following way. The multipliers

∆µµµ and ∆λλλ are expressed as functions of ∆x, easy invertibility of the diagonal matrix D

allows x to be expressed as a simple function ofπππ, and substituting the solution for x into

the market clearing condition reduces the problem to solving an N ×N positive definite

system for a price update toπππ, for which a Cholesky decomposition is used.15

15The revised KKT system is nonlinear in the unknownsπππ, x, µµµ, λλλ, and ν̄ only because the revised com-
plementary slackness condition involves element-by-element multiplication of x by µµµ and λλλ. For µµµ (and
analogously forλλλ), linearizing (x+∆x)(µµµ+∆µµµ) sets the second-order term term ∆x∆µµµ to zero. To correct
for the error created by dropping the second-order term, we solve the linear system a second time on each
iteration (using the same Cholesky decomposition), including a correction term described by Mehrotra
(1992) in the second solution.

Our solution uses our own straightforward Python implementation of the interior point methodology in
the CVXOPT package, as described by Vandenberghe (2010). Both the Python programming language and
the CVXOPT package are free and publicly available. One version of the algorithm is implemented on the
cpu using the Python packages numpy and scipy. Another equivalent version is implemented on both cpu
and gpu using the Python package Pytorch. Results are reported for the Pytorch implementation on the
gpu, which was three times faster than either cpu version. Our implementation is tailored to our specific
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Base Low High
Description

Number of assets 500 . .
Number of orders 100000 . .
Slope of exchange’s demand schedule (shares traded per dollar price change at $100/share) 0.0100 . .
Fraction of orders for individual asset 0.5000 0.0500 0.9500
Fraction of orders for indexes among orders for portfolios 0.5000 0.0500 0.9500
Number of size indexes 5 2 50
Number of industry indexes 10 2 50
Probability an index order is a market index order 0.8000 0.0500 0.9500
Probability a size or industry index ord is a size index order 0.5000 0.0500 0.9500
Probability a mkt index order is an EW mkt index order 0.0625 0.0500 0.9500
Probability a size index order is an EW size index order 0.2500 0.0500 0.9500
Probability an industry index order is an EW industry index order 0.2500 0.0500 0.9500
Standard deviation of expected number of orders across assets 1.7000 0.1000 3.0000
Standard deviation of order size given asset 1.5000 0.1000 3.0000
Standard deviation of upper limit price as fraction of initial price 0.1000 0.0100 1.0000
Mean deviation of upper limit price as fraction of initial price standard deviation 0.3000 0.0100 1.0000
Mean difference between upper and lower limit prices (basis points) 1.0000 0.0100 100.0000
Standard deviation of difference between upper and lower limit prices 2.0000 0.1000 3.0000
Fraction buy orders for indexes and assets 0.5000 0.1000 0.9500

Table 2: Parameters for simulating an order book.

The positive definite matrix to be decomposed changes with each iteration because

it is constructed by implicitly assigning weights to each order based on values of mul-

tipliers. The weights are close to zero when the multipliers push the order execution

rate xi close to the boundary of the interval [0, qi ], and closer to one if the execution

rate xi implied by the multipliers is far away from the boundary of the interval [0, qi ].

The order is expected to be relevant for price discovery at the margin when it is partially

executable. A new Cholesky decomposition is needed on each iteration to incorporate

updated weights from the most recent iteration into calculation of the new search direc-

tion.

4.2 Results

4.2.1 Simulating the Order Book

There are four sets of parametric assumptions used to simulate an “order book.” A list of

parameters is presented in Table 1, with “base case,” high, and low values.

The first set of assumptions includes the number of assets, the number of orders,

and the extent of exchange trading. As a base case, we start with 500 assets and 100,000

orders. The number 500 is chosen based on the number of stocks in the S&P 500 index.

quadratic program, which has an invertible diagonal matrix D and simple “Euclidean cone” constraints
0 ≤ x ≤ q. Our implementation code will be posted publicly upon publication, and is available immediately
to interested readers upon request.
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The number 100,000 is chosen arbitrarily. After reporting outcomes for the base case,

we study how the number of assets and the number of orders affect computation.

Exchange trading is characterized by the slope of its demand schedule (εn in Equa-

tion (15)) and the base price. For simplicity, we set the slope constant across all assets,

and choose a small number, 10−2, so that the exchange does very little trading, buying

one dollars worth of an asset when the price falls by one percent. The base price, at

which the exchange starts buying and selling all assets, is set equal to the initial price.

The initial price of all assets and index portfolios is normalized to $100. These prices are

pure scaling factors, which do not affect the economics of market clearing in any way.

The second set of assumptions defines how orders are distributed across individ-

ual assets and various types of portfolios and how orders are distributed between buy

and sell. Theoretically, there are infinitely many different portfolios which investors can

choose from by combining any of the 500 assets with arbitrary weights for each asset.

In our simulations, however, we restrict portfolios to six different types of index port-

folios and to randomly generated pairs trades. This limitation on portfolios lowers the

computational cost of our simulations.

For index portfolios, we construct value-weighted and equal-weighted portfolios of

the market index, “size” indices, and “industry” indices. Assets are sorted by expected

dollar volumes to be assigned to size quantiles, and the groups created form size indices.

Assets are evenly allocated to industries by first sorting assets by size, then assigning as-

sets to the same industry if they have the same rank modulo the number of industries.

Pairs trades randomly buy either an asset or an index portfolio and sell an equal ex-

pected dollar value of another asset or index.

In the base case scenario, we divide the 100,000 orders evenly between orders for

individual assets and orders for portfolios. The orders for portfolios are then divided

evenly between index portfolios and pairs trades. Orders for index portfolios are ran-

domly assigned to the 6 categories with corresponding probabilities in parentheses:

the valued-weighted market index (75%), the equal-weighted market index (5%), five

value-weighted size indices (7.5%), five equally-weighted size indices (2.5%), ten value-

weighted industry indices (7.5%), and ten equal-weighted industry indices (2.5%). The

numbers here are chosen somewhat arbitrarily, except to reflect that the value-weighted

market indices, such as those which track S&P 500 (including even the CME’s S&P 500

E-mini contract), have high trading volume. We later vary the probabilities to study how
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they may affect computation times.16 Finally, each order for individual assets and in-

dexes has an equal probability of being buy or sell.

The third set of assumptions is on the distribution of the number of orders across

assets and the size of orders. To represent the skewness of the trading volume in the real-

world stock market, we allow the number of orders and the size of orders to be drawn

from heterogeneous distributions.

For each asset, we draw a random number from a lognormal distribution with mean

of 1 and standard deviation of 1.7. Dividing these numbers by the sum of all realizations

across 500 assets, we generate the probability that a given order is allocated to that asset.

Then for each order for individual assets, we pick an asset from a multinomial distribu-

tion with the chosen probabilities. The probability multiplied by the total number of

orders for assets (50,000) is the expected number of orders for that asset.

The size of orders for a given asset is lognormally distributed with standard devi-

ation of 1.5. Following the market microstructure invariance hypothesis of Kyle and

Obizhaeva (2016), the mean is proportional to the square root of the expected number

of orders for that asset. Specifically, the mean equals k ∗
√

expected number of orders,

where k is a constant chosen to make the aggregate expected order volume from in-

dividual stocks equal to the arbitrary scaling constant of $10 million per second using

arbitrary expected ex ante prices of $100 per share.

For index portfolios, the expected number of orders for each size index is the same,

and the expected number of orders for each industry index is the same. The size of

the index orders is determined by multiplying the square root of the expected number

of orders by the same factor k used for individual orders. Since orders for the value-

weighted market index are much larger and more numerous than orders for individual

stocks, the overall value of the market index is largely determined by these index orders.

For pairs trades, each individual asset “leg” is generated randomly in the same manner

as orders for the asset or portfolio. The dollar size of the larger leg is then truncated to

match the dollar size of the smaller leg, again using expected ex ante prices.

The last set of assumptions is on limit prices. First, the upper limit price (p H
i ) is log-

16To allow varying the these probabilities in a convenient manner, we generate them from five param-
eters: the probability that an index order is for either the equal-weighted or the value-weighted market
index; the probability that a non-market index order is for a size index portfolio; the probability that a
market index order is for the equal-weighted market index portfolio; and the probability that a size (in-
dustry) index order is for a equal-weighted size (industry) index portfolio. The five parameters, together
with the restriction that the probabilities should sum to one, determine all six probabilities. We let each
of the five parameters to vary from 5% to 95%.
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normally distributed with the mean of $97 if buying and -$103 if selling, and the standard

deviation of 10% of the initial price. Second, the difference between the upper and lower

limit prices, p H
i −pL

i , is lognormally distributed with mean of 1 basis point (relative to the

“midpoint” (pL
i +p H

i )/2 and a standard deviation of 2. The very small mean of one basis

point and the large variance of 2 are expected to stress the algorithm by making demand

highly nonlinear in prices. All of the random variables are independently distributed.

4.2.2 Computation Outcomes

When performed on an ordinary office workstation (an AMD Ryzen Threadripper 3960X

processor, 24 cores running at 3.8GHz, and 128GB of memory running at 3600MHz; RTZ

2070 gpu at 1710 MHz with 8 GB of RAM), computation of market clearing prices and

quantities takes about 0.1451 seconds (median) in the baseline scenario with 500 assets

and 100,000 orders. Our results are obtained using the gpu and two cores.17 Uncleared

quantities are basically zero, equal to a fraction 8.7e-12 of total volume, or or 8.7 dollars

per trillion dollars.

The amount of exchange trading is small. On average, it trade 3.2 dollars per million

dollars of trading volume. Across 51 repetitions, the maximum, the minimum, and the

standard deviation of exchange trading are 5.99, 2.32, and 0.73 dollars per million dol-

lars, respectively. In a dynamic market, the exchange can avoid accumulating significant

inventories by adjusting its base prices over time to liquidate existing inventories.

Exchange trading, while small, has a large effect on the cross-sectional standard de-

viation of market-clearing prices for assets with very thin realized order books. Without

exchange trading, arbitrary determination among multiple prices drives the standard

deviation to a ridiculously large value of 1.44e+07%. Small exchange trading brings it

down to a much more reasonable 14.19%. In practice, we would expect market-making

firms to provide liquidity in thinly traded stocks and stabilize prices, possibly at a wide

spread.

Overall, market clearing allocations are computed quickly and accurately and prices

are reasonably stable with minimal trading by the exchange. We interpret these results

as being a sufficient proof of concept for the flow trading market design when the market

17Computation times do not change much when more cores are used. This is probably because easily
parallelized computations are done on the gpu while not easily parallelized computations, like Cholesky
decomposition and some sparse matrix operations, are done on the cpu but do not benefit much from
using multiple cores. The computation times are stable across 401 repetitions, with the maximum of
0.1603 seconds, the minimum of 0.1365 seconds, and a standard deviation of 0.0058 seconds.
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clears at intervals of once per second.

Next, we study how computation times vary with the number of assets and the num-

ber of orders; see Figure 2. In the first panel, as the number of orders increases from

100,000 to 1,000,000 and 3,000,000, while keeping the number of assets constant, com-

putation times increase from 0.1451 to 0.5639 and 1.5207 seconds, respectively. The

computation time crosses one second with approximately 1,930,000 orders. When the

number of orders is large, computation time is approximately proportional to the num-

ber of orders. In the second panel, as the number of assets increases from 500 to 2,000

and 10,000, again keeping the number of orders constant, computation times increase

to 1.1021 and 56.3 seconds, respectively. The computation time crosses one second

and ten seconds with approximately 1,800 assets and 5,200 assets, respectively. The

increased computation times when the number of assets increase are mainly due the

computation costs of calculating the matrix decomposed by the Cholesky decomposi-

tion and the Cholesky decomposition itself (which is an O(N 3) algorithm in the number

of assets). Both figures are almost flat initially. With a small number of orders or assets,

the overhead associated with the Python interpreter becomes a significant fraction of

computation times. When there are only 10 assets and 20 orders, the computation time

is about 0.0552 seconds, which we believe is likely a good estimate of the overhead as-

sociated with the Python interpreter.

For robustness, we alter each parameter’s value to the minimum and the maximum

of a wide range, as described in Table 2, while keeping the number of orders, the number

of assets, and the slope of exchange trading constant. Computation times remain of the

same order of magnitude (0.1159 to 0.2655 seconds compared to 0.1459 seconds in the

baseline setting). Most parameters have modest effect on computation times except for

the two parameters: the standard deviation of order size and the fraction of buy orders.

These two parameters affect the balance of the supply and demand of the order book.

Changing the standard deviation of order size from 1.5 to 3 increases computation time

to 0.2078 seconds. Changing the fraction of buyers from 0.5 to 0.1 increases to 0.2344

seconds. The large values for these parameters make the order book more asymmetric,

and it becomes more difficult to solve for market clearing.

Finally, we consider an extreme scenario by settings all parameters simultaneously

to those that increase computation times (either the minimum or the maximum of the

range depending on the parameters). In this case, the computation time increases to

0.4291 seconds, approximately a factor of three relative to the base case and still below
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Figure 2: Computation Times Panel A varies the number of orders, holding the number of assets
fixed at the baseline value of 500. Panel B varies the number of assets, holding the number of
orders fixed at the baseline value of 100,000. In both panels, all other parameters are set to their
baseline values. Each dot represents one simulation, and there are 500 simulations in each panel.
The small discontinuity in Panel B around 600 assets is caused by [we don’t know yet.]

half a second. The analysis suggests computation times are not sensitive to the specific

parameter values used for the order book construction.

Discussion In a production environment in the future, we expect more powerful com-

puters and more refined algorithms will make it easier to calculate market clearing allo-

cations with even greater speed. More cores, faster CPU, and more memory bandwidth

will all likely reduce the computation times. Quadratic programming and sparse matrix

multiplications, which play key roles in our computation, are an active area of research

in computer science. Developments in these areas will also lead to more efficient com-

putation. Further, given that our results are from using a single core of the workstation,

refining the algorithm to facilitate parallel processing may be able to dramatically re-

duce computation times.
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5 Microfoundation for Orders for Portfolios

Flow orders as defined in this paper specify demand for a user-specified portfolio as a

function of the price of that portfolio. While such orders for portfolios are more general

than traditional limit orders, this language is still restrictive, as in general a market par-

ticipant’s asset demands depend on the complete vector of asset prices, not just on the

price of a user-specified portfolio. In this section, we provide a modest microfoundation

for this paper’s approach to expressing trading demands.

5.1 The Static CARA-Normal Framework

The CARA-normal model (Grossman (1976), Grossman and Stiglitz (1980), Admati (1985)),

in which agents have constant absolute risk aversion (CARA) and asset returns are joint-

normally distributed, is widely used in economics and finance. We use the CARA-normal

model to study trading with orders for portfolios. The model is static so there is no dis-

tinction between trading in quantities and trading in flows; we will discuss this model

interpretation issue in greater detail below. Models that study dynamic strategic trading

in the CARA-normal environment have found that trading gradually over time is opti-

mal, to manage price impact (Vayanos (1999); Du and Zhu (2017); Kyle, Obizhaeva, and

Wang (2018), Sannikov and Skrzypacz (2016)). These models focus on the case of a single

risky asset, but we conjecture that the insights would carry over to the trade of portfolios.

Assume there are N risky assets and one safe asset, whose return is normalized to

one. Assume there is a single trader who subjectively believes that the risky assets’ pay-

offs, denoted by vector v, are joint-normally distributed with mean m and variance-

covariance matrix ΣΣΣ. The trader has CARA preferences with risk aversion parameter

A. There are no wealth effects with CARA preferences, so for simplicity set the trader’s

wealth to zero.

Initially, consider the trader’s optimization problem given a fixed, known set of prices—

let πππ denote the vector of prices for the N risky assets. Assume as well that the trader is

a perfect competitor who cannot affect these prices with their trading; we will discuss

the case where the trader has price impact shortly. The trader’s portfolio optimization

problem, given her beliefs, risk preferences, and prices, is given by:

max
ωωω

E[−exp−A(v−πππ)⊺ωωω] , (21)
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Joint normality allows us to transform the above into the quadratic optimization

problem:

max
ωωω

[(m−πππ)⊺ωωω−
1

2
A ωωω⊺ΣΣΣωωω] . (22)

The first order condition implies that the optimal portfolio is given by:

ωωω∗ = (A ΣΣΣ)−1(m−πππ). (23)

Observe that the optimal demand for each asset depends on its covariance with the

other assets (via the associated row of the inverse covariance matrix) and the entire vec-

tor (m−πππ). Thus, as is well known, demand for each asset in general depends on the

prices of all assets.

Implementing the Optimum with Portfolio Orders If the pricesπππ are known and fixed,

the trader can implement their optimum as defined in equation (23) with a single portfo-

lio order with portfolio weights wi and quantity parameter Qmax
i such that wi Qmax

i =ωωω∗.

This single portfolio order would specify pricing parameters such that it is fully exe-

cutable at the known prices.

What if the trader does not know the asset prices? This case might capture, for exam-

ple, that prices are changing over time and traders trade gradually. We next show that

traders can implement their optimum according to (23) with portfolio orders, without

any knowledge of prices. To do this, we need to “rotate” the asset space such that it is

spanned by independent portfolios.

Since the variance-covariance matrixΣΣΣ is positive semidefinite, its singular value de-

composition has a form

ΣΣΣ =U∆∆∆U⊺, (24)

where U is an orthonormal matrix, and ∆∆∆ is a diagonal matrix with nonnegative ele-

ments. Let K ≤ N denote the rank of ΣΣΣ, let δi denote the i th nonzero diagonal entry of

∆∆∆, and let ui denote the corresponding column of U.18 Then we have

ΣΣΣ−1 =
K

∑
i=1

1

δi
ui ui

⊺. (25)

18When K is strictly less than N (i.e., the matrix ΣΣΣ is positive semidefinite but not positive definite), we
can use the pseudo-inverse instead of the inverse to define the demand function.
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Using this, we can express the optimal portfolio in equation (23) as

ωωω∗ =
K

∑
i=1

(
ui
⊺m−ui

⊺πππ
A δi

)ui , (26)

which is a combination of demand schedules for portfolios. Here, u1, . . . ,uK are portfo-

lios of assets, whereas in (23) demand was expressed in terms of individual assets. Since

the portfolios are independent of one another (and there is no wealth effect in CARA

preferences), the optimal portfolio chooses the demand for each of them separately as

if in a single-asset model.19 That is, the optimal demand for the i th portfolio is given by

1

A δi
(ui

⊺m−ui
⊺πππ), (27)

where δi , ui
⊺m, and ui

⊺πππ correspond to the variance, the expected payoff, and the price

of the portfolio ui , respectively. Since the demand for each portfolio only depends on

the portfolio’s price, traders can achieve the optimal trade in equation (23) by utilizing

K orders for portfolios where each order is a function of that portfolio’s price.

Recall, in our proposed market design, we require orders’ demands for portfolios to

be downward sloping. Since the optimal demand for each portfolio in equation (26) is

decreasing in the portfolio’s price, the demand is indeed downward sloping.

The theorem below summarizes the results.

Theorem 4. Consider a static CARA-normal framework in which a trader believes that

the variance-covariance matrix of the asset payoffs has rank K . Then the trader’s optimal

portfolio (equation (23)) can be represented as the sum of K downward-sloping demand

schedules for portfolios, each of which depends only on that portfolio’s price (equation

(26)).

Practical Implementation We can decompose the expected utility from the optimal

portfolio into the contribution of each rotated asset. Substituting the optimal portfolio

in equation (26) into equation (22), and some algebraic manipulations (see details in

19Observe that in equation (23), if the covariance matrixΣΣΣ is diagonal, then the demand coefficients on
each of the individual assets are scalars, so the optimal portfolio can choose the demand for each asset
separately as if in a single-asset model, too.
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Appendix A), allows us to express the expected utility from trading at pricesπππ as

K

∑
i=1

1

2A
(

ui
⊺m−ui

⊺πππ
√
δi

)

2

. (28)

This shows that the benefit of each portfolio is determined by its squared Sharpe ratio

as perceived by the trader.20 In practice, traders may select a few portfolios, which they

perceive to have a sufficiently high Sharpe ratio (more precisely, its absolute value), and

choose to trade only those portfolios rather than all of the K portfolios.

Price Impact and Strategic Trading Thus far, we have assumed that traders are perfect

competitors, behaving as if they have no price impact. In practice, trades can of course

move prices, and many institutional traders dedicate considerable time and resources

to managing their price impact. Now we show that flow orders can still be used to imple-

ment the optimal portfolio when traders behave strategically, taking into account their

price impact.

Following the literature (for example, Kyle (1989); Malamud and Rostek (2017)), we

assume that traders believe that their price impact is linear in the quantity they trade.

We further assume that the matrix of price impact is positive semidefinite.21 That is, for

each trader, there is an N ×N positive semidefinite matrixΛΛΛ, such that

πππ =πππ0+ΛΛΛωωω, (29)

where πππ0 is the vector of hypothetical prices that would prevail if the trader were not to

trade, and the nth row ofΛΛΛ corresponds to the marginal impact of trading assets 1 to N

on the price of asset n. With a slight abuse of notation, we use the demand scheduleωωω

to also refer to the actual quantities that a trader trades at given prices.

With price impact, the trader’s optimal strategy is a slight modification of the com-

20Recall, the Sharpe ratio refers to the risk premium (i.e., the expected return minus risk free rate) di-
vided by the standard deviation. Here, the risk free rate is zero since the safe asset’s return is normalized
to one.

21Malamud and Rostek (2017) show that when the variance-covariance matrix is the same for all traders,
each trader’s equilibrium price impact matrix is proportional to the variance-covariance matrix, which
implies that all price impact matrices are positive semidefinite. It is left for future study to determine
under what conditions the price impact matrix is positive semidefinite in a more general setting.

38



petitive solution in equation (23), given by

ωωω∗ = (A ΣΣΣ+ΛΛΛ)−1(m−πππ). (30)

Since the sum of two positive semidefinite matrices is also positive semidefinite, A ΣΣΣ+ΛΛΛ

is positive semidefinite. Thus, we can use singular value decomposition to rotate the

asset space such that it is spanned by independent portfolios. Then the same logic as

above implies that the optimal portfolio can be implemented by combining portfolio

orders that only depend on the portfolio’s price. The number of required portfolio orders

corresponds to the rank of A ΣΣΣ+ΛΛΛ.

Theorem 5. Consider a static CARA-normal framework in which a trader believes that

her price impact is linear and positive semidefinite (equation (29)). Then the strategic

trader’s optimal portfolio (equation (30)) can be represented as the sum of downward-

sloping demand schedules for portfolios, each of which depends only on that portfolio’s

price.

Recall, when proving the existence and uniqueness of market clearing quantities in

Section 3, we treat orders as if they represent traders’ true valuations. This, as mentioned

earlier, is just a solution technique and does not imply that we can infer traders’ true

valuations from their orders. Strategic trading is an important reason there can be a gap

between true and as-bid valuations.

5.2 Approximations for General Preferences and Limitations

Our logic in the previous subsection extends to an arbitrary strictly concave twice con-

tinuously differentiable quasilinear utility function over assets, provided that asset pay-

offs are joint normally distributed. To see why this is the case, recall, the two key proper-

ties of CARA preferences we use in the arguments above are one, that there are no wealth

effects, and two, that they are strictly concave.

First, generally with no wealth effects, a trader’s optimal demand for each asset does

not depend on the prices of other assets in the case where assets’ payoffs are indepen-

dent of one another. If the assets have correlated, joint normal payoffs, we can, as shown

above, rotate the asset space such that it is spanned by a set of portfolios whose payoffs

are independent of one another. Thus, for any quasilinear preferences, which imply no
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wealth effect, we can use the independent portfolios such that the trader’s optimal de-

mand for each portfolio only depends on that portfolio’s price.

Second, the strict concavity implies that the optimal demand for any portfolio must

be downward sloping. This is crucial since we require demands for portfolios to always

be downward sloping in the portfolio’s price. While the optimal strategy may not be lin-

ear for an arbitrary strictly concave twice continuously differentiable quasilinear prefer-

ence, we can approximate the optimal strategy by combining multiple linear downward

sloping schedules.

However, portfolio orders will not be able to approximate the optimal portfolio of

every concave utility function closely. First, with wealth effects, the demand for an in-

dependent portfolio may still depend on the prices of other portfolios and may also in-

crease in that portfolio’s price. Second, with asymmetric information, the prices of other

portfolios may be useful to learn about the payoff of a given portfolio, even if the pay-

offs of the two portfolios are independently distributed with each other. In this case, the

optimal demand for an independent portfolio may again depend on the prices of other

portfolios.

6 Discussion of Implementation and Policy Issues

Information Policy Information policy is typically discussed in terms of pre-trade trans-

parency and post-trade transparency. Concerning post-trade transparency, we propose

that the exchange publish the trading volume and clearing price of each asset promptly

after the quantities and price have been calculated. In addition, the exchange may also

publish information about the slope of the net demand curve for each asset, from which

traders can make inferences about the price impact costs of their orders. The exchange

does not publish information about the identity of traders. If clearing prices can be cal-

culated in one-half second and prices published immediately, then traders would have

another half-second to process this information to submit orders to trade at the next

batch auction.

Pre-trade transparency in a market with batch auctions works differently from how

it works with the traditional market. Traditional exchanges publish best bid and best

ask prices and quantities. Such publication makes sense because an order may arrive at

any time and execute against the published quotes. Published quotes are actionable for

some positive duration. With frequent batch auctions, there is no trading between auc-
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tions. Therefore published quotes would not be disciplined by the possibility of incom-

ing orders to trade at the quotes. Furthermore, calculating derived bid-ask spreads for

assets from all portfolio orders, including orders for multiple assets, imposes a compu-

tational burden that cannot be met in real-time. Finally, since auctions occur frequently,

the post-trade information about price and volume is much more relevant for deciding

on orders in the next auction. Thus, pre-trade transparency for the auction at time t +1

consists of the post-auction information disseminated from the auction at time t .

With arbitrary portfolio orders, information about the depth of the order book is in-

herently complex because the depth of the order book for a portfolio cannot be inferred

from the depth of the order book for individual assets. The exchange might publish

limited depth information about each asset and also limited depth information about a

fixed list of popular portfolios.

If the exchange does not publish much information about the depth of the order

book, traders might measure the depth themselves by changing their orders for one sec-

ond to see what happens. Such information has an opportunity cost which is lower

when auctions are held more frequently.

Trust Flow trading has the desirable trust property that traders can infer from the his-

tory of their own orders and the history of prices the exact quantities they should have

traded. By contrast, executable orders in current markets do not always execute when

other orders execute at the same price. This erodes trust and market confidence, partic-

ularly among traders without state-of-the-art speed tools, whose orders are more apt to

lack time priority and therefore get poorer execution.

Flow trading has a minor trust issue about whether messages sent a few milliseconds

before the end of the batch interval are received in time to participate in that auction.

Participants have no incentive to wait for the last milliseconds before placing the order.

More importantly, with a short batch interval, the economic importance of any single

auction is minor.

Fairness In traditional markets, the concept of “bid-ask spread” captures many of the

features participants complain about as unfair. When there is a minimum tick size and

the bid-ask spread is one-tick wide, buyers and sellers cannot offer price improvement

by quoting better prices between the best bid price and best offer price. Instead, buy-

ers and sellers queue up at the best bid and offer, where the fastest traders have the
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highest priority in the queue. Slow traders perceive this as frustrating and unfair. In

dealer markets, dealers do not allow customers to post limit orders to trade directly with

other customers. Instead, customers must trade with dealers in transactions where the

dealer buys at the bid price and sells at the offer price. Customers complain that dealer

markets are unfair because dealers have privileges that customers do not have. With

flow trading, the concept of bid-ask spread is irrelevant when trade occurs because the

market demand schedule for the asset is continuous and strictly downward sloping. All

trades clear at the same price. All executable orders execute. Customers can increase the

quantities they trade by offering small price improvements because there are typically

additional quantities for purchase or sale at slightly improved prices. With flow trading,

there still are trading costs. Trading faster requires offering better prices, which makes

clearing prices move, which creates price impact.

offering better prices, which makes clearing prices move, which creates price impact.

Price Continuity as an Objective Traditional exchanges, such as the NYSE, have claimed

price continuity as a market objective. Customers prefer price continuity precisely be-

cause they do not trust the integrity of order execution. If a customer saw a trade at a low

price compared to recent prices, the customer would logically infer that the customer’s

own order was selling at the bad price and the NYSE specialist or another trader on the

floor of the exchange was buying. The customer might also have inferred that “fast mar-

ket” conditions were declared, which relieved his broker of the obligation to respect the

limit price on his own resting order, which would have otherwise bought at the low price.

With flow trading, transitory price discontinuities benefit customers with orders that

execute slowly over many batch auctions by allowing the orders to execute at better

prices. For example, if prices for a particular asset are higher at one auction and lower at

the next auction by the same price increment, resting executable customer limit orders

trades the same combined quantity (by linearity) at the two auctions, but the average

price of execution improves because a larger quantity is executed at the better price and

a smaller quantity at the worse price.

Temporary price discontinuities can result from the arrival of overly urgent orders

that have significant temporary price impact. Under a market design with flow trading,

traders have strong incentives to place patient orders and to protect themselves from

unfavorable prices by adjusting limit prices p H
i and pL

i to tolerable levels.
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Regulatory Objectives The U.S. Securities and Exchange Commission (SEC), which

regulates securities markets, pursues various general policy objectives, including eco-

nomic efficiency, competition, capital formation, maintaining trust and confidence, and

investor protection.

Flow trading is consistent with all of these objectives. It leads to economic efficiency

by reducing wasteful expenditure on fast data feeds, communication technologies, and

trading algorithms. It does this by decreasing the arms race among traders to pick off

orders and by reducing the messages needed to implement dynamic trading strategies.

It increases competition by providing customers, large and small, with a venue to trade

small quantities at low cost. Flow trading is consistent with the current demand of small

investors to trade fractions of shares and construct diversified portfolios consisting of

tiny positions in many stocks. It makes capital formation more efficient by increasing

market liquidity, which encourages markets to produce information about which firms

can deploy capital most profitably. It promotes trust and confidence in markets by hav-

ing all customers trade at the same transparent price. And it protects investors from poor

order execution by making quality of order execution easy for customers to measure.

7 Conclusion

This paper has introduced a new market design for trading financial assets, such as

stocks, bonds, futures, and currencies. It combines three elements: flow orders from

Kyle and Lee (2017); frequent batch auctions from Budish, Cramton, and Shim (2015);

and a novel language for trading portfolios of assets. Technical foundations for the pro-

posed market design include existence and uniqueness results, computational results,

and microfoundations for portfolio orders.

The combination of flow orders and frequent batch auctions yields a market design

in which time is discrete and prices and quantities are continuous. The status quo mar-

ket design has these reversed. As has been widely documented, treating time as a con-

tinuous variable and imposing discreteness on prices and quantities causes significant

complexity, inefficiency, and rent-seeking in modern financial markets. Policy debates

on the arms race for trading speed, the proliferation of complex order types, the im-

portance of proprietary market data and exchange access, the cat-and-mouse game be-

tween institutional investors and high-frequency traders, and the internalization of re-

tail investors’ order flow, all relate to continuous time and discrete prices and quantities.
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The novel language for portfolio orders is on the one hand rich enough to allow

traders to directly express many important kinds of trading demands — customized

ETFs, pairs trades, general long-short strategies, general market-making strategies, all

with tunable urgency — while also allowing for guaranteed existence of equilibrium

prices and quantities and their fast computation. This seems to us a useful new point

on the frontier of language design, i.e., an attractive tradeoff between expressiveness

and computability. Language design has been an active area of research and we hope

there are further breakthroughs for financial-market applications in the future.

An open topic left for future research is the efficiency and welfare consequences of

portfolio trading. We conjecture there are two main efficiency benefits. First, complex-

ity and cost benefits of allowing market participants to directly express many common

trading demands, which reduces systems complexity and the need for costly interme-

diation. Second, flow orders make it more efficient for sophisticated financial market

participants to endogenously link prices and liquidity provision for correlated assets.

Portfolio orders enable, for example, Bertrand competition on the cost of executing a

Buy A, Sell B pairs trade, which is impossible under the status quo market design.
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Appendix

A Proofs

Derivation of Equation (28) Recall, from equation (22), the expected utility from the

optimal portfolio is

(m−πππ)⊺ωωω∗−
1

2
A ωωω∗⊺ΣΣΣωωω∗. (31)

Equalizing the marginal benefit (the expected return) and the marginal cost (risk), the

optimal portfolio in equation (26) is essentially the ratio of the expected return to risk.

Substituting the optimal portfolio in equation (26) into the first term above, we have

(m−πππ)⊺ωωω∗ = (m−πππ)⊺
K

∑
i=1

ui (
ui
⊺m−ui

⊺πππ
A δi

)

=
K

∑
i=1

(m⊺ui −πππ
⊺ui)(

ui
⊺m−ui

⊺πππ
A δi

)

=
K

∑
i=1

(ui
⊺m−ui

⊺πππ)2

A δi
=

1

A

K

∑
i=1

(
ui
⊺m−ui

⊺πππ
√
δi

)

2

.

(32)

Notice, ui
⊺m−ui

⊺πππ is a scalar and thus symmetric. Thus, the total expected return from

the optimal portfolio is represented by the sum of squared Sharpe ratios of rotated port-

folios, divided by risk aversion.

Now, we want to do the same thing to the second term in the expected utility.

1

2
Aωωω∗⊺ΣΣΣωωω∗ (33)

Here, sinceΣΣΣ =U∆∆∆U⊺, and∆∆∆ is a diagonal matrix, we can express it as

ΣΣΣ =U∆∆∆U⊺ =
K

∑
i=1

δui ui
⊺. (34)

Also, U is an orthonormal matrix, which implies that UU⊺ = I, an identity matrix. That

is, ui
⊺ui = 1,∀i and u j

⊺ui = 0,∀ j ≠ i . Then substituting the optimal portfolio we have
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1

2
Aωωω∗⊺ΣΣΣωωω∗ =
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(35)

Thus, similar to the total expected return, the total risk from the optimal portfolio is

represented as the sum of squared Sharpe ratios of rotated portfolios, except that it is

divided by 2 times the risk aversion. Thus, the total risk is exactly half of the total ex-

pected return, where half comes from the fact that the risk is a quadratic function of the

portfolio, while the return is linear.

Finally, combining equations (32) and (35) yields equation (28).

B Pete’s Tables

Table 3 shows the results of Mina’s exchange trading model for the base case model with

500 assets and 30000 orders. Each row represents averages across the same 101 orders

books simulated on PK’s laptop (except that exchange orders obviously differ for each

row in each simulation). The parameter epsi lon has the same meaning as ε in the pa-

per: number of shares bought or sold by the exchange per one dollar change in price.

This number is calculated by multiplying the notebook variable f r ac_exch_l i qui di t y

by 10−4. The variable maxv f r ac defines q for the exchange as the maximum fraction

of expected volume bought or sold. The variables uncl r d pM and exchpM define the

amounts of uncleared volume as exchange volume as dollars per one million dollars of

total market volume (defined by multiplying the basis-point numbers in the notebook

by 100). The variable maxnumq is the average of the number of assets for which the

exchange trades the maximum quantity allowed.

Here is PK’s interpretation of the results:
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Uncleared volume, which perhaps captures numerical error and convergence toler-

ances, does not vary much across rows.

For very small values ε = 10−16,10−14,10−12, the standard deviation of prices and the

number of iterations both increase if the exchange trades more, but uncleared volume

does not decrease much. There are evidently some poorly conditioned relationships

among asset prices, perhaps due to illiquid assets being demanded by indexes but not

supplied with much natural liquidity in the individual asset itself. Perhaps more ex-

change trading helps define these asset prices in a manner which destabilized the prices

and takes more time to compute. Clearly, for the smallest values of exchange trading, the

exchange is playing the role of tiebreaker.

For small values epsi lon = 10−16,10−14,10−12,10−10, the number of iterations de-

creases when the exchange trades more, but the exchange does not trade much more

than rounding error when maxv f r ac is small. This validates our claim that a small

amount of exchange trading improves numerical efficiency without requiring much in-

ventory accumulation. A good choice of parameters might be epsi lon = 10−10,maxq f r ac =

0.10 or 1.00 (rows 19, 20), where convergence occurs in about 30 or 31 iterations and ex-

change trading is about one order of magnitude greater than rounding error.

If epsi lon > 1010, the number of iterations can be reduced slightly to 28 or 29, but

this larger value of epsilon requires more exchange trading.

When the exchange trades a large amount (epsi lon > 100), exchange trading notica-

bley dampens price changes, and the exchange frequently reaches its maximum trading

limit when maxv f r ac is small. As a sanity check, when epsi lon and maxv f r ac are

both very large, the exchange—as expected—stabilizes prices at 100 percent of their tar-

get with a standard deviation close to zero. If this did not happen, it would indicate a

bug in PK’s logic.
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Table 3: *** Mina’s exchange model ***

epsilon maxvfrac dt stddt niter unclrdpM exchpM pmeanpct pstdpct maxnumq

0 1.00e-16 1.00e-02 0.9405 0.1225 36 1.10e-02 4.27e-04 99.39 1.37e+05 0.00
1 1.00e-16 1.00e-01 0.9694 0.1885 38 1.21e-02 4.26e-03 99.39 2.06e+05 0.00
2 1.00e-16 1.00e+00 1.0691 0.2280 42 1.21e-02 4.26e-02 99.39 4.44e+05 0.00
3 1.00e-16 1.00e+02 1.5621 0.4065 63 1.53e-03 4.26e+00 99.39 1.20e+06 0.00
4 1.00e-16 1.00e+03 2.1272 0.4708 85 1.86e-03 4.26e+01 99.39 3.20e+06 0.00
5 1.00e-16 1.00e+04 2.4090 0.4540 99 4.75e-03 4.26e+02 99.39 6.91e+06 0.00
6 1.00e-14 1.00e-02 0.9424 0.1766 37 6.73e-03 4.27e-04 99.39 1.14e+04 0.00
7 1.00e-14 1.00e-01 0.9285 0.1781 36 8.30e-03 4.26e-03 99.39 1.15e+04 0.00
8 1.00e-14 1.00e+00 0.9544 0.2013 38 4.97e-03 4.26e-02 99.39 1.15e+04 0.00
9 1.00e-14 1.00e+02 1.2281 0.4264 47 3.46e-04 4.26e+00 99.39 1.43e+04 0.00
10 1.00e-14 1.00e+03 1.4666 0.4801 59 1.02e-04 4.26e+01 99.39 1.77e+04 0.00
11 1.00e-14 1.00e+04 1.7127 0.4767 69 6.20e-05 4.26e+02 99.39 2.29e+04 0.00
12 1.00e-12 1.00e-02 0.8188 0.0588 32 3.63e-03 6.15e-04 99.39 9.79e+03 0.00
13 1.00e-12 1.00e-01 0.8134 0.0636 32 2.71e-03 4.47e-03 99.39 9.79e+03 0.00
14 1.00e-12 1.00e+00 0.8236 0.0434 32 2.83e-03 4.27e-02 99.39 9.79e+03 0.00
15 1.00e-12 1.00e+02 0.9306 0.0647 36 7.18e-04 4.26e+00 99.39 9.79e+03 0.00
16 1.00e-12 1.00e+03 0.9916 0.0623 39 4.42e-04 4.26e+01 99.39 9.79e+03 0.00
17 1.00e-12 1.00e+04 1.0914 0.0771 43 3.03e-04 4.26e+02 99.39 9.79e+03 0.00
18 1.00e-10 1.00e-02 0.7729 0.0644 30 7.97e-03 1.65e-02 99.39 6.92e+03 0.45
19 1.00e-10 1.00e-01 0.7568 0.0489 30 6.36e-03 2.07e-02 99.39 6.62e+03 0.02
20 1.00e-10 1.00e+00 0.8107 0.0568 31 3.50e-03 5.85e-02 99.39 6.61e+03 0.00
21 1.00e-10 1.00e+02 0.9441 0.0557 38 1.81e-03 4.27e+00 99.39 6.61e+03 0.00
22 1.00e-10 1.00e+03 1.0690 0.0761 42 8.64e-04 4.26e+01 99.39 6.61e+03 0.00
23 1.00e-10 1.00e+04 1.1615 0.0745 46 2.94e-04 4.26e+02 99.39 6.61e+03 0.00
24 1.00e-08 1.00e-02 0.7418 0.0569 29 6.30e-03 4.28e-01 99.39 4.05e+03 8.68
25 1.00e-08 1.00e-01 0.7346 0.0565 29 3.91e-03 5.54e-01 99.39 2.31e+03 2.23
26 1.00e-08 1.00e+00 0.7877 0.0502 31 2.72e-03 6.05e-01 99.39 2.00e+03 0.16
27 1.00e-08 1.00e+02 0.9932 0.0688 39 1.17e-04 4.78e+00 99.39 1.94e+03 0.00
28 1.00e-08 1.00e+03 1.0864 0.0768 43 1.65e-05 4.31e+01 99.39 1.94e+03 0.00
29 1.00e-08 1.00e+04 1.1854 0.0781 47 1.27e-05 4.25e+02 99.39 1.94e+03 0.00
30 1.00e-06 1.00e-02 0.7297 0.0537 28 7.33e-03 2.63e+00 99.39 3.41e+03 15.73
31 1.00e-06 1.00e-01 0.7271 0.0468 29 6.28e-03 3.61e+00 99.39 2.22e+02 6.32
32 1.00e-06 1.00e+00 0.7979 0.0538 31 1.66e-03 3.96e+00 99.39 1.33e+02 1.11
33 1.00e-06 1.00e+02 1.0200 0.0648 40 1.25e-05 7.91e+00 99.39 1.12e+02 0.01
34 1.00e-06 1.00e+03 1.0839 0.0566 42 1.14e-05 4.64e+01 99.39 1.12e+02 0.00
35 1.00e-06 1.00e+04 1.1118 0.0589 44 1.15e-05 4.28e+02 99.39 1.12e+02 0.00
36 1.00e-04 1.00e-02 0.7361 0.0505 28 7.67e-03 5.69e+01 99.39 3.45e+03 94.89
37 1.00e-04 1.00e-01 0.7186 0.0616 28 3.47e-03 8.09e+01 99.41 4.19e+01 20.13
38 1.00e-04 1.00e+00 0.7720 0.0515 31 9.86e-05 9.32e+01 99.41 2.81e+01 7.32
39 1.00e-04 1.00e+02 0.9400 0.0689 37 1.10e-05 1.16e+02 99.41 1.56e+01 0.07
40 1.00e-04 1.00e+03 0.9830 0.0572 39 1.20e-05 1.49e+02 99.41 1.53e+01 0.00
41 1.00e-04 1.00e+04 1.0460 0.0626 42 1.12e-05 5.22e+02 99.41 1.53e+01 0.00
42 1.00e-02 1.00e-02 0.7718 0.0551 30 8.24e-03 1.07e+03 99.39 3.45e+03 340.47
43 1.00e-02 1.00e-01 0.7283 0.0544 28 5.62e-03 2.65e+03 99.42 4.49e+01 170.83
44 1.00e-02 1.00e+00 0.7102 0.0636 28 2.38e-03 3.84e+03 99.44 2.85e+01 33.16
45 1.00e-02 1.00e+02 0.8035 0.0584 31 1.07e-05 4.47e+03 99.51 8.48e+00 1.33
46 1.00e-02 1.00e+03 0.8512 0.0570 33 9.47e-06 4.57e+03 99.53 5.13e+00 0.10
47 1.00e-02 1.00e+04 0.9005 0.0523 36 8.98e-06 4.79e+03 99.53 4.66e+00 0.00
48 1.00e+00 1.00e-02 0.8041 0.0554 31 9.93e-03 5.12e+03 99.40 3.40e+03 429.46
49 1.00e+00 1.00e-01 0.7579 0.0574 29 3.74e-03 2.11e+04 99.45 4.50e+01 300.62
50 1.00e+00 1.00e+00 0.7106 0.0632 27 2.16e-03 3.68e+04 99.54 2.81e+01 61.03
51 1.00e+00 1.00e+02 0.6850 0.0667 26 8.39e-06 3.97e+04 99.74 9.06e+00 2.11
52 1.00e+00 1.00e+03 0.7175 0.0487 28 2.64e-06 4.07e+04 99.91 1.60e+00 0.18
53 1.00e+00 1.00e+04 0.7876 0.0473 30 1.85e-06 4.10e+04 99.93 6.98e-01 0.00
54 1.00e+02 1.00e-02 0.8186 0.0572 31 2.55e-02 8.10e+03 99.40 3.38e+03 436.50
55 1.00e+02 1.00e-01 0.7745 0.1278 30 9.68e-03 4.77e+04 99.46 4.51e+01 318.53
56 1.00e+02 1.00e+00 0.7261 0.0879 28 3.57e-03 7.84e+04 99.59 2.84e+01 63.02
57 1.00e+02 1.00e+02 0.6717 0.0765 26 1.24e-04 8.19e+04 99.80 9.01e+00 2.11
58 1.00e+02 1.00e+03 0.6802 0.0809 27 9.43e-06 8.23e+04 99.97 1.05e+00 0.18
59 1.00e+02 1.00e+04 0.7470 0.0612 29 7.70e-07 8.23e+04 100.00 2.91e-02 0.00
60 1.00e+04 1.00e-02 0.8041 0.0631 31 1.52e-01 8.12e+03 99.40 3.38e+03 436.59
61 1.00e+04 1.00e-01 0.8187 0.0821 31 1.13e-01 5.25e+04 99.46 4.51e+01 319.26
62 1.00e+04 1.00e+00 0.7593 0.0829 30 5.31e-02 8.52e+04 99.60 2.84e+01 63.14
63 1.00e+04 1.00e+02 0.6940 0.0685 26 3.02e-03 8.85e+04 99.80 9.01e+00 2.11
64 1.00e+04 1.00e+03 0.7052 0.0607 27 4.36e-04 8.87e+04 99.98 1.03e+00 0.18
65 1.00e+04 1.00e+04 0.7463 0.0609 29 5.03e-05 8.87e+04 100.00 3.80e-04 0.00
66 1.00e+06 1.00e-02 0.7945 0.0560 31 8.24e-01 8.12e+03 99.40 3.38e+03 436.59
67 1.00e+06 1.00e-01 0.8174 0.0674 31 2.33e+00 5.25e+04 99.46 4.51e+01 319.28
68 1.00e+06 1.00e+00 0.7610 0.0746 30 1.73e+00 8.52e+04 99.60 2.84e+01 63.15
69 1.00e+06 1.00e+02 0.7135 0.0707 28 4.86e-02 8.86e+04 99.80 9.01e+00 2.11
70 1.00e+06 1.00e+03 0.7243 0.0656 28 7.77e-03 8.87e+04 99.98 1.03e+00 0.18
71 1.00e+06 1.00e+04 0.7623 0.0454 29 1.95e-03 8.87e+04 100.00 3.81e-06 0.00
72 1.00e+08 1.00e-02 0.7840 0.0544 30 3.20e+00 8.12e+03 99.40 3.38e+03 436.59
73 1.00e+08 1.00e-01 0.8048 0.0555 31 2.61e+01 5.25e+04 99.46 4.51e+01 319.28
74 1.00e+08 1.00e+00 0.7557 0.0708 30 4.02e+01 8.52e+04 99.60 2.84e+01 63.15
75 1.00e+08 1.00e+02 0.7521 0.0735 29 8.79e-01 8.86e+04 99.80 9.01e+00 2.11
76 1.00e+08 1.00e+03 0.7405 0.0486 29 1.82e-01 8.87e+04 99.98 1.03e+00 0.18
77 1.00e+08 1.00e+04 0.7882 0.0599 30 1.10e-01 8.87e+04 100.00 3.81e-08 0.00
78 1.00e+10 1.00e-02 0.7565 0.0555 30 1.85e+01 8.13e+03 99.40 3.38e+03 436.59
79 1.00e+10 1.00e-01 0.7855 0.0726 30 2.98e+02 5.28e+04 99.46 4.51e+01 319.28
80 1.00e+10 1.00e+00 0.7404 0.0743 29 8.28e+02 8.60e+04 99.60 2.84e+01 63.16
81 1.00e+10 1.00e+02 0.7325 0.0749 29 1.88e+01 8.86e+04 99.80 9.01e+00 2.11
82 1.00e+10 1.00e+03 0.7425 0.0705 29 1.05e+01 8.87e+04 99.98 1.03e+00 0.18
83 1.00e+10 1.00e+04 0.7912 0.0575 31 9.58e+00 8.87e+04 100.00 3.81e-10 0.00
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