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ABSTRACT

IZA DP No. 15087 FEBRUARY 2022

Air Quality and Suicide*

Though there is clinical evidence linking pollution induced inflammatory factors and major 

depression and suicide, no definitive study of risk in the community exists. In this study, we 

provide the first population-based estimates of the relationship between air pollution and 

suicide in the United States. Using detailed cause of death data from all death certificates 

in the U.S. between 2003 and 2010, we estimate the relationship between daily variation 

in air quality measured using NASA satellite data, and suicide rates. Using wind direction 

as an instrument for reducing potentially endogeneity and measurement error in daily 

pollution exposure, we find that a 1 μg/m3 increase in daily PM2.5 is associated with a 0.49 

percent increase in daily suicides (a 19.3 percent increase). We also estimate the impact of 

days with high air pollution on contemporaneous suicide rates compared to other days in 

the same state-month, month-year, day of the week and county with lower air pollution, 

conditional on the same weather and total population. Estimates using 2SLS are larger and 

more robust, suggesting a bias towards zero arising from measurement error. Event study 

estimates further illustrate that contemporaneous pollution exposure matters more than 

exposure to pollution in previous weeks.
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I. Introduction 

The evidence establishing air pollution as a health hazard impacting human capital is 

substantial and expanding. There is growing evidence that air pollution affects the brain and 

behavior. The effects of air pollution on the brain begin early, altering development in utero and 

during early childhood (Gluckman et al. 2008; Currie, et al. 2014). Pollution can also affect 

cognitive functioning and decision making because small particulate matter can penetrate the 

lungs and inhibit the flow of oxygen into the bloodstream and hence the brain (Lavy et al, 2014). 

Higher levels of air pollution have been shown to reduce performance on academic tests of many 

types (Heissel, Persico and Simon 2022; Lavy et al., 2014; Marcotte, 2017; Persico and Venator 

2021; Zhang et al., 2018).  

The effects of air pollution on the brain appear to be more far-reaching than inhibiting 

cognitive functioning, affecting human-decision making and behavior in other ways (Chen, 

2019). For example, there is mounting evidence that higher exposure to contemporaneous air 

pollution can increase risky behavior including criminal activity (Herrnstadt and Muehlegger 

2015) and misbehavior at school (Heissel, Persico and Simon 2019). These effects of pollution 

on behavior may operate though impacts of exposure on mood. There is evidence that air 

pollution is negatively associated with self-rated mental health (Zhang et al, 2017), and 

hospitalization for major depression (Kioumourtzoglou et al 2017; Wang et al 2018). 

 A biological link for this relationship between air pollution and mental health has been 

identified. Fine particulate matter can greatly increase circulating proinflammatory cytokines and 

is associated with depressive mood states (Dowlati et al 2010; Gananca et al 2016; 

Kioumourtzoglou 2017; Janelidze et al 2011; Tonelli et al 2008). Cytokines are a class of 

proteins involved in neurotransmission and produced by immune cells in response to infection 
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and inflammation (Parkin and Cohen, 2001). Evidence from post-mortem tissue samples has 

found elevated levels of cytokines in the brains of suicide victims (Tonelli et al., 2008). 

However, this retrospective association cannot answer whether air pollution and its effects on the 

body and brain increase prospective risk for suicide. Evidence on this question comes from 

epidemiological studies of individual cities but is quite limited and mixed. These studies often 

rely on small or isolated samples or use information on emergency department visits rather than 

suicide mortality.  

Understanding whether air pollution elevates suicide risk is an important question. 

Suicide rates are on the rise in the United States (U.S.), having increased by nearly 50% between 

2000 and 2019.1 Suicide is now the tenth leading cause of death, claiming the lives of 47,511 

Americans in 2019. The study of suicide and how rates vary has been a topic of study in public 

health and the social sciences for more than a century. Much of this research has been on the 

impacts of various policies or practices that might reduce suicide rates the population by 

restricting access to deadly means, such as firearms (e.g., Ludwig and Cook, 2000; Duggan et al., 

2011), toxins (e.g. Kreitman, 1971; Gunnell et al., 2007; Cha et el, 2016), or access to high 

places (Bennewith et al., 2007). A different strand of this research has focused on the roles of 

social and economic conditions in explaining trends (e.g. Hamermesh and Soss, 1974; Ruhm, 

2000 and 2015; Koo and Cox, 2008). 2  Most relevant, there is a large body of research on the 

effects of psychoactive agents on suicide, including clinical trials of neuropsychiatric 

medications (Gunnell et al., 2005)  and a growing number of studies on the impact of opioids or 

other illicit drugs on suicide (e.g., Anderson et al., 2014; Borgshulte et al., 2018).  

 
1 In 2000, age-adjusted suicide rates reached a post-World War II nadir of 10.4 per 100,000 in the U.S.  By 2019, 
suicide rates were 14.5 per 100,000 ± the highest yet recorded in the post-war era. 
(https://www.cdc.gov/nchs/fastats/suicide.htm) 
2 Marcotte and Zejcirovic (2020) provide a recent review of the economic literature on suicide. 
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In this paper, we conduct the first-ever large-scale study of how pollution affects suicide, 

relying on data for all deaths in the U.S. over eight years. We estimate the impacts of individual 

pollutants on suicides throughout the U.S. using daily data on suicide counts by state-county 

matched to daily air quality data from the Center for Disease Control (CDC), daily weather data 

from the National Oceanic and Atmospheric Administration (NOAA), daily pollution data from 

the Environmental Protection Agency, and demographic data between 2003-2010.  Using a 

difference in differences design controlling for weather, population, holidays, day of the week, 

and county, state-month and month-year fixed effects, we first estimate whether days in the same 

month, year and state-county with elevated levels of pollution lead to atypical increases in 

suicide. We then use variation in wind direction as an instrument for pollution, to limit 

attenuation bias that results from measuring exposure to pollution within a county-day using 

fixed monitoring sites. We find WKDW�D���ȝJ�P3 increase in daily PM2.5 is associated with a 0.49 

percent increase in daily suicides (a 19.3 percent increase above the mean). In addition, we find 

that a 1 ȝJ�P3 increase in PM2.5 is associated with a 0.3577 percent increase in all daily deaths, 

which is an increase of 0.4% above the mean. 

In addition to providing the first-ever national study of air pollution and suicide risk in 

the United States, this paper offers several additional advantages over previous work. First, we 

use high frequency daily data on air quality from the CDC and the EPA and the number of 

suicides by county collected by the CDC from all state vital records offices in the United States 

from 2003 to 2010. While air pollution varies substantially over time, effects on mortality are 

difficult to identify at the local level because suicide is a rare outcome at the daily level. To 

provide the first comprehensive study of the link between air pollution and suicide we daily data 

over many years for all counties in the U.S.  
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Second, our study includes a methodological innovation over the existing literature on the 

health effects of pollution by using an instrumental variables (IV) design and a daily county 

panel that allows us to include a large number of location and time fixed effects. We compare 

different days in the same month in the same state-county, year and day of the week that happen 

to randomly differ in the amount of ambient air pollution because of daily variations in wind 

direction to estimate whether days with higher pollution have higher rates of suicide, compared 

with other counties on the same days. Our IV model builds on a difference in difference 

specification where we compare daily variation in pollution in a county, compared to variation in 

other counties in the same state over the same time using month, year, state-county and day of 

the week fixed effects, as well as controls for weather, population and holidays. By comparing 

days in the same month in the same county that happen to differ in air quality, we alleviate 

concerns about time trends in unemployment, poverty, or other seasonal trends in suicide that 

could affect the results. However, our instrumental variables design better addresses 

measurement error in pollution by using daily pollution that affects an entire county at once 

because it is carried on the wind. 

Third, we estimate the effects of contemporaneous versus chronic pollution exposure 

using an event study design in which we regress weekly pollution levels leading up to the event 

on suicides in those weeks. This sheds light on the temporal mechanisms through which air 

pollution could lead to suicide. 

Because we have sufficient power, we also investigate what specific types of pollution, 

such as PM2.5, PM10, nitrous oxide, ozone, and sulfur dioxide are most likely to increase 

suicidality. We also investigate whether more population-dense, poor, or polluted counties see 

the biggest increase in pollution-related suicide deaths by investigating the results by county-
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level population, pollution level, poverty and employment. Finally, we also are the first to 

investigate how these effects might vary by age, gender and race.  

II. Background 

Air pollution has many effects on human health. Exposure to air pollution increases 

incidence of both acute and chronic illnesses of the pulmonary system, including upper 

respiratory infections, asthma, and chronic obstructive pulmonary disease (COPD) (Cascio, 

2018). Air pollution has also been shown to have harmful effects beyond the lungs, including 

increasing risk for cardiovascular disease and mortality (Kampa and Castanas, 2008), and cancer 

(Straif et al, 2013; Cheng et al, 2020). Whether or how the physiologic effects of air pollution on 

human health and behavior at the individual level translate into a relationship between air 

pollution and suicide rates in the community is an open question.  

7KH�HYLGHQFH�IURP�WKH�PHGLFDO�OLWHUDWXUH�RI�WKH�ERG\¶V�F\WRNLQH�UHVSRQVH�VXJJHVWV�

exposure to air pollution could increase suicide risk though three direct channels. The first is due 

to DLU�SROOXWLRQ¶V�effects on worsening depression. Major depression has long been linked to 

elevated risk for suicide attempts and mortality (Malone et al., 1995; Isometsa et al, 1994). The 

second is by increasing the propensity for risky behavior. For example, substance abuse is among 

the most important predictors of suicide from an analysis of 28,000 suicide deaths in the U.S. 

between 2003 and 2008 (Logan et al., 2011). Third, by impacting decision making and the 

propensity for errors, air pollution may increase the likelihood a suicide attempt is fatal. Most 

suicide attempts are survived, and economists have modelled attempts as signals. In clinical 

settings and research on surviYRUV��WKLV�LV�UHIHUUHG�WR�DV�D�³FU\�IRU�KHOS´��0DSOH�HW�DO����������

Unfortunately, due to data limitations, we are unable to determine which of these factors 

contributes most to our results. However, we next review the evidence on these factors. 
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Airborne fine particulate matter and toxins can have immediate effects on the functioning 

of the upper respiratory system by inflaming the bronchial tubes in the lungs and inducing acute 

asthma attacks. Regular exposure to unhealthy air can lead to chronic problems, including 

asthma and COPD. Pollutants can also have broader effects on the body, by being absorbed into 

the vascular system. Some of these effects can lead to harm human health over the long-term. 

For example, exposure to air pollution has been associated with depression, mood disorders, 

dementia, and ischemic strokes due to small blood vessel pathology and neuroinflammation 

(Calderon-Garciduenas et al., 2015a; Calderon-Garciduenas et al., 2015b; Bishop, Ketcham and 

Kuminoff, 2018).  

The broader effects of air pollution on human health are also due to immune response 

induced by the ERG\¶V�HIIRUW�WR�fight of any absorbed particulates. Fine particles trigger the 

release of antibodies that target them with receptor cells, releasing chemicals to combat the 

perceived threat.  These chemicals include cytokines that cause inflammation of tissue (Janeway 

et al. 2001). Air pollution has also been implicated in other types of neuroinflammation and 

neural degradation (Block and Calderon-Gariduenas 2010; Calderon-Gariduenas et al 2015; 

Bishop, Ketcham and Kuminoff, 2018). In one double-blind randomized crossover study, Chen 

and colleagues (2018) used true and sham air purifiers to expose healthy young adults in 

Shanghai to reduced levels of pollution. They find that people exposed to more air pollution have 

more circulating cytokines and miRNAs that regulate cytokine expression, which are associated 

with increases in symptoms of depression.  

There is substantial evidence in the medical and public health literatures that cytokines 

affect mood and are linked to major depression (Kronfol and Remick (2000); Dowlati, et al. 

(2009)). Consequently, in the environmental and public health literatures there has been a good 
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amount of work on the relationship between air pollution and cytokines (Chen et al 2018; 

Kioumourtzoglou et al 2017; Wang et al 2018). Furthermore, cytokines have been linked to 

depression through the inflammation itself that is induced by exposure to fine particulate matter 

(Dowlati et al 2010; Gananca et al 2016; Janelidze et al 2011; Tonelli et al 2008). In a recent 

meta-analysis of 24 studies, Dowlati and colleagues find higher concentrations of 

proinflammatory cytokines in depressed patients compared with control subjects. Gananca and 

colleagues recently reviewed the evidence from 22 studies and find that elevated cytokines are 

also implicated in suicidal ideation, suicide attempts or suicide completion. Janelidze et al (2010) 

also find evidence that blood cytokine levels might distinguish suicide attempters from depressed 

patients, where suicidal patients had even more elevated cytokine levels than depressed patients. 

Kioumourtzoglou and colleagues (2017) also find a direct association between air pollution and 

the onset of depression. Pun et al (2017) also find a relationship between ambient air pollution 

and depressive and anxiety symptoms in older adults.  

There is also related evidence that suggests higher exposure to contemporaneous air 

pollution makes people more likely to engage in risky behavior. Heissel, Persico and Simon 

(2019) find that when elementary or middle school students switch schools from one that is 

upwind to one that is downwind from a highway in the same neighborhood students are 

significantly more likely to be suspended from school or absent from school. Similarly, 

Herrnstadt and Muehlegger (2015) find that people downwind from a highway are more likely to 

commit crimes than people upwind from the same highway. Persico and Venator (2019) also 

find that factory openings near schools also increase suspensions and absences from school. 

Another strand of research has shown that being exposed to more air pollution also 

increases the likelihood that people make mistakes. Archsmith, Heyes and Saberian (2018) find 
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that umpires are more likely to make mistakes in calling plays in baseball on days with high 

pollution. Similarly, Kunn, Palacios and Pestel (2019) find that chess players are more likely to 

make mistakes in games on days with higher air pollution. Students also score lower on exams 

on days with higher air pollution, compared with days with lower air pollution (Marcotte 2017; 

Heissel, Persico and Simon 2019).  

While these factors all suggest poor air quality could elevate suicide risk, in a community 

setting elevated levels of air pollution are often due to human activity that has its own impacts on 

suicide risk. As the COVID-19 pandemic restricted travel and economic production, air quality 

improved markedly around the globe, especially in urban areas (Venter et al., 2020; Slezakova 

and Perreira, 2021). Air pollution due to factory and auto emissions increases with local 

economic activity and growth. Many empirical studies document a negative relationship between 

such growth and suicide rates (Koo and Cox, 2008; Reeves et al., 2012; Ruhm, 2000, 2015; see 

Chen et al. 2012 for an extensive list). Even as pollution may be associated with aggregate 

economic activity, it may also be positively related to poverty and other suicide risk factors 

within a city or local area. As Banzhaf et al (2019) review, the economic literature establishing 

higher risk for exposure to pollutants for the poor and other marginalized persons is robust. So, 

even as WKH�ERG\¶V�HQGRJHQRXV�UHVSRQVH�WR�H[SRVXUH�WR�DLU�SROOXWLRQ�PD\�LQFUHDVH�VXLFLGH�ULVN�

for the individual, that exposure is associated with contextual factors that also affect suicide risk. 

Several recent epidemiological studies of individual cities find mixed evidence on a 

relationship between suicide and air pollution. Bakian et al (2015) report an association between 

air pollution and suicide completion in Salt Lake County, Utah. Kim et al (2015) examine six 

years of data across South Korea and also find an association between air quality and suicide. 

Szyskowicz et al. find that air pollution increases emergency department visits for suicide 
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attempts in Vancouver. Ng et al. (2016) find effects of air pollution on suicide using data on 

29,000 suicide deaths in Tokyo. Using data from Taipei City, Yang et al (2011) also find that 

suicides follow a seasonal pattern, and that pollution contributes to suicide. However, Fernández-

Niño et al. (2018) find no relationship in 4 Columbian cities between air pollution and suicides. 

In addition, several recent comments by Chen and Samet (2017) and others (e.g., Afshari 2017) 

urge caution in drawing conclusions from small studies that might suffer from selection bias or 

other confounding factors. Furthermore, most of these studies use data from outside of the 

United States, in settings where pollution is often at higher levels.  

III. Description of the Data 

To advance our understanding of the impact of pollution on suicide in the U.S., we 

exploit daily data on deaths by type collected by the CDC from all state vital records offices, also 

matched to weather data from the CDC and the NOAA, data on daily Air Quality Index (AQI) 

data from the EPA and CDC, and additional county data from the Census and Bureau of Labor 

Statistics. We collected data on wind speed and wind direction data from the North American 

Regional Reanalysis (NARR) daily reanalysis data. Wind conditions are reported on a 32 by 32 

kilometer grid and consist of vector pairs, one for the east-west wind direction (u-component) 

and one for the north-south wind direction (v-component). We first locate each wind monitor in a 

county and then convert the average u- and v-components into wind direction and wind speed 

and average up to the county-GD\�OHYHO��:H�GHILQH�³ZLQG�GLUHFWLRQ´�DV�WKH�GLUHFWLRQ�WKH�ZLQG�LV�

blowing from. We also obtain additional temperature and precipitation data from Deryugina et al 

(2019), who use data from PRISM and weather stations to obtain an average daily measure of 

temperature and precipitation in each county.  
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We use cause of death data compiled from all death certificates between 2003 and 2010 

to calculate daily death rates by suicide (overall and by sex and age groups) in each county in the 

U.S.3 This is the most comprehensive panel of mortality data to date. One big advantage of such 

a large panel of data is that our data set does not suffer from selection bias since it includes all 

deaths in the United States over this period that were ruled suicides in all 3007 counties in the 

United States.  

The EPA data include daily data on the Air Quality Index, which is a scale between 0 and 

500 indicating the amount of pollution in the air. Higher scores indicate more air pollution. The 

AQI is predominantly determined by Particulate Matter 2.5 (PM2.5) and ozone. In addition, we 

have daily data on the amounts of PM2.5, PM10, ozone, sulfur dioxide, nitrogen dioxide, carbon 

monoxide and lead in WKH�DLU��DV�PHDVXUHG�E\�WKH�(3$¶V�SROOXWLRQ�PRQLWRUV��)LQDOO\��ZH�PDWFK�

these data on additional data from the CDC on daily PM2.5, temperature and precipitation at the 

county level and data from NOAA on temperature, precipitation, wind speed, and other weather 

variables. The CDC data includes daily satellite estimates of PM2.5 that were made in a 

collaboration with NASA. As a result, we have full information for daily PM2.5 for every county 

in the US from 2003-2010 and thus, do not need to rely on pollution monitor data. This is a 

strong advantage compared to previous studies that utilize pollution monitor data, since pollution 

monitors only exist in about 20% of US counties and frequently do not collect data every day. As 

shown in Figure 1, PM2.5 decreases in the first part of the sample period and then increases 

overall. 

We match these data to county-level data on demographics and unemployment from the 

Census and Bureau of Labor Statistics. Table 1 shows the average county characteristics, 

 
3 These detailed cause of death data are unavailable for more recent years. 
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pollution levels, and suicide rates between 2003-2010 for the counties in our sample, which 

includes nearly all counties in the United States.  

IV. Identification Strategy 

To estimate the effect of pollution on suicide, we first estimate the relation between daily 

variation in pollution levels within a county and suicide rates, net of county fixed effects.  

Relying on within-county variation in pollution and suicide is vital to limit threats to validity 

from the contextual factors affecting suicide, described above. For example, suicide can vary by 

place because of underlying economic or cultural factors (such as the availability of firearms). 

Because suicides vary both seasonally and based on the day of the week (as shown in Figures A1 

and A2), we also control for state-month, month-year, county, day-of-the-week, and holiday 

fixed effects, as well as time varying measures of daily temperature, precipitation, and 

population. So, we estimate the impact of pollution on suicide by comparing changes in suicide 

within a county as pollution changes at the daily level, net of changes in suicide in other counties 

in the same county and month-year that saw different changes in pollution.  The basic reduced 

form fixed effects model we use is as follows: 

(1) ܻௗ௬ ൌ ௗ௬ܯଵܲߚ   ܹௗ௬ ܪௗ௬   � ߮ௗߪ  ߛ  ߬௬  ௗ௬ܭ  

ܻௗ௬  is the log of daily suicides in county i on day of the week d in month m in year y. 

Because our unit of analysis is at the county/day level, zero is a common outcome. We apply the 

inverse hyperbolic sine (IHS) transformation to each daily count of suicides to account for zeros 

in daily suicides: asinh(Yidmy)= log(Yidmy +( Yidmy
2 +1)0.5). The IHS transformation is 

approximately equal to log(2(Yidmy)), except for very small values, and can be interpreted in the 

same way as a logarithmic transformation (as an approximation of percent change). ܲܯௗ௬  

represents various measures of daily pollution in a county. We focus first on the average amount 
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of daily ultrafine particulate matter (PM2.5) in the FRXQW\��PHDVXUHG�LQ�ȝJ�P3. ܹௗ௬  are daily 

weather controls for temperature and precipitation and annual controls for county population and 

the unemployment rate, and ܪௗ௬  are federal holiday fixed effects. ߪ� are county fixed effects, 

߮ௗ are day of the week fixed effects, ߛ are state-by-month fixed effects and ߬௬ are month-by-

year fixed effects. We include state-month fixed effects to control for any seasonal correlation 

between pollution and mental health. In addition, the month-by-year fixed effects should control 

for common time-varying shocks, such as any broad changes that might affect suicide over our 

sample period��VXFK�DV�WKH�)'$�³EODFN-ER[´�ZDUQLQJ�RQ�antidepressants in October, 2004. The 

effect of a ��ȝJ�P3 increase in PM2.5 on suicides is given by ߚଵ. Because we use the inverse 

hyperbolic sine transformation, ߚଵ LV�DGMXVWHG�E\�ȕ�ටͳ� � ଵ௬మ. This is an important adjustment in 

this context to account for the large number of zeros in the daily suicides data, which results in a 

low dependent variable mean. 

While our measures of daily pollution rely on the best available information from locally 

sited air quality monitors and satellite imaging, measurement error remains a fundamental 

problem in studies of human exposure to air pollution. This arises because measurements taken 

at fixed times and locations are inherently imperfect estimates of exposure to a population 

dispersed over space and active or outdoors at varying times (Gryparis et al., 2009). This 

introduces a classical measurement error problem that can induce bias into measures of pollution 

exposure and impact standard errors (Szpiro et al., 2011). To provide some intuition here, 

imagine a county where the population is evenly dispersed across the county, with a large source 

of air pollution located in its center. If the wind blows from one direction one day, and the 

opposite direction another, different residents will be downwind and exposed on different days. 

In this circumstance, even though exposure for the population could be the same, a single 
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pollution monitor sited on one side of the county would measure high/low levels depending on 

wind direction. So, the net effect of pollution on health outcomes could be attenuated to zero 

since a county level measure of pollution would not vary, even if the health of the population 

exposed is harmed does. County-level aggregate measures of pollution and suicides would 

simply not measure the variation in within county exposure.   

To provide a clearer link between measures of pollution and population exposure, we 

make use of the fact that while wind can affect the dispersal of pollutants within a county, it also 

brings air pollution into the county from outside sources. Fine particulate matter (PM2.5) is often 

carried substantial distances by wind (Borgshulte, Molitor and Zou 2020; Deryugina et al 2019), 

as residents of the east coast of the U.S. learned following the California wildfires of 2021.4 

Since fine PM2.5 from external sources are broadly dispersed and just as harmful to human 

health as PM2.5 from proximate sources, it creates a threat to an entire county, and hence a 

clearer link between pollution exposure and population health (EPA, 2003). So, daily wind 

direction provides an additional exogenous source of within-county variation in pollution levels. 

To estimate the impact of exposure to PM2.5 on suicide, we implement an instrumental 

variables design that uses daily wind direction as an instrument for daily pollution exposure at 

the county level, controlling for county, day, state-month, month-year and day of the week fixed 

effects, as well as temperature, precipitation and holidays.5 We cluster pollution monitors into 

200 monitor groups and interact these clusters with 4 different bins of wind direction (each being 

90 degrees). The specification for our first stage is: 

 
4 See, for example, https://www.nytimes.com/interactive/2021/07/21/climate/wildfire-smoke-map.html 
5 A similar identification strategy was used by Deryugina et al (2019) to estimate the effects of PM2.5 on all-cause 
mortality. 
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(2) ��ʹǤͷ�ௗ௬ ൌ σ σ ߚ


ୀீא ͳሾܩ ൌ ݃ሿ ݎܹ݅݀݀݊݅�ݔௗ௬
ଽ  ܹௗ௬ ܪௗ௬   � ߮ௗߪ 

ߛ����������������������  ߬௬  ௗ௬ܭ  

In equation 2, the instruments are the variables ͳሾܩ ൌ ݃ሿ ݎܹ݅݀݀݊݅�ݔௗ௬
ଽ .  

ௗ௬ݎܹ݅݀݀݊݅
ଽ  are a set of binary variables equal to one if the daily average wind direction in 

county i falls within the relevant 90-degree interval [90b, 90b + 90) (and zero otherwise). The 

omitted category is the interval [270,360). Because we use satellite data for PM2.5 pollution, we 

use the k-means cluster algorithm to cluster all wind monitors in the United States into 200 

spatial groups based on their locations. Figure 2 shows counties assigned to each monitor group.  

ͳሾܩ ൌ ݃ሿ is a set of binary variables indicating that county i is assigned to monitor group g from 

the set of monitor groups G. Therefore, our coefficient of interest, ߚ
, is allowed to vary across 

geographic regions. The other control variables and fixed effects are the same as in equation (1).  

Figure 3 depicts our first stage visually using two county groups: the San Francisco Bay 

Area and Boston. When the wind blows from directions where there is more heavy industry 

(such as southeast of San Francisco and northeast of Boston), pollution increases. Similarly, 

Appendix Table A1 shows the coefficients of each of the dummy variables for wind direction 

interacted with pollution clusters in our first stage. Our first stage is very strong, with an F 

statistic of 967.72. 

To provide additional insight into the relationship between pollution and suicide, we 

assess the relative importance of chronic versus contemporaneous exposure using an event study 

design that uses weekly averages of pollution in the weeks leading up to a reference day (within 

a state-county and within a month and year). The advantage of this event study is that it provides 

non-parametric estimates of mortality effects, since the medical literature provides no clear 
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guidance about the timing of biological sequalae of exposure to air pollution. Our event study 

estimation is given by: 

(3)  ܻௗ௬ ൌ ߚ�  σ �ሾ߬௧ߚ ൌ ݆ሿ௦௧ 
ୀିସ ܹௗ௬ ܪௗ௬   � ߮ௗߪ  ߛ  ߬௬   ����ௗ௬ܭ

 
  is the estimate of the effect of the weekly average air pollution, measured by averageߚ

AQI in each of the weeks leading up to and following a suicide. We include 4 weeks of lags of 

air pollution in addition to estimating the effects of pollution on the week of the suicide (in week 

0). The models also include county, day of the week, month and year fixed effects, as well as 

controls for weather, population, unemployment and holidays.  

V. Results 

A. Results on Suicides 

Panel A of Table 2 we show results from our reduced form OLS regressions of pollution 

on the log of suicide deaths, the suicide rate, and deaths from all causes at the daily level in all 

counties in the U.S. As specified in Equation 1, these models control for local unemployment, 

population, weather, holidays, county, state-month, month-year, and day of the week fixed 

effects. In Panel A, we find that a daily 1 ȝJ�P3 increase in PM2.5 is associated with no 

significant change in suicide deaths, but a 0.0545 percent increase in deaths from all causes.  

In Panel B of Table 2, we present results from our primary specification, the 2SLS model 

that uses daily wind direction as an instrument for daily pollution exposure. We find that a 1 

ȝJ�P3 increase in PM2.5 leads to a 0.4914 percent increase in daily suicides and a 0.4038 percent 

increase in the daily suicide rate per million individuals. This translates to a 19.3 percent increase 

in daily suicides above the mean. In addition, we find that a 1 ȝJ�P3 increase in PM2.5 is 

associated with a 0.3577 percent increase in all deaths, which is an increase of 0.4% above the 

mean. Compared to the OLS estimates, the IV estimates are larger, more positive and statistically 
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significant. This is consistent with because measurement error creates attenuation bias in our 

estimates for the reasons we discussed above.  

Because deaths from suicide might occur with some lag, we also estimate a three-day 

measure of suicides in Column 3 of Table 2, based on day d and the following 2 days. Thus, a 

three-day measure nets out short-term mortality displacements onto subsequent days. To ensure 

that weather does not drive the results, we also control for two leads of our weather variables and 

two leads of our instruments. Our three-day results are somewhat smaller in magnitude than our 

one-day results, suggesting that there is a small suicide mortality lag from pollution, but that 

contemporaneous pollution is most closely linked to elevated suicide risk.6  

The relative importance of contemporaneous pollution is corroborated by our event study 

results, presented in Figure 4 showing the effects of pollution in the weeks leading up to, 

compared to pollution on the week we measure suicide mortality. As is clear in Figure 4, only 

pollution in the preceding week has a statistically significant effect on the daily suicide rate. 

While we estimate that pollution two, three and four weeks prior to the reference week are 

associated with slightly higher than normal suicide rates, they are not statistically significant at 

conventional levels. This suggests that the impact of air pollution on suicided is due to 

contemporaneous exposure. This is consistent with previous evidence that pollution could affect 

suicides by worsening a SHUVRQ¶V�depression and decision-making skills.  

B. Heterogeneity in Effects of Pollution 

Next, we assess whether the effects of pollution on suicide mortality depend on the type 

of pollution and affect demographic groups differently. In Table 3, we present results in which 

 
6 The results are even smaller using a five-day model. 
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we include other pollutants in the same model, allowing wind to instrument for different types of 

pollution conditional on the other pollutants. Because data on other pollutants is limited, this 

decreases the number of observations available to estimate these effects. The results for PM2.5 

are even stronger when conditioning on other pollutants, suggesting that the effects on suicide 

are likely caused by PM2.5 and not other pollutants.  

Since residential segregation, economic and biological factors might increase risk for 

some groups, we next examine the results by race and gender in Table 4. While the effects of 

pollution are only statistically significant for Whites, this may be because we have more power 

to detect effects for Whites since their rates of suicide and daily variation are higher. In addition, 

we find statistically significant effects for males, though the point estimates for females are 

similar in magnitude. Again, we have more statistical power to detect effects for men than for 

women, since male suicide rates are higher. 

Because suicide risk and time spent outdoors varies by age, in Table 5 we present the 

results by age group.  The results are largest for people over 55 years of age, suggesting that 

older individuals might be most harmed by high air pollution days. A 1 ȝJ�P3 increase in PM2.5 

leads to a 0.775 percent increase in daily suicides for people aged 55-75, and a 0.965 percent 

increase for people over 75. People aged 15-34 also show an increase in suicides from increased 

PM2.5, though the results are only significant at the p<0.1 level. This might be because younger 

people are more likely to be exposed to higher levels of pollution from commuting and being 

outdoors during rush hours. Giaccherini, Kopinska and Palma (2016) similarly find that people 

between the ages of 15-24 are more likely to have hospitalizations for pollution related causes, 

such as asthma, because of greater exposure to outdoor pollution.  

C. Additional Threats to Internal Validity and Other Outcomes 
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In any observational study where treatment cannot be randomized, threats to validity for 

interpreting outcome difference between treated and control subjects are possible. One way we 

can assess whether our results are driven by increases in air pollution, is to assess whether the 

dose-response relationship is consistent with the treatment effect identified in Table 2.  If 

pollution is affecting suicide risk, we would expect people exposed to higher levels of pollution 

to have higher mortality. To assess this, we estimate models in which we compared mortality in 

county/days when PM2.5 AQI is in the range of 25-49, 50-99, and over 100, compared to days 

ZKHQ�$4,�LV�OHVV�WKDQ�����7KHVH�JURXSV�DFFRUG�ZLWK�(3$�DLU�TXDOLW\�OHYHOV�RI�³*RRG´��������

³0RGHUDWH´����-����DQG�³8QKHDOWK\´��!������:H�SUHVHQW�WKH�UHVXOWV�in Figure 5. The coefficients 

for air pollution days of less than 100 AQI is close to zero. However, as the AQI increases to 100 

or more, daily suicides also increase. Overall, this suggests that our main effects are primarily 

driven by very high air pollution days.  

To investigate the validity of the monotonicity assumption, in Table 6, we show results 

using 100 monitor groups, 200 monitor groups or 400 monitor groups. In all cases, our point 

estimates are quite similar to our main specification. This suggests that the number of monitor 

groups (and any potential monotonicity violations) has little effect on our estimates. Thus, we 

can interpret our estimates as a local average treatment effect (LATE).  

A remaining concern is whether the wind instrument only affects our outcomes through 

pollution and not anything else that could be correlated with daily wind direction. To test this, we 

estimate a series of regressions on placebo causes of death that we would not expect to be 

affected by pollution. Table 7 presents the results of this placebo analysis. Columns 1 through 5 

show the results of our main specification on deaths from Lyme disease, congenital anomalies, 
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hernias, metabolic disorders, and digestive diseases. None of the estimates are statistically 

significant at conventional levels, and all are near zero.  

In columns 6-8 of Table 7 we show results from estimating our main specification on 

causes of death that are known to be affected by pollution: diabetes, chronic obstructive 

pulmonary disease (COPD) and ischemic heart attack. As expected, we find larger and 

statistically significant point estimates for diabetes, COPD and ischemic heart attack, which are 

consistent with the economics and public health literature. A 1 ȝJ�P3 increase in PM2.5 is 

associated with a 0.368 percent increase in daily diabetes deaths, a 0.331 percent increase in 

daily COPD deaths, and a 0.295 percent increase in daily heart attack deaths. 

In Table 8, we present results from a variety of alternative specifications. One lingering 

concern is that there are many counties in which suicides are rare, with zero suicides on nearly 

all days of the year. To assess the sensitivity of our findings to the inclusion of small counties 

were suicide is a rare event, in column 1 of Table 8, we limit our sample to counties with more 

than 10,000 people. Similarly, in Column 2, we limit the sample to places that ever had more 

than one suicide in a day. In both cases, limiting to more populous places increases the size of 

our coefficient. Next, we address potential day of the month effects, which might occur if suicide 

risk changes over the month, perhaps because of timing of payments from work or social or 

health benefit programs. In column 3 of Table 8, we add day fixed effects to our main 

instrumental variables specification and find very similar results. Finally, to assess whether our 

results are sensitive to using OLS for an outcome variable with many zeros, we estimate our 

main IV specification using a Poisson regression by pseudo maximum likelihood (PPML) count 

model of daily suicides, conditional on the total population by county in Column 4 of Table 8. 
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Reassuringly, the coefficient using PPML is very similar to that in our primary specification in 

Table 2.  

VI. Conclusion 

This is the first study showing that air pollution increases suicides. Using daily wind 

direction as an instrument for daily ultrafine particulate matter exposure, we find that a 1 ȝJ�P3 

increase in PM2.5 leads to a 0.5 percent increase in the daily suicide rate. We further find that 

our results are primarily driven by contemporaneous exposure to air pollution, and that days of 

very high air pollution appear to drive the effects on suicides. We also find that increased PM2.5 

increases the likelihood of all deaths on days of high air pollution, as well as deaths from COPD, 

diabetes and ischemic heart attack.  

In our preferred instrumental variables model, we find that a 1 ȝJ�P3 increase in PM2.5 

leads to a 0.4914 percent increase in daily suicides and a 0.4038 percent increase in the daily 

suicide rate per million individuals. These results imply that on a day with PM2.5 at the 

threshold of unhealthy levels (35 ȝJ�P3), the average county would experience an increase in 

daily suicides about 0.094 per million population average air quality compared to a day with 

average PM2.5 levels (11.6 ȝJ�P3). 7 This is a small number, but it is a daily risk. So, in a county 

with a million resident, a year with 11 additional unhealthy air days would see 1 additional 

suicide death. 

To further quantify the number of additional deaths that occur due to air pollution over 

this time period, we attempt a back of the envelope calculation for the effect of a 1 ȝJ�P3 

increase in PM2.5 over this time period on suicide deaths. We find that a 1 ȝJ�P3 increase in 

 
7 A linear extrapolation of the 0.004038 increase per million residents due to a 1 ȝJ�P3 WR�WKH������ȝJ�P3 difference 
between 35 and the mean implies and increase of 0.094 per million. 
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PM2.5 on each day over a year would lead to 153.8 additional suicides in that year.8 The average 

amount air pollution increases (or decreases) from day to day within a county is about 4 ȝJ�P3. 

Nevertheless, it is important to note that daily air pollution is highly variable in the U.S., and 

there are both increases and decreases over time in average annual amounts of PM2.5 during our 

study period (as shown in Figure 1).  

Our work offers several important lessons for policy and treatment of depression. 

Understanding how air pollution impacts suicide risk will allow policymakers to target resources 

to places when there are likely to be greater risks. In addition, this research contributes to our 

understanding of the environmental processes that impact suicidality and the true costs of 

pollution. If certain types of pollution are most likely to increase suicide risks, we may be able to 

better regulate those types of pollutants. One last implication of this work is more direct for 

physicians and those who have persons at risk in their families. In the public health world, efforts 

to temporarily take guns from the suicidal appear to be protective (see the work of David 

Hemenway among others). If air pollution is a risk, then interventions to keep those at risk of 

suicide indoors or refrain from strenuous activity outdoors might make sense. For example, air 

purifiers could be employed in in-patient facilities that treat depressed patients on high air 

pollution days. 
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Tables 

Table 1: Descriptive Statistics of Counties in the Sample 

  (1)  
Characteristics of Counties in 

the U.S. from 2003-2010 

Total Population 95,615 
[311,963] 

Percent White 0.841 
[0.159] 

Percent Black 0.108 
[0.133] 

Percent Hispanic 0.197 
[0.246] 

Percent Poverty 0.152 
[0.058] 

Median Income 40,590 
[9,778] 

Unemployment Rate 0.063 
[0.02] 

Average Total Deaths by Suicide by County 88.3 
[242] 

Average Daily Suicide Rate 0.378 
[0.188] 

Average Daily PM2.5 Concentration 11.63 
[2.04] 

Number of Counties 2,835 
Number of County-day observations 8,262,736 

Notes: This table shows the average characteristics of counties in our main sample with standard deviations in 
brackets below each mean. Column 1 shows characteristics of all counties in the United States between 2003-2010
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Table 2: Effects of PM2.5 on Suicides and All Deaths using state-month, month-year, 
county, and day of the week FEs 
 (1)  

Log daily 
suicides (1 day 

model) 

(2)  
Log daily 

suicide rate 

(3) 
Log daily 

suicides (3 day 
model) 

(3) 
Log All Deaths 

 Panel A: OLS Estimates 
Average daily PM 
2.5, micrograms 
per cubic meter 

-0.000461 
(0.000367) 

 

-0.000063 
(0.000078) 

 

0.001480 
(0.001290) 

0.000545*** 
(0.000059) 

 Panel B: IV Estimates 

Average daily PM 
2.5, micrograms 
per cubic meter 

0.004914*** 
(0.001675) 

 

0.004038** 
(0.001902) 

 

0.002023* 
(0.001126) 

0.003577*** 
(0.000236) 

Mean of Outcome 0.0255 0.0623 0.0715 0.7842 
Observations 8262736 8262736 8243810 8262736 

Notes: This table reports the effect of PM2.5 on suicide deaths and all deaths. Each cell shows the results of a 
separate regression with standard errors in parenthesis. Column 1 shows estimates for the log of daily suicides, 
Column 2 shows estimates for the log of the daily suicide rate per million people, and Column 2 shows estimates for 
the log of all daily deaths. Panel A reports estimates using wind as an instrument for pollution. Our primary 
specification uses 200 monitor groups. Panel B reports estimates using OLS regression. All regressions control for 
county, state-month, month-year and day of week FEs, holidays, total population, deciles of average temperature, 
and precipitation, wind speed, and unemployment rate. Standard errors are clustered at the county level and are in 
parentheses. 
* p < .1, ** p < .05, *** p < .01 
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Table 3: IV effect of Different Pollutants on log of suicide using state-month, month-year, 
county, and day of the week FEs 
 Log Suicides 
 (1) 

Adjusted 
PM25 

(2) 
Adjusted 

SO2 

(3) 
Adjusted O3 

(4) 
Adjusted CO 

(5) 
Adjusted 

NO2 
      
Different 
Pollutants 

0.077578** 
(0.034646) 

0.050681 
(0.077261) 

-0.016548 
(0.029018) 

-0.003576* 
(0.001887) 

-0.041641 
(0.055045) 

Mean of Outcome 0.2492 0.2492 0.2492 0.2492 0.2492 
Observations 210426 210426 210426 210426 210426 

Notes: This table reports the effect of different pollutants on the log of daily suicide deaths. All pollutants are in the 
same regression with wind as an instrument for pollution. Our primary specification uses 200 monitor groups. All 
regressions control for county, state-month, month-year and day of week FEs, holidays, total population, deciles of 
average temperature, and precipitation, wind speed, and unemployment rate. Standard errors are clustered at the 
county level and are in parentheses. 
* p < .1, ** p < .05, *** p < .01 
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Table 4: Heterogeneity by Race, Gender and Education 
 

Log Suicides 

 (1) (2) (3) (4) 
  White Black Female Male 

Daily PM 2.5 0.003925** 0.006855 0.00487 0.00458** 
  (0.001793) (0.007107) (0.00364) (0.00190) 

Mean of Outcome 0.02338 0.001445 0.00547 0.02041 
Observations 8262736 8262736 8262736 8262736 

Notes: This table reports the effect of daily PM2.5 on the log of daily suicide deaths for different groups. Column 1 shows the results for Whites, Column 2 
shows the results for Blacks, Column 3 shows the results for females, and Column 4 shows the results for males. Columns 5-8 show the results for people with 
different levels of education. Our primary specification uses 200 monitor groups. All regressions control for county, state-month, month-year and day of week 
FEs, holidays, total population, deciles of average temperature, and precipitation, wind speed, and unemployment rate. Standard errors are clustered at the county 
level and are in parentheses. 
* p < .1, ** p < .05, *** p < .01 
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Table 5: Effect of PM2.5 on Log Suicides by Age 

 Log Suicides 
 (1) 

Age 0-14 
(2) 

Age 15-34 
(3) 

Age 35-54 
(4) 

Age 55-74 
(5) 

Age 75+ 
Daily  -0.00242 0.00517* 0.00174 0.00775** 0.00965* 
PM 2.5 (0.02046) (0.00290) (0.00262) (0.00359) (0.00554) 
Mean of Outcome 0.00019 0.00720 0.01082 0.00574 0.00230 
Observations 8262768 8262768 8262768 8262768 8262768 

Notes: This table reports the effect of daily PM2.5 on the log of daily suicide deaths for different age groups. Column 1 shows the results for people ages 0-14, 
Column 2 shows the results for ages 15-24, Column 3 shows the results for ages 25-34, Column 4 shows the results for ages 25-34, etc. Our primary specification 
uses 200 monitor groups. All regressions control for county, state-month, month-year and day of week FEs, holidays, total population, deciles of average 
temperature, and precipitation, wind speed, and unemployment rate. Standard errors are in parentheses.  
* p < .1, ** p < .05, *** p < .01 
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Table 6: IV effect of PM2.5 on log of suicide using state-month, month-year, county, and day of the week FEs with different 
numbers of Monitor Groups 
 (1) 

Log suicides 
 Panel A: 100 Monitor Groups 
Average daily PM 2.5, micrograms per cubic 
meter 

0.004080** 
(0.001641) 

 Panel B: 300 Monitor Groups 
Average daily PM 2.5, micrograms per cubic 
meter 

0.004459*** 
(0.001658) 

 Panel C: 400 Monitor Groups 
Average daily PM 2.5, micrograms per cubic 
meter 

0.004313** 
(0.001688) 

Mean of Outcome 0.025543 
Observations 8262736 

Notes: This table reports the effect of PM2.5 on the log of daily suicide deaths. Panel A reports estimates using 100 monitor groups. Panel B reports estimates 
using 300 monitor groups, and Panel C reports estimates using 400 monitor groups. Our primary specification uses 200 monitor groups. All regressions control 
for county, state-month, month-year and day of week FEs, holidays, total population, deciles of average temperature, and precipitation, wind speed, and 
unemployment rate. Standard errors are clustered at the county level and are in parentheses. 
* p < .1, ** p < .05, *** p < .01 
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Table 7: Effect of PM2.5 on Placebo deaths and Air Pollution-related Deaths 

 Placebo Causes of Death  Deaths Related to Air Pollution 
 (1) 

Log Deaths 
from Lyme 

disease 

(2) 
Log Deaths 

from 
Congenital 
anomalies 

(3) 
Log 

Deaths 
from 

Hernia 

(4) 
Log Deaths 

from 
Metabolic 
Disorder 

(5) 
Log 

Deaths 
from 

Digestive 
Disease 

 (6) 
Log 

Deaths 
from 

Diabetes 

(7) 
Log Deaths 

from Chronic 
Obstructive 
Pulmonary 

Disease 

(8) 
Log Deaths 

from 
Ischemic 

Heart Attack 

Daily PM 2.5 -0.01492 0.00341 0.00198 0.00142 0.00256  0.00368*** 0.00331*** 0.00295*** 
 (0.13661) (0.00384) (0.00868) (0.00291) (0.00259)  (0.00123) (0.00087) (0.00048) 

Mean of 
Outcome 

0.00001 0.00654 0.00115 0.01154 0.01438  0.05063 0.08967 0.25277 

Observations 8262736 8262736 8262736 8262736 8262736  8262736 8262736 8262736 
Notes: This table reports the effect of daily PM2.5 on the log of different daily causes of death. Each column represents the results from a different regression. 
Columns 1-5 shows the results for placebo causes of death we would not expect to be impacted by air pollution. Columns 6-8 show results for causes of death 
that have been shown to be affected by air pollution. Our primary specification uses 200 monitor groups. All regressions control for county, state-month, month-
year and day of week FEs, holidays, total population, deciles of average temperature, and precipitation, wind speed, and unemployment rate. Standard errors are 
in parentheses.  
* p < .1, ** p < .05, *** p < .01 
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Table 8: Results for Alternative Samples and Alternative Specifications 

 Log Suicides  
 (1) 

Limiting to Counties 
with >10,000 people 

(2) 
Limiting to Counties that ever 

had 2 or more suicides/day 

(3) 
Using Day Fixed 

Effects 

(4) 
Using PPML with IV 

Daily PM 2.5 0.005849*** 
(0.001896) 

0.008233** 
(0.003630) 

0.004914*** 
(0.001675) 

0.003870*** 
(0.001262) 

Mean of Outcome 0.031839 0.064045 0.025543 0.025543 
Observations 6522413 2698046 8262736 8182898 

Notes: This table reports the effect of PM2.5 on the log of daily suicide deaths. Each column represents the results of a different regression. Column 1 reports 
estimates when limiting the sample to counties with more than 10,000 people. Column 2 reports estimates when limiting the sample to counties that ever had two 
or more suicides in a day. Column 3 presents the results of our primary specification when adding day of the month fixed effects. Column 4 presents the results 
when using PPML in the IV rather than OLS. All regressions control for county, state-month, month-year and day of week FEs, holidays, total population, 
deciles of average temperature, and precipitation, wind speed, and unemployment rate. Standard errors are clustered at the county level and are in parentheses. 
* p < .1, ** p < .05, *** p < .01 
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Figures 

Figure 1: Annual County-level PM2.5 over Time 

 

Notes: This figure shows the annual county mean of PM2.5 pollution over time. PM2.5 concentrations 
show some variety over the sample period. 
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Figure 2: Counties Assigned to 200 Monitor Groups 

 

 

Notes: This figure depicts the 200 monitor groups in our sample, which comprises nearly every county in the entire United States.  
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Figure 3: Examples of wind direction and pollution exposure 

 

  

Notes: This figure depicts our first stage in two example monitor groups: the Bay Area and Boston. As shown, in some wind directions, average 
PM2.5 concentrations increase, and in others, they decrease. 95% confidence intervals depicted in gray. 
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Figure 4: Effects of Contemporaneous and Previous Air Pollution on Suicide 

 

Notes: This figure depicts an event study of the effect of the log of the weekly AQI on the log of suicides 
over weeks of exposure. The week labeled 0/-1 is the week leading up to a suicide. We control for 
holidays, total population, average temperature, average precipitation, the unemployment rate, and 
county, month, year and day of the week fixed effects. 95% confidence intervals are depicted as vertical 
bars and standard errors are clustered at the county level. 

 

 



41 
 

Figure 5: Effect of Air Pollution on Suicide by Amount of Pollution 

 

Notes: This figure plots non-parametric estimates of the effect of different binned amounts of AQI on the 
log of daily suicides. The omitted category is AQI of less than 25. We control for county, state-month, 
month-year and day of week FEs, holidays, total population, deciles of average temperature, and 
precipitation, wind speed, and unemployment rate. Vertical bars represent 95% confidence intervals based 
on standard errors clustered at the county level.  
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Online Appendix Tables and Figures 

 

Figure A1: Trends in Suicides over Time and Day of the Week 

 

  
 

Figure 1A        Figure 1B 
 
Notes: Figure 1A depicts trends in suicides by age over RXU�VDPSOH¶V time period. Figure 1B depicts how suicides vary over day of the 
week.  
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Figure A2: Variation over Time in Suicides and AQI 

 

  
 
 Panel A        Panel B 
 
Notes: Panel A of Figure A2 depicts the variation over time in suicides over the day of the year. Panel B shows the mean and standard 
deviation of the AQI over days of the week each month.  
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Table A1: First Stage Effects of Daily Wind on Daily Pollution 

  (1) 
Binned Wind Direction Interacted with Pollution Clusters PM25 concentration 
Angle range 0-90 0.657462 

 (0.418599) 
Angle range 90-180 0.121036 

 (0.363051) 
Angle range 180-270 0.332466 

 (0.466601) 
1b.poll_cluster#0b.ang_range 0.000000 

 (0.000000) 
1b.poll_cluster#90.ang_range -0.682755*** 

 (0.048382) 
1b.poll_cluster#180.ang_range -0.905897*** 

 (0.048735) 
1b.poll_cluster#270.ang_range -0.335548*** 

 (0.010560) 
4.poll_cluster#0b.ang_range 3.020103*** 

 (0.182940) 
4.poll_cluster#90.ang_range 1.728198*** 

 (0.255016) 
4.poll_cluster#180.ang_range -0.993519*** 

 (0.165117) 
4o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 
5.poll_cluster#0b.ang_range 1.155568*** 

 (0.126336) 
5.poll_cluster#90.ang_range 2.520459*** 

 (0.117477) 
5.poll_cluster#180.ang_range 1.238717*** 

 (0.083843) 
5o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 
6.poll_cluster#0b.ang_range 2.699945*** 

 (0.110529) 
6.poll_cluster#90.ang_range 3.109083*** 

 (0.118307) 
6.poll_cluster#180.ang_range 1.053787*** 

 (0.126945) 
6o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 
7.poll_cluster#0b.ang_range 3.361771*** 

 (0.104123) 
7.poll_cluster#90.ang_range 4.922075*** 

 (0.126225) 
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7.poll_cluster#180.ang_range 2.304450*** 
 (0.070106) 

7o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

8.poll_cluster#0b.ang_range -1.832307*** 
 (0.372914) 

8.poll_cluster#90.ang_range 1.438480*** 
 (0.255817) 

8.poll_cluster#180.ang_range 1.507893*** 
 (0.235089) 

8o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

9.poll_cluster#0b.ang_range -0.242917 
 (0.541405) 

9.poll_cluster#90.ang_range 0.006974 
 (0.577606) 

9.poll_cluster#180.ang_range -0.260134 
 (0.491887) 

9o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

10.poll_cluster#0b.ang_range -0.736382*** 
 (0.078182) 

10.poll_cluster#90.ang_range -1.230279*** 
 (0.098925) 

10.poll_cluster#180.ang_range 0.212761*** 
 (0.050492) 

10o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

11.poll_cluster#0b.ang_range 0.956841*** 
 (0.140342) 

11.poll_cluster#90.ang_range 1.863135*** 
 (0.189576) 

11.poll_cluster#180.ang_range 1.476981*** 
 (0.102226) 

11o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

12.poll_cluster#0b.ang_range 2.096488*** 
 (0.082981) 

12.poll_cluster#90.ang_range 3.767149*** 
 (0.069101) 

12.poll_cluster#180.ang_range 2.327743*** 
 (0.117717) 

12o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

13.poll_cluster#0b.ang_range -1.256299*** 
 (0.111901) 
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13.poll_cluster#90.ang_range -2.754201*** 
 (0.104636) 

13.poll_cluster#180.ang_range -1.141604*** 
 (0.116566) 

13o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

14.poll_cluster#0b.ang_range 2.745877*** 
 (0.194485) 

14.poll_cluster#90.ang_range 1.990708*** 
 (0.227156) 

14.poll_cluster#180.ang_range 0.138460 
 (0.236928) 

14o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

15.poll_cluster#0b.ang_range 1.453112*** 
 (0.092445) 

15.poll_cluster#90.ang_range 2.422154*** 
 (0.076431) 

15.poll_cluster#180.ang_range 1.909814*** 
 (0.088942) 

15o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

16.poll_cluster#0b.ang_range 3.249706*** 
 (0.077480) 

16.poll_cluster#90.ang_range 5.340938*** 
 (0.077926) 

16.poll_cluster#180.ang_range 2.467974*** 
 (0.082613) 

16o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

17.poll_cluster#0b.ang_range 3.593646*** 
 (0.113365) 

17.poll_cluster#90.ang_range 4.410900*** 
 (0.172290) 

17.poll_cluster#180.ang_range 1.939015*** 
 (0.049776) 

17o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

18.poll_cluster#0b.ang_range 0.764797*** 
 (0.113263) 

18.poll_cluster#90.ang_range -0.125169*** 
 (0.045309) 

18.poll_cluster#180.ang_range 0.604418*** 
 (0.018825) 

18o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 
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19.poll_cluster#0b.ang_range 1.142773*** 
 (0.105811) 

19.poll_cluster#90.ang_range 2.815342*** 
 (0.077107) 

19.poll_cluster#180.ang_range 2.006965*** 
 (0.077089) 

19o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

21.poll_cluster#0b.ang_range 1.347336*** 
 (0.145407) 

21.poll_cluster#90.ang_range 3.521453*** 
 (0.150367) 

21.poll_cluster#180.ang_range 1.751777*** 
 (0.123719) 

21o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

23.poll_cluster#0b.ang_range 1.894563*** 
 (0.202822) 

23.poll_cluster#90.ang_range 0.970286*** 
 (0.236397) 

23.poll_cluster#180.ang_range -0.985107*** 
 (0.188479) 

23o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

24.poll_cluster#0b.ang_range -2.132491*** 
 (0.618804) 

24.poll_cluster#90.ang_range -1.455090*** 
 (0.476750) 

24.poll_cluster#180.ang_range 0.904114 
 (0.838397) 

24o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

25.poll_cluster#0b.ang_range 1.833647*** 
 (0.108304) 

25.poll_cluster#90.ang_range 2.946865*** 
 (0.079254) 

25.poll_cluster#180.ang_range 1.843893*** 
 (0.048859) 

25o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

26.poll_cluster#0b.ang_range 2.355590*** 
 (0.158202) 

26.poll_cluster#90.ang_range 3.938911*** 
 (0.198732) 

26.poll_cluster#180.ang_range 1.483046*** 
 (0.129730) 
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26o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

27.poll_cluster#0b.ang_range -0.015083 
 (0.150523) 

27.poll_cluster#90.ang_range 0.238442 
 (0.160452) 

27.poll_cluster#180.ang_range 0.400190*** 
 (0.119360) 

27o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

28.poll_cluster#0b.ang_range 0.462410*** 
 (0.075249) 

28.poll_cluster#90.ang_range 2.216258*** 
 (0.054273) 

28.poll_cluster#180.ang_range 0.733836*** 
 (0.086518) 

28o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

29.poll_cluster#0b.ang_range 1.340002*** 
 (0.086469) 

29.poll_cluster#90.ang_range 3.259530*** 
 (0.110384) 

29.poll_cluster#180.ang_range 2.287978*** 
 (0.064644) 

29o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

30.poll_cluster#0b.ang_range 1.718159*** 
 (0.167431) 

30.poll_cluster#90.ang_range 1.863736*** 
 (0.225606) 

30.poll_cluster#180.ang_range 1.184355*** 
 (0.101730) 

30o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

32.poll_cluster#0b.ang_range 1.386950*** 
 (0.153598) 

32.poll_cluster#90.ang_range 3.465375*** 
 (0.133109) 

32.poll_cluster#180.ang_range 1.527326*** 
 (0.076184) 

32o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

34.poll_cluster#0b.ang_range -0.376033*** 
 (0.100797) 

34.poll_cluster#90.ang_range -0.032913 
 (0.151257) 
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34.poll_cluster#180.ang_range 0.221907 
 (0.194384) 

34o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

35.poll_cluster#0b.ang_range 2.276288*** 
 (0.230541) 

35.poll_cluster#90.ang_range 1.726223*** 
 (0.269944) 

35.poll_cluster#180.ang_range 0.714475*** 
 (0.154119) 

35o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

36.poll_cluster#0b.ang_range 2.099476*** 
 (0.070141) 

36.poll_cluster#90.ang_range 4.312308*** 
 (0.099430) 

36.poll_cluster#180.ang_range 2.031376*** 
 (0.076999) 

36o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

38.poll_cluster#0b.ang_range 0.022567 
 (0.152984) 

38.poll_cluster#90.ang_range -0.360877 
 (0.228700) 

38.poll_cluster#180.ang_range -0.133212 
 (0.095903) 

38o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

39.poll_cluster#0b.ang_range 4.807981*** 
 (0.109846) 

39.poll_cluster#90.ang_range 3.910265*** 
 (0.191101) 

39.poll_cluster#180.ang_range 0.121878 
 (0.222570) 

39o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

40.poll_cluster#0b.ang_range 0.579251*** 
 (0.190808) 

40.poll_cluster#90.ang_range 1.395752*** 
 (0.184076) 

40.poll_cluster#180.ang_range 0.850242*** 
 (0.114856) 

40o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

41.poll_cluster#0b.ang_range 0.666534*** 
 (0.107945) 
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41.poll_cluster#90.ang_range 1.153586*** 
 (0.028529) 

41.poll_cluster#180.ang_range 1.157979*** 
 (0.071180) 

41o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

42.poll_cluster#0b.ang_range -0.514872*** 
 (0.076655) 

42.poll_cluster#90.ang_range -2.119304*** 
 (0.088464) 

42.poll_cluster#180.ang_range -1.638343*** 
 (0.086367) 

42o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

43.poll_cluster#0b.ang_range 4.679211*** 
 (0.187136) 

43.poll_cluster#90.ang_range 4.261648*** 
 (0.191975) 

43.poll_cluster#180.ang_range 0.168188 
 (0.122952) 

43o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

46.poll_cluster#0b.ang_range 4.123916*** 
 (0.149000) 

46.poll_cluster#90.ang_range 2.799957*** 
 (0.288256) 

46.poll_cluster#180.ang_range -0.444641 
 (0.297976) 

46o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

47.poll_cluster#0b.ang_range -1.073480 
 (1.410970) 

47.poll_cluster#90.ang_range 1.212940 
 (1.137833) 

47.poll_cluster#180.ang_range 0.100749 
 (0.401057) 

47o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

48.poll_cluster#0b.ang_range 2.170262*** 
 (0.126139) 

48.poll_cluster#90.ang_range 0.071388 
 (0.201102) 

48.poll_cluster#180.ang_range -0.292930*** 
 (0.105988) 

48o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 



51 
 

49.poll_cluster#0b.ang_range -0.438157*** 
 (0.152272) 

49.poll_cluster#90.ang_range -0.072123 
 (0.216422) 

49.poll_cluster#180.ang_range 0.617190*** 
 (0.201929) 

49o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

50.poll_cluster#0b.ang_range 1.787376*** 
 (0.133246) 

50.poll_cluster#90.ang_range 2.761226*** 
 (0.128676) 

50.poll_cluster#180.ang_range 2.210137*** 
 (0.077735) 

50o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

51.poll_cluster#0b.ang_range 1.091888*** 
 (0.148268) 

51.poll_cluster#90.ang_range 1.113780*** 
 (0.107507) 

51.poll_cluster#180.ang_range 0.489781*** 
 (0.111101) 

51o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

52.poll_cluster#0b.ang_range 2.224656*** 
 (0.080003) 

52.poll_cluster#90.ang_range 2.093280*** 
 (0.109649) 

52.poll_cluster#180.ang_range 1.590405*** 
 (0.103631) 

52o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

53.poll_cluster#0b.ang_range 1.812176*** 
 (0.085556) 

53.poll_cluster#90.ang_range 3.330273*** 
 (0.106628) 

53.poll_cluster#180.ang_range 1.409536*** 
 (0.077403) 

53o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

54.poll_cluster#0b.ang_range 2.099165*** 
 (0.138157) 

54.poll_cluster#90.ang_range 3.177539*** 
 (0.091200) 

54.poll_cluster#180.ang_range 2.190554*** 
 (0.102587) 



52 
 

54o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

55.poll_cluster#0b.ang_range 0.444800*** 
 (0.142952) 

55.poll_cluster#90.ang_range 1.742929*** 
 (0.439607) 

55.poll_cluster#180.ang_range 2.232807*** 
 (0.490722) 

55o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

58.poll_cluster#0b.ang_range -0.584134** 
 (0.256237) 

58.poll_cluster#90.ang_range 0.522590 
 (0.611011) 

58.poll_cluster#180.ang_range 2.041855*** 
 (0.761479) 

58o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

59.poll_cluster#0b.ang_range -2.046191*** 
 (0.105400) 

59.poll_cluster#90.ang_range -3.125409*** 
 (0.087334) 

59.poll_cluster#180.ang_range -2.038825*** 
 (0.158153) 

59o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

60.poll_cluster#0b.ang_range 1.664617*** 
 (0.129505) 

60.poll_cluster#90.ang_range 3.181001*** 
 (0.173031) 

60.poll_cluster#180.ang_range 2.027288*** 
 (0.088845) 

60o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

61.poll_cluster#0b.ang_range 3.479542*** 
 (0.092631) 

61.poll_cluster#90.ang_range 3.845574*** 
 (0.133849) 

61.poll_cluster#180.ang_range 1.966573*** 
 (0.076830) 

61o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

62.poll_cluster#0b.ang_range 1.240450*** 
 (0.086013) 

62.poll_cluster#90.ang_range 2.951830*** 
 (0.094045) 



53 
 

62.poll_cluster#180.ang_range 1.354202*** 
 (0.084515) 

62o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

64.poll_cluster#0b.ang_range -0.529978*** 
 (0.195955) 

64.poll_cluster#90.ang_range 1.721958*** 
 (0.369432) 

64.poll_cluster#180.ang_range 1.562525*** 
 (0.329634) 

64o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

65.poll_cluster#0b.ang_range 2.312312*** 
 (0.217036) 

65.poll_cluster#90.ang_range 3.607714*** 
 (0.152913) 

65.poll_cluster#180.ang_range 1.274112*** 
 (0.168829) 

65o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

66.poll_cluster#0b.ang_range 5.379033*** 
 (0.312888) 

66.poll_cluster#90.ang_range 2.623531*** 
 (0.323012) 

66.poll_cluster#180.ang_range -0.090753 
 (0.217790) 

66o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

67.poll_cluster#0b.ang_range 5.943604*** 
 (0.112441) 

67.poll_cluster#90.ang_range 6.437646*** 
 (0.202632) 

67.poll_cluster#180.ang_range 0.841732*** 
 (0.088971) 

67o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

70.poll_cluster#0b.ang_range -0.077965 
 (0.137618) 

70.poll_cluster#90.ang_range 0.299884 
 (0.241782) 

70.poll_cluster#180.ang_range 1.126774*** 
 (0.163560) 

70o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

71.poll_cluster#0b.ang_range 3.537330*** 
 (0.212764) 



54 
 

71.poll_cluster#90.ang_range 3.508613*** 
 (0.328092) 

71.poll_cluster#180.ang_range 0.358017** 
 (0.163549) 

71o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

72.poll_cluster#0b.ang_range 3.100285*** 
 (0.327003) 

72.poll_cluster#90.ang_range 1.564728*** 
 (0.157913) 

72.poll_cluster#180.ang_range -0.098885 
 (0.241870) 

72o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

73.poll_cluster#0b.ang_range 1.222237*** 
 (0.161482) 

73.poll_cluster#90.ang_range 3.803236*** 
 (0.141715) 

73.poll_cluster#180.ang_range 1.466282*** 
 (0.140764) 

73o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

74.poll_cluster#0b.ang_range 2.435419*** 
 (0.084973) 

74.poll_cluster#90.ang_range 1.574590*** 
 (0.104957) 

74.poll_cluster#180.ang_range 0.421916*** 
 (0.147743) 

74o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

76.poll_cluster#0b.ang_range 1.826103*** 
 (0.143336) 

76.poll_cluster#90.ang_range 3.463895*** 
 (0.149195) 

76.poll_cluster#180.ang_range 1.686707*** 
 (0.074675) 

76o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

77.poll_cluster#0b.ang_range 0.544934*** 
 (0.141831) 

77.poll_cluster#90.ang_range 1.546497*** 
 (0.229177) 

77.poll_cluster#180.ang_range 0.755923*** 
 (0.200792) 

77o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 



55 
 

78.poll_cluster#0b.ang_range 1.595192*** 
 (0.063375) 

78.poll_cluster#90.ang_range 3.697810*** 
 (0.097097) 

78.poll_cluster#180.ang_range 1.528540*** 
 (0.059593) 

78o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

79.poll_cluster#0b.ang_range 1.003463*** 
 (0.197282) 

79.poll_cluster#90.ang_range 0.699692 
 (0.619295) 

79.poll_cluster#180.ang_range 0.400529 
 (0.391032) 

79o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

81.poll_cluster#0b.ang_range 0.533267** 
 (0.213059) 

81.poll_cluster#90.ang_range 0.299057 
 (0.336135) 

81.poll_cluster#180.ang_range 0.334238 
 (0.205279) 

81o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

82.poll_cluster#0b.ang_range 4.032507*** 
 (0.208244) 

82.poll_cluster#90.ang_range 3.787875*** 
 (0.342659) 

82.poll_cluster#180.ang_range 0.093356 
 (0.109890) 

82o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

83.poll_cluster#0b.ang_range 1.239001*** 
 (0.138737) 

83.poll_cluster#90.ang_range -1.063524*** 
 (0.194055) 

83.poll_cluster#180.ang_range -0.197006* 
 (0.103482) 

83o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

84.poll_cluster#0b.ang_range 0.484809 
 (0.452123) 

84.poll_cluster#90.ang_range 0.228728 
 (0.265732) 

84.poll_cluster#180.ang_range 0.309210 
 (0.277485) 



56 
 

84o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

85.poll_cluster#0b.ang_range 4.774645*** 
 (0.182782) 

85.poll_cluster#90.ang_range 5.788659*** 
 (0.225577) 

85.poll_cluster#180.ang_range 0.649450*** 
 (0.123128) 

85o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

86.poll_cluster#0b.ang_range -0.306621*** 
 (0.082773) 

86.poll_cluster#90.ang_range 1.321408*** 
 (0.098699) 

86.poll_cluster#180.ang_range 2.450896*** 
 (0.052875) 

86o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

87.poll_cluster#0b.ang_range 2.349927*** 
 (0.063166) 

87.poll_cluster#90.ang_range 2.378455*** 
 (0.092558) 

87.poll_cluster#180.ang_range 1.288433*** 
 (0.060469) 

87o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

88.poll_cluster#0b.ang_range 3.402868*** 
 (0.068780) 

88.poll_cluster#90.ang_range 1.928112*** 
 (0.184438) 

88.poll_cluster#180.ang_range -0.403807*** 
 (0.083048) 

88o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

89.poll_cluster#0b.ang_range -1.382257*** 
 (0.162155) 

89.poll_cluster#90.ang_range 1.423189*** 
 (0.089005) 

89.poll_cluster#180.ang_range 1.318561*** 
 (0.185310) 

89o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

90.poll_cluster#0b.ang_range -0.407911 
 (0.368206) 

90.poll_cluster#90.ang_range 0.141854 
 (0.535802) 
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90.poll_cluster#180.ang_range 0.536553* 
 (0.319704) 

90o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

91.poll_cluster#0b.ang_range 0.915822*** 
 (0.092409) 

91.poll_cluster#90.ang_range 1.775904*** 
 (0.183934) 

91.poll_cluster#180.ang_range 1.682987*** 
 (0.086152) 

91o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

92.poll_cluster#0b.ang_range 1.129919*** 
 (0.151552) 

92.poll_cluster#90.ang_range 2.734865*** 
 (0.136978) 

92.poll_cluster#180.ang_range 2.197567*** 
 (0.063259) 

92o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

94.poll_cluster#0b.ang_range 2.473007*** 
 (0.076610) 

94.poll_cluster#90.ang_range 4.861084*** 
 (0.091280) 

94.poll_cluster#180.ang_range 2.360137*** 
 (0.058945) 

94o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

95.poll_cluster#0b.ang_range 2.938626*** 
 (0.096760) 

95.poll_cluster#90.ang_range 4.710121*** 
 (0.093226) 

95.poll_cluster#180.ang_range 2.042382*** 
 (0.084853) 

95o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

96.poll_cluster#0b.ang_range -0.768602 
 (0.489317) 

96.poll_cluster#90.ang_range 1.601669*** 
 (0.567302) 

96.poll_cluster#180.ang_range 1.506609*** 
 (0.258459) 

96o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

97.poll_cluster#0b.ang_range 1.989814*** 
 (0.124956) 



58 
 

97.poll_cluster#90.ang_range 3.060489*** 
 (0.113097) 

97.poll_cluster#180.ang_range 1.577659*** 
 (0.121320) 

97o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

98.poll_cluster#0b.ang_range 0.087820 
 (0.226270) 

98.poll_cluster#90.ang_range 1.229115 
 (0.943305) 

98.poll_cluster#180.ang_range 1.766526*** 
 (0.630672) 

98o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

99.poll_cluster#0b.ang_range 3.991946*** 
 (0.191849) 

99.poll_cluster#90.ang_range 1.777721*** 
 (0.078841) 

99.poll_cluster#180.ang_range -0.209905 
 (0.158230) 

99o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

100.poll_cluster#0b.ang_range 4.642196*** 
 (0.122501) 

100.poll_cluster#90.ang_range 3.463166*** 
 (0.159197) 

100.poll_cluster#180.ang_range -0.415264*** 
 (0.112539) 

100o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

103.poll_cluster#0b.ang_range 1.479391*** 
 (0.294192) 

103.poll_cluster#90.ang_range 0.672226 
 (0.701548) 

103.poll_cluster#180.ang_range 0.136409 
 (0.268788) 

103o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

104.poll_cluster#0b.ang_range 2.025529*** 
 (0.152859) 

104.poll_cluster#90.ang_range 3.091357*** 
 (0.091056) 

104.poll_cluster#180.ang_range 1.246586*** 
 (0.146518) 

104o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 



59 
 

105.poll_cluster#0b.ang_range 1.519938*** 
 (0.118978) 

105.poll_cluster#90.ang_range 3.577570*** 
 (0.076458) 

105.poll_cluster#180.ang_range 2.400977*** 
 (0.072584) 

105o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

106.poll_cluster#0b.ang_range 0.009745 
 (0.260471) 

106.poll_cluster#90.ang_range 0.712273 
 (0.487918) 

106.poll_cluster#180.ang_range 0.846522*** 
 (0.226045) 

106o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

107.poll_cluster#0b.ang_range 1.495379*** 
 (0.129463) 

107.poll_cluster#90.ang_range 2.249680*** 
 (0.164542) 

107.poll_cluster#180.ang_range 2.003661*** 
 (0.076431) 

107o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

109.poll_cluster#0b.ang_range -0.470018 
 (0.300372) 

109.poll_cluster#90.ang_range 0.017754 
 (0.348613) 

109.poll_cluster#180.ang_range 0.498221* 
 (0.302475) 

109o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

110.poll_cluster#0b.ang_range 3.131638*** 
 (0.138795) 

110.poll_cluster#90.ang_range 5.521875*** 
 (0.162977) 

110.poll_cluster#180.ang_range 1.930624*** 
 (0.106886) 

110o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

112.poll_cluster#0b.ang_range 5.278345*** 
 (0.187044) 

112.poll_cluster#90.ang_range 2.070669*** 
 (0.200980) 

112.poll_cluster#180.ang_range 0.202388* 
 (0.105630) 
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112o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

115.poll_cluster#0b.ang_range 0.533713*** 
 (0.108098) 

115.poll_cluster#90.ang_range 0.952290*** 
 (0.152207) 

115.poll_cluster#180.ang_range 1.260022*** 
 (0.080462) 

115o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

117.poll_cluster#0b.ang_range 1.754653*** 
 (0.144914) 

117.poll_cluster#90.ang_range 3.529662*** 
 (0.156888) 

117.poll_cluster#180.ang_range 2.498544*** 
 (0.103767) 

117o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

118.poll_cluster#0b.ang_range 1.990507*** 
 (0.083857) 

118.poll_cluster#90.ang_range 3.344773*** 
 (0.084817) 

118.poll_cluster#180.ang_range 1.511566*** 
 (0.049072) 

118o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

119.poll_cluster#0b.ang_range -0.605435* 
 (0.331944) 

119.poll_cluster#90.ang_range 0.427004 
 (0.511761) 

119.poll_cluster#180.ang_range 0.823789** 
 (0.366275) 

119o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

120.poll_cluster#0b.ang_range 1.820096*** 
 (0.078763) 

120.poll_cluster#90.ang_range 3.534257*** 
 (0.078469) 

120.poll_cluster#180.ang_range 1.399368*** 
 (0.091815) 

120o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

122.poll_cluster#0b.ang_range 4.145147*** 
 (0.105509) 

122.poll_cluster#90.ang_range 5.753827*** 
 (0.158518) 
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122.poll_cluster#180.ang_range 1.391262*** 
 (0.114392) 

122o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

123.poll_cluster#0b.ang_range 0.227820* 
 (0.130778) 

123.poll_cluster#90.ang_range 0.774530*** 
 (0.170063) 

123.poll_cluster#180.ang_range 0.999130*** 
 (0.084742) 

123o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

124.poll_cluster#0b.ang_range 1.313923*** 
 (0.127506) 

124.poll_cluster#90.ang_range 0.931678*** 
 (0.098745) 

124.poll_cluster#180.ang_range 0.599968*** 
 (0.097737) 

124o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

125.poll_cluster#0b.ang_range 3.677131*** 
 (0.190184) 

125.poll_cluster#90.ang_range 2.461350*** 
 (0.233017) 

125.poll_cluster#180.ang_range -0.227303 
 (0.158135) 

125o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

127.poll_cluster#0b.ang_range 5.006985*** 
 (0.089358) 

127.poll_cluster#90.ang_range 6.354382*** 
 (0.103558) 

127.poll_cluster#180.ang_range 1.931227*** 
 (0.095378) 

127o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

128.poll_cluster#0b.ang_range 2.302765*** 
 (0.080399) 

128.poll_cluster#90.ang_range 4.276665*** 
 (0.101957) 

128.poll_cluster#180.ang_range 3.006704*** 
 (0.068915) 

128o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

129.poll_cluster#0b.ang_range 1.451518*** 
 (0.309621) 
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129.poll_cluster#90.ang_range 2.497599*** 
 (0.323342) 

129.poll_cluster#180.ang_range 1.643165*** 
 (0.465142) 

129o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

130.poll_cluster#0b.ang_range 0.888868*** 
 (0.121206) 

130.poll_cluster#90.ang_range 0.850984*** 
 (0.202659) 

130.poll_cluster#180.ang_range 0.548061*** 
 (0.147528) 

130o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

131.poll_cluster#0b.ang_range -0.275537 
 (0.219585) 

131.poll_cluster#90.ang_range -0.122585 
 (0.168154) 

131.poll_cluster#180.ang_range 0.559008*** 
 (0.201139) 

131o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

133.poll_cluster#0b.ang_range 6.341920*** 
 (0.163961) 

133.poll_cluster#90.ang_range 7.722789*** 
 (0.315888) 

133.poll_cluster#180.ang_range 1.733008*** 
 (0.106852) 

133o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

134.poll_cluster#0b.ang_range 3.776768*** 
 (0.179886) 

134.poll_cluster#90.ang_range 2.911384*** 
 (0.230254) 

134.poll_cluster#180.ang_range 0.093669 
 (0.102145) 

134o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

135.poll_cluster#0b.ang_range -4.591385*** 
 (0.408428) 

135.poll_cluster#90.ang_range -3.208094*** 
 (0.302801) 

135.poll_cluster#180.ang_range 0.964074* 
 (0.563164) 

135o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 
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136.poll_cluster#0b.ang_range 2.844620*** 
 (0.099116) 

136.poll_cluster#90.ang_range 4.327178*** 
 (0.221003) 

136.poll_cluster#180.ang_range 1.138129*** 
 (0.107497) 

136o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

137.poll_cluster#0b.ang_range 0.837019*** 
 (0.101369) 

137.poll_cluster#90.ang_range 2.798002*** 
 (0.105812) 

137.poll_cluster#180.ang_range 1.037849*** 
 (0.072089) 

137o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

138.poll_cluster#0b.ang_range 0.066326 
 (0.114395) 

138.poll_cluster#90.ang_range -1.031696*** 
 (0.148307) 

138.poll_cluster#180.ang_range 0.166859* 
 (0.085294) 

138o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

139.poll_cluster#0b.ang_range 2.502838*** 
 (0.071106) 

139.poll_cluster#90.ang_range 1.221601*** 
 (0.116202) 

139.poll_cluster#180.ang_range 0.309008*** 
 (0.077914) 

139o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

140.poll_cluster#0b.ang_range 4.968246*** 
 (0.112984) 

140.poll_cluster#90.ang_range 5.981953*** 
 (0.205503) 

140.poll_cluster#180.ang_range 1.843864*** 
 (0.121001) 

140o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

141.poll_cluster#0b.ang_range 2.698651*** 
 (0.266333) 

141.poll_cluster#90.ang_range 2.634367*** 
 (0.206808) 

141.poll_cluster#180.ang_range 0.557174*** 
 (0.112354) 
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141o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

142.poll_cluster#0b.ang_range -0.094960 
 (0.392779) 

142.poll_cluster#90.ang_range 0.056107 
 (0.414479) 

142.poll_cluster#180.ang_range 1.677557*** 
 (0.567643) 

142o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

143.poll_cluster#0b.ang_range 1.744299*** 
 (0.102877) 

143.poll_cluster#90.ang_range 3.467672*** 
 (0.125099) 

143.poll_cluster#180.ang_range 2.047649*** 
 (0.083541) 

143o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

144.poll_cluster#0b.ang_range 1.704313*** 
 (0.080167) 

144.poll_cluster#90.ang_range 3.344019*** 
 (0.100567) 

144.poll_cluster#180.ang_range 2.132869*** 
 (0.078267) 

144o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

145.poll_cluster#0b.ang_range 0.304116 
 (1.125558) 

145.poll_cluster#90.ang_range 1.452138 
 (1.494664) 

145.poll_cluster#180.ang_range 1.625433* 
 (0.887678) 

145o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

148.poll_cluster#0b.ang_range 1.003240*** 
 (0.054729) 

148.poll_cluster#90.ang_range 2.767941*** 
 (0.038700) 

148.poll_cluster#180.ang_range 1.399731*** 
 (0.046783) 

148o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

149.poll_cluster#0b.ang_range 2.369887*** 
 (0.095061) 

149.poll_cluster#90.ang_range 1.796273*** 
 (0.141617) 
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149.poll_cluster#180.ang_range 0.871462*** 
 (0.109607) 

149o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

150.poll_cluster#0b.ang_range 2.196984 
 (1.672894) 

150.poll_cluster#90.ang_range 2.062069 
 (1.827293) 

150.poll_cluster#180.ang_range -1.301490 
 (0.815912) 

150o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

151.poll_cluster#0b.ang_range 0.659729*** 
 (0.127488) 

151.poll_cluster#90.ang_range 1.274982*** 
 (0.200912) 

151.poll_cluster#180.ang_range 1.353439*** 
 (0.067696) 

151o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

152.poll_cluster#0b.ang_range -0.683034*** 
 (0.084643) 

152.poll_cluster#90.ang_range 0.135930 
 (0.198346) 

152.poll_cluster#180.ang_range 0.477758*** 
 (0.073861) 

152o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

154.poll_cluster#0b.ang_range -0.635512*** 
 (0.181181) 

154.poll_cluster#90.ang_range -0.286976 
 (0.316748) 

154.poll_cluster#180.ang_range 0.061309 
 (0.187285) 

154o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

156.poll_cluster#0b.ang_range 4.259030*** 
 (0.139921) 

156.poll_cluster#90.ang_range 5.900223*** 
 (0.150902) 

156.poll_cluster#180.ang_range 1.590715*** 
 (0.129108) 

156o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

157.poll_cluster#0b.ang_range 2.469101*** 
 (0.105871) 
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157.poll_cluster#90.ang_range 2.180887*** 
 (0.139376) 

157.poll_cluster#180.ang_range 1.296182*** 
 (0.083416) 

157o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

158.poll_cluster#0b.ang_range 0.946947*** 
 (0.366349) 

158.poll_cluster#90.ang_range 0.716450** 
 (0.300740) 

158.poll_cluster#180.ang_range 1.058712*** 
 (0.200810) 

158o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

160.poll_cluster#0b.ang_range 0.961810*** 
 (0.086488) 

160.poll_cluster#90.ang_range 2.749685*** 
 (0.096668) 

160.poll_cluster#180.ang_range 1.485634*** 
 (0.050614) 

160o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

161.poll_cluster#0b.ang_range 0.748096*** 
 (0.090668) 

161.poll_cluster#90.ang_range 2.302867*** 
 (0.102519) 

161.poll_cluster#180.ang_range 1.029191*** 
 (0.107635) 

161o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

162.poll_cluster#0b.ang_range -0.371181 
 (0.312445) 

162.poll_cluster#90.ang_range 0.862109** 
 (0.385978) 

162.poll_cluster#180.ang_range 1.831291*** 
 (0.640958) 

162o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

163.poll_cluster#0b.ang_range 2.682191*** 
 (0.073693) 

163.poll_cluster#90.ang_range 0.925884*** 
 (0.176314) 

163.poll_cluster#180.ang_range -0.657941*** 
 (0.153033) 

163o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 
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164.poll_cluster#0b.ang_range -0.859730*** 
 (0.228303) 

164.poll_cluster#90.ang_range -0.212231 
 (0.306999) 

164.poll_cluster#180.ang_range -0.060566 
 (0.211230) 

164o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

165.poll_cluster#0b.ang_range -0.989570*** 
 (0.378597) 

165.poll_cluster#90.ang_range -2.167839*** 
 (0.546613) 

165.poll_cluster#180.ang_range -1.738329*** 
 (0.408502) 

165o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

167.poll_cluster#0b.ang_range -0.948229*** 
 (0.246683) 

167.poll_cluster#90.ang_range 0.678972* 
 (0.376550) 

167.poll_cluster#180.ang_range 1.602315*** 
 (0.369782) 

167o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

168.poll_cluster#0b.ang_range 1.251942*** 
 (0.333828) 

168.poll_cluster#90.ang_range 2.546530*** 
 (0.223473) 

168.poll_cluster#180.ang_range 1.369905*** 
 (0.129989) 

168o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

169.poll_cluster#0b.ang_range -0.157463 
 (0.103386) 

169.poll_cluster#90.ang_range 0.083926 
 (0.104353) 

169.poll_cluster#180.ang_range 0.910831*** 
 (0.088955) 

169o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

170.poll_cluster#0b.ang_range -0.802594* 
 (0.456439) 

170.poll_cluster#90.ang_range -1.068181** 
 (0.474840) 

170.poll_cluster#180.ang_range -0.278853 
 (0.276670) 
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170o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

171.poll_cluster#0b.ang_range 0.891880*** 
 (0.158376) 

171.poll_cluster#90.ang_range -0.164091 
 (0.242575) 

171.poll_cluster#180.ang_range 0.693168*** 
 (0.102309) 

171o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

172.poll_cluster#0b.ang_range 5.158632*** 
 (0.121542) 

172.poll_cluster#90.ang_range 5.303547*** 
 (0.206210) 

172.poll_cluster#180.ang_range 0.952832*** 
 (0.119396) 

172o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

173.poll_cluster#0b.ang_range -0.169509 
 (0.348384) 

173.poll_cluster#90.ang_range 1.235310*** 
 (0.471148) 

173.poll_cluster#180.ang_range -0.054023 
 (0.138268) 

173o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

174.poll_cluster#0b.ang_range 0.298099 
 (0.231944) 

174.poll_cluster#90.ang_range 2.031254*** 
 (0.243236) 

174.poll_cluster#180.ang_range 1.686156*** 
 (0.265483) 

174o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

175.poll_cluster#0b.ang_range 0.162523 
 (0.141091) 

175.poll_cluster#90.ang_range -0.348634 
 (0.230017) 

175.poll_cluster#180.ang_range -0.619542*** 
 (0.183800) 

175o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

176.poll_cluster#0b.ang_range 2.131629*** 
 (0.074841) 

176.poll_cluster#90.ang_range 3.667721*** 
 (0.084064) 
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176.poll_cluster#180.ang_range 2.646855*** 
 (0.059122) 

176o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

177.poll_cluster#0b.ang_range -0.359044** 
 (0.164306) 

177.poll_cluster#90.ang_range 0.088319 
 (0.196471) 

177.poll_cluster#180.ang_range 0.819916*** 
 (0.062208) 

177o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

178.poll_cluster#0b.ang_range 1.829982*** 
 (0.120018) 

178.poll_cluster#90.ang_range 2.208291*** 
 (0.120154) 

178.poll_cluster#180.ang_range 0.777756*** 
 (0.073721) 

178o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

179.poll_cluster#0b.ang_range -1.093473 
 (0.842528) 

179.poll_cluster#90.ang_range -0.234509 
 (0.407007) 

179.poll_cluster#180.ang_range -0.640913*** 
 (0.228960) 

179o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

180.poll_cluster#0b.ang_range -0.078483 
 (0.269227) 

180.poll_cluster#90.ang_range 0.382905 
 (0.238734) 

180.poll_cluster#180.ang_range -0.304803 
 (0.282300) 

180o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

181.poll_cluster#0b.ang_range -1.185844 
 (1.409439) 

181.poll_cluster#90.ang_range -1.064855 
 (1.208516) 

181.poll_cluster#180.ang_range -2.553860*** 
 (0.461464) 

181o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

182.poll_cluster#0b.ang_range -0.947691*** 
 (0.280257) 
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182.poll_cluster#90.ang_range 0.197641 
 (0.468842) 

182.poll_cluster#180.ang_range 0.924393 
 (0.597968) 

182o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

183.poll_cluster#0b.ang_range 1.453636*** 
 (0.110257) 

183.poll_cluster#90.ang_range 3.854372*** 
 (0.114798) 

183.poll_cluster#180.ang_range 1.719645*** 
 (0.084170) 

183o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

184.poll_cluster#0b.ang_range 2.533359*** 
 (0.106151) 

184.poll_cluster#90.ang_range 3.085518*** 
 (0.148593) 

184.poll_cluster#180.ang_range 1.212567*** 
 (0.135626) 

184o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

186.poll_cluster#0b.ang_range -1.160408*** 
 (0.329584) 

186.poll_cluster#90.ang_range 0.653763** 
 (0.290812) 

186.poll_cluster#180.ang_range 1.188235*** 
 (0.427988) 

186o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

187.poll_cluster#0b.ang_range 0.116318 
 (0.407580) 

187.poll_cluster#90.ang_range 0.172235 
 (0.613612) 

187.poll_cluster#180.ang_range -0.259806 
 (0.239720) 

187o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

188.poll_cluster#0b.ang_range 5.613249*** 
 (0.217449) 

188.poll_cluster#90.ang_range 2.001138*** 
 (0.179020) 

188.poll_cluster#180.ang_range 0.463536*** 
 (0.139739) 

188o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 
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189.poll_cluster#0b.ang_range -0.812685* 
 (0.446854) 

189.poll_cluster#90.ang_range 2.198955*** 
 (0.828166) 

189.poll_cluster#180.ang_range 1.262276*** 
 (0.451696) 

189o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

190.poll_cluster#0b.ang_range 0.094324 
 (0.138257) 

190.poll_cluster#90.ang_range -0.222745* 
 (0.119170) 

190.poll_cluster#180.ang_range 0.242428* 
 (0.136167) 

190o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

191.poll_cluster#0b.ang_range 1.653324*** 
 (0.112230) 

191.poll_cluster#90.ang_range 3.868206*** 
 (0.111128) 

191.poll_cluster#180.ang_range 1.782372*** 
 (0.069278) 

191o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

192.poll_cluster#0b.ang_range 1.940781*** 
 (0.176037) 

192.poll_cluster#90.ang_range 3.772523*** 
 (0.130452) 

192.poll_cluster#180.ang_range 1.789697*** 
 (0.076642) 

192o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

193.poll_cluster#0b.ang_range 1.770616 
 (1.277970) 

193.poll_cluster#90.ang_range 1.387669 
 (0.996782) 

193.poll_cluster#180.ang_range -0.650433 
 (0.740139) 

193o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

194.poll_cluster#0b.ang_range 0.151399 
 (0.271773) 

194.poll_cluster#90.ang_range 0.156003 
 (0.231919) 

194.poll_cluster#180.ang_range 0.061704 
 (0.161361) 
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194o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

195.poll_cluster#0b.ang_range 0.708519*** 
 (0.141139) 

195.poll_cluster#90.ang_range 0.973760*** 
 (0.240009) 

195.poll_cluster#180.ang_range 0.481221 
 (0.295006) 

195o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

196.poll_cluster#0b.ang_range -0.913288 
 (1.307208) 

196.poll_cluster#90.ang_range 1.646746 
 (1.367180) 

196.poll_cluster#180.ang_range 0.034782 
 (0.907179) 

196o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

197.poll_cluster#0b.ang_range 3.226251*** 
 (0.099918) 

197.poll_cluster#90.ang_range 4.710354*** 
 (0.114311) 

197.poll_cluster#180.ang_range 1.259862*** 
 (0.100766) 

197o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

198.poll_cluster#0b.ang_range -0.340742 
 (0.241652) 

198.poll_cluster#90.ang_range 0.879695** 
 (0.377379) 

198.poll_cluster#180.ang_range 0.834227*** 
 (0.225952) 

198o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

199.poll_cluster#0b.ang_range -0.745451 
 (1.109478) 

199.poll_cluster#90.ang_range 4.317208*** 
 (0.618195) 

199.poll_cluster#180.ang_range 6.119289*** 
 (0.527549) 

199o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

200.poll_cluster#0b.ang_range -1.107133*** 
 (0.418563) 

200.poll_cluster#90.ang_range 1.110151** 
 (0.474065) 
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200.poll_cluster#180.ang_range 1.762158*** 
 (0.346800) 

200o.poll_cluster#270o.ang_range 0.000000 
 (0.000000) 

Observations 8,262,768 
Notes: This table depicts our first stage, which is the association of daily wind direction and daily PM2.5 
FRQFHQWUDWLRQV��³DQJBUDQJH´�DUH�D�VHW�RI�ELQDU\�YDULDEOHV�HTXDO�WR�RQH�LI�WKH�GDLO\�DYHUDJH�ZLQG�GLUHFWLRQ�LQ�FRXQW\�L�
falls within the relevant 90 degree interval [90b, 90b + 90) (and zero otherwise). The omitted category is the interval 
[270,360). We interact these binary wind direction variables with our 200 pollution clusters. Therefore, our 
coefficient of interest is allowed to vary across geographic regions.  


